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Abstract: We investigate the use of static analysis for building distributed and parallel
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Analyse statique de programmes Java pour la
programmation paralléle et répartie

Résumé : Nous étudions 'utilisation de ’analyse statique pour la construction d’applications
Java paralléles et réparties.

Nous expliquons tout d’abord le principe et le modéle pour une programmation Java
paralléle ou répartie, de maniére & favoriser la réutilisation de code séquentiel et faciliter
la, maintenance et 1’évolution. Nous exhibons des conditions sur le graphe d’objets pour
détecter des objets activables et transformer un programme séquentiel en un programme
paralléle ou réparti utilisant des objets actifs.

Nous présentons ensuite une analyse statique fondée sur une interprétation abstraite
d’un sous-ensemble du langage Java qui permet de définir des sous-ensembles approximés
d’objets activables.

Enfin, nous illustrons notre algorithme et nos résultats par un exemple.

Mots-clés : Analyse statique, Interprétation Abstraite, Sémantique opérationnelle, Pro-
grammation & objets paralléle et répartie



1 Introduction

In this article, we investigate the use of static analysis for building distributed and parallel
programs in Java.

One major issue of object-oriented programming is reusability through inheritance, poly-
morphism, and dynamic binding. This feature has been also studied and enhanced in the
context of parallelization and distribution. Several concurrent object-oriented programming
languages have been designed, see for instance Hybrid [32], Pool [3], ABCL [43], DROL [42],
and more recently Java [23]. Also, many object-oriented languages have been extended to ad-
dress concurrency, parallelism, and distribution issues, see for instance ConcurrentSmalltalk
[44], Distributed Smalltalk [8], Eiffel// [10], Java// [13].

Most of these works offer a setting for easy parallel, distributed, and concurrent program-
ming, starting from a sequential application, and making it run on a parallel or distributed
architecture. Some languages provide a unified syntax (no syntactic extension) for both se-
quential and parallel versions. This feature is critical for reuse and is also beneficial for the
proof since the actions modeling the program are identical in both cases. Another problem
indeed is to be able to guarantee that the semantics of the original sequential version is pre-
served in a parallel and distributed setting. This problem has been tackled in various works,
using different modelizations (7-calculus, operational semantics, TLA (Temporal Logic of
Actions)) for instance in [30,28,5,6], these work are to be generalized and extended to the
detection of how to parallelize.

We propose to analyse a sequential program, and to exploit the results of this analysis
with the intervention of the (end-)user, in order to provide a parallel version of the orig-
inal program which has two properties: (1) take advantage of reuse in order to impose as
few modifications as possible, (2) guarantee the preservation of sequential semantics. The
distributed programs are using primitives of Java// (Java Parallel [13]), a Java library for
distributed, concurrent, and parallel computing.

Static analysis has been widely used in compile-time optimizations of various program-
ming languages [39,26,38], (static) debugging tools [21], and more recently have been applied
to optimization of object-oriented languages [35,20]. Also related to object-oriented program-
ming, static analysis has been used as a checking mechanism for a type-system [2] including
constraint on sharing.

We propose an analysis in the family of static analysis of dynamic (during run-time) pro-
gram properties. More precisely, our analysis, based on Abstract Interpretation [17] provides
program transformation for parallel or distributing programming.

Formally, abstract interpretation relies on the notion of discrete approximation, that
is, replacing the reasoning on a concrete exact semantics by a computation on an abstract
approximate semantics. In this paper, we define an operational semantics of a large subset of
Java (excluding threads, class variables and methods, and dynamic class loading). From this
(concrete) semantics, we define an abstract approximate semantics, made up with abstract
inference rules and abstractions of the semantic structures. We formally define the notion of
accessibility of objects in terms of the object graph topology. From this notion, we express the
property of activability of objects, avoiding interferences between computations. Qur static



analysis makes it possible to statically determine classes of objects where this property is
verified and as a consequence, what objects can be transformed into active objects.

The next section of this paper presents the underlying model of distribution, describes a con-
crete dynamic semantics of a subset of Java, and gives sufficient conditions, based on this
semantics for activable objects. Section 3 focuses on the static analysis with the descrip-
tion of abstractions for two components used in the operational semantics: call-stacks and
object-graphs. We deal both with intra-procedural and inter-procedural transitions. Section
4 presents some case studies illustrating the power of the analysis in the transformation of a
sequential program into a parallel or distribued program. We illustrate as often as possible
the concepts and techniques used this article with well-known examples (binary tree, linked
lists, sieve). Section 5 is a discussion of related work. Finally, Section 6 (Conclusion) briefly
discusses our contribution and outlines future work.

2 Distribution of Object-Oriented Programs

Our goal in this section is twofold:

— briefly introduce and explain the active object model we intend to use for distribution
and parallelism (the Java// model and library),

— formally define a sufficient condition on an object that guarantees it can be safely acti-
vated.

First, we give an overview of the Java// model and library, and explain how one can use
it as a target system for distributing applications. We pinpoint some of the crucial features
that make it possible, with very limited changes, to turn standard objects into active ones
to be distributed. A small example illustrates that technique (a binary search tree).

Then, we give a sight at an operational semantics that describes execution of Java pro-
grams. The next subsection defines, based on that semantics, the set of objects possibly
affected (the accessibility of an object) by method invocations on a given object. We rely on
the widely accepted conditions for parallelization: two operations can be conducted concur-
rently if they access (read or write) distinct sets of objects. We exhibit a sufficient condition
on accessibilities (equivalently on objects) that ensures, for a given object o, that methods
invoked on o do not interfere with method invocation on objects that are not in the acces-
sibility of o. Finally, we show that if such objects are activated, then the graph of active
objects is a tree. The consequence being that operations on a given object in the parallel
program are triggered in the same order as they are on the corresponding object in the
sequential program.

2.1 Model of Distribution

The target model of distribution that we use has been studied and improved along several
experiments, both practical and more formal [11,12,5,4]. The current experimentation and



implementation are done within Java with a library named Java// [13]. Its main goal is to
improve simplicity and reuse in the programming of distributed object systems.
The Java// model uses by default the following principles and features:

— heterogeneous model with both passive and active objects (processes, actors);
— sequential processes;

— unified syntax between message passing and inter-process communication;

— systematic asynchronous communications towards active objects;

— wait-by-necessity (automatic and transparent futures);

— automatic continuations (a transparent delegation mechanism);

— no shared passive objects (call-by-value between processes);

— centralized and explicit control by default;

— polymorphism between standard objects (threads) and remote objects.

Based on an heterogeneous model, and thanks to the absence of sharing, a system is always
structured as several sub-systems. Each subsystem is defined as an active root object, and
all the standard objects (not active) that it can reach.

Given a sequential Java program, it takes only minor modifications from the programmer
in order to turn it into a multithreaded, parallel, or distributed one. Java// actually only
requires instantiation code to be modified in order to transform a standard object into an
active one. Here is a sample of code with several techniques for turning a passive instance
of class A into an active, possibly remote, one. A standard object created through such a
statement:

A a = new A ("foo", 7) ;
can become either:

— instantiation-based:

Object[] params={"foo", 7};

A a =(A) Javall.newActive ("A",params, Node);
— class-based:

class pA extends A implements Active {}

Object[] params={"foo", 7};

A a =(A) Javall.newActive ("pA", params, Node);
— object-based:

A a = new A ("foo", 7) ; // No change

a = (A) Javall.turnActive (a, Node);

All these techniques create an active object, an instance of class A or pA on a given node. The
active object just created its own thread that executes methods invoked on this object in a
default FIFO order. The semantics of calls to such an object are transparently asynchronous,
with no code modification being required on the caller’s side.

Instantiation-based creation is much of a convenience technique. It allows the program-
mer to create an active instance of A with a FIFO behavior without defining any new class.
In the class-based creation, given a class A, the programmer writes a subclass pA that in-
herits directly from A and implements the specific marker interface Active. He or she may



package fr.inria.sloop.javall.examples.binarytree;
public class BinaryTree extends Object

{
protected int key; // Key for accessing the value contained in this node
protected Object value; // Actual value contained in this node
protected BinaryTree leftTree; // The two subtrees
protected BinaryTree rightTree;
public BinaryTree ()
{
this.value = null; // On creation, the node does not contain a value
this.leftTree = null; // Nor does it have any child
this.rightTree = null;
}
// Inserts a (key, value) pair in the subtree that has this node as its root
public void put (int key, Object value)
{
// This node is empty, let’s use it
if ((this.leftTree==null) && (this.rightTree==null))) // Is leaf
{
this.key = key; this.value = value;
this.createChildren ();
return;
}
// Replaces the current value with a new one
else if (key==this.key)
1{
this.value = value;
}
// smaller keys are on the left,
else if (key<this.key)
{
this.leftTree.put (key, value);
}
// greater keys on the right,
else
{
this.rightTree.put (key, value);
}
return;
}
// Retrieve a value from a key in the subtree that has this node as its root
public Object get (int key)
{
// We have reached a leaf of the tree and no key matching the parameter ’key’
// has been found. This is a miss.
if ((this.leftTree==null) && (this.rightTree==null))) // Is leaf
{
return null;
}
// We have found the node that contains the value we’re looking for
else if (key==this.key)
{
return this.value;
}
// The current key is greater than the search key, let’s continue on the left
else if (key<this.key)
{
return this.leftTree.get (key);
}
// The current key is smaller than the search key, let’s continue on the right
else
{
return this.rightTree.get (key);
}
}
// Creates two empty leaves as children
protected void createChildren ()
{
this.leftTree = new BinaryTree (); this.rightTree = new BinaryTree ();
return;
}
}

Fig. 1. Sequential Binary Tree




package fr.inria.sloop.javall.examples.binarytree;
import fr.inria.sloop.javall.x;

public class ActiveBinaryTree extends BinaryTree implements javall.Active
{ /* This of course is a bulky implementation, one could provide
a more subtle scheme, such as creating active objects only
for a given depth n of the tree (so that there cannot
be more that 2**n active objects) */
protected void createChildren ()
{ this.leftTree = (BinaryTree) Javall.newActive ("ActiveBinaryTree", null, null);
this.rightTree = (BinaryTree) Javall.newActive ("ActiveBinaryTree", null, null);
return;

3}

Fig. 2. Active Binary Tree

also provide a live method in class pA for giving a specific activity or managing synchroniza-
tion. The object-based technique enables a programmer to attach an active behavior to an
existing object at any time after its creation. This is especially useful when one does not
have access to the code that creates the standard object to be made active, however, this
technique is not used for the distribution transformations described in the current paper.

Once the active object is created, it automatically features the principles described pre-
viously. Among them, a few are critical for the goal of this paper: polymorphism between
objects and active objects (allows the transformations), sequential processes without shared
objects (no interleaving), asynchrony of calls and automatic continuations (avoids deadlocks
and allows parallelism), wait-by-necessity (automatically respects data dependencies).

We have been studying various case studies of parallelizations, and it appears that, with
these features, if the graph of objects at execution is “a tree”, then we can safely turn the
objects of the graph into active ones. This property have been formally studied within various
frameworks [4,5,6] and demonstrated on either examples or subsets of the model, and we
are currently working on its generalization. The goal of this paper is not to formally prove
that property, but rather to exploit it in order to detect the places in a system where we
can apply it for the sake of distribution or parallelization. Being a property on dynamic
structures, the graph of objects and its topology at execution, it requires static analysis to
uncover the places where it holds.

Figures 1, 2, 3 present an example of parallelization: a binary search tree. Applied on
this example, the goal that we pursue in this paper is to help the programmer to identify
the places where the BinaryTree class can be transformed into an active object while the
semantics remains constant. In Figure 1, the system will point out that the instantiation of
BinaryTree:
myTree = new BinaryTree (); // Instantiating a standard version
can be replace with an active binary tree. So the user, possibly with the help of semi-
automatic tools, will replace the line above with:
myTree=(BinaryTree) Javall.newActive ("ActiveBinaryTree",null,null);
and write the class ActiveBinaryTree.



package fr.inria.sloop.javall.examples.binarytree;
import fr.inria.sloop.javall.*;

public class TestBT
{ public static void main (String[] args)
{ BinaryTree myTree;
myTree = new BinaryTree (); // Instantiating a standard version
// To get an active version, just comment the line above,
// and comment out the line below
// myTree = (BinaryTree) Javall.newActive ("ActiveBinaryTree", null, null);
// * First parameter: get an active instance of class ActiveBinaryTree
// * Second (’null’): instantiates with empty (no-arg) constructor

// ’null’ is a convenience for ’new Object [0]°
// * Last (°null?): instantiates this object on the current host,
// within the current virtual machine

// Use either of the two versions: standard or active
// through polymorphism
TestBT.useBinaryTree (myTree);
return;
}
// Note that this code is the same for the passive or active version of the tree
protected static void useBinaryTree (BinaryTree bt)
{ String sl; String s2;
bt.put (1, "one"); // We insert 4 elements in the tree, non-blocking
bt.put (2, "two");
bt.put (3, "three");
bt.put (4, "four");
// Now we get all these 4 elements out of the tree
// method get in class BinaryTree returns a future object if
// bt is an active object, but as System.out actually calls toString()
// on the future, the execution of each of the following 4 calls
// to System.out blocks until the future object is available.
System.out.println ("Value associated to key 2 is "+bt.get (2));
System.out.println ("Value associated to key 1 is "+bt.get (1));
System.out.println ("Value associated to key 3 is "+bt.get (3));
System.out.println ("Value associated to key 4 is "+bt.get (4));
// When using variables, all the instructions are non-blocking
bt.put (2, "twoBis");
s2 = bt.get (2); // non-blocking
bt.put (2, "twoTer");
s2 = bt.get (2); // non-blocking
sl = bt.get (1); // non-blocking
// Blocking operations
System.out.println ("Value associated to key 2 is "+ s2 ); // prints "twoTer"
System.out.println ("Value associated to key 1 is "+ s1 ); // prints "one"
return;

1}

Fig. 3. Binary Tree: example of main program




The next four subsections are dedicated to the formal definition of a Java semantics, that is
needed to later on define the static analysis, and then formally define a necessary condition
for objects to be activable.

2.2 A Java Semantics

Java subset:
The main features that we do not treat are:

— threads (if the programmer intended to parallelize his program using Java//, he will
probably not intend to use Java threads at the same time),

— class variables and class methods: static memory allocation via the keyword static can
be easily taken into account when one can handle dynamic structures allocated on the
heap,

— dynamic class loading: can not be easily included because some programs may actually
generate classes and load them. This is is particularly difficult to represent using abstract

interpretation.

exrp = id inst = return(ezp)
| access(exp,id) | while(exp, inst)
| call(ezp,ezps) | if(exp,inst,inst’)
| new(id, exps) | block
| assign(exp, exp) | exp
| none | push

| eval(exp)
exps == exp” | ezec(inst)
block :=  inst* | wait(ezxp)

Fig. 4. Abstract Syntax

We also restricted the number of statements treated to a subset that can be easily com-
pleted: if, while, try-catch-finally, return, break, continue, label, throw. We only
consider here while and if-else statements for simplicity (see Figure 4 for a definition
of the abstract syntax). From the class definition, we only retain sub-classing and method
overriding. We omit instance-variable overriding and method overloading because those fea-
ture can be resolved statically (e.g. during type-checking) and as such do not introduce any
semantic difficulty. From the base types we retain only int and boolean.
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Semantics specification style Different formal semantics specifications of Java programs have
been published, but none can be easily used to design a static analysis by abstract interpre-
tation. Nipkow et al. [33] give a natural semantics specification of the dynamic semantics of
Java. The problem with natural semantics is that it only specifies the behavior of programs
that terminate and we need to represent both terminating and non-terminating programs.
Attali et al. [7] have designed a structural operational semantics. It represents current pro-
gram points by replacing call statements with a closure built from the actual method body
that is called. In the presence of a recursive method, we would have to design a complicated
abstraction of program points because trees that represent program points would not be in
finite number.

Cousot and Cousot [18], and Schmidt [40,41] have proposed solutions to overcome these
problems, but we preferred concentrating on the problem of heap abstraction by using a
semantics formalism for which abstract interpretation is well understood: transition systems.

Semantics Domains The domains we use to represent the states of our interpreter are
the following;:

Val = Ref U Int U Bool

Env =1Id— Val

Obj = Ref x Type x Env
Objs = P(Obj)

Act = Inst x Id x Type x Env
Stack = Act*

State = Stack x Objs x Val

A state consists of a stack of method activations, an object graph, and a place-holder for
values. Method activations (Act) record information about a currently executed method-
call : the instruction that is to be executed, the name of the method, the name of the class
where it has been defined, and a local environment. The place-holder for values is used to
store the value returned by a terminated method execution.

Environments are mappings from identifiers to values. They include a special pair {this, otpis)
where o is the object target of the method-call. The interpretation of a program starts by
pushing an activation corresponding to the method main of the program onto the call-stack.

The domain Ref provides a potentially infinite reserve of distinct elements (integers for
example) that are used to identify objects (references). Object graphs are sets of objects.
Objects are structures that record their reference, the class that instantiated them, and an
environment that maps their attributes names to their values.

The transition relation between states The execution of a program is the trace of a
transition relation defined over State x State. We briefly describe it.

Normalization of programs The semantics actually interprets programs that are in a normal-
ized form. This form is used by Sagiv, Reps, and Wilhelm [38]. Assignments are restricted
to the forms:
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-x=y //assigns the value of a local variable to another one

- x=y.s //stores an object attribute into a local variable

- X.8 =y //assigns an object attribute the value of a local variable
— X = new ...

—x = call( ... )

Each instruction of the form presented above have to be preceded by an instruction that
nullifies its left-hand side. In addition, arguments of method-calls are restricted to be local
variables (this holds for constructor invocations as well) and any access to an attribute of
the current object (referenced by this) in the current method is prefixed by this so that
access to local variables and to attributes can be distinguished syntactically.

This normalization is simply realised by introducing auxiliary local variables to store
partial results of expression evaluation. The size of normalized programs is linearly bounded
by the size of the initial program. Normalisation is used to simplify presentation. In our
current implementation, operand stacks are used to evaluate expressions, and positions in
this stack serve as names in the abstract interpretation.

Method-call At first, the argument list is evaluated, then the target of the call is fetched
from the local environment (the target expression is restricted to be a local variable). Then
method lookup gets the right method body. A new activation is build where parameters
are bound to their respective values in an environment. Finally, that activation is pushed
onto the call-stack. In the waiting activation, the call instruction is replaced by a wait
instruction.

Returning from a method The interpretation of the instruction return gets the expression
returned (when there is one) from the local environment and assigns its value to the place-
holder. Then the terminated activation is popped. The interpretation goes on with the
execution of the instruction wait of the first waiting activation. The expression that appears
in those instructions must be an identifier or none when the result of the corresponding call
is not used or when there is no result. When the result of a call is used, the expression must
be the name of the local variable that is assigned the result.

Instantiation of objects The creation of a new object is done by a bottom-up walk in the class
hierarchy starting at the class of which the new node is an instance. Then, the constructor is
treated like a standard method call except that there is no wait instruction that is inserted
the creation instruction is removed from the instruction list.

2.3 Accessibility of Objects

Definition 1. Accessibility
For a given interpreter state with o call-stack S, the accessibility of an object o is the union

of:
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— the set of objects transitively reachable from o (excluding o itself) through any reference
path, and

— the set of objects that are referred by some local variable of an activation a such that
there is an activation a' beneath a in S that points to o with its variable this.

We write A(o) for the accessibility of o.

When an object is activated, all the method invocations on it are asynchronous. That is
the reason why we define the accessibility of objects rather than the accessibility of method
executions. Doing so, we capture the accessibilities of all method executions on an object.

We include into the set of operations performed by a method call all the operations
that occur between the time the new activation a, corresponding to the method-call, is
pushed onto the call-stack and the time it is popped. The object target of the method call
corresponding to a is pointed to by the local variable this of ¢ and an activation a’ has to
be included into the set of operations of « if it is above a into the call-stack. This explains
the second part of the Definition 1.

2.4 Activable Objects

Now that we have defined accessibilities, we give a property on them which express that
they have the same properties as sub-systems. This property is stated for a given interpreter
state. For an object to be activable, it has actually to verify that property in all the states
of its life-time (between the time it is created and the time it is no longer referenced or the
program terminates).

Property 1. Activable
For a program P, in a given interpreter state S with a stack s and an object graph h,
Activableg(o) iff

1. A(o) is a disjoint part of the object graph: for all object o' € A(o), for all object o”
either:
— 0" € Ao) or
— o0 belongs to all the paths from o to o
and
2. for all object o' € A(o) for all activations a that refer to o' through a local variable x,
there is an activation o’ in the stack beneath a that refers to o through a local variable
this and
3. no outgoing edge from o is a back-edge. A back-edge is an edge u — v such that «
is a descendant of v in a depth-first walk of the object graph. We consider trees that
are constructed starting from objects pointed to by local variables. Local variables are
considered bottom-up in the call-stack.

This property is stated in three parts, the first two being related to the corresponding part
of the definition of accessibilities. The first one ensures that any object in the accessibility
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of an object o is only reachable through o. This is why the object o3 on Figure 5(a) is not
activable: the object o4 is accessible from o2, which is not in the accessibility of o3, and it
exists a path from o5 to o4 that does not contain o3. This part guarantees that there will be
no possible interference through the object graph.

The second part checks that no object in the accessibility of an object o is pointed to by
a local variable from an activation that has not been initiated (transitively) by an activation
that points to o with its variable this. The object o2 in Figure 5(b) is no longer activable,
as compared to its counter part of Figure 5(a), because the method main points to 04. If the
object 0o were activated, the method main could trigger computations involving o4 while
the method call on 02 would not be terminated and there would be a possible interference
through o4. Note that in this part, we do not take into account auxiliary variables introduced
by the normalisation of programs.

The third part prevents us from building cycles between active objects. Cycles would
allow interferences and would add the possibility of introducing deadlocks. All the objects
represented in Figure 5(d) would be activable without the third part of the property; it is
clearly incorrect to activate all those objects. We could have stated this part saying that an
object should not be included into a cycle. However it would have prevented the object o;
of Figure 5(d) to be activable.

The restriction we gave in the second part of the expression of the property 1 prevents
method-call on active objects to receive arguments that are referred by a local variable or
a parameter. If we consider the binary tree example, we can only activate them when the
content of a node is a base type or has a copy semantics. There are several solutions to
alleviate this restriction, which is often too strong. First, a simple extension is to consider
cases where there are actually no calls (syntactically, no dot notations) on the parameters,
for every statement of the routine. This case is actually very frequent, where parameters
are just forwarded from one active object to another, with no reading or writing until some
point. The binary tree falls in that category. Another property, that is more precise but a
little harder to satisfy, is the fact that the parameters are not used on the path going from
the candidate asynchronous call to a redefinition of their values, or the end of the routine.
Also, note that argument passing of a newly created object (like x.foo(new Bar())) is
always possible.

2.5 Topology of Sub-Systems

We have stated a condition on objects for detecting activable ones. We will now show that
if all or part of the objects that satisfy that property are activated, then the topology of
sub-systems of the parallel program obtained is a tree. We first give a definition of the
connection graph between sub-systems (active object graph) then based on that definition
and on the Property 1 we sketch a proof that those graphs are trees.

Definition 2. Active Objects Graphs (AOG for short)
The Active objects graph of a state S = (s, h) is Ag = (Na, Ea) where:

— N4 = {o € h|Activables(o)}
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— Vn,n' € Na,{n,n'y € E4q iff ' € A(n) and there is no n" € N4 such that n" € A(n)
and n' € A(n").

For example, consider the object graph of Figure 5(c), the AOG associated with it is
({o1,04,05,06},{(01,04), (01,05) {04,06) }). The second part of the definition ensures that
we take the smallest relation between activable objects. In the previous example, there is no
edge between o0; and og.

We already now that AOG’s can’t include cycles. Let us show now that they are trees.

Proposition 1. Given a state S = (s,h) any node of As has at most one predecessor.

Proof. Let n be a node in N4, that has two predecessor n; and n2. We will show that
n1 # ns leads to a contradiction.

From n,ni,ns € Na, we get Activables(n) A Activables(ni) A Activables(nz). From
Definition 2 and (n1,n) € Ea,, we get
n € A(ni)A An', Activables(n’) An' € A(n1) An € A(n'. This implies, together with
Activables(nz2), na & A(n1) V ny = ng. Similarly we get n1 € A(nz) Vniy = na. Let us
assume that n1 # na then n; ¢ A(nz2) and ne & A(ny).
From (n2,n) € Ea, we get n € A(ng) which implies that:

(i) there is a path in A from ny to n or
(ii) Ja € s such that a refers to n through a local variable x and Jaz € s beneath a such
that o' refers to ny through its local variable this (from Definition 1).

Assume (i) hold. From n; ¢ A(nz), and Definition 1 we can get that there is no path
in h from ns to m1 so because of (i) there is a path p from ns to n such that n; does not
belong to p which results in a contradiction with Activables(n;) because ny € A(ny). From
this, we get that (i) can not hold(simetrically, there is no path from n, to n in h). So that
(ii) must hold.

Assume (ii) hold. From ny ¢ A(n4), there is no activation as in s referring to ny through
some local variable such that there is an activation a; in s beneath as that refers to ny
through its local variable this. In particular there is no such as that refers to ny through its
local variable this. But (i) does not hold as previously seen so that we get n ¢ A(n2) which
is in contradiction with (nz,n) € E4,. So we have proved that if n has two predecessors nq
and ny in N4 then ny = na. ¢

AOG’s are forests, and not only trees, because the method main may point to objects
that are activable but with accessibilities that are disjoint: there is a tree for each such object
in an AOG.

We have to justify now that the predicate Activables, when it is true for an object o on
any state S where o has been created, permits to turn o to be active without modifying the
results of the program. First we have to remark that if an object o is activable throughout
an execution, then it never changes its parent in the AOG. Otherwise there would be an
intermediate state where it is reachable from two other activable objects, which, as we have
seen with Proposition 1 would actually prevents o from being activable. With that in mind,
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we will show that the fact that AOG are forests permit to turn any object o that verifies
Activableg on any state of a program run to be active.

The property Activables being verified by an object o actually states that any object
that is not in accessibility(o) can only access elements of accessibility(o) through o itself.

For that reason, any operation that is not targeted to object o is independent from any
operations targeted to object o and can be safely done in any order relatively to operations
on o. So the only thing we have to justify is that operations on o, which are assumed to be
interdependent, are triggered, in the parallel program, in the same order as in the sequential
one.

Within the model of execution of Java//, active objects have their own thread of execu-
tion and all passive objects that they directly access have their methods executed by that
thread. Here, we say that an object o is directly accessed by an active object o, if o is in
the accessibility of o, and there is no other activable object in .A(0) such that o is in its
accessibility. The set of passive objects thus defined is the sub-system of o,.

If an active object receives its method calls in the same order as in the sequential program,
then the order between operations performed by its thread is the same as the order they
are performed within a sequential execution. From this, if o, receives its method calls in the
same order as it does in the sequential program and so do active objects directly accessed by
04- To end up with this, we remark that the method main has its own thread of execution
and that it triggers operations on objects of its sub-system in the same order as in the
sequential program.

3 Object-oriented Static Analysis

We successively describe the two abstractions of the components of an interpreter state: call-
stack and the graph of objects. These are not independent because the abstraction of graph
of objects is done accordingly to a given state and the computation of the abstract transition
relation may depend on the abstraction of graph of objects (dynamic dispatch).

3.1 Principles of abstract interpretation

Abstract interpretation [17] is a method for the design of static analysis. It is based on a
connection between the semantics of programs and the analysis that allows to formally prove
the correctness of the analysis. From operational semantics described as relation transitions
on states, an analysis is designed in three steps as follows:

1. First, design a dynamic semantics (we call it the standard semantics) as we do in Sec-
tion 2. We refer to the transition relation between states as 7.

2. Then, from the standard semantics define the collecting semantics to be the complete
set of states reachable from initial states'. The collecting semantics () can be formally
expressed as the least fixpoint of an operator that accumulates states using 7. The lattice
used is the powerset of State ordered by set inclusion.

! Initial states must be specified so that all possible inputs are taken into account.
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3. Last, design abstractions for domains used into the standard semantics. These abstrac-
tions must form a complete lattice and be connected to the collecting semantics by a
pair (a,~) of functions called a galois connection.

In the remainder of this section, we design a finite set of abstract states (the domain
State,) and a relation 7, that approximate the relation 7. The result of the analysis is
the least fixpoint of an operator build upon P(State,). The correctness is ensured by the
property of galois connections:

P(State) % P(State,)

is a galois connection iff:

Vs € P(State),Vs, € P(State,),a(s) C sq < s C v(8q)

The relation 7, must allow the computation of a fixpoint &, € P(State,) such that
a(P) C &, from what we can conclude & C (P,). This last result allows to prove that
sufficient conditions hold on programs.

In this section, we describe the domains upon which are built our analyses. Then, in a
subsequent section, we design tests on abstract domains that approximate the Property 1
in the sense described above.

3.2 Abstraction of Call-stacks

Because of recursive methods, call-stacks may be unbounded in size. To obtain a computable
abstract semantics, we partition the set of states of the interpreter into a finite set of program
points.

Activations are identified by the name of their corresponding method, the class where
that method has been defined and the list of instructions. Because there is a finite number
of methods in a program and method size is finite, we obtain a finite number of activations.
They are represented by elements of the domain P = inst x Type x Id
where T'ype is the set of class of the program analysed.

To approximate the relation caller/callee, we attach sets of return points to each element
of P. The set of return points of an activation a is the set of method invocation sites (elements
of P) that generated activations identical to a. It is used to compute the abstract transition
from return instructions. The set of return points can be seen as edges between activations.
Thus, we approximate stacks by graphs of abstract activations. Because the domain P is
finite, such graphs are in finite numbers. An abstract stack is then an element of the domain

Stack, = P(P x P(P))

where the second component of elements are the sets of return points attached to abstract
activation.
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To make things clear, let us give the expression of the function that maps concrete
stacks to their abstract counterpart. Given a stack s € Stack, we note {inst;, 7, p;, pi) the
activation at level 0 < i < |s| in s,where the level 0 is the bottom of the stack. The function
Qyiaer - Stack — Stack, is defined by:

d(s) = U <in5ti7 Tiy Ki, Rn,m)
1<i<]s|

where:
V1 <1 <|s|, Ry, = {{insty, 75, pi)|Tj41 = 76 A pjp1 = pi}

The definition of R, ,, builds the set of call sites where abstract activations identified
by 7; and p, are created.

The reverse mapping is the set of paths starting from points corresponding to the method
main and ending with a node that is not a waiting activation.

It is clear that he number of nodes of such a graph is bounded and so would be the number
of such graphs. However, this method would be quite inefficient: the size of the result of the
analysis might grow to be exponential in the number of methods of the analyzed program.
Even if this is not likely to arise in practice, the size of the result would be quite large
in any case. To overcome this problem, we actually use a single graph to represent all the
call-stacks that may occur during any execution of the analysed program. It is the union of
all the abstractions for call-stacks obtained by the previous method where the sets of return
points of identical activations are merged. Flow-sensitivity? is still achieved by attaching
dataflow information to those program points that correspond to non-waiting activations.
This leads to a result that is linearly bounded by the size of the program. Such an abstraction
for program points is close to the notion of control-flow graph [1]: it is isomorphic to the
graph of the abstract transition relation between program points.

3.3 Abstraction of Object Graphs

The size of heaps may be unbounded because classes may describe recursive structures. A
common way to finitely abstract sets of heaps is to map concrete references to a finite set
of abstract references. Sagiv et al. [37] proposed to use sets of variables to name objects: an
object is mapped to an abstract object whose name contains all the variables that point to
it. Then, the number of variables is finite because they present an intra-procedural analysis.
In our case, it may be unbounded because of recursive methods. We limit the number of
variables using a single representative for waiting® recursive activation. Local variables are
depicted by the name of their corresponding methods, the name of the class where that
method has been defined and the name of the variable (to distinguish between variables of
different activations that have the same name). We depict variables from waiting activations

2 An analysis is said flow-sensitive if it computes information that is program point specific.
3 waiting abstract activations are representatives of concrete activations that are not on top of the
call-stack.
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by an over-lined notation and we add a special symbol (O) to depict the place-holder for
values. The naming scheme for waiting activations guarantees that there is no confusion
between the waiting activations and the current one in the case of recursive methods. As
such, it is possible to treat recursive activations in the same way we do non-recursive ones.
The domains to describe variables are:

Name = Ident U (O;)ien
Var = (Type x Ident x Name) U {0}
Var = Type x Ident x Name

The set we use as abstract references is a combination of classes, allocation sites and sets
of variables:

Ref, = Type x P x P(Var U Var)

The second component of abstract reference is the program point where the abstract
object having that reference has been instantiated.
Abstract heaps are described using the domains

Val, = P(Ref,) U {int,bool}
Obj, = Ref, x Type x (Id — Val,) x {true, false}
Objs, = P(Obj,)

We drop information about scalar types (integers and booleans) because we do not need
them to represent object graphs. The domains Int and Bool are respectively abstracted to
singletons {int} and {bool}.

Abstract values representing references are actually sets of abstract references. Consider
for instance that the function a7, , maps concrete references to the class of the corresponding
objects (a single abstract object represents all the instances of a given class). In a given object
graph, distinct instances of a class, say ¢, may point to objects of distinct classes (c1, .- ., ¢n)
through a given instance variable, say z. The abstraction of those objects of class ¢ will all be
mapped to the same abstract object (with the abstract reference ¢) and the instance variable
z will have to point to abstract objects having different abstract references (ci,...,cn).

Abstraction of objects mimics the form of concrete ones. It includes the class of the
objects (because we partition the set of concrete objects using classes, an abstract object
represents instances of a single class); it also includes a mapping from identifiers to abstract
values that is an abstraction of the attribute list of objects and a binary attribute that
reports the fact that an abstract object represents shared concrete objects or not. A concrete
object is shared if at least two distinct attributes (from distinct objects or not) point to it.
This boolean is essentially what permits us to check whether Activable may hold or not on
abstract objects. In addition it is also important for the abstract interpretation of operations
on objects.

The powerset forms a complete lattice, where order is the set inclusion and join (respec-
tively meet) operation is union (respectively intersection). The set of abstract object graphs
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forms a complete lattice where the join operations perform the union of two object graphs,
merging identical objects together with formal expression of abstraction functions.
Finally our analysis computes a set of elements from the domain:

State, = P x P(P) x {true, false} x Env, x Object, x Val,

where the first three components are the complete abstraction of stacks (program point,
return points and a boolean attribute that is true when the activation may be a recursive
one). In addition, abstract states have attached:

— an element of Env, that is a monolithic* environment that records the mapping from
any local variable in any call-stack in which the current abstract program point can be
the top,

— an abstract graph of objects, and

— an abstract value for representing the place-holder for values.

Because we attach dataflow information (abstract environments and abstraction of graph of
objects) to individual program points, the result reflects the set of stacks of the collecting
semantics by a single graph (induced by the return points attached to abstract states) at
the same time it achieves flow sensitivity.

3.4 Abstract Transition Relation

We briefly describe the transformations of object graphs corresponding to the different tran-
sitions.

Intra-procedural transitions Let us recall the different operations that we have to interpret
on the abstractions for object graphs:

nullification of a local variable: operation of the form x = nullj;,

nullification of an object attribute: operation of the form x.s = null,

local variable assignments: operations of the form x=y,

assignment into an object attribute: operation of the form x.s = y and

assignment of an object attribute to a local variable: operation of the form x = y.s.

or N =

For interpreting the operations of type 1, it suffices to remove x from any abstract object
name where it appears and to compact the result (merge objects with identical names). The
environment is modified so that the variable x now has the value {null}.

For operations of type 2, we replace the current value of the attribute s of any abstract
object pointed to by x by the value {null}. The sharing attribute of abstract objects is

* In the current implementation, only local environments are propagated. The environments when
returning to a waiting activation can be built back from the abstract object graph.
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updated so that nodes that are singular® nodes and for which the number of referring
abstract objects is now one are marked as non-shared.

Operations of type 3 are interpreted by adding the variable x into the name of any
abstract object pointed to by the variable y. Then the value for x (respectively for y) in the
environment is replaced by the set of nodes that have x (respectively y) in their name.

Operations of type 4 are interpreted as the previous ones: we set the value of the attribute
s of any abstract object having x in its name to be the set of abstract references that contain
y.

Operations of type 5 are the most difficult to interpret. Consider the set S of abstract
objects pointed to by y.s. These nodes are unfolded by adding the variable x into the names
of copies of objects in S. Then these new nodes are connected to the objects that previously
pointed to them. Using the boolean attribute that records the sharing, it is possible to
restrict the number of edges added: any non-shared abstract object is only added edges
labeled with s from abstract objects pointed to by x.

The power of the naming scheme that uses variables comes from the fact that nullification
is possible on attributes of abstract objects. Operations are interpreted on nodes that have
variables into their name. This implies that these nodes reflect each a single node in each
concrete state that is mapped to the current abstract one so that it is possible to remove
the value in attributes of objects. Otherwise we could only merge the new value with the
old one so that the result safely reflects all the objects that are mapped to the modified one.

Inter-procedural transitions

On a call site, the abstract transition rule generates as many states as there are abstract
references in the evaluated target object (actually one per class represented in the evaluated
value). For each of those, it get method bodies using the same function as in the concrete
semantics (only classes are needed to do the method lookup). Then, each parameter is
assigned its value (which has been evaluated prior to the call). For parameter that are of
type references, the assignment is simply interpreted like an intra-procedural operation of
type 1. A temporary name is used to name the called method, which is replaced by the
actual method name after the abstract object graph has been folded to limit the number of
nodes because of potential recursive activations.

When returning from an activation, all the local variables of the terminating activation
are nullified by transforming the object graph as it is done for operations of the kind x =
null.

When returning to a recursive activation, we have to unfold the abstract object graph
so that variable of the new current activation point to singular node (nodes that have only
over-lined variables in their name represent multiple concrete object).

5 Nodes are singular if they contain at least one variable from a non-recursive activation in their
name. Non singular nodes are referred to as summary nodes.
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class ListInsert {
public static void main(String[] args) {
Node head,n;
int i,j;
head = new Node();
i=2;
while (i < 5) {
n = new Node();
n.next = head;

head = n;
i=i o+ 1
}
n = head.next; //S1
aux = n.next; //52

head.next = aux; //S3
n.next = head; //54
head = n; //55
}}
class Node {
Node next;

}

Fig. 6. A simple linked list construction

Abstract interpretation of all the forms of assignments is illustrated in Figure 5 where the
object graphs occurring respectively before statement S1 of the program shown in Figure 5
and after statements S2,53,54.

Abstract Garbage Collection

To get a more accurate representation of heaps, we added to the transformations defined
in [37] an abstract garbage collection operation. This operation permits to obtain precise re-
sults when interpreting the remove operation on linked lists. When this is not done, removed
nodes still point to the node that replaced them. As such, nodes that replaced removed ones
are marked as shared. As we will see in the next section, the sharing attribute is crucial in
the detectection of activable objects on abstract object graphs.

4 Applications and examples

This section first explains how to exploit the result of the static analysis. Then, we present
an example of object activation: a Sieve program used to generate prime numbers (see
Figure 4.1). We use this example to illustrate how we detect activable objects on abstract
grahs.

4.1 Example: the program Sieve

We present here another example of code that can be parallelised. The program Sieve com-
putes successive prime numbers. It builds a linked list of instances of the class Prime that
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represents prime numbers. The main method iterates on natural numbers up to the maxi-
mum desired and propagate them into the list. Non prime numbers are detected by division
by the prime numbers already into the list and when a divisor is found for a number, that
number is rejected. New prime numbers are added at the end of the list.

On this program, our analysis report that instances of the class Prime are never shared
(the shape is a linked list). Thus, we suceed to prove that accessibilities of those objects
are self-contained. Any object instantiated within the method sieve is pointed to only by
auxiliary variables so that the second part of the property 1 is verified as well. The object
pointed to by the variable p is not affected by this condition because we look for local
variables in the name of nodes that are in the accessibility of the node we want to activate.
Then it is possible to activate any instance of the class Prime. The line labeled with (*1)
can be replaced with:

p = (Prime) Javall.newActive ("Prime", 2, null);
and the line (*2) with:
aux2 = (Prime) Javall.newActive ("Prime", i, null);

class Sieve {

while(i <= 20) {
p.sieve(i);
i=1i+1;
31
class Prime {
int number;
Prime next;
Prime(int number) {
this.number = number;
this.next = null;

}}

public
static
void main(String[] argv) {
Prime p; void sieve(int i) {
p = null; Prime auxl;
p = new Prime(2); //(*1) Prime aux2;
int i; if (i % this.number != 0)
i=3; if (this.next != null) {

auxl = this.next;
auxl.sieve(i);

} else {
aux2 = new Prime(i); //(*2)
this.next = aux;

}

Fig. 8. Program Sieve (sequential)

This example exhibits, as the binary tree example, pipeline parallelism. When a instance of
Prime has propagated a number to its successor, it is available for receiving new numbers.
The transformation needed to produce the parallel version of the program is the same as
those applied to the binary tree example: a subclass of Prime that implements the interface
Active is writen. Instantiation sites are replaced by calls to the routine newActive of the
Java// library.
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Fig. 9. Call-graph of the program Sieve

4.2 Approximate test for activable objects

Test for part 2 of the Property 1 That part of the property uses information on the
stacks. To approximate it, we use an abstraction that can be computed from the sets of
return points attached to abstract activations: the call-graph.

Definition of call-graphs Methods are uniquely identified by pairs of identifiers that are the
name of the method and the class in which it has been defined: Mid = Type x Id.

The call-graph of a program P is a graph where nodes are elements of Mid. There
are edges between nodes m; and mgy if m; calls mas during some execution of P (It is
straightforward to obtain it from abstract activations and sets of return points). Recursive
calls correspond to cycles in this graph. The Figure 4.1 shows the call-graph corresponding
to the program Sieve shown in Figure 4.1. From now on, we refer to the call-graph as CG.

Consider the graph CG* = (N*, E*), that is, CG reduced to its strongly connected
components. We define the order (Mid,=<) by n < n' iff n does not depict a recursive
method and n = n’ or n and n’ are not in the same strongly connected component and
there is a path in CG* from N,, to N, (these nodes are respectively the strongly connected
components of n and n')®. That order can be interpreted as n < n' iff any activation mapped
to n always appears under any activations mapped to n’ in call-stacks.

Overview of the test To satisfy the second part of the property 1, a node must be pointed
to by no local variable or only by local variables from activations that have been triggered
by an activation called on the object under interest.

The corresponding approximate test on abstract objects examines the set of variables
(from the domain Var) in the name of a node and compares their activations using the order
=. An abstract object o with name (7, p, vars) satisfies the property if:

6 Because the reduction of an arbitrary graph to its strongly connected components yields a DAG,
the relation < satisfies axioms of partial orders.
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1. for any (1, pu,x) € vars,z # this, there is a variable {7/, u',this) € wvars such that
(7', 1)y 2 (7, ).

2. for any (7, p,x) € vars,z # this there is a variable {7/, u',this) € vars or there is a
variable (7, u,this) € vars. In that case, any overlined variable is necessarily from an
activation that is under the current one in the call-stack: overlined variables are variables
from waiting activations.

Testing if an abstract object has a self-contained accessibility

Approximation of Accessibilities We define here the accessibility of an abstract object. Given
a call graph CG and an abstract object-graph H, the accessibility of a node o = (7,vars) €
Ny (denoted A,(0)) is the set of nodes reachable from o in H plus the set of nodes that
have (7,p, ) or {7,p, ) in their name such that o have (7o, u,,this) in its identifier and

(Toa No) = (7.7 N)

Compatibility of nodes An abstract object graph records properties of several (possibly
infinitely many) concrete object graphs. It is still possible for some nodes to verify if their
respective concretization may appear in a same concrete object graph. In a concrete state,
a variable points to a single node, so that if there are different nodes of an abstract object
graph that have a given local variable in their name then they can be representative of
nodes of a same concrete state only if the considered variable may represent several concrete
variables (variable in Var). So we define the predicate compat that is verified by two nodes
if they may be a representation of concrete nodes appearing in the same state.

Let ny = {{r1,varsy), , , ) and ny = {{r2,varss), , , ), the predicate compat is
defined as follows:

compat(ni,n2) = vars; = varss V Vv € vars; Nvarss,v € Var

The relation induced by this predicate is symmetric but it is not transitive: {z} and {y} are
compatible and so are {y} and {z, 2z} but {2} and {z, z} are not. To extend compat on sets
of nodes, we impose that all pairs of nodes of a set are compatible.

We define the predicate path — compat as follows:
Three nodes n,n' and m verify path — compat if

1. compat,(n,n',m) and
2. there is a path n(n;).<,n’ in G, such that compatible,({n;|1 <i <k} U {n,n'})

Abstraction of € Given an abstract object graph H and S C Ny a subset of objects in H,
we define the predicate €, so that it is a safe approximation of ¢ on concrete object graphs.
Given a set of abstract objects S and an abstract object o € S, if o is not singular then
S may represent some concrete object set S, and o a concrete object that is not in S.. So
that it is not safe to use ¢ on abstract objects graphs to approximate ¢ on concrete object
graphs.
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Let S be a subset of N, and m € N, then
mé&, Sitme&SvVmeSA-singular(m)

A node is said to be singular if it reflects a single concrete object in each concrete state of
the concretization of the current abstract one. A node is singular if it has a variable, from
an activation that is not recursive, in its name.

Approximate property on accessibilities of abstract objects We now have all the elements to
express a safe approximation of the property Activable. We denote that abstract predicate
Activable,.

Let H be an abstract object graph and o an abstract object in H. Then, o will be rejected
(notActivable, (o)) if:

Im € A,(0),is_shared(m) AIm' € H,m/[s] = m,
path — compat(o,m, m') A m' &, Aq(0).

Detection of cycles on abstract object graphs We sketch here an algorithm that
detects possible cycles in abstract object graphs. It is based on a depth-first search that
checks, for each new visited node, whether it is already on the stack. If a node is accessed
from the top of the stack, and it is already on the stack, the edge used to access it is clearly
a back-edge.

The algorithm provides only an approximate answer (within reason, the abstract object
graph is only an approximation of all the object graphs that may occur at the program point
under interest): it gives a super-set of back-edges. As such, it is a safe approximation of the
sets of back edges on concrete objects graphs.

The nodes have to be considered in the order induced by =<: nodes pointed to by variable
from an activation n < n' will be considered prior to those of n'. The algorithm performs a
depth-first walk on the graph and pushes onto its stack only nodes that are compatible with
all the nodes already into the stack. So, only valid paths in an object graph are considered.

If a node is selected and there is a node into the stack that may reflect the same concrete
object, then the selected edge makes up a cycle and the node on top of the stack can not be
activated.

A node may make up a cycle if:

— it is already into the stack and it is the bottom of the stack or
— it is not the bottom of the stack and it is shared.

We make the distinction between nodes that are on the bottom of the stack and others. A
node that is not on the bottom of the stack has been accessed through an instance variable
s. If it is accessible from the top of the stack (a distinct node), then it must be accessed
through an instance variable that is not s; otherwise, there would be cycles in the stack. If
the considered abstract object is not shared, then the newly accessed object in that context
is the representative of concrete objects that are distinct from those represented by its
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counterpart that is already into the stack. This cannot be said for the node that is on the
bottom of the stack because it has not been accessed through any instance variable.
Finally, activable objects are detected on abstract graphs

5 Related Work

5.1 Static analysis of object-oriented programs

One of the major problem when analyzing object-oriented programs is that the flow of
control cannot be determined statically because of dynamic dispatch. We have seen that
the interpretation of method calls involved method lookup for each class determined by the
abstract evaluation of the target object of the call. And because we partition the set of
concrete objects using classes, we restrict the number of actual classes for target objects of
method calls. This problem, known as class analysis, concrete type inference or control flow
analysis have been investigated by many authors. Class analysis is motivated by compiler
optimizations that are now traditional in the field of object-oriented languages (removal
of dynamic dispatch, method in-lining), but solutions to this problem are needed to get a
good solution to any interprocedural problem. Different approaches have been investigated
as described.

Dean, Grove and Chambers [19] proposed an analysis called static class hierarchy anal-
ysis. This analysis tends to use as much as possible static information that can be drawn
from the class hierarchy. After a fast intra-procedural class analysis(designed as a dataflow
analysis), the class hierarchy is analysed to determine, for each set of classes infered for lex-
ical method calls, those sets where the given method is never overriden. For these method
calls, it is possible to remove dynamic dispatch. In the case of statically typed languages, as
Java, typechecking can be used in place of dataflow analysis.

Pleviak and Chien [35], and Defouw, Grove and Chambers [20] present analysis based
on constraint systems. These analyses compute a fixpoint by iterating on structures called
data-flow graphs where nodes represent variables, object creation sites and method-calls, and
edges assignment between variables, assignment of a newly created object and assignment of
actual to formal parameters on method-calls. Edges are interpreted as constraints on sets of
class that can be formally expressed by set inclusion: an edge u — v (from a statement v:=u
for instance) corresponds to the constraint [v] C [v]. The solution of a constraint system is
obtained by a fixpoint computation.

Grove, Defouw, Dean and Chambers [24] present an analysis that computes an approx-
imation of call-graphs. The reasons why call-graphs determination needs a static analysis
are the same as those that motivate class analysis. Yet the result may be used to support
subsequent interprocedural analysis. This is a constraint based analysis as the one presented
in [20]. All these analysis have some sort of abstract representation of heaps because they
infer set of classes for instance variables as well as for local variables and formal parameters.
But they do not have the possibility to nullify instance variables because a single abstract
representative of instance variable represents, in general, instance variable of several concrete
instances.
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Chatterjee et al. [15,16] present an analysis for programs that have features of both C+-+
and Java excluding threads and finalizers methods for Java. The analysis is essentially points-
to analysis as introduced by Emami et al. [31]. It aims at detecting what objects variables
point to at a given program point. They limit the number of abstract objects using classes
and instantiation sites to form a limited number of representative of concrete objects. They
adopt a two-level approach to interprocedural analysis (as presented in [1]) that computes,
for each method, a function that summarizes the effect of the method on any context. This
approach allows them to maintain only part of the program in the main memory at a given
time, because the top-level analysis is a bottom-up traversal of a DAG reduction of the call-
graph. They can perform destructive-updates in some cases because they differentiate initial
values for formal parameters on method calls from any object allocated at any subsequent
site; but they can not do systematic destructive updates and the heap representation they
obtain does not reflect sharing properties. Two-level interprocedural analysis is known to
be more space and time efficient than the other approach that consists in building a super
control flow graph, connecting call sites with entry nodes of methods and exit nodes with
return sites. This is because they can summarize the effect of methods independently from
any context and then apply the summary functions to a given context to obtain a context-
sensitive analysis. Thus a given method is analyzed once for all. It is unclear that the object
graph representation we use can lend itself to the two-level approach for interprocedural
analysis as noted by Ross and Sagiv in [36].

Besides the work on class analysis, Almeida presented in [2] a type-system that relies
on an abstract interpretation of object-oriented programs as a checking system. Classical
type systems for object oriented programs are extended to incorporate the possibility for
objects of sharing states as a first class property (classes of these objects are called balloon
types). The abstract interpretation approximates an invariant that ensures for balloon types
objects that they are self-contained. This work seems quite close to ours as far as analysis
is concerned; however, we seem to have definitely different motivations and goals. Although
the invariant that is enforced for balloon types is close to our notion of sub-systems, an
important difference is that our sub-systems allow a certain form of sharing that is critical
for distribution, reuse, and is more flexible: passive object can reference an active root object
of another sub-system.

5.2 Shape Analysis

Shape analysis is a generic name for analysis that aims at statically infering properties on
dynamically allocated structures. Many authors before Sagiv, Reps and Wilhelm investigated
shape analysis using a finite naming scheme for nodes [29,34,25,14]. Some of them use k-
limiting schemes (nodes that are accessed from variables by some paths of length exceeding
a parameter k are clustered to a single summary node). Chase, Wegman and Zadeck [14]
use allocation sites to partition the set of concrete nodes, but they can’t do systematic
destructive-updates and their methods can’t infer such properties as the method presented
in [38].
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Some authors investigated storeless approaches where only aliased access path are rep-
resented. Hendren and Nicolau [27] use matrix of access paths represented using a limited
form of regular expression. According to Sagiv, Reps and Wilhelm, this method can be as
powerful as theirs in some cases, but it can’t deal with cyclic structures and as such, can’t be
used for general programs. Ghiya and Hendren [22]| present a method which infer whether
structures pointed to by variables are tree-like, dag-like or general graphs. It provides infor-
mation about the structure accessible from pointer of a given procedure but it is not easy to
obtain global information on the objects graph with it. In contrast, it provides information
about the structure accessible from pointer of a given procedure.

We have enhanced the analysis of Sagiv et al. [37,38] in several ways. To our knowledge,
there is no description of an interprocedural extension of their analysis that has been pub-
lished. Beside this, we include into our analysis a garbage collection on abstract heaps. It
is able to detect garbage in the case of the removal of a node in a linked-list. This point is
particularly important because it permits the analysis to detect that a list is still a list after
an arbitrary number of remove operations.

6 Conclusion

In this article, we investigated the use of static analysis for building distributed and parallel
programs in Java.

We propose to analyse a sequential program, and to exploit the results of this analysis
with the intervention of the (end-)user, in order to provide a parallel version of the original
program which has two properties: (1) reuse with as few modifications as possible, (2)
guaranteed preservation of sequential semantics. The resulting programs use primitives of
Java//, a Java library for distributed, concurrent and parallel computing. Our analyses are
based on abstract interpretation techniques and are powerful enough to statically determine
a suboptimal list of objects that can be turned into active objects, and guide a transformation
of the given sequential program into its parallelized version (as shown in the Sieve example).

We have described our analysis within Centaur [9]; this provides us with an executable
version of the analysis which actually runs on the case studies presented (binary tree, linked
lists, sieve).

Our work differs from that of Sagiv, Reps and Wilhelm [37,38] in that we are in an
object-oriented setting, with the goal of parallelization and distribution. In addition, we
have proposed an interprocedural analysis and a garbage collection extension.

Future work includes refinements of this analysis in order to detect more complex cases,
and derivation of interactive tools in order to help the user to make decision on how to dis-
tribute his program. We also want to explore the application of this analysis in optimization
of Java compilation.
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