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Abstract: In this paper we prove the entropy inequality for the Gaussian-
BGK model of Boltzmann equation. This model, also called ellipsoidal sta-
tistical model, was introduced in order to fit realistic values of the transport
coefficients (Prandtl number, second viscosity) in the Navier-Stokes approxi-
mation, which cannot be achieved by the usual relaxation towards isotropic
Maxwellians introduced in standard BGK models.

Moreover, we introduce new entropic kinetic models for polyatomic gases which
suppress the internal energy variable in the phase space by using two distribu-
tion functions (one for particles mass and one for their internal energy). This
reduces the cost of their numerical solution while keeping a kinetic description
well adapted to desequilibrium regions.
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Le modéle BGK gaussien de ’équation de
Boltzmann avec faible nombre de Prandtl

Résumé : Dans ce travail nous prouvons l'inégalité d’entropie pour le mo-
déle BGK Gaussien de 1’équation de Boltzmann. Ce modéle, appelé aussi
statistique-éllipsoidal, fut introduit dans le but d’obtenir des coéfficients de
transport (nombre de Prandtl, viscosité seconde) réalistes a la limite fluide,
ce qui ne peut étre obtenu par la relaxation vers une maxwellienne anisotrope
introduite dans le modeéle de BGK standard.

De plus, nous introduisons de nouveaux modéles cinétiques pour les gaz polia-
tomiques qui suppriment la variable d’énergie interne dans ’espace des phases
par l'utilisation de deux fonctions de distribution (une pour la masse des par-
ticules et une pour leur énergie interne). Cela réduit le cout de la résolution
numérique tout en gardant une description cinétique bine adaptée aux régions
de déséquilibre.

Mots-clé :  Théorie cinétique, Modéle de BGK, Inégalité d’entropie, Déve-
loppement de Chapman-Enskog
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4 P. Andries, P. Le Tallec, J.P. Perlat, B.Perthame

1 Introduction

At high altitudes or in rarefied regimes, a gas is best modeled at a microscopic
scale, as a collection of particles characterized by their velocity v and position
z. The relevant mathematical model is then the Boltzmann equation,

Ohf +v.Vef = Q). (1.1)

which governs the evolution of the density of particles f in the phase i.e. in
the monoatomic case f = f(t,z,v), t > 0, (z,v) € IR® x IR®, and in the
polyatomic case f = f(¢,z,v,[), where the additional parameter [ > 0 is
an internal energy parameter. This equation is closely related to the Navier-
Stokes system which governs the evolution of macroscopic density, momentum
and energy

P pu; 0
O pu; | + (‘Lj. puU; + P(Sij = (‘Lj. T5j , (1.2)
E Eu]- + Pu]- U045 + K@I]T

where the pressure is given by the polytropic law
P =pRT = (v —1)pe, (1.3)
the viscosity tensor is given by

0i; = 0z, u; + Op,u; — adipdivu)
the total energy by £ = Liplu|®> 4 pe. Finally, the viscosity u(T'), the second
viscosity ap and heat conductivity x(7') are given coefficients. Here R denotes
the ordinary gas constant per unit mass.

Since the quadratic collision operator Q(f) has a rather complex form,
simpler models have been introduced and are commonly used (see Loyalka and
als [14], Aoki and als [2] for example). These models should respect the basic
relaxation properties of the gas under study and be reliable when computing
boundary layers or shock waves in transitional flows (that is in regimes where
the gas is dense but not completely in thermodynamic equilibrium). On the
other hand , they should be easier to handle numerically, and should simplify
the study of transitional regimes. More precisely, we are looking for models
whose hydrodynamic limits can be easily accessed by Chapman-Enskog or by
asymptotic moment expansions and have the right transport coefficients. The
simplest model is the so-called BGK model introduced by Bhatnagar, Gross
and Krook [3]. It is based on relaxation towards local Maxwellians

QU = Z(MIf] - f). (1.4

INRIA



The Gaussian-BGK model of Boltzmann equation with small Prandtl numberb

This model has the advantage of describing the right fluid limit. But in the
Chapman-Enskog expansion,the transport coefficients, that is y, a, and & ob-
tained at the Navier-Stokes level are not satisfactory. In particular, the Prandtl
number defined by

pr— 2 tfn (1.5)

y—1 &

and relating the viscosity to the heat conductivity is equal to 1. For most
gases, we have Pr < 1. In particular, the hard-sphere model for a monoatomic
gas (y = 5/3) in Boltzmann equation leads to a Prandtl number very close to
2/3. Many variants of the BGK model have been proposed in order to give
the correct Navier-Stokes heat conduction (see Brun [6], Cercignani [8]) but
none of them satisfies simultaneously the three basic requirements of giving
nonnegative distributions, of predicting a Prandtl number less than 1, and of
verifying the fundamental H-Theorem

/QUHvagm (1.6)

which implies the classical and fundamental entropy inequality
o, / H(f)dv + div/gH(f)dQ <0, (1.7)

H(f)=[Inf.

Actually, the model proposed by Bouchut and Perthame [5] can do this, but
it is too complex for numerical purposes. In Levermore [12] a BGK system is
proposed but it can only reach Prandtl numbers larger than 1 for nonnegative
distributions. A model was proposed by Holway [9] which gives non negative
distribution and a Prandtl number less than one, but to prove the entropy
inequality for this model has been a long standing open problem. Nevertheless
various studies and numerical simulations have been conducted with results in
good agreement with experimental data, for references see [8] and in particular
[7].

The actual form of the model, called ellipsoidal statistical or Gaussian model,
involves non-convex quantities for % < Pr < 1. This fact made unlikely that
the entropy inequality (a convex relation) might hold true and the problem of
proving or disproving the H-Theorem was left open.

In this paper, we solve this long standing question by showing that the model
satisfies indeed the entropy inequality for the range % < Pr <1. A second
purpose of this paper is to extend this model and the associated Chapman-
Enskog expansion to polyatomic gases. Two kinetic descriptions are in fact
possible here. The classical description uses a distribution function f(¢,v,z,I)
which also contains an internal energy parameter I at the kinetic level (see

RR n~3716



6 P. Andries, P. Le Tallec, J.P. Perlat, B.Perthame

Lifschitz-Pitaevski [13] for a general setting, or Morse [16] for the precise BGK
model). The other description to be detailed in this paper is to use two den-
sity functions, one for mass, and one for internal energy. It was used for Euler
equations by Khobalatte and Perthame [11]| and has the advantage of reducing
the number of independent variables which is very useful for numerical pur-
poses (see Mieussens [15] for instance). In a forthcoming paper, we will present
comparisons between numerical tests using Boltzmann’s quadratic kernel and
the ellipsoidal model (Andries and al. [1]).

The outline of this paper is as follows. In section 2, we describe the
Gaussian model for a monoatomic gas, and we prove the entropy property
(1.6) for this model. In Section 3, we extend the model and the entropy
property to the polyatomic case using an additional internal degree of freedom.
The Chapman-Enskog expansion is performed in Section 4, and we show that
the range of Prandtl numbers 2/3 < Pr < oo can indeed be reached while
leaving free the second viscosity coefficient « in the polyatomic case (in the
monoatomic case we can only reach the classical Stokes relation o = 2/3 as
for the binary Boltzmann collisional operator). Finally, the description with
two distribution functions is treated in section 5.

2 Gaussian BGK equation: the monoatomic case

In this Section we consider a monoatomic gas i.e. v = 5/3 in 1.3. We recall
the Gaussian model which allows to recover the range of Prandtl numbers
2 < Pr <1, and we show that it satisfies the entropy properties (1.6), (1.7).

2.1 Some notations

Boltzmann’s collision operator Q(f)(z,v,t), which describes the variation of
the distribution function due to binary collisions between particles, conserves
mass, velocity and energy

AERS Q)2 v,t)¢(v)dv = 0,

for ¢(v) = {1, v, 1|v[’}, and satisfies the local entropy dissipation inequality
(1.6). These properties are true for the simpler B.G.K. operator (1.4) which
describes the relaxation of f to the local Maxwellian equilibrium

P v — uf?
M[f] = Wexp (—W) . (2.1)

It is defined by using the macroscopic density p, velocity u and translational
temperature T' of the original non-negative distribution f obtained through

INRIA



The Gaussian-BGK model of Boltzmann equation with small Prandtl number?

the moments

plz,t) =< [ >, (2.2)
u(z,t) =~ <uf >, (2.3)
T= SRpa 1) o — u(z, O f >, (2.4)

with the notation

< f>(z,1) :/ flz,t,v)dv.

vER?

In order to introduce the Gaussian model, we need further notations. We
define
P =pRT (kinetic pressure), (2.5)

1 1
E = 5 < lv|*f >= §p(|u|2 +3RT) (total energy), (2.6)

and the opposite of the stress tensor
1

O=—-<c®cf >, (2.7)
= 7

with ¢ = v — u(z,t) denoting the relative velocity. Therefore the translational
temperature is related to the stress tensor by

1
T=—1r0.
372

We finally introduce the corrected tensor

T=(1-v)RTId+ vO, (2.8)

which can be viewed as a linear combination of the initial stress tensor © and
of the isotropic stress tensor RT'Id developed by a Maxwellian distribution.

2.2 Gaussian model

The Gaussian model introduces a corrected BGK collision operator by repla-
cing the local equilibrium Maxwellian by the Gaussian G[f] defined by

1
Olf] = ——L—ew (—5-uw) T (@-u). (29
det (QWL) ( 2 )
The corresponding collision operator is now
P
Qf) = m(g[f]—f)a (2.10)

RR n~3716



8 P. Andries, P. Le Tallec, J.P. Perlat, B.Perthame

where the parameter —% < v < 1 is used to modify the value of the Prandtl
number through the formula (to be proved later)

2 5R 1
Sepr=22 < +oo. (2.11)

It first follows from the above definitions, using for example the change
of variables ¢ = 7;‘”2 (v — u), that

<f> =p =<g[f]>,
<uf> =pu =<v([f] >,
<> =B =<4g07>,
and
<(v—u) @ (v—u) f>=p0,
<(v—u)®(—-u)g[f] >=pT. (2.12)

In particular, this means that the collision operator (2.10) does indeed conserve
mass, momentum and energy as imposed.

2.3 entropy inequality

To prove the entropy inequality (1.6) (H-Theorem) we introduce the entropy
constrained minimization problem

S(p,u,T) = min < H(g) >, (2.13)
= gex
where X' = X(p,u,T) is the set defined by
X ={g>0,(1+v])g € L'(IR?),
<g>=p,<vg>=pu,<v@uvg>=pudu+pL}.

We have the following proposition

Proposition 2.1 .

For symmetric positive definite tensor © and —1/2 <v <1 we have

(i) the tensor T defined in (2.8) is symmelric positive definite and the set
X(p,u,T) is not empty,

(i) the unique minimizer in (2.13) is the Gaussian G[f] defined in (2.9),
(iii) the entropy of the Gaussian G[f] salisfies

< H(G) >= S(p,u.T) < S(p,u,0) << H(J) >, (2.14)

(iv) consequently the entropy inequalities (1.6), (1.7) hold,
(v) the equality < H(G) >=< H(f) > implies f = M.

INRIA



The Gaussian-BGK model of Boltzmann equation with small Prandtl number9

proof.The first and second point will be proved later on in the more general
polyatomic case, thus we refer to section 3 for a proof. For the third point,
using (ii) we first compute

1
Sp,u, T) =1 P <G> < T (c®)G>—<G>
(P, 1) n( det(QWL)) 2 = (c® )

I Y S B
-7 det(27T) 2107

yielding

S(pyuw, T) = S(py, ©) = pln(——eees) — pIn(——beer)

- \/det(27T) P det(2709)

1 | det ©
Bl det T°
Thus, we just have to prove that
det 7 > det ©. (2.15)

This is mainly a consequence of the Brunn-Minkowsky inequality
det(aA+ (1 —a)B) > (det A)*(det B)l_“ (2.16)

for 0 < a <1 and A, B positive symmetric matrices, A # B. This inequality
can be evidently extended to a general convex combination of matrices. This
inequality will be proved later on in the appendix. Here we cannot apply this
result directly to

T =00+ (1~v)RTLd

because v may be negative. Instead, we introduce, in a diagonal basis for ©
the matrices

At 00 Ao 00 As 0 0
A1 - 0 /\2 0 ) A2 - 0 )\3 0 ) Ag - 0 /\1 0 )
0 0 As 0 0 X 0 0 X

(2.17)
where ); are the eigenvalues of ©. Then, T is also diagonal and since RT =

(A + A2 + A3)/3, it is easy to obtain from the definition of T

RR n~3716



10 P. Andries, P. Le Tallec, J.P. Perlat, B.Perthame

For —% < v < 1 this is now a convex combination of three matrices and we
may apply (2.16). After noticing that

det Al = det A2 = det Ag = /\1/\2/\3 = det Q,
we obtain
det 7 > det ©.
Therefore, the inequality (2.15) holds true for 1 — v >0, and 1 4 2v > 0, and
the proof of (iii) is complete.
We deduce (iv) as a consequence of (iii) and of the convexity relation
H'()(G — f) < H(G) - H().
Then, the BGK model (2.10) satisfies the H-Theorem for all v € [—1/2,1]

because, thanks to the convexity of H we have

at/ms H(f)de+ Ve [ ol (f)de = %/ﬁ UG — e
pRT
< 7 JpHOUD) — H)de
< 0.

To prove (v), we assume < H(G) >=< H(f) >. Then the point (iii) gives
< H(G) >= S(p,u,T) = S(p,u,0) =< H(f) >. (2.18)

But, using (ii) the equality S(p,u, ) =< H(f) > implies by point (ii) that f
is the gaussian

f:gg[f] = \/#T@) exp <—§(Q—g)-g_l-(y—g)) ) (2.19)

Next, the equality (2.14) also gives S(p,u,T) = S(p,u,0). These quantities
can be computed exactly following the lines of point (iii), and (2.15) becomes

det T = det ©.
With the notations (2.17), this gives

N

lyow 1 -
det< —;VAIJF st 3”A3):detg.

This is the equality case of the strictly convex inequality (2.16) and since v < 1,
this equality implies
A2 — Ag,
from wich we deduce immediatly
Then, we use the gaussian structure of f, (2.19), and (2.20) to obtain f = M. O

INRIA



The Gaussian-BGK model of Boltzmann equation with small Prandtl numberl1

3 Gaussian model : the polyatomic case

The extension to polyatomic gases can be performed using an internal energy
parameter [ which takes into account the (continuous) degrees of freedom in
a general way. This kind of formalism has been widely used, see [6], [11], [13].

3.1 The Gaussian model

The polyatomic distribution function f(¢,z, v, I') describes the number of par-
ticles with position z, velocity v and internal energy e(I) = I?/? at time ¢, and
defines the macroscopic quantities (2.2),(2.3),(2.6) by

plz,t) =<< f>>, (3.1)
1
u(z,t) = — << vf >>, (3.2)
P
Lo 2/8 1 2
E(z,t) =<< (5lo[" + I7°)f >>= gplul” + pe, (3.3)
under the new notation
<< [>> (a,t :/ tx, v, [dvdl.
f (i ) vER3 I€IRT f( &0 ) .

Here, the ratio of specific heats v = % and the number of additional degrees

of freedom of the gas § are related by ’

545

=53 (3.4)

~y

By example, for a diatomic gas, we have § = 2 and thus v = 1.4.

1

1
The specific internal energy e = —F — §|u

|* can be divided here in two

parts, the internal energy of translational motion e;. and the energy associated
with the internal structure e;:

€ = €y + €int,

1 1
ey = — << =|v —ul’f >>,
p 2

1
it = — << IO f >>
p

We associate to these energies the corresponding temperatures T.,, T}, T

RR n°3716



12 P. Andries, P. Le Tallec, J.P. Perlat, B.Perthame

345
¢ — %RTW,

3
Etr = 5 RTt?“ 5

)
€int = § RTznt .

We define
P = pRT,,. (3.5)

As before, we also introduce the opposite of the stress tensor
pO =<<c@cf >> (3.6)

still with ¢ = v — u. Next, we have to introduce two relaxation parameters
0<6#<1and —% < v < 1. We define a relaxation temperature

Trel - eTeq + (1 - H)Tinty (37)
a corrected tensor

T=01-6)((1-v)RT};Id+vO)+ 0RT.,1d, (3.8)

and the generalized Gaussian

" A 1 1?7
glf1= & exp (—5(2—@)'l_1'(2—2)+RT ) (3.9)
det (ZWL) (RTEB/ZZ) rel
For later purpose, we also define the polyatomic maxwellian
~ p 1 N
=A | =—==|v— . 1
M(/f] S om BT PRI P (QRTeq lv—ul”+ AT (3.10)
We are now able to define the Gaussian-BGK polyatomic collision model
Q) =~ (GIf] - ) (.11)
- p(l —v+6v) ' '

Here, the constant As is defined by
A= [e

so that )
<< Glf] >>=<< [ >>,

INRIA



The Gaussian-BGK model of Boltzmann equation with small Prandtl numberl3

the collision operator (3.11) does preserve mass, momentum and energy, since
we have

<< vG[f] >>=<< vf >>,

<< (%|Q|2 + I9G[f] >>=<< (%|v|2 + 10 f >> .

The first two properties are only due to the scalings of the constant As. The
third conservation law can be checked as follows

0T = p(RT, (1~ 0) + 0RT,),

N 5 )
<< IPP°G[f] >>= gPRTre = §P(‘QRTHJ + (1= 0)RTime),

and the total internal energy is then

1 ~ 6 3 3 )
<< (§|c|2 + I*9)G[f] >>= pR (eTeq(§ + §) + (1 — 0)(§Tt,, + §Tm)) .

Since
3 ) 3 9
2T+ =T = (2 + =) Ty,
5 Tir + 5Tt (2+2) g

we obtain

1 ~ 3446 1
<< (§|yl2 + IPIHG[f] >>= %pRT@q —<< (§|v|2 + I >>

We will now show that the modified BGK tensor (3.11) satisfies the entropy in-
equality. In section 4 we show that it gives, in the Chapman-Fnskog expansion,
the Prandtl number

2
3 < Pr < 400, (3.12)

- 1—v+86v
and a second viscosity coefficient in (1.2)

1—-6 )

a=(y-1) - ——[1-r)5-7), (3.13)

always for —% <v<l, 0<f< 1.

RR n~3716



14 P. Andries, P. Le Tallec, J.P. Perlat, B.Perthame

3.2 Entropy inequality

To prove the entropy inequality (1.6) (H-Theorem) we introduce the entropy
constrained minimization problem

S(pyu, T, Trer) = min << H(g) >>
= g€X

where X' = X(p,u, T, T,.) is the set defined by

)
X = {g >0,(14 [v]*)g € LMIR?), << I*Pg >>= T
<< g>>=p, << vg >>= pu, << v @ vg >>=pg®y—|—pl}.
Our main result is the following proposition

Proposition 3.1 .

For symmetric positive definite tensor ©, —1/2 < v <1, and 0 < § < 1 we
have

(i) the tensor T defined in (3.8) is symmelric positive definite and the set
X(p,u, T, Tr) is not empty,

(ii) the unique minimizer is the Gaussian Glf] defined in (3.9),

(iit) the entropy of the Gaussian Glf] satisfies

<< H(QN) >>= S(paualv Trel) § S(paﬂagaTint) §<< H(f) >>7

(iv) consequently the enlropy inequalities (1.6), (1.7) hold,
(v) the equality << H(G) >>=<< H(f) >> implies f = M.

Proof. From now on we note
A=v0+ (1 —-v)RT, 1d, (3.14)

and in case of § = 0 we have T = A, especially this is true in the monoatomic
case. To prove the first point, after noticing that G[f] belongs to X(p,u, T, T,e)
it is sufficient to prove that A is positive definite. Then, we can conclude the
positivity of T by convexity since 0 < 6 < 1. To prove the positivity of A, we
consider a basis of eigenvectors of ©. In such a basis, the modified tensor 4 is
diagonal, with diagonal terms

~—~

A; = 1gy)(01—|-<92—|—(93)—|—1/92-, 1 =1,2or 3.

INRIA



The Gaussian-BGK model of Boltzmann equation with small Prandtl numberl5

These numbers are obviously positive when 0 < v < 1. For negative values of
v, the worst case occurs when two eigenvalues 6; vanish, yielding for the other
eigenvalue

14 2v 1
A’i = 02 > ) 2 — a0
3 >0, Vv 5

and the first point is proved.
To prove (ii), we first observe that from the definition of G[f], we have

H'(G) = InG = a.m(v) (3.15)

where

m(v) = (L,u,0@ v, I*?),
and with a the Lagrange multiplier

Asp 1
T T
T(RTTSZ)J/Q 2 = T 2= RTT‘@I

‘a=|1In
det 27

Since H is strictly convex, we have, for all ¢ > 0 with g # g,
H(g) > H(G) + H'(G)(g - G).
Thus, for ¢ € X(p,u,T,T..;) with g # G, it follows from (3.15) and the

definition of X (p,u, T, T) that
H(g)dv > / H(G)dv.
| Hgde> [ H(G)d

This proves the second point.
For the third point, we first compute

Agp ~ 1 B ~
S(p,u,T,T,e) =In << G>>——<<T ' i (c®c)G >>
( L l) ( /det(QWl)(RTrez)‘g/Q) 2 = ( )
J2/8 > B
+ << BT >> — << G >>
= pln Asp _3
- r 8/2 2F
det(2nT)(RT, o)
yielding
A A
S(P,M, l? TT@Z) - S(p,ﬂ, Qa Tmt) = Pln( i ) — pln( 5P )
det(2rT)(RT,.)%/? det(2m0)(RTint )2/
1 det © T2,

RR n~3716



16 P. Andries, P. Le Tallec, J.P. Perlat, B.Perthame

Thus, we just have to prove that

det T T?

rel

> det® T?

wnt?

6)

(3.1
We already proved in (2.15) this inequality in the monoatomic case, i.e. T =
and § =0

S

det 4 > det ©.

Using this result for the polyatomic case, it is enough to prove the inequality

det T T2, > det AT}, (3.17)
First, we use again the Brunn-Minkowsky inequality (2.16) applied to T

det T > (det é)l_e(RTeq)?’a

detT > det A(det é)_e(RTeq)Se.

Then, we use the inequality between geometric and arithmetic average

tr M

(=) > det M,

which gives here

(det ) > (RT,,) ™,
since —0 < 0 and trA = 3RT;.. We obtain thus

det 7 > (det A) que thse.
Comparing with inequality 3.16, it is sufficient to prove

30 =360 mé mé
Teq Ttr Trel Z Tint?

(3.18)
wich can be written
30InT., —30InTy,, +0InT.q > dInTip.

For this we use the convex combination

3 )
Tez Tr TZTL
1T335 " T3

36 Y
Tre =(1-460 Tzn TT’ Tin;
1= ) ot g e+ gl

and by the concavity of the logarithm fonction, it is a simple computation to
obtain the inequality (3.18).

INRIA



The Gaussian-BGK model of Boltzmann equation with small Prandtl numberl7

This ends the demonstration of (iii).
We deduce (iv) as a consequence of (iii) and of the convexity relation

H'(F)(G = [) < H(G) - H(f).

Then, the BGK model (3.11) satisfies the H-Theorem for all v € [—1/2,1],0 €
[0, 1], because, using (iii)

o[ H(Pdv+ Ve [ wH(f)dy = %/ﬁs HVEI -
_PRT 5141y )
(1—v) /IRS(H(G[f]) H(f))dv

< 0.

The proof of (v) is very much the same as in the monoatomic case. First, the

equality << H(G) >>=<< H(f) >> implies
S(p,u,0,Tis) =<< H(f) >>,

and by (ii)
5 A 1 72/8
=Gl = L exp (2 07 -+ ).
a det (QWQ) (RT;,1 )%/ int
(3.19)

Then, since S(p,u, T, Tra) = S(p,u, O, Tint), the calculation in the proof of
(iil) gives

det T T2, = det® T}

wnt?

(3.20)

and also

quu_e) Tti(e_l) Trlgel = Til?rzt'
Next we take the logarithm of this equality, use the convex combinations which
define T,.; and T,, and the strict concavity of the logarithm , and we deduce

that the case of equality can only be reached by

Tint — Ttr - Teq- (321)

Then, (3.20) gives
det T = det O,

which has been proved in the monoatomic case to imply

O = RT,, = RT,,. (3.22)
This directly proves that )

f=MI[f].
O

RR n~3716
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4 Transport coefficients

We now compute the transport coefficients obtained from this modified BGK
model in the Navier-Stokes approximation.

Proposition 4.1 For the Gaussian-BGK model, we oblain in the Chapman-
FEnskog expansion the Navier-Stokes system (1.2) where the viscosity tensor is
given by

T35 = /L(@IJ u; + aziu]' - a&jdivu). (41)

Moreover the second visosity coefficient o and Prandtl number Ll@ are given
=1 &
by
1—19 5
a=(y-1)-—=-r)5-7) (4.2)

B 1
Cl—vd6r
The coefficients defined in §3, —1/2 < v < 1 and 0 < 6 < 1 lead to

% < Pr < +4oo in formula (4.3). For a monoatomic gaz, a Prandlt of 2/3

is obtained by taking § = 0 and v = —%. For a diatomic gaz, experimental

values of the Prandtl are close to % and this is obtained with v = —% and

0= % This value of 8 corresponds to the empirical law that in a diatomic gas,

Pr (4.3)

one collision of particles out of five involves an exchange of internal energy, as
is widely used in Monte Carlo (DSMC) simulations.

Proof.

The proof is based on a Chapman-FEnskog expansion of the unknown distribu-
tion f, verifying

P 3
Wf+o.Vyf=——— - /).
[0V = (Gl 1)
We denote a Low)
p(l—=v v
€= — (4.4)
and thus write )
I =Gf] = €(0:f + vV f). (4.5)

We then expand f as a power serie of e. We obtain immediatly from the above
equation that the first term of the expansion -taking formally e = 0- verifies
f° = G[f°] wich implies, using proposition 3.1 (v) that

£o= MIf]

In a second step, we consider the first correction in e. We therefore write

fe= M[f]+ O(e). Tnserting this in (4.5) we obtain
Jo=Glf] = @M[[]+ 0.V M[[]) + 0(2). (4.6)

INRIA



The Gaussian-BGK model of Boltzmann equation with small Prandtl numberl9

On the other hand, integrating the kinetic equation in mass, momentum and
energy, and recalling the definition of p,u,T,, in (3.1)-(3.2)-(3.3), we have the
conservation laws

p pu;

Or | pui | + 0. | puiu; + pO;; =0, (4.7)
K Euj + pOfu; + g5
under the notation
1
<< <§|c|2 + ]2/5) c;ifC >>=q;', (4.8)
<< v [ >>= pusu; + p@f-j. (4.9)

Therefore, to obtain the comportment law (4.1) and the Fourier law, we
only need to compute the moments << v;v;f° >> and << vvjupf° >>. We
compute them up to the first order of ¢, using (4.6) and the following lemma

Lemma 4.2

aui 8u]- 8uk
(= 1) =28

8:(:]- + (91'2 (7 )&tk ])

dy << viv;M >> 49, << viv;ypM >>= P(

1 ~ 1 ~
0y << (§v2 + I, M >> 40, << (§v2 + YoM >>

= Pu; —(y—1 :
Y 8:@ @xz (’7 )al}k 2 6:(:j

This lemma is mainly deduced from standard algebraic manipulations and
exact computation of the third and fourth moment of the maxwellian, and we
do not recall the computations.

Reporting this in (4.6), and using the definitions of the first moments of
the modified tensor G(f°), we therefore get

<< frov; >> = puju; +0pRT. 6+ (1 — 9)p<(1 —v)RT}.6; + V@,fj)
—6P(8I]ui + Opu; — (v — 1)0p, urdij) + 0(62),
1 1 3446
<< <§|C|2 + [2/5> C]'fE >> = (§pu2 + %pRqu) U + HpRquémuz
+(1 — 9)p<(1 —v)RT{ 6 + y@fj)ui

549

—€P(0z,ui 4 Op,u; — (7 — 1) 0, updij)u; — € RPO,, T + 0(€?).

RR n~3716
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Using the above definitions (4.8) and (4.9) we obtain

pO;; = OpRT.,0i; + (1 — 9)P<(1 —v)RT;.6i; + V@Z)
—€P(0z,u; + Opuj — (v — 1) 0 updi;) + 0(e?),
¢+ pOLu; = OpRTS 6iu; + (1 — 9),0((1 —v)RT 6 + 1/@9)uZ

)
—6P(6T]ui + 8Tiuj — (’)/ — 1)8Ikuk5ij)ui 5 +

(€).

Multiplying the first equations by u; and substracting them to the second ones
gives then

Ty

5—|—5

€

q; = —

(€”).

On the other hand, taking the trace of the first equations first gives
3pRT, = 30pRT;, 4 3(1 — 0)pRT}, — ¢P(5 — 37)0x, ux,

Tj

that is

. .1 5
RT{. = RT;, — 56P(§ — ) Oz, Uk,

and therefore the first equations reduce finally to

(1—v+ Qy)p(ﬂfj =(l—-v+ Hz/)pRqud}j — €P(0p ui 4 Op,uj — @O0, updi;) + O(e?),

1—46 5
witha=(y—-1) — T(l - 1/)(5 - 7).
1— 0
Substituting € by its value € = w gives the final result
pO;; = Pé;j — (O, s + Oputy — a0y urdij) + O(e?), (4.10)
€ 5 + 5 2
q; = —T,u(l —I/—I—HI/)R@I]T—I-O( ) = —/iar_]T—l—O(e ). (4.11)
At first order in €, these are the right Navier-Stokes constitutive laws
) 1
with Prandtl number Pr = L@ o+ ¢ fp =
vy—1 & 2 K 1—v+1v0

O

5 Polyatomic case. Description with two distri-
bution functions

For numerical purposes, it is expensive to introduce an internal energy variable.
It turns out that, for BGK models that is not necessary and all macroscopic

INRIA



The Gaussian-BGK model of Boltzmann equation with small Prandtl number21

variables can be equivalently obtained with a simpler formalism. We simply
need to introduce two density distributions, one for mass and one for internal
energy. Notice that the reduction below cannot be performed in the case of
Boltzmann’s quadratic collision operator.

Using the notations of §3, we denote f(t, z,v) the solution of the Boltz-
mann equation and we define

t? ) = = / t7—7—7[ dl’
ftew) = [ |z
¢ = [ PPt 1)l 5.1
gty = | TOf( e 1) (5.1)
The macroscopic quantities of §3 are then simply defined in function of f and
g by

1
p=<[f> pu=<uvf> 0=—-<c®Rcf >, (5.2)
=P
3446 3 5
e="TORT, = 2RT, + 2R, (5.3)
2 2 2
3R 0R 1
— T =Tr0, €in=—Tim=—-<g>. (5.4)
2 = 2 p

This allows to construct the associated Gaussian distribution

T=(1-v)RT,Id+v0,

= MGXP (—%(y—u) A (E-M)) (5.5)
MIf,g] = /IR+ M fldI
- e (-5, (56)

Then, we obtain the BGK system governing the evolution of the distributions
f and g by simply integrating the kinetic equation (1.1), (3.11) in dI and
1?1541, yielding

1

1 )
g +v-Vag+ g(g - §RTrelg[fa g]) = 0. (5.7)

For this system the only conservation quantities are again

1 3 )
p, pu, B = §plu|2 + §pRTn~ + ?'ORTW-

RR n~3716
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Since the macroscopic quantities associated with this system are the same
as those of f in §3, we also obtain, in the Chapman-Enskog expansion the same
Prandtl number

2 1
- < Pr=— )
3~ : 1—1/—|—0V<+OO

Finally, the entropy property now holds in average for the H-function
defined by

H(f.9)=f In—" — (5.8)

(g)7+
_Mm{/ H(J) d[f>0/ fd[_f/ #5fdl = g}. (5.9)

Indeed, we can prove as in Propositions 2.1 - 3.1 that the pair (M, § SRT,, M)
minimizes < H(f,g) > under the constraints

2
< f>=p, <2f>=pu,E=<%f+g>,

while the pair (G, gRT,,elg) minimizes < H(f,g) > under the constraints
< f>=p, <uvf>=pu, <c@cf>=pL,
5
< g>= p§RTrel. (5.10)

This implies in turn

1)
< H(g7 §RTrelg) >= S(p7ﬂ77:‘7 TT@Z) § S(P;M,Q, Tznt) §< H(f7g) >
which proves that

& < H(f,g) > +div < vH(f,g) >

1 )
S g < H(g, §RTrelg> - H(fag) >
“ (5.11)

6 Appendix. Brunn-Minkowsky inequality.

We give here a simple demonstration of the Brunn-Minkowsky inequality in-
troduced in section 2 and 3.

det(aA + (1 — a)B) > (det A)*(det B)'~

INRIA



The Gaussian-BGK model of Boltzmann equation with small Prandtl number23

for 0 < a < 1 and A positive, B nonnegative symmetric matrices, A # B.

To prove this inequality, we can chose A = Id without any loss of genera-
lity. This is consequence of the strict positivity of one of the two matrices, for
example A, so that A is invertible, and

det(aA+ (1 —a)B) = det(A) det(ald 4 (1 — a)A_lB).
Changing the the matrices names, we have only to prove
det(ald + (1 — a)C') > (det C’)l_“.

Here C' = A~'B is still diagonalisable and we denote by ¢; its eigenvalues.
Computing the determinants in a diagonal basis for ',

M(a+(1—a)e) > (Tle;)' ™%
Taking the logarithm, we have to prove that
YIn(a+ (1 —a)e) > (1 —a)XIng.

This is now a direct consequence of the concavity of the logarithm between 1
and ¢;

In(a+ (1 —a)e;) > (1 —a)lne,.
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