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Abstract� Visual servoing of robot manipulators is a key technique where video images�
i�e� the visual appearance of an object is used to control the end�e�ector� Most such methods
use robots and cameras that have been calibrated� In this report we suggest a non�metric for�
mulation of visual servoing that works with an uncalibrated stereo rig� i�e� in the projective
space associated with it� In consequence� the robot kinematics and the robot Jacobian have
to de�ned projectively� as well� Elementary motions of robot joints are pure rotations and
pure translations� Rather than representing them by Euclidean transformations� the uncal�
ibrated stereo rig suggests to represent them by corresponding projective transformations
�homographies�� They are introduced as projective rotations and projective translations�
their algebraic properties and special parameterizations are thoroughly investigated� This
gives raise to the de�nition of a projectiv kinematic map and a projective Jacobian matrix�
Unlike the classical robot Jacobian� which relates joint�velocities to end�e�ector velocities�
we establish a direct relationship between joint�velocities and image�velocities� i�e� the ve�
locities of those images points corresponding to end�e�ector features� Finally� we provide a
practical method to establish the projective kinematics and describe preliminary simulated
experiments of stereo�based visual servoing using the non�metric model� Nevertheless� in
depth analysis of projective control will be the topic of a forthcoming paper�

Key�words� projective geometry� uncalibrated vision� kinematics� stereo vision� articu�
lated motion� visual servoing
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Asservissement visuel de robots manipulateurs

Premi�re partie � Cin�matique projective

R�sum� � L�asservissement visuel de robots manipulateurs est une m�thode cl� qui uti�
lise l�apparence d�un objet dans l�image pour controler la vitesse de l�outil du robot et le
d�placer a�n d�atteindre une position dans l�espace� La plus grande majorit� de m�thodes
d�asservissement visuel propos�es jusqu�a maintenant utilise des robots ainsi que des ca�
m�ras calibr�s� Il a �t� montr� que le comportement des boucles de contr�le n�est pas
fortement modi�� en pr�sence d�erreurs de calibration� N�anmois� la calibration des robots
et des cam�ras est un processus complexe et co�teux en temps car il n�cessite des syst�mes
m�caniques sophistiqu�s tels que des th�odolytes et des mire de calibrage�

Dans ce rapport de recherche on sugg�re de r�aliser la boucle d�asservissement visuel dans
un espace non m�trique qui� dans ce cas� correspond � un sous�espace de l�espace projectif�
sous�espace qui sera �tudi� en d�tail� La cons�quence majeure du contr�le non m�trique est
que le mod�le cin�matique direct du robot ainsi que la matrice jacobienne du robot doivent
�tre �galement exprim�s dans ce sous�espace�

Les mouvement articulaires �l�mentaires qui peuvent �tre ex�cut�s avec un robot ma�
nipulateur sont soit des rotations pures soit des translations pures� Traditionnellement ces
mouvements sont exprim�s avec des transformations euclidiennes� Puisque ces mouvements
sont observ�s avec une paire de cam�ras non calibr�es� il sera commode de les repr�senter avec
des transformations projectives �homographies� plut�t que des transformations euclidiennes
�rigides�� On montrera comment des mouvements de rotation et de translation peuvent �tre
param�tr�s comme des cas particuliers d�homographie qu�on appellera rotations projectives

et translations projectives� Les propri�t�s alg�briques de cette repr�sentation non�m�trique
des mouvements �l�mentaires seront �tudi�es en d�tail ce qui nous am�nera � la caract��
risation de la cin�matique directe et de la matrice jacobienne� On introduira les concept
de cin�matique projective et de matrice jacobienne projective� Au contraire de la matrice
jacobienne classique d�un robot qui relie les vitesse articulaires des moteurs au torseur cin��
matique� on �tablira une relation entre les vitesses articulaires et les vitesses observ�es dans
les images� Ces derni�res sont des vitesses associ�es � des points image correspondant aux
projections des points se trouvant sur l�outil du robot�

Finalement� on d�crira un m�thode pratique d�estimation du mod�le cin�matique projec�
tif d�un robot ainsi que quelques exp�rimentations pr�liminaires qui utilisent ce mod�le pour
e�ectuer un asservissement st�r�oscopique non m�trique� L�analyse d�taill�e de la boucle de
contr�le projectif qui en d�coule sera n�anmoins le sujet d�un deuxi�me rapport de recherche�

Mots�cl� � g�om�trie projective� non calibr�� cin�matique� vision st�r�oscopique� move�
ments articulaires� asservissement visuel
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� Introduction

Advanced automation requires intelligent robots that are able to manipulate� grasp� inspect�
weld� and machine objects in unstructured environments� In the past� a variety of sensors
have been used for the purpose of real�time robot control� including force�torque tactile sen�
sors� laser triangulation devices� proximity �lateral�e�ect Photo�diode�� sonar �both Polaroid
and FM�� and infrared phase or time�of��ight range sensors� For various reasons none of
these sensors are wholly satisfactory and all have major weaknesses� Computer vision can
provide powerful geometric cues to help guide and position robots and their tools� With
respect to the sensors just cited� vision has several advantages� �i� it has high angular re�
solution� �ii� it is increasingly inexpensive� has high reliability� and the sensors are of low
weight with low power consumption� �iii� it is passive� with a large range of possible light
wavelengths� �iv� it can operate over a substantial range� from ��� meters to tens of meters
�with the same lens�� and �v� the bandwidth of a vision system is compatible with the robot
controllers at the task level�

A key technique is visual servoing where the appearance of a target in the image is used
to control the position of the end�e�ector and to move it to a desired position in the scene
��
�� More generally� visual servoing is an appealing technique which� with the increased
speed of processing available today� enables the loop to be closed between sensing and action
so that a robot�s behavior can be modi�ed on�line according to what it sees � 	��

The vast majority of visual servoing methods proposed so far uses calibrated robots
in conjunction with calibrated cameras� Nevertheless� camera and robot calibration are
complex and time�consuming processes requiring special�purpose mechanical devices� such
as theodolites and calibration rigs �  �� � �� �!� !�� Therefore� from a practical point of view�
it is convenient to be able to cope with a camera�robot setup for which accurate calibration
data are not necessarily available� A technique which tolerates such calibration errors is
image�based servoing and a number of approaches were suggested in the past using either
hand�held cameras ��� or cameras mounted onto independent �xtures ���� 
� ����

The approach envisaged in this paper uses an uncalibrated stereo rig �a pair of cameras
that are rigidly attached to each other but for which neither intrinsic nor extrinsic parame�
ters are computed in advance� which is either mounted onto a robot or mounted onto an
independent �xture� When such a stereo rig observes an unknown ��D scene� it is possible
to compute its epipolar geometry � �� and to perform ��D reconstruction in projective space
���

A number of authors have suggested to recover camera parameters and Euclidean struc�
ture by upgrading this projective reconstruction to metric reconstruction� The projective�
to�metric upgrade can be done with either a single camera � ��� ����� � �� or a stereo camera
pair � �� ���� �� �� �����

Rather than upgrading this projective representation to a metric one we propose to per�
form the visual servo control loop in non�metric space " a special subspace of the projective
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space which will be investigated� The major consequence of controlling the robot in non�
metric space is that the robot�s direct kinematic map as well as the the robot�s Jacobian
matrix must be described in this space as well�

The elementary joint�space motions that can be performed by a robot manipulator are
pure rotations and pure translations� Traditionally� these motions are represented as Eucli�
dean transformations� Since these motions are observed with an uncalibrated stereo rig� it
will be convenient to represent them as projective transformations �homographies� rather
than Euclidean transformations� Indeed� it will be shown that rotations and translations can
be parameterized as special cases of homographies which will be called projective rotations

and projective translations� The algebraic properties of this non�metric representation of
elementary motions will allow us to characterize the direct kinematic map and the Jacobian
matrix of a manipulator� Unlike the classical Jacobian matrix of a manipulator which relates
robot�joint velocities to the kinematic screw associated with the end�e�ector� we establish
a relationship between joint velocities and image�plane velocities� The latter are velocities
associated with image points arising from the ��D to  �D projection of end�e�ector points�

The direct kinematic map together with the motor�to�image Jacobian matrix to be de�
�ned lateron will be referred to as the projective kinematics of a robot manipulator� They
are the basis of the design of projective control which consists of visually servoing a robot
with a pair of cameras and which will be the topic of a forthcoming article�

To date� there are very few attempts to design non�metric visual control loops� In ���
an uncalibrated stereo rig is �xed onto a robot arm and camera self�calibration is performed
prior to the execution of the control loop� In ���� a visual�motor Jacobian model is estimated
and re�ned on�line " the setup involves a stereo rig observing a multi��ngered hand mounted
onto a robot arm� Since such an empirical model is only locally valid� a collection of Jacobians
represents a piecewise linear model of the part of the visual�motor space actually explored�
Such an approach leads to non�linear optimization and does not guarantee that the robot�s
kinematics and its associated Jacobian are correctly modeled�

��� Paper contribution and organization

The reminder of the paper is organized as follows� Section  reminds some properties of
algebraic similarity and of the real Jordan decomposition of various types of rigid displa�
cements� Section � reminds the algebraic geometry of a stereo camera pair with known
epipolar geometry and the principle of projective reconstruction�

Section ! introduces the concept of projective displacement� i�e�� the projective transfor�
mations conjugate to rigid motions� Important properties of projective displacements such
as their normalization� their Lie group structure� and their associated tangent operators are
de�ned and analyzed� Moreover� we analyze the action of projective displacements onto the
��D projective space which allows us to de�ne the non�metric velocity of a point in projective

INRIA
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space� The special cases of projective translations and projective rotations are thoroughly
studied in sections � and 	�

Section 
 introduces the projective geometry of a stereo�robot con�guration which allows
us to de�ne the concept of projective kinematics associated with an articulated mechanism
such as a robot whose articulations are either prismatic or revolute joints� To complete the
non�metric kinematic model� the projective Jacobian matrix of an articulated mechanism is
de�ned and described in detail in section�� Section  suggests a numerical method to esti�
mate in practice the projective kinematic map� which amounts to a #projective calibration$
of a robot� Section �� presents a simulated example of visually servoing a robot using the
projective modeling �projective kinematics and projective Jacobian� introduced in sections
� and � Finally� section �� gives some directions for future work�

� Preliminaries

The following sections recapitulate the principle of the similarity of matrix transforms� They
are made explicit for matrix representations of rigid displacement and corresponding homo�
graphies of projective space� The later are introduced in the section � on three�dimensional
reconstruction from uncalibrated stereo vision�

��� Algebraic similarity

Two square matrices A and B are conjugate or similar� if a non�singular matrix X exists�
such that

B � X��AX� ���

where X is often called a similarity� and ��� a similarity decomposition�

The maximal set of mutually similar matrices constitute a similarity class of matrices�
The algebraic properties which they have in common are called similarity invariants� The
principal invariant is the characteristic polynomial pA��� � �� which further implies the
invariants

trace �A� � trace �B� � �

det �A� � det �B� ���

spec �A� � spec �B� �!�

Hence� similarity preserves not only the eigenvalues but it preserves their multiplicities as
well�

The Jordan matrix J to be introduced in the next section is a canonically de�ned repre�
sentative of a similarity class� which shows all the similarity properties at a glance�
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��� Real Jordan decomposition

From a purely algebraic point of view� the Jordan normal form is a canonical form of similar
matrices� i�e�� two matrices are similar if they have the same Jordan matrix J ��	�� The
Jordan normal form of a matrix is computed by applying a series of similarity transforms
�i to the original matrix A in order to obtain the Jordan decomposition of the matrix�

A � ���J��where� � ����� � � � � ���

The Jordan matrix is a quasi�diagonal matrix� i�e�� it is block�diagonal with Jordan blocks
Jk��� that are upper�tridiagonal having the eigenvalues of A on the diagonal� counting
multiplicities� having ones on the super�diagonal� and zeros elsewhere� Hence� a Jordan
block has the form�

Jk��� �

�
���
� � � �

�
� � �

� � � �

� �
� � � �

� � � �

�
��� � �	�

In the general case� a complex�conjugate pair of eigenvalues may occur� However� if A is
real� a real Jordan decomposition can be calculated� that replaces the complex conjugate
pair by a plane rotation� e�g�� �

cos � � sin �
sin � cos �

�
such that both J and � become real matrices�

However the real Jordan decomposition itself is not canonical� i�e�� there is a multitude
of similarities � that equally decompose A into J� The class of matrices C that commutes
with J completely characterizes this ambiguity� In fact� CJ � JC gives all possible real
Jordan decompositions�

���J� � ���JC��C�

� ���C��JC�

� �C��
��
J �C�� �
�

��� Real Jordan decomposition of displacements

A rigid transformation is composed of a rotation matrix and a translation vector and it
writes as the !�! matrix D� Such a matrix has as eigenvalues � � fei�� e�i�� �� �g where �
is the angle of rotation� Therefore there exists a displacement � such that we obtain a real
Jordan decomposition of D�

D � �J���

INRIA
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with�

J �

�
���

cos � � sin � � �
sin � cos � � �
� � � �
� � � �

�
��� ���

A displacementD can be of three di�erent types� a general screw motion� a pure rotation�
or a pure translation�

� General motions are a motions that are neither planar motions �or pure rotations�
nor pure translations� Their real Jordan factorization is characterized by � � �� The
algebraic multiplicity of � � � is equal to  and its geometric multiplicity is equal to
� �� �� The real Jordan form associated with general motions is�

JRT �

�
���
cos� �sin� � �
sin� cos� � �

� � � �
� � � �

�
��� ��

For a general motion� the commuting matrix C de�ned by eq� �
� has the following
form�

CRT �

�
���
a �b � �
b a � �
� � c d
� � � f

�
��� ����

� Pure rotations are characterized by � � �� The algebraic multiplicity of � � � is equal
to  and its geometric multiplicity is equal to  ���� It is worthwhile to notice that a
planar motion has the same real Jordan factorization as a pure rotation�

JR �

�
���
cos� �sin� � �
sin� cos� � �

� � � �
� � � �

�
��� ����

In this case the commuting matrix C has the following form�

CR �

�
���
a �b � �
b a � �
� � c d
� � e f

�
��� �� �
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� Pure translations are characterized by a null rotation angle� � � � and � � �� For such
a motion the algebraic multiplicity of the unique eigenvalue � � � is equal to ! and its
geometric multiplicity is equal to � � !��

JT �

�
���
� � � �
� � � �
� � � �
� � � �

�
��� � ����

Finally� the commuting matrix C has the following form in this case�

CT �

�
���
c� c� � c�
c� c� � c�
c� c� a c	
� � � a

�
��� ��!�

� Projective reconstruction with a stereo camera pair

A pinhole camera projects a point M in ��D projective space onto a point m of the  �D
projective plane �	�� This projection can be written as a ��! homogeneous matrix P of rank
equal to ��

�m � PM ����

In this formula � is an arbitrary non�null scalar " a scale factor� A stereo rig is composed
of two cameras �xed together� Let P and P� be the projection matrices of the left and right
cameras�

In this paper we consider uncalibrated cameras� only� It is well known that the epipolar
geometry associated with a pair of uncalibrated cameras can be recovered from point�to�
point matches between the two images without any knowledge about the ��D layout � ���
� 
�� Moreover� the structure of the projection matrices is� in this case�

P �
	
I �



��	�

P� �
h
P
�

p�
i

��
�

where I is the ��� identity matrix� P
�

is a ��� full rank matrix and p� is a ��vector�

It is possible to compute the ��D projective coordinates of a pointM from the equations
�m � PM and ��m� � P�M � wherem andm� are the projections ofM onto the left and
right images and � and �� are two unknown scale factors��

P m �

P� � m�

��� M

�
��

�
� � � ����
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Equation ���� allows one to compute the projective coordinatesM of a ��D point M in
a sensor�centered projective basis� A ��D projective basis is de�ned by � points in general
position� In ���� we show that these points can be chosen such that they are physically

attached to the stereo device� Therefore� the projective basis is rigidly moving with the
stereo device�

Moreover� since the stereo device is a rigid body� one may attach an Euclidean frame to
this body� LetN be the Euclidean homogeneous coordinates of the point M � The projective
and Euclidean coordinates of the same point M are related by�

N � HPEM ���

MatrixHPE encapsulates both the upgrade of projective space to a%ne� and the upgrade
of a%ne space to Euclidean space� Namely� eq� ��� takes the projective coordinates of a
physical point M and transforms them into N � �X Y Z T ��� Then the ratios �XT

Y
T

Z
T �

are its Cartesian coordinates� The estimation of the entries of HPE is therefore equivalent
to mapping a projective representation into a metric one� Various authors ���� ���� �� �
characterized this matrix which can be written as�

HPE �

�
K�� �

��
�

�
� ��

In this formula K is a ��� upper triangular matrix �the internal parameters of the left
camera� and �� is a !�vector �the plane of in�nity in the projective basis associated with
the stereo pair of cameras��

It is however of interest to study projective displacements without explicitin the projective�
to�Euclidean upgrade HPE � i�e�� without computing numerical values for the entries of this
matrix�

� Projective displacements

��� Projective reconstruction and rigid motion

In this section we establish the link between projective reconstruction and rigid motion�
First we consider a stereo camera pair �a stereo rig� moving from position � to position  
while it observes a �xed scene� Second we consider a �xed stereo rig observing a rigid object
moving from position � to position  � We show that these two situations �moving sensor
versus moving object� are similar in a mathematical sense�

Let the stereo rig move from position � to position  � Under the hypotheses that �i�
the internal parameters of both cameras are �xed but unknown and that �ii� the spatial
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relationship between the two cameras is �xed but unknown as well� the stereo rig may be
viewed as a moving rigid body� Therefore matrix HPE of eq� ��� remains the same for any
position i and hence the projective displacement H�� �M� � H��M�� is related to the rigid
displacement D�� �N � � D��N �� by the formula � � � ��

H�� � �H��
PED��HPE � ��

where � is a non�null scale factor�

So far we considered a moving sensor observing a static scene or a static object� However�
in many practical situations� such as the case of a sensor observing a robot manipulator� it
is convenient to consider the case of a �xed sensor observing a moving object� Let D�

�� be
the transformation describing the motion of the object� i�e�� the object in position  with
respect to the object in position ��

Let T be the rigid transformation describing the position � of the object relative to the
sensor� Figure �� If we combine the object�s motion with the object�s relative position with
respect to the sensor we get the relationship between the object in position  and the sensor�

TD�

��

In order to determine the relationship between the apparent sensor motion and the true
object motion� let the object remain �xed and let the sensor move� Figure  � Let D�� be the
transformation describing the apparent sensor motion� The relationship between the object
in position � and the sensor in its apparent position is�

D��
�� T

The condition that the apparent sensor motion #absorbs& the real object motion writes�

TD�

�� � D��
�� T

We obtain�

D�� � T�� �D�

���
��
T� �  �

By combining eqs� � �� and �  � we obtain a similarity relationship between the projec�
tive change of coordinates H�� and the motion of an object observed with a static stereo
rig�

H�� � � �THPE�
�� �D�

���
��
THPE � � ��
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T

D12
o

T D12
o

Object in
position 1

Object in 
position 2

Position of the
stereo rig

Figure �� The motion of an object from position � to position  with respect to a static
stereo rig�

T

Object in position 1

Object in position 2

Stereo rig

Stereo rig in 
apparent position

D12

D12
−1

T

Figure  � The apparent motion of a stereo rig must be such that the relative position of the
object with respect to the sensor remains the same�
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��� The Lie group of projective displacements

The analysis performed above allows us� regardless of whether the stereo rig or the observed
object is moving� to relate a projective transformation to a rigid transformation�

H � �H��
PEDHPE

The fact that traces and determinants are invariant under similarity transformations
allows us to compute the scale factor � and de�ne a normalized projective displacement�
Indeed from equations � � and ��� we have�

trace �H� � trace ��D� � ���� � cos ��

and

det�H� � det��D� � ��

where � is the angle of rotation associated with the displacementD� Since we have ��cos � �
� we obtain�

sign ��� � sign �trace �H��

Therefore� the scale factor � can be uniquely determined for every homography H that is
conjugated to a displacement�

� � sign �trace �H�� �

p
det�H� � !�

From now on� we replace the homogeneous homography by a normalized homography�

HRT �
�

�
H � H��

PEDHPE � ��

HRT will be referred to as a projective displacement or projective motion because it
describes the motion of a rigid body observed with an uncalibrated stereo rig� It is well
known that the !�! homographies form the projective group PGL���� It will be shown
that� under certain restrictions� the projective displacements " the matrices of the form of
HRT " form a sub�group of the projective group� The algebraic and di�erential properties
of this group will allow us to characterize rigid body motion in a non�metric space�

Under the assumption that HPE remains constant over time we immediately obtain the
following properties�

�� The product of two projective displacements HRT � and HRT � is a projective displa�
cement as well�

HRT �HRT � � H��
PED�HPEH

��
PED�HPE �H��

PED�D�HPE

INRIA
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 � The identity matrix is a projective displacement� and

�� The inverse of a projective displacement is a projective displacement�

�HRT �
�� � H��

PED
��HPE

The group of projective displacements is isomorphic to the group of rigid displacements�
Since the displacement group is a Lie group� we conclude that the group of projective
displacements is a Lie group as well�

Finally� it is possible to compute the tangent operator on the group of projective displa�

cements�

dHRT �t�

dt
�HRT �

�� � H��
PE

dD���t�

dt
D��HPE � 	�

��� Orbit of rigidly moving points and their height

In this section� we characterize the action of projective displacements onto the projective
coordinates of a point� First� we characterize the scale or orbital height of projectively
reconstructed points� Second� we show that this height remains invariant under projective
displacements� Finally� we show that the orbit of the projective coordinates of a point under
action of projective displacements lies within a hyperplane of R� �

Equation ��� relates the projective coordinates M of a point to its homogeneous
Euclidean coordinates N � The actual coordinate vector of the plane at in�nity �� in
HPE � �� de�nes the height � of N that is used to calculate the normalized coordinates
X � �X�Y� Z� ��T �

� � 	�
�
M � X � �
� N � �
� HPEM � � 
�

Since in the uncalibrated case the upgrade is supposed not to be known� so is the height of
a point� However� � is implicitly associated with the R� �vector M� calculated during the
reconstruction� We distinguish this �x R� �vector from the general homogeneous coordinate
vector M by indexing it with �� which is an individual property of each point�vector�

M �M� � �H��
PEX � ��

Equation � 
� shows that M� is linear in the three parameters� X �Y �Z� thus point�vectors
with the same height de�ne a hyperplane in R� with equation 	��M� � ��

Given now a point�vectorM�� its orbit under action of the group of projective displace�
ments HRT is de�ned as�

M� � fHRTM�j for all HRT g � � �
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Such an orbit lies entirely within in a hyperplane of R� � Let M �

� � M�� Hence M �

� �

HRTM� and �with X � � DX� we obtain�

M �

� � HRTM� � H��
PEDHPEM� � � H��

PEDX � �H��
PEX

�

Therefore the group of projective displacements leaves the height of a point invariant� and
� is also called the orbital height of an entire hyperplane orbit�

Figure � illustrates the trajectory of a point�vector in M�� This trajectory �or orbit�
lies in a ��D subspace illustrated by a box� which is nothing else than the above hyperplane
with height x� � ��

R3

x

I

4
IR4

0

ρ

x

x

1

3

x2

MρHRT
Mρ

  
 ’

Figure �� The trajectory ofM� in a R��hyperplane� The box illustrates such an hyperplane as �D

space with x�� x�� x�� The height of this hyperplane above the origin is x� � �� It is also the orbital

height of M� under the action of projective displacements�

��� Non�metric linear spatial velocity

In this section� we show d
dtM��t� � �M��t� to be the linear velocity of a rigidly moving point

M in projective space restricted to an orbit �� It corresponds to the metric linear velocity
of M is de�ned as the temporal derivative of its coordinate vector �X�
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Consider the position of a moving pointM at time � and at time t� We have the following
relationship�

M��t� � HRT �t�M����

By combining this formula with equations � �� and � �� we obtain�

M��t� � HRT �t�M����

� H��
PED�t�HPE �H��

PEX���

� �H��
PED�t�X���

� �H��
PEX�t�

Hence� we obtain�

�M��t� � �H��
PE

�X ����

In summary� �M� is a non�metric point velocity in projective space� It is related to the

corresponding metric velocity �X by equation ����� The non�metric velocity is de�ned only
up to an unknown scale factor �� di�erent for each individual point�

	 Projective translations

In this section we are going to study the projective representation of pure translations� By
combining eq� ��� with eq� � �� and by considering the real Jordan form of a pure translation
given by eq� ���� we obtain�

HT � H��
PE�

��JT�HPE � H��
J JTHJ � ����

where HJ � �HPE is a !�! homography� Since the real Jordan decomposition is not
unique� the above decomposition is not unique and hence there exists a full rank matrix CT

which veri�es HJCT � CTHJ where CT is given by eq� ��!��

Below we derive a unique parameterization of projective translations and we show that�
under certain constraints� projective translations build a Lie group�

��� Parameterization of projective translations

In this section we devise a parameterization of projective translations in terms of a magnitude
s and a !�! matrix of rank equal to �� We show that� unlike the real Jordan decomposition
outlined above� this parameterization is unique�
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Proposition � A projective translation is a projective transformation that is conjugated to

a pure translation� The ��� homography describing this transformation can be parameterized

as�

HT �s� � I� s 	Ht

This parameterization is unique�

Proof� In order to prove this proposition let us consider matrix HJ de�ned above and
its inverse� The row vectors of HJ are denoted by h�i and the columns of H��

J are denoted
by ki� Therefore we have�

h�i kj � k�j hi � �ij �� �

where �ij is equal to � if i � j and is equal to � if i �� j� By subtracting the identity matrix
from JT and pulling it out from the similarity relation in eq� ���� we have�

HT �

�
��k� k� k� k�

�
��

� �z 
H
��

J

�
� 
 
 
 


 
 
 


 
 
 �

 
 
 


�
�

� �z 
JT�I

�
��

h�
�

h�
�

h�
�

h�
�

�
��

� �z 
HJ

�

�
� � 
 
 


 � 
 


 
 � 


 
 
 �

�
�

� �z 
I

� k�h
�

� � I � I� 	Ht ����

Matrix 	Ht � k�h
�

� has rank equal to �� trace equal to �� and is nilpotent with order ��
	H�
t � k�h

�

� k�h
�

� � k����h
�

� � ��

	Ht is called the generator of the projective translation� A normalized generator can
be de�ned such that 	Ht � s 	H�

t with s � kh�k kk�k� Therefore we obtain the following
parameterization for the projective translation�

HT �s� � I� s 	Ht� ��!�

Finally we show that this parameterization is unique� Consider two real Jordan decompo�
sition of a projective translation� H��

J JTHJ � H���
J JTH

�
J with H�

J � HJCT � We must
have�

HT � I� k�h
�

� � I� k��h
��

�

from which we get that k�� � �
ak� and h�� � ah�� Therefore the matrix generator 	Ht is
the same for both decompositions�

��� The Lie group of projective translations

Proposition � The projective translations HT �s� with a �xed normalized generator 	Ht

build a Lie group�
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Proof� First� it is straightforward to show that the projective translations with a �xed
normalized generator form a group�

identity� HT ��� � I

closure� HT �s�� HT �s�� � I� s� 	Ht � s� 	Ht � s�s� 	H
�
t

� I� �s� � s�� 	Ht

commutative� HT �s�� HT �s�� � I� �s� � s�� 	Ht

inverse� HT �s� HT ��s� � I� �s� s� 	Ht � I

It is a continuous� one�dimensional group in the variable s� There exists a corresponding
manifold 
 which is linear� hence continuous� di�erentiable� hence smooth�


 � R 	 R
��� � HT �s� � I� s 	Ht� ����

It is a group strictly isomorphic to the additive group R� � The limit in vicinity of the
identity yields the tangent to this group

lim
s�


HT �s�� I

s
� 	Ht� ��	�

which is a matrix representation of the corresponding Lie algebra� The corresponding Lie
brackets are trivially �a 	Ht� b 	Ht � ��

It can be veri�ed using the nil�potency of 	Ht that the matrix exponential is a bijection
from the Lie algebra onto the Lie group�

exp�s 	Ht� �

�X
k�


�
s 	Ht

�k
k�

� I� s 	Ht � � � � � � � � HT �s� ��
�

Its inverse� i�e�� a matrix logarithm from the Lie group to the Lie algebra is calculated by�

s 	Ht � HT � I

or by�

s 	Ht �
�

�

�
HT �s��H

��
T �s�

�
����


 Projective rotations

In this section we are going to study the projective representation of pure rotations� By
combining eq� ��� with eq� � �� and by considering the real Jordan form of a pure rotation
given by eq� ���� we obtain�

HR � H��
PE�

��JR�HPE � H��
J JRHJ ���
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where HJ is a !�! homography� Since the real Jordan decomposition is not unique� the
above decomposition is not unique and hence there exists a full rank matrix CR which
veri�es HJCR � CRHJ where CR is given by eq� �� ��

As with projective translations� we derive a parameterization of projective rotations�
Interestingly enough� this parameterization is a generalization of the well known Rodriguez�
formula for parameterizing ��� matrices associated with rotations in Euclidean space�

��� Rodriguez formula for projective rotations

Proposition � A projective rotation is a projective transformation that is conjugated to a

pure rotation� The ��� homography describing this transformation can be parameterized as�

HR��� � I� sin � 	Hr � ��� cos �� 	H�
r

This parameterization is unique up to the sign of the angle of rotation � and it will be referred
to as the �Rodriguez formula for projective rotations��

Proof� Eq� ��� writes�

HR � H��
J �JR � I�HJ � I

Using the same notations as in the case of translations eq� �� �� we obtain�

HR �

�
��� k� k� k� k�

�
���

� �z 
H
��

J

�
���
cos� � � �sin� � �
sin� cos� � � � �
� � � �
� � � �

�
���

� �z 
JR�I

�
���

h��
h��
h��
h��

�
���

� �z 
HJ

�

�
���
� � � �
� � � �
� � � �
� � � �

�
���

� �z 
I

� �cos � � ���k�h
�

� � k�h
�

� � � sin ��k�h
�

� � k�h
�

� � � I �!��

We introduce the following notations�

	Hs � k�h
�

� � k�h
�

� �!��

and

	Hr � k�h
�

� � k�h
�

� �! �

Remember that the h�i are the row vectors ofHJ and the ki are the column vectors of H��
J �

Therefore we have k�i hj � h�j ki � �ij and we immediately obtain�

	Hs � � 	H
�

r� �!��
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Notice that we also have�

	H
�

s � 	Hs� �!!�

	Hr � 	Hs
	Hr� �!��

By induction we obtain�

	H
�n��

r � ����n 	H
�

r � �!	�

	H
�n��

r � ����n 	Hr� �!
�

By substituting eqs� �!��� �! �� and �!�� into eq� �!�� we obtain the Rodriguez formula for
projective rotations�

HR��� � I� sin � 	Hr � ��� cos �� 	H�
r� �!��

In order to prove that this parameterization is unique� consider the expression of 	Hr and
replace HJ with CRHJ � �note that CR commutates�

	Hr � k�h
�

� � k�h
�

� �!�

� H��
J

�
� �� � �

� � � �

� � � �

� � � �

�
HJ

� H��
J C��R

�
� �� � �

� � � �

� � � �

� � � �

�
CRHJ

� H��
J C��R CR

�
� �� � �

� � � �

� � � �

� � � �

�
HJ

Hence� matrix 	Hr is the same for all real Jordan decompositions of a projective rotation�

��� The Lie group of projective rotations

Proposition � The projective rotations HR��� with a �xed matrix 	Hr build a Lie group�

Proof� The group axioms are formally veri�ed by using the Rodriguez formula for
projective rotations and by applying eqs� �!	� and �!
��

identity� HR��� � I

closure� HR���� HR���� � I� sin��� � ��� 	Hr � ��� cos��� � ���� 	H�
r

commutative� HR���� HR���� � HR��� � ��� �HR��� � ���
inverse� HR��� HR���� � I

It is a continuous� one�dimensional group in the variable �� There exists a corresponding
smooth manifold 
�


 � R 	 R
��� � HR��� � I� sin � 	Hr � ��� cos �� 	H�

r ����
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The tangent in R��� to this pure rotation HR��� in � follows from simple di�erentiation

d

d�
HR��� � cos� 	Hr � sin� 	H�

r �
	HrHR���� ����

The matrix 	Hr is indeed the tangent operator of this group� i�e� the matrix operator that
calculates the derivation or motion tangent by simple left�multiplication with the projective
rotation�

Note that eq� ���� is a di�erential equation whose solution �with HR��� � I� is the
matrix exponential�

exp�� 	Hr� �

�X
n�


�n 	Hn
r

n�
� �� �

By using the odd and even powers of matrix 	Hr given by eqs� �!	�� �!
�� and the power
series of the trigonometric functions we obtain the above Rodriguez formula�

exp�� 	Hr� � I� sin � 	Hr � ��� cos�� 	H�
r �HR��� ����

Finally� let us show how to derive 	Hr from the homographyHR� Remember that the trace
of a projective displacement is equal to the trace of a displacement� trace�HR� � ����cos ���
From the Rodriguez formula we obtain�

HR����HR���� � � sin � 	Hr

Hence�

	Hr �
�

� sin �

�
HR �H

��
R

�
� ��!�

Notice that there is a sign ambiguity due to the computation of sin � from the trace of the
projective rotation� This ambiguity re�ects two possible orientations of the axis of rotation�
one orientation associated with � and the other orientation associated with ���

� Projective geometry of a stereo�robot conguration

So far we studied projective displacements� i�e�� rigid motion observed by a camera pair in
projective space� In this section we are interested in modeling the kinematics of an articu�
lated mechanism such as a robot manipulator in terms of projective displacements� namely
projective translations and projective rotations� Without loss of generality we consider a
robot with revolute joints� As in the previous sections we consider a stereo rig mounted onto
an independent �xture� The cameras associated with this stereo rig observe the robot�s mo�
tions� the robot�s end�e�ector is supposed to lie in the �eld of view of both cameras� At each
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position of the end�e�ector the stereo rig is able to provide projective reconstruction of the
end�e�ector by means of a set of points physically and rigidly attached to the end�e�ector�
Moreover� if the end�e�ector moves from one position to another position� it is possible to
compute the corresponding projective transformation� Since the stereo rig remains �xed
and the end�e�ector moves in front of it� the relationship between the measured projective
transformation and the true motion of the end�e�ector is described by equation � ���

In order to introduce the projective model associated with such a stereo�robot setup
and to represent the robot�s kinematic map in terms of projective displacements we start
by considering the standard Euclidean model� There are three Euclidean frames associated
with the setup of Figure !�

�� a stereo rig frame E �

 � a hand frame H associated with the end�e�ector� and

�� a robot base frame B�

A robot posture is de�ned by the transformation DHB which describes the position of
the hand frame H with respect to the base frame B� Moreover the forward kinematic map of
a robot allows one to express this transformation as a function of the robot�s link�geometry
and its joint�angles�

DHB�q� � DH�Q�����Q����� � � �Q�����D�B � ����

Let us make explicit the notations used in this equation� The con�guration of a robot
with six revolute joints �	 degrees of freedom� can be written as a vector of joint variables
q � ���� � � � � ���

T which makes up the robot�s joint space� Matrices Qi��i� describe the joint
action between connected links using the classical Denavit�Hartenberg formulation�

Qi��i� �

� � 
 
 ri

 cos�i �sin�i 


 sin�i cos�i li

 
 
 �

� �
cos�i �sin�i 
 

sin�i cos�i 
 


 
 � 


 
 
 �

�
� ��	�

where �i� ri� and li are the Denavit�Hartenberg parameters associated with the ith link�
DH� and DB� are rigid links that allow to deliberately choose the hand� and base frame�

Without loss of generality� the o�sets can be chosen for an arbitrary con�guration to
become the zero�con�guration q � �� and DHB��� is the corresponding zero�posture of the
robot� The displacement of the hand away from the zero con�guration de�nes a relative

forward kinematic map as shown on Figure !�

DH�q� � DHB���D
��
HB�q� ��
�
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hand
frame

base
frame

hand frame in
zero−configuration

relative forward
kinematic map

stereo rig
frame

M(0)

M(q)

T
HE

D
H

(q)

D
H

(q)
B

D
H B

(0)

Figure !� The stereo rig observes the robot in various con�gurations� a zero�con�guration
and a general con�guration characterized by the vector q of joint variables� The Cartesian
frame illustrated on this �gure are not used� Instead� the projective approach uses points
physically attached to the end�e�ector and observed by both cameras�
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Let us operate each joint i separately and introduce the following notations which simplify
the formulae�

Ri��i� � DH��� � � � � �i� � � � � �� ����

By combining eq� ���� with eq� ��
� we obtain for Ri�

Ri��i� � T��i Qi���Q
��
i ��i�Ti� ���

whereTi � Q��i����� � � �Q
��
� ���D��

H�� Using eq� ��	� it is straightforward to verify that matrix

Qi���Q
��
i ��i� is a pure rotation of angle �i� Therefore� by the similarity transformation ����

matrix Ri��i� represents a rotation as well� Finally� by directly multiplying R����� through
R����� we obtain a reformulation for the relative kinematic map ��
� in terms of pure
rotations� only�

DH�q� � R��
� ���� � � �R

��
� ���� �	��

Next we introduce the projective forward kinematic model of an articulated mechanism

and prove the following proposition�

Proposition 	 The projective kinematic map of a robot manipulator is the product of pro�

jective displacements	 each projective displacement being either a projective translation or a

projective rotation describing a prismatic or a revolute joint� For a six degrees of freedom

manipulator with revolute joints we have�

H�q� � H�����H�����H�����H�����H�����H�����

Proof� The relative forward kinematic map describes the motion of the end�e�ector
when the starting position is de�ned by the zero�reference� If this motion is observed by
the two cameras� the relationship between the apparent projective displacement of the end�
e�ector H�q� and the relative kinematic map is given by eq� � �� which in this particular
case writes as�

H�q� �H��
PET

��
HED

��
H �q�THEHPE � H��

J D��H �q�HJ �	��

Recall that matrix HPE stands for the projective to Euclidean upgrade and matrix THE

describes the rigid transformation from hand �end�e�ector� frame to the stereo frame when
the robot is in zero position� e�g�� Figure !� By expanding D��H �q�� i�e�� eq� �	�� we obtain�

H�q� � H��
J �R����� � � �R������HJ

� H��
J R�����HJ H

��
J � � �HJ H

��
J R�����HJ

� H����� � � �H����� �	 �
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Matrix H�q� describes the projective forward kinematic model of the robot�stereo con��
guration� Notice that each individual transformation Hi��i� has the form H��

J Ri��i�HJ �
Since matrix Ri describes a pure rotation Hi can be parameterized as a projective rotation
HR� eq� �!��� Hence� H�q� can be written as a product of exponentials� i�e�� eq� ���� and
eq� ��
��

H�q� � exp��� 	H�� � � � exp��� 	H�� �	��

The projective kinematic map that we just derived is valid for robots with revolute joints�
Notice however that the treatment of prismatic joints is straightforward due to the algebraic
properties of projective translations�

� The projective Jacobian matrix

Once the direct projective kinematic map of the robot�stereo con�guration has been establi�
shed� it is possible to derive the relationship between joint�space velocities and image�plane
velocities� The joint�to�image Jacobian matrix is a linear approximation of this relationship
locally valid around a given robot con�guration q�

More precisely� when the robot moves� a point feature M on the end�e�ector moves with
some linear velocity� Moreover� this point is observed in both images and let m and m� be its
projections in the left and right image� Let�s express the interaction between the joint�space
velocities �q and the image�velocities �s and �s� associated with m and m� by the Jacobian
J�q�M � in formula� �

�s
�s�

�
� J�q�M� �q �	!�

For a six degree�of�freedom robot� �q is a 	�vector� Since the robot is being observed in two
images� the image�plane velocities �s and �s� form a !�vector� Hence� the Jacobian matrix for
a single feature�point M is a !�	 matrix� Below we develop an analytic expression for J in
q and M �

As in the previous section� we consider the robot in two among its possible con�gura�
tions� a general con�guration which is characterized by the joint variable q and the zero�
con�guration for which q � �� Let M �q� and M��� be the ��D projective coordinates
associated with point M in these two con�gurations� These projective coordinates can be
recover by projective reconstruction �����

�m�q� � PM�q� �	��

��m��q� � P�M�q� �		�
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Obviously� there is a similar expression for q � �� Due to the projective kinematic map
associated with the robot� one can write�

M�q� �H�q�M ���

The Matrix H�q� in this relation is a projective displacement� therefore it is a normalized
homography� Without loss of generality� one can associate a �x scale �� and hence obtains
a �xed vector M��� the following strict equality �see eq� � ����

M��q� �H�q�M���� �	
�

Moreover� the projective equalities of equations �	�� and �		� become standard equalities�

m��q� � PM��q� �	��

m�

��q� � P�M��q� �	�

The velocity �M��t� of M��t� was introduced in section !�!� This velocity is related to the
robot�joint velocities and to the image�plane velocities in the following way�

First we consider the relationship between the image�plane velocities and �M��t�� Notice
that the projection matrices P and P� in eqs� �	�� and �	� do not vary over time because
of the rigidity of the stereo rig� We can therefore take the time derivative and obtain�

�m��q� � P �M��q�

�m�

��q� � P� �M��q�

Let the coordinates of the ��vector m��q� be �m��m��m��� These are the homogeneous
coordinates of an image point� The corresponding pixel coordinates of this point are obtained
by dividing the �rst and second coordinates with the third coordinate� s � �m�
m��m�
m���
We have a similar expression for s�� By di�erentiating these two vectors we obtain�

�
�s
�s�

�
�

�
�����

�
m�

� �m�

m�

�

� � �

� �
m�

�m�

m�

�

� � �

� � � �
m�

�

� �
m�

�

m��

�

� � � � �
m�

�

�
m�

�

m��

�

�
�����
�
P

P�

�
�M��q� �
��

Second we consider the relationship between �M��t� and the robot�joint velocity vector
�q� We have�

�M��q� �
dM��q�

dt
�

dM��q�

dq

dq

dt
�

dM��q�

dq
�q
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The derivatives of M� with respect to the joint variables write as a !�	 matrix�

dM��q�

dq
�

�
�M��q�

���

�M��q�

���

�M��q�

���

�M��q�

���

�M��q�

���

�M��q�

���

�

Let us further consider the partial derivative of M� with respect to �i�

�M��q�

��i
�

�

��i
H�q�M����

� H����� � � �
dHi��i�

�i
� � �H�����M����

� H����� � � � 	HiHi��i� � � �H�����M���� �
��

Indeed� the normalized homography H�q� describing the direct kinematic model of the
robot is a product of 	 projective rotations� Each one of these matrices has Lie�group
structure and� as shown in section 	� � they can be parameterized by the angle of rotation
�i and the tangent operator 	Hi�

Finally� the expression of the Jacobian matrix mapping joint angular velocities to image�
plane point velocities is�

J�q�M � �

�
�����

�
m�

� �m�

m�

�

� � �

� �
m�

�m�

m�

�

� � �

� � � �
m�

�

� �
m�

�

m��

�

� � � � �
m�

�

�
m�

�

m��

�

�
�����
�
P

P�

� �
dM��q�

dq

�
�
 �

� Estimation of the projective kinematic map

In this section we devise algebraic and numerical methods for recovering the projective
kinematic map from trial motions of a robot� More precisely� for each joint we seek to
estimate the parameters underlying the tangent operator 	Hi corresponding to each projective
rotation Hi��i�� A practical manner to acquire the trial data is to move the robot joint by
joint �Fig� 	�� and to capture the respective projective motion of end�e�ector point�features
�Fig� 
� by means of the stereo�reconstruction�
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Figure �� Images of joint�wise trial motions of St�ubli RX�� robot at INRIA Rh�ne�Alpes�
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Figure 	� Joint�wise trial motions of PUMA�alike robot�

A robot motion that actuates the ith joint only� but �xes the other joints to the zero
position results in a homography that equals the projective rotation Hi��� where for sake
of concise notations� we denote �i by  �	��� This homography can e�g� be calculated from
the reconstructions of �ve corresponding points on the end�e�ector � �� A direct algebraic
solution for the respective generator 	Hi is given in ��!�� However� this solution is only stable
in the case of exact data� To cope with measurement noise� we re�ne the algebraic solution
using a non�linear numerical optimization which deals more e%ciently with noise as well as
with multiple samples of the same joint motion�

More formally� consider k � � � � �m feature points Mk on the end�e�ector� On the one
hand� we can extract the left and right image projections ofMk and write their homogeneous
coordinates as pk�j � �u� v� �� and p�k�j � �u�� v�� ��� where j � � � � � n indexes a joint�space
trajectory j � i�e� the joint position at which the image was taken� On the other hand� we
can predict the spatial and image trajectories under the trial motion of the ith joint using
eqs� ���� �	��� �	��

mk�j � P exp�j 	Hi�� �z 
Hi�j �

Mk� m�

k�j � P
� exp�j 	Hi�� �z 

Hi�j �

Mk� �
��

In order to estimate the generator matrix� an objective function f is formulated in 	Hi� It
calculates the image error � between measured and predicted image features over all points
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Figure 
� Image projection of the trial motions of an end�e	ector mounted gripper induced by
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and all joint angles

f� 	Hi� �
mX
k��

nX
j��

��
�
mk�j �pk�j

�
���

�
m�

k�j �pk�j
�
� �
!�

where e�g� ��m�p� �
�
�m�

m�

� u�� � �m�

m�

� v��
����

is the Euclidean image error� In sum�

mary� given joint angle measurements and the image data acquired from the trial motions�
non�linear least�squares are used to minimize f over the entries in 	Hi� This procedure is
repeated for each robot joint�

	�� Minimal parameterization

Now� we introduce a minimal parameterization of a generator 	H based on the �	 coe%cients
in the vectors k��k��h

�

� �h
�

� in �!��

	H�x� �

�
k�� k��
k�� k��
k�� k��
k�� k��

�
C��ab

�
� ��

� �

�
Cab

�
h�� h�� h�� h��
h�� h�� h�� h��

�
� �
��
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where Cab �
	
a �b
b a



follows from the commutator CR �� �� Four of these parameters are

constrained by �� � and further two parameters are absorbed through the gauge�freedom
Cab in a and b� These two are eliminated by �xing two parameters� e�g� h�� � �� h�� � ��
In practice� we impose this constraint by QR�decomposition of the �� � matrix�

h�
�

h�
�

�
� Q �

�
� h��� h��� h���
� h��� h��� h���

�
� Q

�
h�

�

�

h�
�

�

�
�

As soon as we identify Cab � Q�� and update �k�
�
k�
�
 � �k� k� Q� the generator matrix

	H is expressed as a function of the �� parameter vector x � �h���� h
�
��� h

�
��� h

�
��� h

�
���h

�
���

k����k
�
��� k

�
��� k

�
���

T

	H�x� �

�
� k�

��
k�
��

k�
��

k�
��

k�
��

k�
��

k�
��

k�
��

�
��� ��

� �

� �
� h��� h��� h���
� h��� h��� h���

�
� �
	�

since the bilinear constraints �� � in the simpli�ed form�
� h��� h��� h���
� h��� h��� h���

� 	
k�� k

�

�



�

�
� �
� �

�
� �

�

are easily solved for k��� � k���� k
�
��� k

�
��� Finally� the objective function becomes f�x� �

f
�
	Hi�x�

�
and is minimized over x� However� during the minimization h�� may not vanish�

otherwise the QR�step has to be applied repeatedly�

	�� Initialization

The initialization of x from a given projective rotation Hi remains a crucial issue� It is
straight�forward� that any Jordan decomposition ��� yields an initial guess for x� but its
numerical calculation is very unstable� In contrast� the tangent operator �HR calculated
using �rst ��!� and imposing then rank  by SVD usually gives better results� But still� x
has to be recovered from �HR by eigen�decomposition

�HR �
h
f �i f i

i h
�i 


 i

i h
e��i
e�i

i
�

where the left and right eigenvectors f �i� f i and e��i� e
�
i to the eigenvalues �i and i are

recombined using the matrix � �
	
� �i
� i



in order to obtain the real form like in �
	��

�k� k�  � �f �i f i  � and

�
h
�

�

h�
�

�
� ���

h
e��i
e�i

i
� Now� the parameters in x follow at a glance�

�� Non�metric Visual Servoing

In this section we validate the above introduced projective kinematic model of a six�axes
manipulator� For this purpose� we formulate and simulate an image�based visual servoing
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based on the Jacobian developed in section �� We call our formulation #non�metric$ for
three reasons� First� generally speaking� the geometry of the entire system is modeled w�r�t�
a projective frame of �ve rigid points associated with the stereo rig� All Cartesian frames
disappear� Second� no a�priori knowledge about the geometry of the system is required� The
epipolar geometry� the structure of the gripper� and the projective kinematic map can be
acquired from corresponding data of matched image features and joint angle measurements�
without requiring neither a�priori knowledge� nor manual interventions� Third� the actual
control law no longer servos the robot�s Cartesian velocity� but servos the manipulator�s
joint�velocities� Most important is to see that the Jacobian is an analytic expression in
q� which ensures its soundness over the robot�s entire con�guration space� In contrast to
existing systems� it is neither an on�line estimated linear model ����� nor an a�priori given
approximation around the target ���� �
��

The system is illustrated in Figure � and consists of�

J(q, M )3

J(q, M )2

J(q, M )1s , s , s1 2 3
* **

* **s , s , s1 2 3
’’’

right camera

left camera

features
right image

s , s , s1 2 3

1 2 3
’’’s , s , s

features
left image

six-axes
robot manipulator

q
.

1M

M2

M3

motor-to-image
Jacobian matrix

projective

J +
+

+

-

-

q

Figure �� Block diagram of a non�metric visual servoing system�

�� A six�axes robotic manipulator with a PUMA�alike geometric structure�

The three links of the arm are of lengths l� � ��cm� l� � ��cm� l� � ��cm� respectively�

 � A parallel�jaw gripper on the end�e�ector that is marked with point features�
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The corners of the gripper constitute the features since they are easy to extract and
posses a wide angle of visibility� The length of the gripper is about �cm�

�� A stereo rig with given epipolar geometry�

It has a baseline of ��cm and a vergence angle of ����

The experimental procedure consists of the following steps�

�� Take stereo images of the gripper and recover by projective reconstruction the �D
non�metric structure Mk��� of the features�

 � Perform the trial motions of each of the six revolute joints�

Joint angles �i are assumed to be exact� since in practice encoder readings correspond
to a relative angular precision of ����� or better� As the projective kinematics is
relative to a zero�con�guration� errors in the joint�o�sets are indeed irrelevant�

�� Track gripper features in the six stereo image sequences showing the trial motions�

For the simulations to take into account the di%culties encountered when processing
real images� Gaussian noise with  � �px is added to both� u and v image�coordinates�
A minimum of � point features is required for the homographies HR to be estimated�
although we use  � points to achieve good precision in the presence of noise�

!� Recover the projective kinematic map of the robot� �see section �

For the minimization we took only two stereo images� namely those taken at maximal
angular de�ection� These are in detail ���� ���� ���� ���� ���� ��� for the joints � to
��

�� Move the robot in a target position� take a stereo image� and extract target image
features s�k� s

��

k�

This also could have been done o��line� using a method for target transfer described
in ���� that allows di�erent stereo systems to be used for the acquisition of the target
and the servoing� In the simulations the target consists of three point features on the
visible face of the gripper �Fig� ����

	� Move the robot to a starting postion� extract and match current image features sk� s
�

k

with the target features s�k� s
��

k� thus calculate the stereo error�vector for each feature

Sk �

�
s�k � sk
s�
�

k � s
�

k

�
� �
��

A stereo pair of linear image�errors in �rst instance implies a linear spatial velocity
of each feature point� So� aligning the robot control with the reversed error�vector
generates a rigid motion such that it best �ts in the least�squares sense with the three
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Figure ��� Image�space trajectory in left and right stereo�image�

linear point�velocities� This in particular implies that trajectories depend heavily on
the con�guration of the feature points and that control might converge to a locally
minimal image�error� but not necessarily attain the target position� A well adapted
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Figure ��� Image�error in the left and right stereo�image show exponential decay�

approach to trajectory generation using uncalibrated cameras that overcomes these
limitations is proposed in � ���


� Determine joint velocities by applying the pseudo�inverse of the Jacobian to the error�
vector �section ���

�q � �

�
�J �q�M��
J �q�M��
J �q�M��

�
��

�
�S�

S�

S�

�
A � �
�

This is done in analogy with previous work on visual servoing using stereo vision �
� or
visual servoing of joint velocites ����� We would like to stress that� in contrast to these
approaches� the Jacobian employed in our approach �
 � is at each instant in time a
sound �rst order model of the interaction matrix between joint� and image�velocities�

�� Run closed�loop visual servoing until the image error vanishes� i�e� until joint velocites
approach zero and hence the robot stops�

The control law is designed to ensure exponential convergence in the image�error ����
Figure �� shows the progression of the error in u� and v� coordinates during servoing�
After a phase of saturated joint velocites till iteration �� the image error decreases
exponentially and the control converges after �� iterations� The respective image
trajectories can be found in Figure ��� In case of convergence� the �nal image�error is
below the rate of the image noise� The corresponding joint�space trajectories can be
found in Figure � They show a very smooth motion with light oscillations in �� due
to the image noise� The error in joint space however fails to decrease monotoncially "
see �� to �� " since the control�law imposed linear trajectories in image�space but not
in joint�space� The �nal positioning accuracy is of about ���
�
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�� Discussion

We have shown that and how a purely projective model of a robot manipulatur can be
established and estimated� The introduced original formalism of the projective kinematic

map has proven to be almost as powerful and as precise as classical metric kinematics�
In detail� projective formulations for displacements� revolute joints and point�velocitites
have been introduced� Consequently� the projective kinematic map leads immediately to
a Jacobian between joint� and image�velocities of a considered stereo�robot con�guration�
which in turn allows an e%cient non�metric visual servoing approach to be formulated�

We hope this theoretical work to give foundations and motivations for the integration of
uncalibrated visual sensors into perception�action cycles� We judge the present simulations
and practical experiments as very promising� Future work will hence concentrate on further
developing the practical and numerical means to better validate the contribution of non�
metric systems in practice�
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