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Abstract: Given a set P of 2n 4+ 1 points regularly spaced on a circle, a number 7
for pairwise distinct points and a number « for pairwise distinct and fixed length arcs
incident to points in P, the sum of incidences between « arcs and 7 points, is optimized
by contiguously assigning both arcs and points. An extension to negative incidences by
considering £1 weights on points is provided. Optimizing a special case of a bilinear form
(Hardy, Littlewood and Pélya’s theorem) as well as Circulantx anti-Monge QAP directly
follow.
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Optimisation du nombre d’incidences entre des points et
des arcs sur un cercle

Résumé : Etant donné un ensemble P de 2n + 1 points réguliérement espacés sur un
cercle, optimiser la somme des incidences entre 7 points distincts et « arcs de longueur fixe
et adjacents aux points de P, revient & affecter de maniére contigué a la fois les ™

points et les « arcs. Ce résultat s’étend aux incidences signées en considérant des
poids +1 aux points. L’optimisation d’une certaine forme bilinéaire (théoréme de Hardy,
Littlewood et Polya) ainsi que 'affectation quadratique dans le cas Circulantx anti-Monge
en d’ecoule directement.

Mots-clé : forme bilinéaire, QAP
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Incidences on a circle 1

1 Introduction

Given a point and arcs on a circle, let define the incidences in this point as the number
of arcs covering it; the dual notion, i.e. given an arc and points on a circle, the length of
the arc is the number of points covered by the arc minus 1 to be conformal with standard
notion of length.

In a note on a certain bilinear form [eW94], Cela and Woeginger prove that given a set
P of 2n + 1 points regularly spaced on a circle, the way to place 7 pairwise distinct points
and « pairwise distinct and fixed

length arcs incident to points in P such that the total number of incidences is maximized,
amounts to contiguously assign both arcs and points.

The purpose of this note is to prove that the same holds if minimization replaces maxi-
mization.

First, let us recall notations and definitions We provide the circle with an orientation,
say clockwise, and reference arcs from their origin w.r.t. orientation (left endpoint in a
unfolding of the circle); blocks are a sequence of arcs adjacent through their origin.

e fixed arc length: A > 2,
e arc: q; = [l,l + X —1],

e block (of k adjacent arcs): b = [I,1+ A+ k—2], where k is named for obvious reasons,
the cardinality of the block [b¥| = £,

e solution: S = (P, B) where [P| = and |B| =) _ |b| =,
beB3

e incidences at a given point: I; = number of arcs covering [;

e optimal solution: &* = min L.
P S:(P,B)pezp P

2 The result

Call TPAy, (7, a, A) the minimization of Incidences between Points and Arcs as defined
above; this problem is self-dual in the following sense.

1. consider an optimum (P*, B*) to IPAy, (7, a, A) and replace every point p € P* by
an arc of length A\ with p as its end and replaces every arc in B* by its origin, then
the new configuration is optimal for IPA(«a, 7, A) since blocks become intervals and
intervals become blocks,

2. consider an optimum (P*, B*) to IPA,, 1 (7, @, A) and replace P* by P\ P* and every
arc in B* by its complement w.r.t. the circle, then the new configuration is optimal
for IPA9,11(2n4+ 1 — 7, a,2n+ 1 — )) since intervals and blocks remain intervals and
blocks.

RR n~"3593



2 E. Cela, D. Fortin and R. Rudolf

Therefore, we may restrict to A < n (o < n since multiple arcs are forbidden).
Observe next that in case of A = 1, the problem has a trivial solution fulfilling our goal.

Lemma 2.1 There exists an optimum solution without blocks of cardinality 1.

Proof.

Let suppose the contrary, i.e. in an optimal solution S8, a block b} is alone (non adjacent
to anyone else); it means that no other block in the solution starts in [ — 1,/ + 1 or ends
inl+A—1,14+ A+ 1. The idea is to transfer weight from largest incidences to smallest by
circularly shifting this arc until it merges with a block in S°.

Since no multiple arcs is allowed, a case study leads to I, = I) —e and I?,, = I}, ,_; —¢,
with € = 0 or 1 for both endpoints of arc. Of no use for the proof, we may notice I} ; = I —e¢
and I, , = I, | — € as well.

Let assume w.l.o.g. that I} < I? , ; and shift the arc, one step clockwise. the new
incidences become I} = I — 1,1}, = I? , + 1 while all others remain unchanged; then,
examine every different incidences at [:

o I} = I, +1; clearly the incidences remain the same, I} = I, and I},, = I and

our assumption remains true as well, I' ; = I}, <P =1}, +1=1},

and the number of incidences cannot increase in this move.

o I} > I}, +1; then from case study I ,_; = I, , +€ < I —1+4€ < I} a contradiction.

Recursively applying above shift leads to a sequence of optimal solutions S%,i = 0,...q
until the arc merges another block in 8°. Processing all single blocks this way, achieves the
result. O

Observation 2.2 For a block bf that does not overlap with any other, incidences increase
from | upto min(k, A + 1), remain constant and then decrease upto right endpoint of block.
If the block self overlaps, left and right overlapped incidences are shifted by the overlapping
length.

Now we generalize lemma 2.1 to the blocks themselves in order to reach the main goal.

Lemma 2.3 There exists an optimum solution with only 1 block.

Proof.

Let an optimal solution 8% bf = [I,r = |+ k + XA — 2] be a block such that I? <
I? and shift it one step clockwise; by definition, no other block in S° starts in interval
l—1,r+1—A=Il—1+4+k]orendsininterval [ — 1+ A, r+1=1—1+k+ A] (or else a
multiple arc would exist). Let m = min(l—1+\,l—1+k) and M = max(l—14+\,[—1+k),

INRIA



Incidences on a circle 3

then from I} < I? and observation 2.2, left overlapping length is less or equal than right
overlapping length; in other words, there exist L € [I,m] and R € [M, r] such that

I = I, foralliell,I]

I = 1), foralli€ R,
L-1l < r—R
Izl+1 = I), foralli€[L+1,R—2]
I = I!—1, foralliell,L+1]
I} = I'+1, forallie[R,r+1]

From equalities in the midpart of the block, we may restrict study of incidences in
[[,L+1] and [R,7 + 1] :

e [} = IY; clearly the incidences remain the same in the following sense :

I+3 r+1 I+j r+1
ZI°+ o= le+ o I, forall0<j<L+1-l=r+1-R
i=r+1—j i=r+1—j

Therefore, upto rebalancing assignment of points in P° from right part to left part,
we found another optimal solution S' = (P!, B') such that assumption remains true
(since Ij\, = Iy —2 < I7,),

e 1) < I? it should exist a p € PY such that p € [R,r + 1] or else the shifted version is
better than 8%, a contradiction. So, [I,I+ 7 — R] € P? as well so that
0 1 1
Iy ppa + Ir+1 = I gty
l+r—R r+1 I+r—R r+1

> L+> 0 = > L+X) L
i=l i=R il i=R

it means that the related assignment S' = (”PO, B') remains optimal. Since assump-
tion still holds [}, =I) < I? = I?,, = I',, — 1, we are done.

Recursively apply above shift until the block merges another block in 8%, and process all
blocks w.r.t. I; < I, ordering to reach an optimal solution with 1 block only. O

Theorem 2.4 Let P be a set of 2n+ 1 points regularly spaced on a circle, an optimal way
to minimize incidences between T pairwise distinct points and o pairwise distinct arcs of
length X, incident to points in P, consists in one block of o adjacent arcs and © adjacent
points on the circle.

Proof.
From an optimal solution with only 1 block, lemma 2.3 together with bitonic property
2.2 allows to select m points as follows :

RR n~"3593



4 E. Cela, D. Fortin and R. Rudolf

1. block does not self-overlap; assign p = min(m,2n+ 1 — (A + « — 2)) contiguous points
in the complement of optimal block bF; then assign remaining 7 — p points alternately
from the left and right endpoints of block,

2. block self-overlaps; assign 7 points alternately from the left and right endpoints of
block towards its midpart.

O

Observation 2.5 The restriction to odd number of points arose for the sake of original
form of cited theorems but was irrelevant on the incidences reasoning; so, the subscript
under IPA refers to previous work only.

3 Application to HLP’s theorem on a bilinear form

Let us give a short proof of a theorem by Hardy, Littlewood and Polya (1926) about the
minimum on a certain bilinear form and recently refined (1994) by Cela and Woeginger.

Definition 3.1 A function f:[—2n,2n] — R is called weakly symmetric increasing if it
fulfills the symmetric, non decreasing and dominant properties

f(=9)
fi=1)
f@)

Definition 3.2 The permutation p™ € Sa,.1 is defined as

f@@), foralll1<i<2n (SYM)
f@@), foralll1<i<n (INC)
f@n+1—=14), forall<i<n (DOM)

<
<

p(2p) = n+1+p, forallp<n
p(2p+1) = n+1l-p, foralp<n

For a sequence (vector resp.) z € R*! and a permutation ¢ € Ss,;1, we note z, the
permuted sequence (vector resp.). We denote zt the reordering of x such that the non
increasing values of x are alternately distributed around center location as in pt (right
then left according to the even/odd choice of sign of p in p™ definition).

Theorem 3.1 (Cela and Woeginger [eW94]) Let f be a non negative weakly increasing
n n
function and non negative z,y € R?* . Then the bilinear form Y > f(r — s)z,ys

T=—"N 8§=—"N

attains its minimum over all arrangement of x,y, for x* and y* in Sa,i1; in compact form

(%, 9*) = arg min Do D fr = 8)Tem)Yus)

W or=-ns=-n

— ot
s.t. To I+
Yypx =Y

INRIA



Incidences on a circle 5

First, observe that non negative weakly increasing functions form a cone so the proof
amounts to prove it for the extremal rays.

Lemma 3.2 ((Cela and Woeginger [eW94]) Assume that all elements of the sequences x,y €
IR2%* are 0 or 1 and that for some integer 1 < d < n, f : [—2n,2n] — R is defined by:

j = {—1 i =4(n+d) 1)

0 otherwise

Then the bilinear form attains its minimum for x©,y*.

Proof.
Considering the special structure of f, fixing x, = 1 for some —n < r < n then
minimizing the form is equivalent to maximizing subexpressions

Yr+n+d + Yr—n—d

Thinking of the y, as a circular sequence of 2n + 1 equidistant points on a circle, and of
the z, as intervals that covers 2(n — d + 1) consecutive points on the circle establishes the
correspondence between minimization of above bilinear form and maximization of incidences
between points and arcs; it stems from the perfect symmetry around each r so that covering
both endpoints of arc ¥, 1,14, Yr—n—_q 1S equivalent to covering all intermediate points. The
authors, in their original proof, did not recourse to this correspondence since a direct proof
is quite easy. O

Theorem 3.3 (Cela and Woeginger [eW94]) Assume that all elements of the sequences
z,y € R are 0 or 1 and that for some integer 1 < d < n, f : [-2n,2n] — R is defined
by:

(2)

£ = 0 n—d+1<i<n+dor —n—d<i<-n+d-1
L 1 otherwise

Then the bilinear form attains its minimum for x*, y+.

Proof.
For some fixed z, =1, —n < r < n, the bilinear form rewrites
r+n—d n
ooyt > oy if —n<r<—d-1
§=—n s=r+n+d
r+n—d
> oy, if —d<r<d
s=r—n+d
r—n—d—1 n
ooy + > oy if d+1<r<n
s=—n s=r—n-+d

and the correspondence established by the authors about minimizing the bilinear form and
minimizing the number of incidences between points covering 2(n — d + 1) — 1 consecutive
points and intervals becomes clear. O
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6 E. Cela, D. Fortin and R. Rudolf

4 =41 weighted incidences

Above result considers a 0 — 1 labelling of points on the circle; intuitively, it suggests that
the result still holds with a labelling of points by —1 as well.

Theorem 4.1 Let P be a set of 0,£1 weighted points regqularly spaced on a circle, an
optimal way to minimize incidences between m(u resp.) pairwise distinct, +1(—1)resp.)-
weighted points and « pairwise distinct arcs of length A consists in one block of o adjacent
arcs and w(u resp.) adjacent +1(—1)resp. )-weighted points on the circle.

Proof.

(i) arcs are blocked. Considering Os and +1s only, lemma 2.1 avoids blocks of cardina-
lity 1; the maximization counterpart over Os and —1s follows from the corresponding
lemma. Observation 2.2 on non overlapping arcs together with a symmetry argu-
ment leads for a block b, to assign —1 to the constant highest incidences and the +1
to lowest incidences (symmetrically starting from both endpoints). Let suppose b*
contains 27% + €* of +1-weighted points and u* —1-weighted points, the best contri-
bution of this block to the overall incidences is (7% + €*) (7% + 1) — u* (A + 1) where €*
accounts for a possibly odd number of points.

(ii) an optimal solution is achieved through a single block. Gathering all the
blocks into the global optimization of incidences we get for the non self-overlapping
case

min Y (7% + ) (7 + 1) — p* (A + 1)
bk
S @r*+é)=n (#+1-POINTS)
bk
SpF=u  (#-1-POINTS)
bk

Y k+A+1=|P| (PERIMETER)
bk

Y k=a (#ARCS)
bk

Considering the lagrangian dual with p(m resp.) as multipliers for +1(—1 resp.)-
weighted points,

Lp,m) = min) (7 + ) (" +1) = pF A+ 1) +pd 27" + ) +m Y pf —mp—pr
b b b

we find that p should decrease (27* + €* + 1 + 2p = 0) while m should increase

(—=(A+1)+m = 0); back into the dual lagrangian, we arrive, by discarding constants

m —

k
terms in ¥ and (A + 1)p offset, at max» (7" — T~ )2 \which requires 7* to be 0

bk
for every block but one.

Notice that overlapping blocks do not change the incidences count, hence the result.

INRIA



Incidences on a circle 7

5 Application to the QAP

Let incidences on a circle be set in a matrix notation. First, choose an origin and an
orientation for points on the circle and associate with all possible arcs, a matrix A of 0Os
and 1s where 1s correspond to the points covered by an arc; assuming that arcs do not
overlap, we observe that A is generated through a circular shift of an incidence vector of a
generic arc. Then, let A denotes the vector of reference points associated to a set of « arcs
w.r.t. orientation on the circle; we implicitly select the left endpoint as the reference point
but any other point is suited, provided the A matrix is defined accordingly. Last, let P be
a vector of weighted incidence points w.r.t. above orientation. Optimization of incidences
between points and arcs IPA(7, o, A) set in matrix notation is nothing else than

IPA(P,A,A) = < diag(A)AP,E >

where F is the all 1s vector and the inner product abbreviates the sum over all points.
Using Hadamard (Schur [HJ91]) product and Kronecker definitions, we have on the one
hand, for incidences

diag(A)AP = (Ao (A® PY))E

and on the other hand, for the quadratic assignment problem asociated to matrices F' and
D

QAP(F,D) = <(FoD)E,E >
In other words
IPA(P,A,A) = QAPAA® Pt)

Let A= (1,1,0,0) and P = (1,1,0,0,—1,—1) be an instance of the incidences, we may
notice that it induces an anti-Monge property on A ® P! apart from the circulant property
of A matrix. More precisely, the scope of the result on Toeplitz x anti-Monge QAP by
Cela et al. [BeRW98, Cel98| extends to circulant x anti-Monge QAP without non negative
constraint on anti-Monge matrix.

6 Concluding remarks

In this paper, we extend the optimization of non negative incidences of points and arcs on
a circle [eW94], to the negative weighted case; it allows to rewrite a theorem by Hardy, Lit-
tlewood and Polya (1926) about the minimum on a certain bilinear form on signed number
as well (probably known from these authors but useless at that time). More interestingly, it
removes the same restriction on non negativity of anti-Monge matrices in circulant x anti-
Monge QAP; with a little effort, it may be carried over the more general Toeplitz-benevolent
x anti-Monge QAP.
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