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NSIKE - un solveur pour les équations de
Navier-Stokes incompressibles pour des maillages
non-structurés

Résumeé : Un nouveau solveur pour les équations de Navier-Stokes incompressibles
en trois dimensions a été developpé. Le modeéle & — ¢ standard a été implémenté
pour la simulation des écoulements turbulents. Le solveur est basé sur la méthode
de projection de Chorin, en utilisant une discretisation par éléments finis. Le calcul
de la vitesse intermediare, k et ¢ est explicite. La stabilisation du terme d’advection
est basé sur la technique de residual distribution (le schéma PSI). Le probléme de
Poisson pour la pression est résolu par la méthode des gradients conjugés. Des lois
de paroi sont utilisées pour le calcul des couches limites turbulents. Les cas tests
présentés sont : la plaque plane, la cavité, la marche et le cylindre circulaire en 2D,
et la cavite et la marche en 3D.

Mots-clé : incompressible, Navier-Stokes, modéle k& — ¢, lois de paroi
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1 INTRODUCTION

The motivation for the development of a new solver for 3D incompressible Navier-
Stokes equations comes basically from our previous experiences in turbulent flow
simulations with the compressible solver NSC2KE [28]. The need for a compact,
simple (explicit) 3D incompressible solver appeared with our intention of testing
different turbulence models for 3D (quasi)stationary incompressible turbulent flows.
In that sense, we used widely the experiences accumulated throughout the develop-
ment and utilization of previously mentioned compressible flow solver.

The new solver is based on the projection method ([2], [3]). The standard k — ¢
turbulence model is implemented for turbulent flow simulation. The stabilization of
the convection terms is via PSI (Positive Streamwise Invariant) residual distribution
scheme ([12], [20]). The Poisson problem for pressure is solved using conjugate
gradient technique. In the turbulent flow simulations, the wall-laws are used for the
solid boundaries, with the requirement u - n = 0 treated in the strong sense.

The resolution of the problem for the intermediate velocity (and of the k& and e
equations) in a completely explicit fashion, leads to an extremely small-memory-size
(we do not memorize coefficient matrices) and easy-to-handle code with not more
than 4000 lines of code (3D code with k — ¢ turbulence model).

Furthermore, the CPU times for the simulations carried both in 2D and 3D are
reasonable (e.g. 12 hours overnight computation for a steady 3D turbulent problem,
with approximately 50000 nodes, on a workstation with a theoretical MFlops peak
performance &~ 10M Flops).

We present the numerical results for typical laminar and turbulent test configu-
rations, such as: flat plate, cavity, flow over a step, etc.
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2 PROJECTION METHOD

2.1 Incompressible Navier-Stokes equations

The incompressible Navier-Stokes equations are

%+U-Vu:—Vp+V-S+f, (1)

V.ou=0, (2)
where S = v(Vu + VuT), u(z) € R? is the velocity vector, p(z) € R the kinematic
pressure (divided by density), v(z) € R the kinematic viscosity, f(z) € R? is a given

body force, (Vu);; = w;; is the gradient of u, v - Vu is u;0;u and d is the spatial
dimension of the problem (here d = 2 or 3).

These equations are to be solved in a domain € x (0, Tys), where € is an open
connected bounded set in B¢ with a smooth boundary 99, subjected to the typical
boundary conditions:

e specified velocity (Dirichlet boundary condition):
u=won Iy, (3)

e specified tractions (Neumann boundary condition):

—p+(S-n-n)=F,and (S-n-s)=F;on I'y, (4)

where I'y UTy = 09, n and s represent the outward unit normal and corresponding
unit tangent, respectively, and F), and F; are the normal and tangential components

of the specified boundary ’traction’ (£, = F; = 0 is commonly used when I'y
represents an ‘outflow’ boundary), and initial condition
u(z,0) = uo(z), (5)

where it is required that

V ug =0 1in Q. (6)

Remark

Equation (1) implies the following pressure Poisson equation (PPE):

VQp:V-(f—u-Vu)inQ, (7)
P_ (. _gu .
5, =" (V-S+f 5 U Vu) on I'y (8)
p=(S-n-n)—F,on T, (9)



NbolIKE - an incompressible Navier-dtokes solver tor unstructured meshes

2.2 Projection method for Navier-Stokes equations

The projection methods for solving the incompressible Navier-Stokes were introdu-
ced by Chorin [2] in 1968, and were since then improved and analyzed by a number

of researchers ([3], [8],[5],[6].[7],[10], [9])-

The idea behind the projection method is to decouple the solution for u and p in
the original problem (1)-(6) in @ x (0, Tys), into a sequential solution of problems
for approximate v and p(7'), which are good approximations of the solution of the
original problem. The general framework for the projection method is the following:

(a) Given ug with V-uo = 0, approximate the pressure gradient Vp(), and solve
the momentum equations up to a ’'projection time’ ¢t = T, without taking care of
the divergence-free constraint, for the intermediate velocity u.

(b) Perform the projection of the intermediate velocity @ onto the subspace of
divergence-free vector fields. The result, divergence-free velocity field v, V- v = 0,
is obtained from the intermediate velocity using the relation v = 4 — V. This step
is equivalent to: Solve for ¢

Ap =V -iiin 9, (10)

adding the appropriate boundary conditions (in the case of Dirichlet boundary condi-
tions for u on I: ‘Z—i =n- (& —v)), and update the velocity field

v=1—Vein Q, (11)

c¢) Accepting v as the physical velocity at time ¢ = T, determine p(7'), and one
pung phy y ) P )
projection cycle is completed.

The choice of boundary conditions both for the intermediate velocity @ and for ¢
is very important, and it implies the use of the pressure field pg and the rate of the
change of the pressure field pg, that, then again, implies the need for the resolution
of two more Poisson problems (for py and po (see [3]).

The cost behind this general scheme for a projection method lies in the need
for solving the three Poisson problems per projection cycle. Simpler schemes can
be derived substituting the computation of p(7') by solving the Poisson pressure
equation with the estimation of p(7T') from ¢ (the error estimates later will partly
justify this step). Furthermore, ignoring the compatibility conditions for the boun-
dary conditions, i.e. simply applying the prescribed boundary conditions for the
physical velocity u on the intermediate velocity @ (and afterwards not performing
the projection v = & — Vi on I'), simplifies the boundary conditions avoiding the
computations of Vp and Vpon I'. Further justification of the usage of these schemes

can be found in [3] and [9].

The two simplest algorithms which are actually programmed are presented fur-
ther on.
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2.2.1 Algorithm 1

The simplest projection scheme, corresponding to the original Chorin’s scheme.

(0) Given ug with V - uo =0,
(1) Solve for a(T'), with @9 = ug at ¢t = 0, from

aa—"t‘+a-va:v-§+f, in Q,

uw=1won Iy,

(S-n-n):Fnand(g-n-s):Fsoan, for0<t<T.

(2) Solve for ¢ from
Ve =V -a(T) in Q,
@_c,o =0on I'y,

on
p=—-TF,on .

(3) Compute v = a(T) — Ve in Q.

(12)

(13)
(14)

(4) Report v, set t =0, up = v in Q and on 'y, and go to step (1). If pressure is

required, it is given by p(T') = ¢/T.

2.2.2 Algorithm 2

A projection scheme of higher order in time proposed by Gresho [3].

(0) Given ug with V -ug = 0 and po solution of a corresponding pressure Poisson

problem (7),
(1) Solve for a(T'), with @y = ug at ¢t = 0, from

%‘;+a.va:v-§+f—\7p07 in Q,
u=1won Iy,

(S n-n)=F,+pyand (S-n-s)=F;only, for 0 <t <T.

(2) Solve for ¢ from
Vi =V -a(T)in Q,
dp

— =0on I},

on
8
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T
p = —§(Fn + po) on T'y. (23)

(3) Compute v = @(T) — Vi in .
(4) Compute p(T) = po + 2¢/T in Q.

(5) Report v and p, set t = 0, ug = v in  and on 'y, pg = p(T") and go to step

(1).

2.2.3 Error estimations

The most interesting point connected with the projection method is the question
how are the values of v and p(7'), i.e the values at the end of the projection cycle,
related to the solution of the original problem (1)-(6).

In [3], the rough estimates are presented (see also Appendix 5), and for the
Algorithm 2 we have

v=u(T)+ O(T?’) in Q, (24)
T _
Y= 7]50 + O(T?) in Q. (25)
In the same way, for the Algorithm 1:
v=u(T)+ O(TQ) in  Q, (26)
¢ = Tpo+ O(TQ) =Tp(T) + O(TQ) in Q. (27)

The estimation of pressure, in the Algorithm 1 via p(T) &~ ¢/T and in the
Algorithm 2 via ¢ = T;p'o using the approximation p(T') = po + Tpo + O(T?), is
based on these results.

The analyses presented in [3] and [9] indicate that these estimations are in-
deed true, even for the actual algorithms that are programmed (that introduce the
boundary conditions incompatility), but outside the spurious boundary layer, i.e for

x> §, where § = 1/(vT') (this gives a restriction on the projection cycle time T').
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2.3 Reynolds averaged Navier-Stokes equations and k—¢ tur-
bulence model

The increase in Reynolds number (nondimensional flow parameter, Re = %;;L) leads
to the loss of stability of fluid flow, generating more and more complex flow regimes,
finally ending in a chaotic flow regime, turbulent flow. Although the Navier-Stokes
equations describe even these complicated flow regimes, the direct solution of the
original Navier-Stokes equations becomes more and more expensive regarding the
scales of the discretization needed to resolve all the flow scales present in turbulent
flow, keeping this approach out of hand today. On the other hand, the behavior of
some mean flow quantities, and not of small-scale fluctuations themselves, is often
more interesting when analyzing the flow. This is in fact the starting point of the
turbulence modeling approach, where the turbulent effects are modeled in different
ways, and one attempts to solve the equations for the mean flow quantities with the
addition of the turbulence model itself.

Introducing the flow variables decomposition v = U + v’ and p = P + p’, U,P
being the mean part and u’,p’ being the fluctuating or nonrelevant part of the ve-
locity and pressure yields the following so-called Reynolds averaged Navier-Stokes
equations:

V-U=0 (28)
ou

SLHUVUAVP -V S+V- ('8 u) =0, (29)

where () is the averaging (filtering) operator. The last term on the right hand side
of (29) contains the complete influence of the fluctuations field on the mean flow
(the effects of turbulence). Usually, it is named the Reynolds stress tensor R, and
there exist different approaches for its evaluation.

In the standard k& — ¢ model [25], one assumes (Reynolds hypothesis)
2
R=—Zkl+u(VU + vu?, (30)

where k = L(|u/|?) is the kinetic energy of turbulence and v is the so-called turbu-
lent (or “eddy”) viscosity defined as v; = ¢, E  where ¢ = =(|Vu' + Vu'T|2> is the

dissipation of the kinetic energy of turbulence.
The exact equations for k£ and ¢ can be derived, but they contain many unknown
terms (the so-called higher order moments), so one has to introduce approximations

[26]. The standard equations of the k — ¢ model are [25]

ok k2 1 .

a7+ U VE=V - (e,—Vk)= SR (VU + VUT) ¢, (31)
de k? el T e?
E+UV5—V(CE?VE)—Clz§R(VU—|—VU )_c2?7 (32)

10
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where ¢, = 0.09, ¢. = 0.07, ¢; = 1.44 and ¢; = 1.92.

Finally, one has to solve the following problem in © x (0,7):

V-U=0 (33)
ou T
a+U-VU+VP—\7-St:0, Se=w+uwv)(VU+VUT), (34
ok k2 1 k2 T
Oe k2 1 e’
o U Ve= V- (c.—Ve) = ek [VU + VUt - c2 (36)

with the corresponding boundary conditions on 9€2 and initial conditions for ¢ = 0.

Remarks

1. The isotropic part of the Reynolds stress tensor —%kl has been neglected, consi-
dered small compared to the values of pressure. Otherwise, it is possible to consider

modified pressure P’ = P + %k

2. We use the values of the constants slightly different to the original values esta-

blished by Launder [25], i.e. ¢ = 11/6 and ¢. = 1/1.4225 (see [29], [30]).

3. The so-called shear-based k—e model has also been tested and used. The difference
with the standard model is in the choice of adding the “turbulent” viscosity 14 to
the molecular viscosity v in the expression S; = (v + 14)(VU + VUT) just for the
non-diagonal terms.

4.  Further on, we use the notation S; = %c#§|VU + VUT|? — ¢ and S. =

e, k3 |VU + VUT|? — CQ% for the source terms in the equations for k£ and e, res-
pectively.

11
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2.3.1 Wall laws

Significant difficulty in the resolution of the above problem comes out from the strong
variations of flow variables in the vicinity of I',, € 9€), where I',, represents the solid
wall u,, = 0. Furthermore, the standard equations of the & — ¢ model are not valid
for the region near the solid walls where the viscous effects play more significant
role. Different strategies have been developed to overcome these difficulties: the
wall-laws approach and the two-layer approach. The computations presented here
were carried out using the wall-laws, although the two-layer £ — ¢ model is also
implemented.

The basic idea of the wall-laws approach consists in removing the boundary
layers from the computational domain by changing the computational domain € in

Qs = Q) — Bs where Bj is defined as:
Bs={z—n(z)A:2€T,,A€(0,0(z))}, (37)

where n is the outer unit normal on I',,. The computational domain is now s and
the new boundary I's replaces I',. In this wall-laws implementation, the parameter
0 is given apriori and has the same value everywhere on I',, and is kept constant
during the computations.

Figure 2: Domain boundary transformation.

The second step in the application of the wall-laws is the derivation of the boun-
dary conditions on I's. Experiments show some universality in the behavior of
turbulent boundary layers. More precisely, the following relations are valid on I's
(for details on the implementation of these boundary conditions, see [29]:

U-n=0, (38)
(S n-s*)s* = —uls®, (39)

2 3 0.26(1 — a)?
k=T, c= &min(l,a + 02r(1 — o) ) (40)

kS Ve

i ), with y* = “%5, reproduces the behaviour of & when 4 tends

where a = min(1, 4
to zero (and the correction for the boundary condition for ¢ is chosen to reproduce
the behavior in the near-wall region, see [29]), S; = (v 4+ 11)(VU + VU?), and the

unit tangent s* is defined as

§* = . . (41)
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The friction velocity u, is obtained as the solution of

U-s*

Urs

= f(uT)a (42)

where for f(u,) we use the nonlinear Reichardt equation:

+
[-(yT) = 2.5log(1 + ky™) + 7.8(1 — e-vt/ %

e—0.33y+ )7 (43)
which presents a generalization of standard log-law.
Remarks

1. The authors have also used convection and pressure gradient corrections to the
standard Reichardt equation, developed in [29].

2. The standard log-law is also implemented, i.e.

U-s*

Ur

=yt for yT < 20, (44)

U-s*

Ur

= ~logly") +, (15)

where kK = 0.41 and § = 5.5 are experimentally determined constants.

2.3.2 Two-layer approach

In the region where y* is small, the standard k& — ¢ model used in the high-Reynolds
region is no longer valid. Therefore, a two-layer & — ¢ model [26] is implemented
allowing the integration up to the solid wall. It is done in the following manner:

For y*t < 200 the following transport equation for kinetic energy of turbulence k
is used:

Ok 1 k2
o tU-VE=V. (v + 1) VE) = 5CM?W'U + VUT|? - Diss, (46)

where

ks
Diss = T = c#\/];lﬂ

and /. and [, are two length scales containing the damping effects in the near wall
regions.

[, = /{c;?’/‘ly(l — (7)),
[, = ﬁc;3/4y(1 —eu )

13
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where ¢ = 70 and x = 0.41 and y™* is defined as
v b

where y is the distance of the current point to the solid wall.

The boundary conditions for velocity on the part of the boundary representing
the solid wall are now:

U=0, onls, (47)

while the boundary condition for kinetic energy of turbulence is

k=0, on Is. (48)

Remark

In the context of the application of wall-laws, it should be a-posteriori varified that
yT for a converged solution takes the values for which the wall-laws expressions
are valid. However, in the cases where y* takes small values, the same problem of
validity of £ — ¢ model arises. A possible solution is to couple the wall-laws with tho
layer technique, i.e. to use the approach described above for the part of the domain
where yT < 200.

14
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2.4 Projection method for Reynolds averaged Navier-Stokes
equations and k£ — ¢ turbulence model

The introduction of the flow decomposition and the turbulence model leads to the
replacement of the original Navier-Stokes problem (1)-(6) with the modified problem
(33)-(36) for the mean velocity U/, mean kinematic pressure P, kinetic energy of
turbulence £ and turbulent dissipation .

The Algorithm 1 reads now:
(0) Given Uy with V- Uy =0, k¢ and &g
(1a) Solve for U(T), with Uy = Uy at ¢ = 0, from

ou - -
W—I—U-VU:V-St—I—f,inQ, (49)
U =won I'y, (50)
(gt-n-n):()and(gt-n-s):Ooan, (51)
U-n=0onT; (52)
(5} ‘n-s)s=—u’son 'y, for 0 <t <T. (53)
(1b) Solve for k(T') and e(T'), with U(t) = Uy, k(0) = ko and ¢(0) = &g
Ok k? 1 K
EJFU-W—V-(C#?W) = §c#?|VU+VUT|2—5, in Q, (54)
de k? 1 e?
S TV Ve- V. (CE?Vs) = ek VU + VU - ey i, (55)
k= k‘pl, &€ =€, on Fl, (56)
Vk-n=0, Ve-n=0on Ty, (57)
k=ky(u;), e=c¢ey(u,)onls, for0 <t <T. (58)
(2) Solve for ¢ from )
Vi =V -U(T)in Q, (59)
G,
a—"; = 0on T, UTs, (60)
¢ =0on Iy. (61)

(3) Compute V = U(T) — Vi in Q.

(4) Report V, k(T), e(T),set t =0, Uy =V, ko = k(T) and ¢g = £(T) in 2 and
on I'y, and go to step (1). If pressure is required, it is given by p(T') = /T

15



16 G.Medi¢ and B. Mohammadi

Remarks

1. Instead of S = v(VU + VUT) in the Navier-Stokes equations (and in the projec-
tion method algorithms presented), now we have S; = (v+14)(VU+VUT), where in

this implementation 14 is computed explicitly, i.e. throughout the projection cycle
2
one takes 14(t) = cﬂf—g.

2. Here F, and F are supposed F,, = I, = 0.

3. There is a part of boundary I's = I',,, the solid wall, where the wall-laws are
applied (I'y UTy U T3 = 9Q). We have to compute on I's the friction velocity u,
throughout the projection cycle, solving the nonlinear Reichardt equation.

4. Applying the wall-laws on the intermediate velocity U, we have, finally, for the
velocity at the end of the projection cycle

V.n=0onTI;3 (62)
since Vi - n =0 on I's, and
Seon=25 n—(+v)(V(Ve)+V(Ve)) - n

=S, n+v+u)(Vn+Vnl) Ve (63)

giving the correction needed to the boundary condition for @ to have the right value
for (S;-n - s)s at the end of the projection cycle.

5. In each projection cycle 0 < ¢t < T, in the equations of k — ¢ model U(t) is
in in this implementation taken as Uy, decoupling in this way the problem of the
computation of V and P(T) from the computation of k(T') and (7).

16
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3 FINITE ELEMENT METHOD

The solution of the original problem (1)-(6) for 0 < ¢ < Txg is now decomposed in
the resolution of the sequence of the projection cycle problems for 0 < ¢ < T', using
the algorithms presented.

We introduce a partition of the time interval [0, Tvs], " = nT, for 0 < n < N,
where T' = T2 We define three sequence of functions {v]'}, {@}}, {p}}, such that
(x = v ())n(v} & vi(.,t")), with the initialization v} = ug, @) = ue and p) = po.

In the case of Reynolds averaged Navier-Stokes computations (for turbulent flow

computations) we use the notation: {V;"}, {U7}.{Pr} {kp} and {e7}.

Let 0, = U;K; be a discretization of the computational domain @ C R? by
triangles when d = 2 and by tetrahedra when d = 3, and let Q;, = U;C; be its
partition in median dual cells (see Figure 1). Let E(K;) be the set of sides of K;
triangle in 2D and the set of faces of K; tetrahedra in 3D, and let {¢'}Y¥ be the
vertices of our disretization.

"/ i
b L3
/N

Figure 2: Median dual cells in 2D and 3D.

Let V), be the set of continuous affine functions on our discretization

Vh = {'g/)h : Qh — R, L/)h c CO(Qh) : \V/[(]' c Qh7¢h|Kj < Pl} (64)

Furthermore, let we introduce the notation
(a,b) = / aibi,  a,be L) (65)
Qp

and

(A,B) = | AyBy, A, B € L*(Q)™. (66)
h

In the following subsection we will discuss the finite element formulation for
the solution of problem (33)-(36), i.e. the implementation of projection method,
algorithm 1 in particular, for Reynolds averaged Navier-Stokes equations with k — e
model and wall-laws. The algorithm for the solution of problem (1)-(6) can be easily
reconstructed.
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3.1 Finite element formulation

STEP 1 - Intermediate velocity and turbulence variables computation:

Let
JOnh - {@h € ‘/hd7¢h =0 on Flhath Ny = 0 on F3h}7 (67)

Won = {wh € Vh,wp,=0o0n Iy, U th}. (68)

Introducing fully explicit time discretization we can write the following Petrov-
Galerkin formulation for the intermediate velocity and turbulent variables compu-
tation:

Find Uf“ such that, Vo, € Joun

Tkl _yin .

(%7%) + (V" - V'V, ) + (57, Vo) — /r St -n - on
3h

N}7;u+1 . ‘/fn

+ ,
K,;e:ﬂ WK ( T

+ th ' Vvhn -V ?h) : g{\"(vhn’ th) = 07 (69)
and )
U7+ — il € Jom, (70)

where w), is an approximation of w’ in V;¢, and w’ is an extension of w in H'()?
satisfying w-n =0 on I's.

Find &k} 7t such that, Vw, € Wy,

(k}j“ —kp
T

k,n 2
0n) + (V- AL wn) + (e Pk o) = (57 w0n)+

€h

k2+1 B k}? n n (k}?)Q n n K n Ln
/I, —— + V" Vk; =V - (¢, V) = Sty | 9o (Vi kg wn) =0,

K, Kefy, r 62
+1 k)2 (71)
ETL _ €7L n
(%7 wh) + (th ' V€27 wh) + (CE( ;n) ngv th) - (S:h’ U)h)‘l‘
h
En—}—l —e? km 2 "
/I/' (% + th : VEZ -V. (CE ( ;;1) V&Z) - :h) ggx(vhn’ea}ﬁ:’ wh) =0,
K, Key, h
(72)
and
kptt — k) € Wo,,  ept! — e} € W, (73)

where kj and ¢}, are the approximations of functions k& and ¢’ in Vj,, where k" and
¢’ are the functions in H'(Q) that satisfy &' = kr on I'y, ¥ = k,, on I's, and ¢’ = er
on I'y, ¢’ = ¢, on I'z, respectively.

18
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Different stabilized finite element methods have been proposed so far. SUPG
(Streamline Upwind Petrov-Galerkin) methods [14], [15] and the recent extensions
[16], [17] have been well understood and widely analyzed.

On the other hand, in the context of residual distribution schemes (the so-called
fluctuation splitting approach [12], [13]), a number of schemes was developed, e.g.
LDA (Low Diffusion) and PSI (Positive Streamwise Invariant) schemes, taking care
of the scheme properties like positivity and linearity preservation. The relation of
these schemes with standard stabilized finite element formulations is been analyzed
and some interpretions have been proposed [18], [19], [20], where the general residual
distribution schemes are rewritten as a Petrov-Galerkin formulation where the sta-
bilizing functions g and g& are appropriately chosen. If we chose g = V)" - V¢,
and g& = 7 V;* - Vwy, we recover the SUPG (Streamwise upwind Petrov-Galerkin)
methods. However, we will chose the stabilization via PSI scheme, and the choice
of gf and ¢l will be discussed later.

STEP 2 - Pressure computation:

Let
Qon = {tn € Vi, = 0 on I'ys}. (74)

The Galerkin finite element formulation of the Poisson problem for ¢ is:

Find o} € Qo such that, Voo, € Qop,

[RGB RS RS A (75)
Qh Qh

STEP 3 - Velocity update:
Find Vh”+1 such that, V¢, € Joun

Vit én) = (UR. én) — (VR én) (76)

and )
7 — ), € Jon, (77)

where w), is an approximation of w’ in V;¢, and w’ is an extension of w in H'(0)?
satisfying w-n =0 on I's.

19



20 G.Medi¢ and B. Mohammadi

3.2 Velocity computation

Let {t;}1.n be the basis of Vo, = {1, € Vi, 0, = 0 on I'1z}, and let {¢; ;}1 n,1.4 be
the basis of Jy,; defined as

Qbm = nﬂ/%

Gin = sl o il ¢ €T (78)
sz',s = S?L/Ji
¢i; =1iej,  j=1,.,d  elsewhere (79)

with s = s' + s* s being the unit tangent defined before, and {n,s', s} being
the local orthonormal coordinate system with positive orientation, defined for each
node ¢'. The definition of nodal normal and tangent can pose problems especially for
domains containing corners and this problem is emphasized in 3D. We have chosen
to compute the nodal normals (and corresponding tangents) as a weighted average
of normals of all edges (faces) having the node ¢; in common (weighted by the length
of edge in 2D, and by the area of face in 3D). This will be explained in more details
when explaining the wall-laws implementation. {e;} is the canonical basis of R,
and Uh can be written in this basis as

Uh = E E Um‘(ﬁm —|—w§l. (80)

i=1..N j=1..d

For determing the system of equations for the computation of nodal values UZ»”'H we
take the above basis functions as ¢y, in the formulation (69). We will not apply the
stabilization via gi function on the nonstationary term, and that will together with
the mass lumping (the Gaussian points of numerical integration coincide with the
element nodes) while integrating nonstationary term lead to the decoupling of the
discrete equations for U1,

Finally, the function gi* defining the stabilization is chosen as gi = X (V}", é5)—
én, where 8% is a function given by PSI scheme. Furthermore, we will use one
Gaussian point numerical integration for all diffusion terms in (69) and three nodes
as integration points for convection term.

This leads to the following scheme for all nodes not on I'yy, U I'sp,.

~ Tz K sk n n| - n K -
Ut =V — 7 22 (B (Vi Vo) VI K| + St - Ve |K]). - (81)
| 2| K,KeQy, =1

On Ty we apply Dirichlet boundary conditions (UZ = wi(q")) and on I's, we have
the following scheme ((I/ - n)?*' = 0, with the necessity that (U - n)? = 0)

20
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R T. ) d+1
() = (V) = s (X (3K (Ve V)V K
| 2| K,Keqy, =1
' AV |K|) + boundary integral on I'sy). (82)

The computation of the boundary integral on I's; will be discussed in the subsection
that considers the wall-laws implementation.

In the discrete formulations (81) and (82) V. is the mean element velocity from
the previous step STy is Sy tensor element value from the previous step. Index [
indicates local element node numbering and the correspondance [ — 1 is defined
with the triangulation €.

The values of 3f%; can be found in [12]:

max((), bi)min(o, (Vz - VK )(VK _ VK ))

6]{ — 2] in,J ] out,] i in,j d (83)
" Z?lill ma:z:((), bl)mzn((), (‘/17]' - ‘/iﬁ,j)(‘/olvjt,j - Viﬁ,j))’
and d+1 . d+1
K 2imy Viymin(0,b) K Lisy Vigmaz(0,b)
Ving = d+i. - ) out,j — d+1 ) (84)
Y2y min(0,b;) Y2t max(0,by)

where b, = 5\/7;; -n; and n; is the inward unit normal to the triangle edge (tetahedra
face) opposite to the node ¢, multiplied with the length of corresponding triangle
edge (the area of tetrahedra face).

The extension for the final step of the same algorithm (velocity update) is
straightforward (once more, for all nodes not on I'y; and I'sp):

~ 1 |K| .
yrtl = i oK 85
EE O T -
where the computation of ¢}, is explained below (¢ € P*).
The time step in the formulations (81) and (82) is computed as
A {4
T = CFL min min o (86)

- - v )i’

7%  K,'eK |UK| + %

where Az is the minimum element height, vk is the mean element viscosity, (v4)x

is the mean element turbulent viscosity and |ug| is the norm of the mean element

velocity. We've chosen o apply global time stepping, but for steady flows local time

stepping strategy can also be considered. The time step calculation procedure is
explained further on in Appendix 4.

21



22 G.Medi¢ and B. Mohammadi

3.3 The computation of pressure

Let {¢;}1. ~ be the basis of Qgs. Taking into account the boundary conditions, the
introduction of the finite element discretization leads to the system

AD = F, (87)

where A is the positive definite symmetric n, X ng matrix
A= / Vip; - Vi, Fi= / V- ay(T)s, (88)
Qh Qh

and the solution vector is ® = (@h(qi))ie{17...7ns}, ns being the number of nodes of the
triangulation. The matrix A and vector F' are furthermore corrected to take into
account the Dirichlet the boundary condition on I'yp:

A =0, i#j As=1., F.=0. if ¢ €Ty. (89)

Conjugate gradient method is applied to the resolve the linear system A® = F.

The general preconditioned conjugate gradient method algorithm for the resolu-
tion of N x N linear system is the following:

(0) Initialization
Choose the preconditioning matrix C' € RV*N (it has to be symmetric positive defi-
nite), the stopping criterium (computation precision) € or the maximum number of
iterations m,, .., the initialization ®° (0 for example), and the following initialization

for ¢° and h% ¢° = R° = C~1(A®Y — F). Set m = 0.
(1) Compute:

m <gmbhT>c < gm " >c (90)
P T Chm O A >g | hmTARm
q)m—l—l — (I)m - pmhm7 (91)
gm+1 — gm o pmc—lAhm’ (92)
g™ [1E
hm+1 — gm+1 _I_,_)/'mhm7 (94)

where < a,b >¢=a”Cbh and ||a||c = (aTCa)z.

(2) Check if ||g"™*|2 < €]|¢°]|%, then ®™*1 is the approximated solution of the
problem, if not, increase m and return to (1), if m < my,q,.
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Remarks

1. In the case of Algorithm 1, the initialization for ®° in the n + 1 global iteration
step, is taken as a result from the previous iteration, i.e. ®° = P*T. In the first
iteration, ®° = POT', P° chosen to satisfy the conditions for the initialization of the
projection scheme.

2. In the case of Algorithm 2, the initialization for ®° is always the same, i.e ®° = 0.

3. The preconditioning matrix C' can be chosen as: C;; = 0., ¢ #j, Cy =

HE

where C; is the median dual cell around the vertex ¢* of our triangulation.

4. The discrete pressure P;*' is estimated from ¢, using the relations given in
the presentation of Algorithm 1 and 2, P/t = ,/T and P/ = PP+ 2, /T2,
respectively. Here, it is assumed that pressure P, € Qop. In the case of Algorithm
1, it can be shown [23] that the projection method acts in a stabilizing manner
on the continuity equation, allowing the equal odrer interpolation for V;, and P.
However, for the nonuniform meshes where element size varies significantly spurious
oscillations are possible (the stabilization term has as a coefficient T instead of Axz7.
In the spirit of stabilized finite element methods for Navier-Stokes equations ([16],
[22], [23]), the stabilization of pressure is proposed through the correction of the
pressure pit! computations from ¢, what is equivalent to the stabilization of the
variational formulation of the continuity equation.

5. The previous remark implies that the introduction of P1/P1lisoP2 element, instead
of P1/P1, would assure less mesh sensitivite pressure computations.

3.4 k — e computations

Let {v;}1.n be the basis of Wy,. Similarly like in the case of the equations for
the intermediate velocity, the stabilization (via PSI fluctuation splitting scheme) is
applied again only to the convection term (in this case, this violates the consistency
more severely). We use the same approach for numerical integration, together with
the mass lumping for source terms (Gaussian points coinciding with element nodes).

The stabilization of convection term for k! is defined as gl = g% (V" k! wy,) —wy,
and for e}t as gl = gR(Vr, el wy) — wy,.

This results in the following scheme for k7*' and &}*' for all nodes ¢' not on

I'1, UT's, (where we use the Dirichlet boundary conditions and wall-laws) computed

by:

T; P nl e
Erl = g e Yo (B (Vi VikPIK |+
K,KeQy =1

k? J:
(g)kan V¢IX|[ |_|_ |X|

m

LG (95)
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fri ) d+1
et = e} - > (BEY (V- Vel | K|+
|Oi| K,KeQy, =1
(k)7 K| K]
. Ve - Vb | K S )M, 96
e Ve VK| 4 (S (96)

where the subscript m denotes the mean element values, and the rest is the same
as in (81), with the exception of the definition of 83X in the discrete formulation for
Ertt

x _ _ max(0,b)min(0, (ki — kj,)(kg,, — ki)

— ,OML _ _ ’ 97
0 = ST max(0, bymin(0, (t — k) (R, — k) )
i 2 kimin(0,b 2k 0,b
K _ 2iz1 kimin(0, b) K _ 2z kimaz(0,b) (98)
b Z?;l min(0,b;) ’ out Z?ill mazx (0, b) ’
and g7t
e man(0,bymin(0, (ei — <)l — oK) 9
S max(0,b)man(0, (e — 5 (e, —eK))
Wlth ZCH—IE: - (0 b) ZCH_I O b
6[&" — (=1 eiminiy, o K — =1 5lmax( ) l) (100)
wmn d+1 - 0 b 9 out d+1 0 b I
22y man(0,by) 2212y maz(0,by)

where b; = 5‘/72 -n; and n; is the inward unit normal to the triangle edge (tetahedra
face) opposite to the node ¢, multiplied with the length of corresponding triangle
edge (the area of tetrahedra face).

3.5 The wall-laws implementation
3.5.1 Explicit implementation

In the finite element formulation of Reynolds averaged Navier-Stokes equations, the
following boundary integral appears:

/ Sth b - Ph, (101)
Lap
where S7, = (v + 1) (VV + (VV)T). S7 - ny, is decomposed over (n, s¥)

Sty -np = (S5 - nn - np)ng + (S0 -y - s3)s5- (102)

The first term on the right hand side of the above equation is in the presented
implementation neglected, although it can be calculated explicitely (see [28], [29]).

Introduction of the wall-laws in the formulation leads to

Sk g = [ (S messio o= [ (wsioen (103)

3h
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and, finally, to the addition of the following term in the numerical scheme (82) for
the nodes ¢' € I'sy,

| N Ty .
+ E E TS(UTE)ZSE,J" (104)

K,KeQ, Ecé(K),q'€E

Both u¥ and s} are computed for all triangles sides £ belonging to I's; in 2D, and
for all tetrahedra faces F belonging to I'sy, in 3D. In these computations we take the
mean value of V}* on each E, V7, and we solve

g(uP) = Vi - st —uP f(uF) = 0, (105)

where s}, is defined as
Ve — (Vg -ng)ng
\VE — (V& -ng)ns|

(106)

*
SE:

n+1

7

Regarding the wall-laws for £'t" and ¢!, since u, is computed for triangle
sides in 2D, and tetrahedra faces in 3D, to compute the nodal values (for the node
q') we compute the average value of u, for all triangle sides on the boundary I's,
having the node ¢* as common in 2D (weighted by triangle side lenghts), and for all
tetrahedra faces on the boundary I's, having the node ¢ as common in 3D (weighted

by tetrahedra face areas):

. +1
e YKk Keq, Lpes(k)ger | N TanlkE
K]

= \ 107
ZK,Kth ZEes(K),qieE |E N F3h| ( )
ot _ YK, Ke, LEes(K) e | F N [ap et (108)
' Yk ke, Lres(k)gier |ENTan]
where kg = kg(u,) and eg = eg(u,) are defined by (40).
3.5.2 wu, problem resolution
The nonlinear equation for wu.,:
h(u)=U-s—u,f(u;) =0, (109)
is resolved applying the Newton method,
R (u,
ul—}—l — ul . (u ) (110)

T T W)

The initialization of the algorithm for u, was chosen as u? = \/”lg—'s.
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4 NUMERICAL TESTS IN LAMINAR REGIME

We have carried out a number of test case computations in laminar regime, both in

2D and in 3D.

The test cases analyzed in 2D were: flat plate flow, flow in a cavity, flow over a
backward facing step and flow past a circular cylinder.

In 3D, we analyzed the following test cases: flow in a cavity and flow over a
backward facing step, where the 2D domain was extended in z—direction (we have
used rather thin domains) with imposing the symmetry boundary conditions:

u-n =0, S-n=0. (111)

Basically, these test cases served to verify the 3D code in obtaining the results
identical to those from 2D computations.

The first tests were conducted for the basic 2D laminar test cases. Here, the
behavior of the code was analyzed for the flows with high Reynolds number values,
as a preparation for further turbulent flow computations.

The flat plate flow computations were verified comparing the friction along the
plate with the Blasius law and the velocity profile in the boundary layer with the
Blasius solution [51]. The Reynolds number chosen was rather high, Re = 33000.

The cavity flow, because of multiple separation in the corners when increasing
Reynolds number, is rather difficult to compute [58], [59]. Here we have compared
the results with the results available in the literature up to Re = 10000.

The flow over a backward facing step with the recirculations appearing both on
the bottom and upper wall when increasing Reynolds number, presents the further
more complex step in laminar high Reynolds flows simulations. Here, the main
recirculation lenght is compared with experimental results [56] up to Re = 800.

Finally, we computed the steady laminar flow over a circular cylinder ([54], [11])
as a preparation for further unsteady computations.

3D cavity flow is analyzed for Re = 400 and compared with adequate 2D simu-
lation.

For 3D flow over a backward facing step, we have chosen Re = 150 where,
according to experiments, the flow is supposed to stay two-dimesnional. In that way,
we could compare it with our previously conducted two-dimensional simulation.

26



NbolIKE - an incompressible Navier-dtokes solver tor unstructured meshes 20

4.1 2D flat plate

The flat plate test case represents a very simple test case, and there are well docu-
mented experimental results, as well as analytic solutions for the friction coefficient
distribution and velocity profiles, developed by Blasius (see [51]).

The problem configuration is shown in Figure 3, corresponding to a flow in a
rectangular domain = [—0.2,1.] x[0,0.1], and the boundary conditions are defined
as in the figure, where we impose an uniform inlet profile u, = (1.,0.), on the plate
we set u = 0, and the symmetry boundary condition is standard: u-n = 0 and
S-n =0, as well as it is the outflow boundary conditions F,, = 0 and Fs; = 0.
Reynolds number defining the flow is Re = % = 33000.

plate
symmetry

o O

»wn =T
I

boundary layer

0.2 1.

Figure 3: Problem description.

We have tested several uniform and nonuniform meshes (see Figure 4). Typical
flow pattern (isovalues of |u| and p) are shown in Figures 5 and 6.

The results presented are the comparison of the computed values of the friction

coeflicient Cf = 1 Tw s = 1 Sn-s _
5p°°|u°o| Epoo|uoo|

Blasius law (the analytical solution): ¢; =

on the plate with the values given with the

0664 for different meshes.

Vs

Horizontal velocity profiles in the cross-sections defined with x = 0.2 and z = 0.9
computed on the mesh denoted by MESH3 (see Figure 4) are also compared with
the Blasius solution values.
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Figure 4: Friction coeflicient ¢ along the plate computed with different meshes.

Figure 5: Isolines of |u|, MESH3.
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Figure 6: Isolines of pressure p, MESH3.
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NSIKE - MESH3
Blasius

0.8

0.6

0.4

0.2

0 0.02 0.04 0.06 0.08 y

Figure 7: Horizontal velocity profile at * = 0.2 computed with the finest mesh
MESH3, comparison with Blasius solution.

NSIKE - MESH3
Blasius

0.8

0.6

0.4

0.2

0.04 0.06 0.08 y

Figure 8: Horizontal velocity profile at * = 0.9 computed with the finest mesh
MESH3, comparison with Blasius solution.
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4.2 2D cavity

The cavity flow represents a classical Navier-Stokes solver benchmark test, and
there exists a variety of numerical results for different flow regimes. The problem
configuration is shown in Figure 9, corresponding to a flow in a square domain
Q= 10,1] x [0,1] with the boundary conditions defined as in the figure.

y
u=(1,0)
1 u=(0,0) u=(0,0)
S C)
X
u=(0,0)
1

Figure 9: Problem description.

The computations are carried out for the flow regimes corresponding to the

Reynolds number values Re = 1,100,400, 1000, 5000, 10000.

We have used three non-uniform meshes, MESHO : 441 nodes, 800 elements,
MESHT1 : 2601 nodes, 5000 elements, MESH2 : 10201 nodes, 20000 elements. All

the results presented are obtained using MESHI1, except the results presented for
Reynolds number Re = 10000, where we have used finer mesh MESH2.

The results of present computations are compared with the results obtained by
Ghia et al [58] (obtained using the meshes with 129 x 129 and 257 x 257 nodes). In
particular we are interested in the position of the center of primary vortex in the
cavity.

Furthermore, we present the streamlines for different Reynolds number.

30



NbolIKE - an incompressible Navier-dtokes solver tor unstructured meshes
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Figure 10: Computational mesh, MESH1, 2601 nodes, 5000 elements.

| Re | 100 | 400 | 1000 5000 | 10000 |
Ghia et al. [58] | = 0.6172 | x = 0.5547 | = 0.5313 | z = 0.5117 | = = 0.5117
y=0.7344 | y =0.6055 | y =0.562 |y =0.5352 | y = 0.5333
NSIKE, MESHI [z = 061 |2 = 058]2 = 0545 |2 = 053 [z = 0.525
y=075 |y=0615 |y=056 |y=053 |y=053

Table 1. Primary vortex center position.
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(a) Re =1 (b) Re = 400

(c) Re = 1000 (d) Re = 10000

Figure 11: Streamlines for different Reynolds numbers.
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4.3 2D flow over a step
The flow over a step has been analyzed by a variety of authors [57], and for this
configuration (see Figure 12) there exists also a detailed experimental study [56].

At the entrance boundary (u = up), for a horizontal velocity, u, a profile is
prescribed (with the mean value u; = 2/3, and the vertical velocity us is set to zero.

Reynolds number for this test case is defined as Re = “{1th2),
u=(0,0)
h1: 1:u:q3 ’Xﬂ Fn:O
h=1 I k=0
- u=(0,0)
T 5 | L

Figure 12: Problem description.

We analyzed the flow over a backward facing step for different values of Reynolds

number Re: 100,150,200,400,500,600,300.

In our computations we have tested several meshes, ranging from MESH1, uni-
form mesh, with 1291 nodes and 2400 elements (used for Reynolds number less
than 200), to MESH4, nonuniform mesh, refined in the direction normal to the solid
wall, with 5616 nodes and 10900 elements (which was basically employed for the
computations for high Reynolds number).

In Figures 13 and 14 we present the streamlines and isolines of pressure for
Re = 800. We summarize the computed length of the primary recirculation vs.
Reynolds number and compare our results with experimental results [56] and the
results from some other authors [57] in Figure 15. Generally, the computations have
a tendency to underestimate the length of the recirculations (both primary and se-
condary on the upper wall), and that was already remarked by several other authors
(the cause are probably the threedimensional effects).

m

Figure 13: Streamlines, Re = 800.
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Figure 14: Isolines of pressure p.
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PEGASE [57] ~+-
16 NSIKE 5

&
14 -

>
&
12 B i
o
o Bz
10 o - - .
I ,—;J,ZI”
3 o
8 A -
/Qf/)
6 -~ -
4 -
2 -
0 1 1 1 1
200 400 600 800 1000
Re

Figure 15: Primary recirculation length L for different values of Re.
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4.4 2D flow over a circular cylinder

Due to a variety of circular cylinder domain definitions, in the numerical experiments
carried out with the aim of computing vortex shedding past a cilinder, Rannacher
proposed the standardization of the flow over a circular cylinder test case (the nons-
tationary flow was often achieved by defining the asymmetric domain, where this
asymmetry was different from one computation to another).

In Figure 16 the domain used in the computation of Rannacher’s test cases 2D-
1 (steady) and 2D-2 (unsteady) is presented. The profiles used at the entrance
boundary is

ui(y) = duny(H — y)/H?, uy =0, (112)

where H = 0.41m, and u,, is set for the test case 2D-1: u,, = 0.3m/s, and for the
test case 2D-2 u,, = 1.5m/s.

The Reynolds number is defined as Re = T‘ll/—d, where d = 0.1m is the cylinder
diameter , and u; is the mean entrance horizontal velocity u; = %ul(H/Q)

u=(0,0)
0.16 m u=(0,0)
~1015m
=y, 0.1lm

Vi 0.15m

0 X
u=(0,0)
22m

Figure 16: Problem description.

Here, we present the results for the steady test case (2D-1) computed on the
computational mesh with 4190 nodes and 8110 elements, which are summarized in

Table 2.

In the computation for unsteady test case (2D-2) we were obliged to use much
finer mesh with 10643 nodes and 21842 elements and summary results are presented

in Table 3.
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| | Cp | C | Ap [ L. |
| benchmark [54] | 5.58 [ 0.011  0.085 [ 0.1175 |
| NSIKE | 5.65 [ 0.012 | 0.082 | 0.121 |

Table 2. Summary of the results - test case 2D-1.
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Figure 17: Computational mesh, MESH1, 4190 nodes, 8110 elements (partial view).

‘ ‘ ODmaav ‘ CLmaav ‘ St ‘ AP ‘
| benchmark [54] | 3.23 | 1.00 [ 0.30 [ 2.48 |
| NSIKE [3.2 [ 0.92 [ 0.034 [ 2.4 |

Table 3. Summary of the results - test case 2D-2.
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4.5 3D cavity

The cavity flow was the first 3D flow analyzed in order to verify the 3D code. Al-
though, the 3D domain is obtained from the 2D domain extending the domain in
the z-direction for the width b = 0.1, and imposing the slip boundary conditions:
u-n=0and S-n=01in the planes z = 0 and z = b.

1

Figure 18: 3D domain.

We have chosen to do the computations for Re = 400 where our 2D computa-
tions implied rather stable flow which bares some complex features (the existance
of several recirculations in both lower corners).

The mesh employed in the simulation consisted in 13005 nodes, 60000 elements
and 11600 boundary faces and is presented in Figure 19.

As expected the computations resulted in the flow that is twodimensional (coin-
cides in each plane z = const). Qualitatively, the streamlines (in plane z = 0.)
shown in Figure 20 correspond very well to those from 2D computations (see Figure
11). Besides, the positions of the centers of three principal recirculations from two
computations (2D and 3D) coincide in (0.58,0.615) for the primary recirculation,
(0.905,0.126) and (0.044,0.044) for the secondary recirculations in bottom right and
left corner.
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Figure 19: Computational mesh

Figure 20: Streamlines in the plane z = 0., Re = 400.

38



NbolIKE - an incompressible Navier-dtokes solver tor unstructured meshes Y

4.6 3D flow over a step

Three-dimensional flow over a step was computed to verify the 3D code (like in the
case of cavity flow, also). Like the 3D cavity test case, it is not really a 3D problem,
because the domain is obtained by extending the 2D domain into z-direction for a
width b = 0.5h,, further on defining the boundary conditions in the planes z = 0

and z = b as slip boundary conditions (or symmetry boundary conditions): u-n = 0

and S -n =0.

5 20

Figure 21: 3D domain.

The Reynolds number chosen for the verification of code is chosen to have a
regime where the flow is two-dimensional (according to experiments).

We have used the same basic two-dimensional mesh, as used in 2D computations,
that gave our 3D computational mesh with 6455 nodes, 28800 elements and 6240
boundary faces, presented in Figure 22.

The comparison of 3D computations with the 2D computations for the Reynolds
number Re = 150 are presented further on. Basically, we were interested in the
main recirculation as an integral parameter that is characterizing the flow.

39



40 G.Medi¢ and B. Mohammadi

Figure 22: Computational mesh, 6455 nodes, 28800 elements.

As in the case of 3D cavity flow we obtain perfectly two-dimensional flow, where
the recirculation length corresponds to the one computed in two dimensions.

Figure 23: Streamlines in the plane z = 0., Re = 150.

The coordinates of the computed reattachement point (or line) are (3.97,0) that
coincide almost exactly with the ones from 2D computations (3.99,0).
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5 NUMERICAL TESTS IN TURBULENT
REGIME

In turbulent regime, we have carried out several test case computations. In 2D, we
analyzed: flat plate flow and flow over a backward facing step. In 3D, we analyzed
the flow over a backward facing step. As in the case of laminar 3D test cases, the
2D domain was extended in z—direction with imposing the symmetry boundary
conditions:

u-n =020, S-n=0. (113)

The results were compared with available experimental results and, in some
cases, with the results obtained with the compressible code NSC2KE [28].

For the flat plate flow the friction coefficient along the plate was verified against
the experimental results, as well as different variables profiles in the boundary layer.
The computations were carried out for Re = 2.86 - 10°.

The standard test case ([27], [30]), flow over a backward facing step at Re =
44000 is analyzed further on, comparing the obtained recirculation length with the
results available in literature, as well as other variable fields.

Finally, we computed the 3D flow over a backward facing step at Re = 44000.
The resulting flow is two-dimensional, and we compared the obtained results with
the ones from 2D computations.

5.1 2D flat plate

The configuration of flat plate test case is exactly the same as for 2D flat plate in
laminar regime shown in Figure 3, except that on the plate we impose the wall-laws
instead of Dirichlet boundary conditions. We have chosen small inflow values for k
and € meaning that there is no important level of turbulence at the entrance, while
at the exit (and at the symmetry boundary) we impose homogeneous Neumann
boundary conditions for k£ and e. We computed the flow for Re = % = 2.86 - 106.

In our computations we have used several meshes: MESH1 (3801 nodes, 7200
elements, normal distance of the first layer of nodes from the boundary where we
impose wall-laws equal to 107° L), MESH2 (3801 nodes, 7200 elements, normal
distance 510~* L) and MESH3 (4465 nodes, 8633 elements, normal distance 10™* L).
We applied different values of parameter § in wall-laws varying from 1072 L to 107* L,

+ — urd
v

resulting in y values around 100 and 10, respectively.

The flow pattern (isolines of |u|, p and k) computed on MESH3 is shown in
Figures 25, 26 and 27.

41



42 G.Medi¢ and B. Mohammadi

o.o0o

o.o=

o.or

oo AN AN
YV VVINVVVV LYY

oo WVNVANWVVL

AAAAAAAAAAAA TNV
o-oa SV KKV SR AWMV NNV WY VYV INNNV VYV Y Y NNV

mwwwwwwv

o.o=

o.oa

o
o= o. o.= o.a o.e o= .

Figure 24: Computational mesh MESH3, 4465 nodes, 8633 elements.

Friction coefficient ¢; distribution along the plate computed with different meshes
is shown in Figure 28. Further on, we present the nondimensionalized profiles of
horizontal velocity U, kinetic energy of turbulence & and turbulent viscosity 14 for
z = 0.9L (the vertical coordinate y in the profile is nondimensionalized using the
boundary layer thickness dgg, i.e. the value of y for which the horizontal velocity
equals 99% of inflow velocity).
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Figure 25: Isolines of |u|, MESH3.
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Figure 26: Isolines of p, MESHS3.
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Figure 27: Isolines of £, MESH3.
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Figure 28: Friction coeflicient ¢; along the plate computed with different meshes.
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Figure 29: Velocity profile at = = 0.9L, MESH3.
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Figure 30: Kinetic energy of turbulence £ at x = 0.9, MESH3.
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5.2 2D flow over a step

The configuration for the flow over a step is similar to the test case in laminar
regime. The important difference is that here on the solid walls we impose the
wall-laws instead of Dirichlet boundary conditions. Besides, at the inflow small
values for k£ and ¢ are chosen meaning that there is no important level of turbulence
at the entrance, while at the exit (and at the symmetry boundary) we impose
homogeneous Neumann boundary conditions for £ and ¢. We computed the flow for

Rep = = = 44000.

wall-laws

h=2|u=y, F=0

5 L

Figure 32: Problem description.

In our computations we have used several meshes, but here we present the results
obtained with rather coarse mesh: 2748 nodes and 5192 elements (see Figure 33).
The normal distance of the first layer of nodes from the boundary where we impose
wall-laws varies; in the region just downstream of the step it is less than 0.01 H, and
elsewhere we have used coarser mesh. The parameter ¢ in wall-laws is set to value
0.01 H, yielding y* values of less than 40.

The computed flow pattern is shown if Figures 34, 35 and 36, while the computed
friction coefficient ¢; distribution is shown in Figure 37, together with y* distribution
in Figure 38 (note the difference in ¢; and y* values on two walls - due to a different
boundary layer mesh). In Figure 37, friction coefficient is multiplied with the sign
of horizontal velocity to emphasize the position of the recirculation.

The predicted main recirculation length is 6.8 H, while we have computed a very
weak secondary recirculation in the bottom of the step (even using this very coarse
mesh).
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=) = EXs) EY=y

Figure 33: Computational mesh, 2748 nodes, 5192 elements.

Figure 34: Streamlines, Rey = 44000.

o N
A1

Figure 35: Isolines of pressure, Rey = 44000.

S g

=) = EX=) EX=y

Figure 36: Isolines of k, Rey = 44000.
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Figure 38: y* = “%5 distribution, Rey = 44000.
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5.3 3D flow over a step

As in laminar regime, the three-dimensional flow over a step was computed to verify
the 3D code, now in turbulent regime. Like the other 3D test cases, the domain is
obtained by extending the 2D domain into z-direction for a width b = 0.5H, further
on defining the boundary conditions in the planes z = 0 and z = b as slip boundary
conditions (or symmetry boundary conditions): v-n =0 and S-n = 0.

5 20

Figure 39: 3D domain.

We have chosen the same values of Reynolds number as in 2D computations
(Rem = 44000) as well as the value of the parameter § in wall-laws (§ = 0.01 H).

The same basic two-dimensional mesh used in 2D computations gave our 3D

computational mesh with 13740 nodes, 62304 elements and 12800 boundary faces,
presented in Figure 40.
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Figure 40: Computational mesh, 13740 nodes, 62304 elements.
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As for the other 3D test cases (using this thin domains, with symmetry boundary
conditions) the resulting flow is perfectly two-dimensional.

Figure 41: Streamlines in the plane z = 0., Re = 44000.

The main recirculation length is 6.8 H, corresponding to the one from 2D compu-
tations. The distribution of the friction coefficient values on the lower wall behind
the step computed with 2D and 3D computations (in the plane z = 0.) is presented
in Figure 42.
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Figure 42: Friction coefficient ¢; distribution on the bottom wall behind the step,
Reg = 44000.
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6 CONCLUSION

A new solver for 3D incompressible Navier-Stokes equations based on the projection
scheme ([2], [3]) is developed. The standard k& — ¢ turbulence model is implemented
for turbulent flow simulation. The resolution of the problem for the intermediate
velocity as well as for k& and ¢ is ecompletely explicit. The stabilization of the
convection terms is via PSI (Positive Streamwise Invariant) residual distribution
scheme ([12], [20]). The Poisson problem for pressure is solved using conjugate
gradient technique. In the turbulent flow simulations, the wall-laws are used for the
solid boundaries, with the requirement u - n = 0 treated in the strong sense.

The results presented for typical test configurations are very satisfactory com-
pared with other results in the literature, indicating that this approach can be used
competetively in the 3D k — ¢ turbulent simulations. Besides, the computational
time stays reasonable - an overnight computation for 3D turbulent flow problem
with an unstructured mesh with approximately 50000 nodes on a workstation doing

10 MFlops.

Extensions of the solver for domains with moving boundaries using both injection-
suction boundary conditions and ALE (Arbitrary Lagrangian-Eulerian) formulation
and for flows including rotational effects are being realized.

In that sense, this solver has already been applied to different complex problems
including turbulent flow analysis, such as optimization (engine cooling fan blade
design, [61]) and fluid-structure interaction problems (stability analysis of viaduct
cross-sections, [62]).
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7 APPENDIX 1: NSIKE code description and the
instructions for utilization

7.1 The code description

The code is programmed using FORTRAN77 and it consists of 12 fortran files,
containing 31 subroutines.

e aires.f: - subroutines: aires2, aires3;

e caldtl.f: - subroutine: caldtl;

o clhaut.f: - subroutines: clhaut2, clhaut3;

e config.f:- subroutine: config;

e grad.f: - subroutine: grad;

e init.f: - subroutine: init;

o loglaw.f: - subroutines: lawlaminar, loglaw2d, reichlaw2d, loglaw3d;

e mailla.f: - subroutines: mailla2, mailla3, cvnox2, cvnox3;

e nsike.f: - main;

e result.f: - subroutines:result, printiso2, isovat;

e solve.f: - subroutines: res-exp, flux-p2, flux-p3, flux, rodec2, rodec3, smooth,
unwall2d, unwall3d;

o waldat.f: - subroutine: waldat2d, waldat3d;

The parallelization of code is prevised for the next version, and the programation
technique is largely addapted to the future parallelization. The structure of the code
is mainly the following:

— main:
— config,mailla,init,caldtl (initialization)
— resexp (algorithm):

— flux (rodec2 or rodec3, wall-law subroutines)
— grad (flux-p2 or flux-p3)

— caldt] (time step updating)

— result,waldat (results output)
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The code uses and generates several files: DATA, MESH.amdba or MESH.amdba3,
INIT.BB, SOL.BB, GNU.* or *.ascii2d, *.ascii3d, WALL.DATA, cdl.data, RESI-
DUALL. To start a simulation only two files are needed: DATA file defining the
problem parameters and MESH.* file defining the problem domain discretization.

All input and output files used and generated by the code are now described in
details:

e MESH.amdba, MESH.amdba3 - *.amdba, *.amdba3 ASCII formats are used
for mesh definition (nodes coordinates, elemental conectivity, node references
(frontier triangles - in 3D case). In 2D, the mesh format is the standard
*.amdba format, already used in the code NSC2KE, and the routine reading
the 2D mesh is the following:

open(1,file="MESH.amdba",status="o0ld")

read(1, * ) ns,nt 'number of nodes,number of triangles
if(ns.gt.nn) stop ’nn’
if(nt.gt.nnt) stop ’nnt’

do is=1,ns !loop on nodes

read(1,*) i,coor(l,is),coor(2,is),logfr(is)
enddo

do jt=1,nt !loop on triangles

read(1,*) k,(nu(i,jt),i=1,nen)

enddo

close(1)

In 3D situation is slightly more complicated, because of the fact that the
logic of the frontier is defined through faces, but in fact the code uses also
the logic of the nodes. We are suggesting the user to verify the logic of the
nodes for each particular case, especially when using wall-laws and symmetry
boundaries, through a pre-processor. In this sense, we use the MESH.amdba3
format that is equivalent to the standard *.amdba3 format except that at the
end of the file we read the array containing the logic of all nodes:

open(1l,file="MESH.amdba3",status="0ld")
rewind (1)
read(1,*) ns,nt,nfr
if(ns.gt.nn) stop ’nn’
if(nt.gt.nnt) stop ’nnt’
if(nfr.gt.nn) stop ’nfr’
do is=1,ns
read(1,*) ( coor(i,is), i=1, 3 )
enddo
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read(1,*) ( ( nu(k,jt), k=1, 4 ), jt= 1, nt )
read(1,*) ( logf(ifac), ifac= 1, nfr )

read(1,*) ( ( nuf(i,ifac), i= 1, 3 ), ifac= 1, nfr )
read(1,*) ( logfrs(is), is= 1, ns)

close(1)

The mesh has to be defined in meters, in 2D we don’t accept the triangles with
more than one side belonging to the frontier I'y,. Besides, the orientation of
nodes in each triangle is important for the computation of the normal in 2D, so
the nodes in a triangle connectivity table have to be ordered counter-clockwise.

e DATA - simulation dependent parameters are adjusted, namely: CFL number,
time integration procedure, initialization type, choice of output files, Reynolds
number, Stokes or Navier-Stokes simulation, turbulence model application,
wall-law choice.

An example of the DATA file is given below: Navier-Stokes + & — ¢ model

+ Reichardt wall-law for the simulation of the backward facing step test-case,

Re = 44000:

2 --> isave (=0 nothing, =1 SOL+WALL, =2 GNU,=3 vigie)

1 --> ins (=0 stokes, =1 ns)

44000 --> Reynolds

0.0 0.0 --> tetal,teta?2

0 --> axisymmetric =1

cccc time scheme cccececccccccccccccccccccCCCCCCCCCCCCCCCCCCCCCCCCCCCCee
1. --> cfl

30000 --> number of time step

50 --> save every

100. --> maximum time for run

-5 --> order of magnitude for residual decreasing

0 --> =0 uniform initial, =1 - start from INIT.BB (2-turb)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
1 --> =0 no turbulence model/ =1 k-e model

2 --> WL type =1 loglaw =2 reichardt, =5 euler, =0 two-layer
5.e-3 --> delta

o INIT.BB - if used, defines the initial data for simulation. The most general
case is the turbulent flow computation and the routine which reads the file in
that case is:

open(20,file="INIT.BB",status="0ld")

rewind (20)
read (20, *)
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do is=1,ns

read(20,*) (un(iv,is),iv=1,nsd) ,pres(is)
1 ,(un(it,is),it=nsd+1,nsd+ntu)

enddo

read(20,*) kt,t

close(20)

SOL.BB - the solution is saved in this file, in the same format as INIT.BB, so
it can be used directly as an initial condition for the next run

GNU.* - files with the output ready for postprocesing in GNUPLOT

WALL.DATA - file with values of pressure and friction coefficients for all nodes
on the solid wall (having reference 3). The file is ready for the postprocessing
in GNUPLOT, for example. It consists of the following 5 columns: =z, y,

P—Pco Tw S-n-s + _ usd

T 1 5, Cf = = = —.
%poo|uoo|2 ’ 'f %poo|uoo|2 %Poo|uoo|2 ) y v

Cp:

cdl.data - file with the drag, lift and momentum coefficient evolution. The
file is ready for the postprocessing in GNUPLOT. It consists of the follo-

wa [Tn]2 O . wa [T’Il]l
lw D= T—%——

wing 5 columns: teration number = kt, t, Cp, = e PPeb? T e Peb?

[y, (@[T enli4a1[T nl2)

%P00|u00|2‘32b

Ca =
directions 1 and 2 represent the inflow direction and the direction perpendicu-
lar to the inflow direction and 7' is the strain tensor defined as T'= —pl 4+ 5.

where ¢ and b are the characteristic length scales, the

nsike.desc, nsike.ascii2d, nsike.asciidd - files with the output ready for post-

procesing in VIGIE

RESIDUAL - file with the evolution of the residual quantities (used for conver-
gence monitoring). This file is ready for the postprocessing in GNUPLOT. It
consists of the following 6 columns: iteration number = kt, t, |Ri; |, |Risl,
|RL|, |Ri|, where R denotes the vector of residuals of the dicrete formulation
for continuity equation, Navier-Stokes equations, k equation and ¢ equation,
respectively, normalized by the value of appropriate | R;| from the first iteration

kt =0.
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7.2 Directions for the flow simulation

Nondimensionalisation

The code is nondimensionalized and we are working with nondimensionalized
variables u*, p*, £* and ¢*. In this sense, we should always scale the domain size to
have the characteristic length of a problem equal to 1. In that way, the only value
that defines the flow is the Reynolds number of the actual physical flow we want to
compute and it has to be given in the file DATA. The actual physical values can be
obtained from the nondimensionalized variables using the following expressions:

*LTEf *
l=1 ma L=1 Lrefa
3
— *U — *UZ k:k*UQ — *UTGf
[ U ref7 p p ref? ref? 5 6 L f?

where p (and p*) is kinematic pressure (divided by density p). All the other output
values are nondimensionalized (e.g. Cf, Cp, ¢,, ¢ etc.)

Physical model

Regarding the physical model to be used, the choice has to be made whether
the simulation will use a turbulent model, or not, and further on, in the case of
laminar flow simulations there is the choice between the Stokes and the Navier-
Stokes equations. Besides, the user has to define the value of Reynolds number.
The Euler flow can be simulated using laminar Navier-Stokes model choosing 5 for
the wall-law type (corresponding to the homogeneous Neumann condition for the
tangential velocity).

Boundary conditions

After providing a mesh of the problem domain 2, satisfying the constraints
mentioned above, one can define the problem dependent parameters. The definition
of boundary conditions is done through the logic of the nodes in the file defining the
mesh in the following way:

o logic=0 : internal node,
e logic=2: slip (or symmetry) boundary condition u-n=10,5-n =0

e logic=3 : solid boundary - in the laminar case implies u = 0, in the turbulent
case, the wall-law imposed depends on the choice of the wall-law in the file
DATA (0 - two-layer simulation, 1 - loglaw, 2 - Reichardt’s law, 3 - Reichardt’s
law with pressure gradient and convection corrections, 5 - slipping boundary
condition)
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e logic=4 : outflow boundary condition: p—S-n-n=0,5 -n-s =0,

e logic=>5 : inflow boundary condition - in fact one imposes the Dirichlet boun-
dary condition on velocity defined with 6; in 2D: u* = (cos(6;),sin(6,)), and
with 6; and 6, in 3D: u* = (cos(f;) cos(6z),sin(f3),sin(0;) cos(dz)), where 6,
and 6, are given in the file DATA. For turbulence quantities, the inflow condi-
tion is defined as k¥, = 107 and ¢, = 107" If necessary, the values given for
the nodes with the logic=>5 can be easily changed in the subroutine init, in the

file indt.f.

e logic=7,8 : periodic boundary conditions in 2D (periodicity is programmed in
y direction, so the code searches the correspondance of the nodes which have
the logic equal to 7 and 8 with the smallest distance in ), and in 3D (also in
y direction, but here the code searches the correspondance of the nodes which
have the logic 7 and 8 and the smallest distance in = and z).

Nevertheless, the specification of boundary conditions is rather delicate, for example
in 3D, especially when defining boundary conditions on the edges of the three-
dimensional domain that correspond to symmetry or wall-laws boundary conditions.

Initialization

Now, the user can proceed with the definition of the problem parameters in the
file DATA. The next point is the initialization. If the file INIT.BB is not present,
the initialization will be done with the uniform solution corresponding to the default
values at the nodes with the logic=5, with the satisfaction of the boundary conditions
for the solid boundary (in the laminar case v = 0, in the turbulent case U - n = 0.
Otherwise, the values are read from the file INIT.BB, according to the parameter
value in the file DATA (1 - for laminar flows, 2 - for turbulent flows).

Numerical integration

Finally, the parameters regarding the numerical integration have to be chosen
in file DATA. The parameter defining the size of the time step c¢fl, can be taken as
1., this works for all cases presented, except for the Stokes flow simulations, where
it has to be set smaller. Regarding the simulation stopping criterium three choices
can be made, the maximum number of iterations, the maximum global time and the
logarithm of the minimal normalized residual value.
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8 APPENDIX 2: Navier-Stokes equations in the
axisymmetric coordinate system

The incompressible Navier-Stokes equations are

g—?—l—u Vu=-Vp+V- -S+f, (114)

Vou=0, (115)
where S = v(Vu+ Vul), u is the velocity vector, p the kinematic pressure (divided

by density), v the kinematic viscosity, f is a given body force and (Vu);; = u; ; the
gradient of w.

The gradient and divergence operators are in the axisymmetric coordinate system

(z,7) defined as

@ @ 9¢: 9or

82 3
leading to the following form of the Navier-Stokes equations in the axisymmetric
coordinate system (z,r)

i Ve = =gl )
+%(u(a;f + %ZT)) + lz/(a(;jj + aau”) + [ (118)
+%(2y%i’”) + %QVZUT + fr, (119)
aaf 881:” +=0. (120)

Remark
The variatonal formulation for the Navier-Stokes equations:
Find v € H'(Q)?, p € L*(Q)

a—uv—l- u-Vuv—l—/va—l—/ SVU—/fv:(),VUEHl(Q)d (121)
Q ot Q Q El) Q

/QV ‘uq=0,Yq € L*(N) (122)

changes in the axisymmetric case only in the computation of the integral over the
domain €2, and the way V - u is computed.
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9 APPENDIX 3: Navier-Stokes equations in cylin-
drical coordinate system

The formulation of Navier-Stokes equations in cylindrical coordinate system could
be interesting when analyzing the flows, when the rotation around an axis is imposed
(for example, the turbomachinery flows).

The gradient and divergence operators are in the cylindrical coordinate system
(z,7,¢) defined as

oY Oy 10Y
Vi = (=, ==, ——=— 123
¥ (az’ar’r@@)’ (123)
0¢, 0¢, ¢, 10
V. -d= Z4 o ZF 124
¢ @z—l_@r—l_r—l_ratp’ (124)
and the tensor S is defined as
duy dur dur Juy Ouy
2% 5 T 5 s 2 o
duz dur dur duy Uy Uy
S=v| FF+3 257 e v =l I (125)
dup | 1duz 10uy 4 e _ U 19ue | up
Oz r dp r Ay + ar r r Ay + r

leading to the following form of the Navier-Stokes equations in the cylindric coordi-
nate system (z,r, )

__9 :
aur ui . ap
%+U'VU¢—UWUT :_l@+(v.5)¢_|_fw (128)
ot r r Oy

where the last terms in the left hand side of the equations for u, and u, come from
the transformation of the computation of acceleration in the cylindrical coordinate
system.

Remarks

1. In the case where we have constant value of u,, for the flows with swirl, the only
term which has to be added to the axisymmetric formulation is the last term on the
left hand side of the equation for wu,.

2. In the variational formulation for the Navier-Stokes equations, the formulation
stays almost the same as the one in the axisymmetric case, apart of the addition of
two more acceleration terms in the equations for u, and u,, but now the operator of
gradient is slightly different (with respect to the same operator in (z,y, z) coordinate
system), and the same is valid for the divergence operator.
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10 APPENDIX 4: Time-step computations

The time-step that can be used in the integration is calculated applying the results
of the stability analysis for 1D convection-diffusion equation

Ut + AUy = Vligy. (129)

In the case of explicit time integration procedure and the application of the simple,
first order in space accurate, upwind scheme for the discretization of the equation,
Fourier analysis gives the limitation on the time step:

Az

la] + 3=

(130)

The generalization of relation (130) for multidimensional problems consists in re-
placing Az, the element diameter in 1D, with the minimal triangle or tetrahedra
height in 2D and 3D respectively. Furthermore, the application of (130) to the
Navier-Stokes equations leads to

Az

[ —
= 2(+)7
Jul + =3

Al (131)

where vy is used only for turbulent flow computations.

In the formulation (81), finally, when computing steady flows, the application of
local time stepping technique, leads to

. Arg
At, =CFL Jnin AT
el Jur |+ TR

(132)

When computing unsteady flows, the time step 7' is the minimum of the local time
steps.

Remark

It is interesting to note that in the case of the application of an explicit compressible
solver, with the time step restriction
Ax
At < (133)
— 2(v4v)?
[ul (1 + 57) + 2!

where M and Pr are Mach and Prandtl number respectively, to the simulation of
incompressible flows (M <« 1, e.g. M = 0.1) leads to an order of magnitude smaller
At (for the flows where the viscous effects are small).
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11 APPENDIX 5: Error estimations for projection
methods

The derivation will be given only for the Algorithm 2, where we have only the
Dirichlet boundary condition © = w on I'. The first step consists in comparing @(7')
with the Navier-Stokes solution u(7"). We will use Taylor series expansion (with the
notation f = 38—{ and [ = 82f)

B
t2
. 2.

with @ = ug (by definition).

Using the partial differential equations (assuming sufficient smoothness) we have

and ‘

where f' = f —u - Vu. Further on, we have

0

il = 5[V S+ [ = Vplieo = V- u(Viig + Vi) + fo = Vio,  (138)
= 9, G r y T ‘N
uoza[v'S-l-f_vpo]t:oZV'V(VUO‘I'VUO)—I_JCO’ (139)
where we have used the fact that 1y = tg. Since
. 0dfo.
_YJo 14
fO 8u0 Uo, ( 0)

and further on fo = ]'607 we have in §:

t2

i(t) = u(t) = 5 Vo + O(t%). (141)
For ¢ we have (at time ¢t =T)
T2
Ap=V-uT) = A(?po +O(T?)) in Q, (142)

dy .
08 — (@)~ w(T)
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0
on
a T2 .
= _—(—P,+0(T° I 143
b0 on, (143
where the second line in the above equation comes from the assumption that we are
searching for “optimal” boundary conditions for @ in the form

=T—(0P+ BQTPO)

i(t) = w(t) + 1V(B1 Po+ BT Py) on T, (144)
and the final line implies that

0

5o (BT Rt (B = )1 En) = O(T) (145)

should be satisfied, leading to the selection 3 = 0 and (3, = % in the expression for
“optimal” boundary conditions for u:
(-
u(t) = w(t) + §VP0 on I (146)
Remark

However, in the actually programmed Algorithm 2, this is not respected, and we
take & = w on I'.

Finally, it follows that the solution of the Poisson problem for ¢ is

T* _
p = 7]50 + O(T?) in Q. (147)
Examining, now, v = @(7') — Vi using (141) and (147) we have
v=u(T)+ O(TS) in €. (148)
Lately, several analysis ([3] and [9])were carried out to justify that even the

violation of compatible boundary conditions for projection method, in algorithms
of the Algorithm 1 and 2 type, destroys the following error estimates only in the

near-wall boundary layer,i.e for z > §, where § = /(vT).
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