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Abstract: We present a full Bayesian method for estimating the density and size distribu-
tion of subclad-flaws in French Pressurized Water Reactor (PWR) vessels. This model takes
into account in service inspection (ISI) data, a flaw size-dependent probability of detection
function (different function types are possible) with a threshold of detection, and a flaw
sizing error distribution (different distribution types are possible). It is identified through a
Markov Chain Monte Carlo (MCMC) algorithm. The article includes discussion for choosing
the prior distribution parameters and an illustrative application is presented highlighting its
ability to provide good parameter estimates even when a small number of flaws is observed.
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Estimation bayésienne des distributions de défauts des
cuves REP

Résumé : Nous présentons une modélisation bayésienne compléte de la densité et de la
distribution de probabilité de la taille des défauts des cuves de réacteurs & eau pressurisée
(REP). Ce modéle prend en compte les résultats d’inspection en service des cuves, une
fonction de probabilité de détection d’un défaut en fonction de sa taille (différents types de
fonction sont possibles), un seuil de détection d’un défaut et une distribution de probabilté
pour les erreurs de mesure (différents types de distribution sont possibles). Ce modéle est
estimé par une méthode de type chaines de Markov de Monte-Carlo (MCMC). Le choix des
paramétres des lois a priori est discuté dans l'article et un exemple illustrant les bonnes
performances de cette approche méme pour des échantillons de faible taille est présenté.

Mots-clé : taille de défaut, densité de défaut, lois de Weibull et lognormale, données
manquantes, inférence bayésienne, chaines de Markov de Monte-Carlo.



1 Introduction

The estimation of flaw size and flaws number distributions to be used in structural inte-
grity analysis of nuclear Pressurized Water Reactor (PWR) vessels has received increasing
attention (see, for instance Foulds et al. 1992, Ammirato and Dimitrijevic 1993). The flaws
characteristics play effectively an important role in the probabilistic fracture mechanics mo-
del of the vessel and they consequently are very influent upon the estimated risk of failure.
It is so of high importance to have a realistic representation of these relatively small flaws
(a few mm) which are generally not very well known. As far as we know, the most achieved
mathematical approach has been proposed by Foulds et al. (1992) which gathered the key
ingredients of a probabilistic model for PWR vessel flaws. They used a maximum likelihood
methodology:

1. They used the versatile Weibull distribution as flaw size distribution function.

2. They considered a threshold detection limit below which flaw sizes are considered
unreliable.

3. They took into account the probability of detection of a flaw during a vessel inspection,
from which they deduce an estimation of the true number of flaws using the observed
number of flaws.

4. They introduced an additive flaw sizing error random variable.

However their approach suffers some limitations. They only considered a constant proba-
bility of detection of a flaw regardless its size, and they limit attention on uniform sizing
error. And, especially, it is doubtful that maximum likelihood inference provides reliable
estimates in a domain where there can be very few observations. Actually, Foulds et al.
(1992), assumed that all indications represent flaws and moreover, to get enough data to
make their methodology workable, they considered indications (conservatively interpreted as
flaws) provided by the vendors which were beyond the ASME Code threshold of reportable
indications.

In this article, we present a methodology answering all the above mentioned limitations.
This methodology is a fully Bayesian analysis of the problem taking account in a proper
way all the elements considered in Foulds et al. (1992). (For other partially Bayesian
methodologies see Ammirato and Dimitrijevic, 1993 and Ammirato et al., 1992.) This
Bayesian methodology makes use of Markov Chain Monte Carlo (MCMC) algorithms (a
comprehensive reference for MCMC algorithms is Gilks, Richardson and Spiegelhalter 1996).
It allows to discard limitations on the parametric flaw distribution function, on the flaw
probability of detection function, and on the flaw sizing error distribution function.

The article is organized as follows. The probabilistic model is presented in Section 2.
The fully Bayesian estimation of the model is presented in Section 3. The choices of the prior
distributions are discussed in Section 4. Section 5 is devoted to a numerical illustration. A
discussion section summarizing the main points concludes the article.
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2 The probabilistic model

The model that we now describe is aimed to allow the analysis of vessel specific in-service
inspection (ISI) data. We assume a parametric density f(.|§) for the flaw size random
variable H. As Foulds et al.(1992), we favor the Weibull distribution with vector parameter
0 = (83,7), 8> 0 being a shape parameter and v > 0 a scale parameter v > 0, with density

£(h]8) = vB(vh)’ *exp (—(vh)?) ,h > 0,

h denoting a flaw size. But, we also consider an exponential distribution, where 6§ is reduced
to a scale parameter -,

f(hly) = yexp (—vh),h >0,

and a log-normal distribution, with § = (u,0?) where p is a position parameter and o2 is a
dispersion parameter, with density

F(hlo) = exp (—1/2M> b > 0.

1
V2roh o2
All the flaws on a vessel are not observed and the actual number of flaws n is to be estimated.
For each flaw, we consider a binary random variable D indicating if the flaw has been
measured. By convention, D = 1 if the flaw has been detected and D = 0 otherwise. The
detection of a flaw depends on its size h and is defined with the probability of detection
function POD(h) which, for each h, is the conditional probability

POD(h) = P(D = 1|H = h).

The function POD is important and our modelling allows any step or continuous POD
function. For instance, we consider the following POD functions:

e an exponential POD function (Ammirato and Dimitrijevic, 1993)

| Al —exp(—=b(h—3s))] ifh>s
POD(h) = { 0 otherwise

where A is a saturation level, that is, the maximum of the POD function, b is a non
negative real number measuring the quality of the detection, and s is a threshold of
detection;

e a logistic POD function (Temple, 1982)

1 + exp(—ghx)

POD(h) =1- 17 exp(q(h — h*)

where ¢ is a non negative real number measuring the quality of the detection, and hx
is a threshold of “good” detection (for large ¢, h* is approximatively the median of the
flaw size distribution);
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e a normal POD function (Harris, 1977) defined as follows
POD(h) =1 — @ [g(log h — log hy,)] (1)

where ¢ is again a non negative real number measuring the quality of the detection,
hm, is approximatively the median of the flaw size distribution and ® is the cumulative
distribution function of the standard normal distribution with mean 0 and variance 1.

The probability that a flaw is detected regardless its size depends on the chosen flaw size
density f(.|). It is given by the formula

+o0
ps(6) = P(D =1) = / POD(h)f(h[6)dh. 2)

The number of measured flaws on a vessel is the realization of a random variable Ny with a
binomial distribution B(n,ps(6))

P(No = ng) = ( :o

) @)1= ps(6)"
whose parameters n (the actual number of flaws) and ps(6) are unknown.

Moreover, the statistical flaw distribution model is made more complicated because mea-
sured flaw sizes include a random error E with density fg(e) and the analysis of ISI data
requires knowing the lower flaw size s below which the data are considered unreliable in size
estimate. This threshold s is a parameter of the model which can be taken into account
easily. It just leads to modify the POD function by truncating it below s. The random
error E can be represented with a uniform distribution or a Gaussian distribution. In our
methodology, the choice of the random size error distribution f, does not include additional
difficulty. For simplicity, we essentially pay attention, in the following, to a uniform size
error distribution on the interval [—c¢/2,¢/2],¢ > 0 being given by the user,

[ 1/)c if —¢/2<e<c/2
fele) = { 0 otherwise.

In this framework, the problem is to estimate the flaw size distribution parameter § and
the actual number of flaws from the detected flaws and their sizes. Since there is in general
a very small number of flaws and that often a priori knowledge on both the size and the
number of flaws is available, Bayesian inference is desirable to solve this estimation problem.
We present it now.

3 Bayesian Inference

The probabilistic model described in Section 2 involves many parameters. Let £ = (6,n) be
the resulting vector parameter and let h denote the ng measured flaw sizes h = (hy,..., hp,).
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From the choice of a prior distribution 7(£) for £ which is considered as a random vector,
Bayesian inference consists in deriving parameter estimates from features of the posterior
distribution m(£|h) which, using Bayes theorem, is defined as

_ _m(EPhiE)
T = T Pule)de

where P(h|¢) denotes the likelihood of the parameter ¢ for the data h. Then, Bayesian
estimates can be expressed in terms of posterior expectations of functions of £. The posterior
expectation of a function g(¢) is

[ g©)n()P(hl)de
Bl = = ey pmigye

In this high-dimensional setting calculating such posterior expectations is a difficult task.
In fact, our model is enough complicated (see the directed acyclic graph (DAG) summa-
rizing the complete Bayesian representation of the model in Fig. 1) to prevent the cal-
culation of the integral [ 7(£)P(h|{)d¢ for any choice of prior distribution 7(£). Thus we
know that 7({/h) «x 7w(§)P(h|{), but we cannot easily evaluate the normalizing constant
[ (&) P(Bl¢)de.

Markov Chain Monte Carlo (MCMC) methods are aimed to evaluate posterior expec-
tations by Monte Carlo integration using Markov chains. They provide a unifying frame-
work within which many complex problems can be analyzed using generic software. For
evaluating the flaw distributions of PWR vessels, we essentially make use of the Gibbs sam-
pling (see for instance Gilks et al., 1996 or Casella and George, 1992) associated with the
Hastings-Metropolis algorithm (see for instance Chib an Greenberg, 1995) when the flaw size
distribution is a Weibull distribution. The Gibbs sampling consists in sampling from the
full conditional distributions involved in the model to get a Markov chain whose stationary
distribution is precisely the desired unconditional posterior distribution.

Before presenting detailed formula for the Bayesian analysis of flaw size distribution via
Gibbs sampling, we want to sketch the main structure of the calculation. Equation (2) shows
that the actual number of flaws n depends on 6 since the mean of the random variable Vg
is nps(6). Thus, Bayesian inference on n and 6 will consist in the two iterated steps:

e Step a. Computation of the conditional distribution of n knowing 6.

e Step b. Computation of the conditional distribution of 8 knowing n.
We know detail how these two steps are performed. Note that each time it is possible, we
make use of conjugate prior distributions (see Robert, 1994).
3.1 Bayesian modelling of the actual number of flaws

We assume that the observed number of flaws ng on a vessel is the realization of a random
variable Ny with a binomial distribution B(n, p(#)). We assume that n is a random variable
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with a Poisson distribution P()\). Since it is difficult to guess a reasonable value for the
parameter A\, we introduce a second level of prior distribution producing a hierarchical Bayes
model (see for instance Robert, 1994). We consider that A is a random variable following
a Gamma distribution G(a,b) with the parameters a and b defined such that the mean of
this distribution is a/b and its variance is a/b?. The posterior distribution 7(n, A\|f,ng) is
approximated through Gibbs sampling which consists in repeating the following steps from
an initial vector (n%,p°, A?):

e Sample A from 7(A|n,0,19) = G(a +n,b+ 1).

e Sample n from 7w(n|A,8,n0) = P((1 — ps(8))A) + no, namely a Poisson distribution
translated in ng.

In this scheme, the quantity py(8) given by (2) is approximated through Monte Carlo inte-
gration. It leads to

1 T
ps(0) = 7 ZPOD(%’)

where the y;’s are random independent realizations sampled from f(.|6) with the convention
POD(y;) = 0 if y; < s for taking account of the detection threshold s. Typically, we take
T = 100.

3.2 Bayesian modelling of the flaw size distribution

We consider a parameterized flaw size distribution f(h|¢). The choice of the particular
form of this distribution is important. In the following, we will detail computation for the
exponential distribution, the Weibull distribution and the log-normal distribution. Before
that, there is the need to derive the likelihood L(h|6) since Bayesian inference is based on
the posterior distribution 7 (6)L(h|d).

The likelihood of the observed data It is worth noting that we are faced with a missing
data problem. Some flaws have not been detected (with the probability 1 —POD(h), h being
the size of the flaw), and each measured flaw size h; is littered with an additive random error
measure e; with density f.: h; = h] + e;, where h} is the exact flaw size with distribution
f(h¥]0). Thus, the density f,(h) of the measured flaw size random variable H, is obtained
as the product of convolution of f and f., f,(h) = [ f(y|6)fe(h — y)dy. As a consequence,
the conditional density of a measured flaw size is obtained as follows

P[(H, € [h,h+ dh]) N (D =1)]
P(D=1)
P[(D =1)|(H, € [h,h+ dh)])] P (H, € [h,h + dh])
P(D=1)

P(H, € [h,h+dh]|D = 1)
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Thus the conditional density of a measured flaw size is

lim P(H, € [h,h+dh]|D=1) lim P[(D =1)|(H, € [h,h+dh])] P(H, € [h,h+ dh])
dh—0 dh © dh>0 P(D = 1)dh
_ . PUD=D|(H, € hh+dh])]
~ dh—0 P(D=1)
lim P (H, € [h,h+ dh])
dh—0 dh
POD(h)
= W/f(yw)fe(h—y)dy-

Finally the likelihood, for a sample of sizes h = hy, ..., hy, of detected flaws, is
1 i
Lh|f) = —F——— PODhi/fnyehi—ydy. 3
(h|6) (pf(e))""il;[l (hi) | F(yl0)fe( ) 3)

For instance, in the case where the error distribution is the uniform distribution on [—¢/2, ¢/2],
the likelihood becomes

_ 1 {7 POD(hy) [Mtel?
200 = o L0 [ T

In the extreme case where there is no measured flaw, the likelihood reduces to 1 — p¢(8).

Remark: The likelihood function (3) is generally difficult to maximize. (Imagine for ins-
tance a Weibull distribution for the flaw size distribution with a Gaussian error distribution
and a logistic POD function.) For Bayesian inference, we will make use of a Data Aug-
mentation version of the Gibbs sampling (see Tanner and Wong, 1987) which consists in
simulating both the parameters and the missing data in an iterative procedure. And, we
will not encounter difficulties when approximating the posterior distribution 7(6|h) since at
each iteration, the missing data (the unmeasured flaws and the measurement errors) will be
simulated according to their current conditional distributions. Thus, contrary to likelihood
inference there is no need to restrict attention for numerical reasons to a particular POD
function or error distribution.

Prior distributions for the possible flaw size distributions We develop Bayesian
inference for the most currently used flaw size distributions, namely the exponential distri-
bution, the Weibull distribution and the log-normal distribution.

For the exponential distribution with scale parameter § = v, we consider a conjugate
gamma distribution G(A4, B).

For the Weibull distribution with shape parameter 8 and scale parameter 7, there is
no conjugate prior distribution. Following Bacha et al. (1998), we consider that the prior
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distribution on § = (3, ) is the product of a prior distribution for 3 and a prior distribution
for «v. For the shape parameter, we consider a beta distribution with parameters r and ¢
defined on the support [8, 8r] where §; (resp. [(,) is the minimum (resp. maximum) of
possible values for the shape parameter 3. The parameters r and ¢ are such that the mean
and variance of the distribution are respectively 8; +7(8, — 8;)/(r +t) and 7t(8, — 31)?/[(r +
t + 1)(r + t)?]. We denote Be(r,t,[B,3-]) this distribution. For the scale parameter prior
distribution, we consider a Gamma distribution G(A, B).

For the log-normal distribution with position parameter m and dispersion parameter o2,
we consider the following conjugate prior distributions. The prior distribution for 1/0? is
supposed to be a Gamma distribution G(v/2, 5/2) and the prior distribution of m knowing
o? is supposed to be a normal distribution with mean M and variance 0?/R, R being a
parameter to be tuned by the user.

The complete hierarchical model The directed acyclic graph (DAG) displayed in Fig. 1
describes the complete hierarchical Bayesian model assuming a Weibull flaw size distribution
and a uniform error distribution. In this figure, square boxes represent fixed or observed
quantities and circles the unknown. More precisely, the involved quantities are

e the observed data which are ng the number of detected flaws and the sample of flaw
sizes h = (h1, ..., hy,);

e the missing data which are the actual number n of flaws, the undetected (n — ny)
flaw sizes z = (21,...,2n—n,) and the error vector, associated to the measured flaws,
e=(e1,.--,€ny);

e fixed constants inherent to some data description, namely the parameters defining
the POD function (grouped under the name "POD" in the DAG), the notification
threshold s and the parameters defining the error distribution (reduced to ¢ for a
uniform error);

e the parameters to be estimated in the probabilistic model, they are n and 6, with
0 = (8,7) in the Weibull case;

e the parameters used for defining the prior distributions, to be fixed by the user, in the
Bayesian representation of the model; we will call them "hyperparameters" in the fol-
lowing. They are A, a, b and the hyperparameters used to define the prior distribution
of . (In the Weibull case, those hyperparameters are A, B, r,t, 5; and (,.)

Each quantity in the model appears as a node in the graph, and directed links corres-
pond to direct, probabilistic or deterministic, dependences. In the present graph, the most
important link is represented by the arrow from n, the actual number of flaws, to z the
sizes of the unmeasured flaws. This link is of crucial importance since it allows to convey
inference on the number of flaws to the flaw sizes. We are now in position to detail the
Gibbs sampling steps for the model depicted in Fig. 1.
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Figure 1: DAG of the flaw size model specific to the Weibull distribution.
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3.3 The Gibbs sampling implementation

We describe the (j 4 1) iteration of the Gibbs sampling (j denotes the iteration index). Step
a concerning the simulation according to the full conditional posterior distribution of n is
decomposed as follows:

e Sample M *! from w(A|n?, 07,27, e/ h,ng) = G(a +n?,b+1).

e Sample n/*! from 7(n|A*1,609,27, e/ h,ng) = P ((1 — p/)AI*) + no. It is achieved
in the following way: 7 is sampled from P ((1 — p/)M*') and ni*! = i + ny. Here,
according to equation (2), p? is approximated through Monte Carlo integration

_ 1 oo _
P = 100 ZPOD@/?)
i=1

where y{, e ,y{oo are independent realizations from the current flaw size distribution
£167).

The implementation of Step b, concerning the simulation of the full conditional posterior
distribution of the flaw size parameter 0, is as follows

o Simulate n/t! — ny "unmeasured" flaw sizes from the current flaw size distribution
f(h|67). Those simulations are performed as follows. Let Z be a random drawing from
f(h|67). If Z < s accept this value, otherwise accept it with probability 1 — POD(Z).
This process is continued until n/*! — ng simulated flaw sizes are accepted. Let z/t!
be the resulting simulated flaw size vector.

e Simulate e/t = (&', ..., el 1), a vector of ng independent errors from the distribu-

tion f.(e).

e The sampling of #7*! depends on the flaw size distribution at hand. It is detailed for
the three considered distributions hereunder.

Ezxponential distribution: 7! is simulated from a G(A+n !, B+ Y"1 (hi +elth) +
S gt
= 7 °

Weibull distribution: Since there is no conjugate prior distribution for the parameter
6 = (B,n) of a Weibull distribution, the simulation of §/*! from its full conditional
distribution is more complicated. We make use of an Hasting-Metropolis algorithm to
achieve this simulation. More precisely, we first sample a candidate vector 8 = (3,7)
from the proposal distribution 7w(3)w(vy) and we accept it with probability

w(B)r(7)LC (b, &+, 27+ ()
m(87)m (7)) LC(h, eI+, 27+ [67)

min(1,
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where,

no
Lo, et 27M0) = [ aB(v(hi + €))7~ expl=(v(hi + €] ™))"
i=1

n.7+1_,n0

H VB(y (=) expl—(v( )]

is the likelihood of ¢ for the completed flaw size sample. If the candidate vector 6
is accepted, the next state becomes #7*! = 4, if the candidate is rejected, the state
remains the same, i.e. §7t1 = g7,

Log-normal distribution: 1/(c?)7*! is simulated from a G(v/t1/2,$9+1/2) and mi*!
is simulated from a normal distribution with mean MJ*! and variance (¢2)7+!/Ri*!,

with
vt =y 414 pdtt
Rj+1 — R _|_ nj+1
A+ — RM +ni*1h
B Ri+1
-1
St =84V + l+L (M — h)?
R nitl
Spey log(hi + ™) + Y ™ log(a7 ™)
f = 22i=1"08\1i T € i=1 8\ %
nj+1
and -
n j+1 T n?T—n, i+1 T
v = iz [log(hi + ") R+ Y, ™og(z ) — A
= i .
Finally the sequence of iterates (n’,p’,67),j = jo,...,J can be regarded as a sample of the

posterior distribution 7(n,p,8/h,ng). The integer jo > 1 defines the length of the burn-in.
It must be chosen large enough to ensure that the chain has forgotten its starting position.
The theoretical specification of this burn-in length is a difficult problem (see for instance
Gilks et al., 1996). Visual inspections of plots is the most commonly used method for
determining burn-in. We used such visual inspection in our experiments, and it seems that
jo = 100 is a reasonable length value for our problem. But, in some circumstances, this
value can appear to be dramatically too small and visual inspection is always necessary to
choose a feasible length of the burn-in jy ensuring that the chain has reached stationarity.
The stopping time .J is an important practical parameter. It must be chosen large enough
to obtain adequate precision in the estimates derived from the MCMC approximation of the
posterior distribution m(n, 8|h, ny). For our particular problem, this point will be discussed
further in Section 5 devoted to the presentation of a numerical experiment.
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4 Choosing the prior parameters

In this section, we give simple guidelines for choosing the hyperparameters of the prior
distributions.

4.1 Choosing the flaw number hyperparameters

For the actual number n of flaws, we considered a hierarchical Bayes analysis: the distribu-
tion of n is a Poisson distribution P (), and the distribution of the random parameter A is
a gamma distribution G(a,b) with mean value a/b and variance a/b?. Thus the hyperpara-
meters a and b can be chosen from a guessed value of the mean number n of flaws regardless
their sizes. As we will see in the following, i appears to be a sensitive parameter of the
Bayesian analysis. Note that the Jeffreys non informative prior for A (see Robert 1994) is
proportional to A~/? and, thus, the non informative strategy leads to take a = 1 /2 and
b=0.

4.2 Choosing the flaw size hyperparameters

For choosing the hyperparameters of the prior distribution concerning the flaw size we make
use of prior information on the so-called “reference flaws”. This information is defined with
equations of the following type

P(there exits on a vessel a flaw of size > hg) = 107%. 4)

Denoting N and H the random variables associated respectively with the actual number of
flaws n and the size of a flaw, we have

+0oo
P(there exits on a vessel a flaw of size > hg) = Z P(N =n)(1— P(H < ho)")
n=1

“+o0
= ZP(N =n)(1 - (1 - P(H > ho))")

Q

+oo
> " P(N =n)nP(H > hy),

for P(H > hy) small enough compared to one. Finally we have
P(there exits on a vessel a flaw of size > hy) = P(H > hg)f. (5)

This equation highlights the importance of the quantity 7 for choosing the flaw size hyper-
parameter prior values in the Bayesian analysis.

We now examine how the equation (5) can be exploited to derive the hyperparameters
of the prior distribution defined for §. The idea is to define intervals, derived from extreme
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values for 6, producing a reasonable range of values for this parameter from several equations
of the form (4). This is achieved as described hereafter for the three considered flaw size
distributions.

Ezponential distribution: We need two equations (4) to derive the bounds v; and ~, of an
interval of possible values for the scale parameter . From (5), they take the form

nexp(—hy,) =10"¢

and :
fiexp(—h'y) =104

with h < b’ and d < d'. Tt leads to

Vr = %[logﬁ + dlog 10]
and 1

= W[logﬁ + d'log 10).

Approximating the prior distribution G(A, B) with a normal distribution and assuming that
[v1,7»] is a centered +2 standard deviation interval, we get

2
A 4(’7[ +’YT‘)

(v —r)?

and ( )
" +7r

B=8——=.

(1 =)?

Weibull distribution: Since in this situation, the parameter 6 is bivariate, we need four
equations (4) to derive the extreme values of §. They are of the form

ﬁexp[—(hn'yl)ﬁl] = ].Oidll,
nexp[—(h1ay1)?] = 10742,
nexp[—(ha172)?] = 10~ %1,

and
ﬁexp[—(h22'y2)ﬂ2] = 10_d22, (6)

with h11 < hia, Aoy < has, d11 < di2, and da; < dss. This four-equation system leads to

— Dll - D12
log(hll) - 10g(h12) ’

I
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and
B = D31 — Dss 7
log(ha1) — log(ha2)
1 Dy
n=prew (5)

1 ( Dy )
= ex
Y2 p By

D;; =log [log(n) + d;; log(10)] .

where for i = 1,2 and j = 1,2

Then, we put v; = min(y1,72), ¥ = max(y1,72), £ = min(B1, B2) and B, = max(B1, B2).
The coherence of the equations of the form (4) provided by the experts ensures that the
above written solutions are well defined.

Log-normal distribution: As in the Weibull case, we need four equations of type (4), to get
the values m;, m,, o7 and o2. In this situation, we have

P(H>h):1_¢(W)’

ag

where ® is the cumulative distribution function of a normal distribution with mean zero and
variance one. The four equations (5) take the form

I (w) =10~
L 01
oo (b =m)]
L a1 |
- '1 s <log(h21) - mr)- — 10~
L Or i
and _ i
alil—a (10g(h22) - mT) — 10—d22
Or

with hyy < hia, hoy < has, du < di2, and dy; < d22. Those equations lead to

o loghp® (1 -10""/7) — log hu®'(1—10""2/a)
1= -1(1—10-%1/n) — ®-1(1 — 10-%2 /i)

o log haa® (1 — 107 %1 /) — logh21<I> 11 — 107422 /p)
T &—1(1 — 10421 /p) — &=1(1 — 10922 /p)
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IOg(hu) — log(h12)
$-1(1— 1041 /7) — (1 — 10~%12 /7)

Opr =

and
log(hy1) — log(haz)

d—1(1—10-%1/p) — d—1(1 — 10~ %2 /n)’

g =

5 Numerical experiments

To illustrate the behavior of our methodology, we draw a sample of size n = 10 from a Weibull
distribution with shape parameter 8 = 2 and scale parameter v = 0.5. Its theoretical mean
value is 1.77. The observations are littered with a uniform random error of amplitude ¢ = 1.
The resulting data set is {1.0,1.9,1.1,4.4,3.2,1.8,1.7,1.5,2.5,2.4}. Note that the maximum
likelihood estimates from those noisy data are B = 2.4 and 4 = 0.41. Then the data
are filtered with a normal POD function defined by equation (1) whose parameters ¢ and
hm have been computed by solving the equations POD(2) = 0,POD(4) = 0.5,POD(6) =
0.9,POD(9) = 1, with the mean square error method. Using a detection threshold s = 4
mm, we get a unique (ng = 1) flaw size h; = 4.4. Using a detection threshold s = 2 mm we
get three (ng = 3) flaw sizes hy = 4.4, ho = 3.2 and hg = 2.4.

For the inference, we use the same random error distribution e and the same normal POD
function as we considered when simulating the data. This choice is made for simplicity.
Actually, extensive numerical experiments that are not reported here showed that those
parameters are not very sensitive (see Celeux et al. 1997). On the contrary, the assumption
on the expected number 7 of actual flaws is sensitive. In this experiment, we consider three
different values i = 50,10, and 4.

The prior distribution of the Poisson parameter A is a Gamma distribution G(a = 7,b =
1). The prior distributions for the shape parameter 3 and the scale parameter v of the
Weibull distribution have been defined according to the calculations described in Section
4.2. The bound Sy, 8;, 7 and ~, have been deduced from the four-equation system (6) with
h11 = 2, hlg = 3, d11 = ]., d12 = 7, and h21 = 3, h22 = 4, d21 = 2, d22 =3. Moreover, we set
r =t = 1 for the parameters of the beta distribution Be(r,t, [, 3;]), which becomes the
uniform distribution on [, ;).

The Gibbs sampler described in Section 3.3 is then used with J = 10000 iterations a
burn-in period of jo = 100 iterations. To control that the stopping time J is large enough
to ensure that posterior distribution m(n,8|h,no) is estimated in a satisfactory way, we use
the following heuristic rule:

o At each iteration j, we compute the mean value h’ of the simulated and measured

flaw sizes and we compute
Jo+J

S W

Jj=jo+1

1

[
J — Jo
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e We compare this empirical mean value h (denoted EMV in Tables 1 and 2) of the flaw
sizes with the theoretical mean value (denoted TMV in Tables 1 and 2) of the Weibull
distribution with parameters

Jo+J

1 .
0,2,

Jj=jo+1

8=

and
Jo+J

.

Jj=jo+1

1
J = Jo

'Ty:

When J is large enough to ensure a reasonable approximation of the posterior dis-
tribution 7(n,8|h,ng), the values EMV and TMV are expected to be close. Thus, if
EMV and TMYV are notably different, it can be guessed that J is too small to ensure
the Gibbs sampler convergence for the chosen prior distributions.

Typically, such a situation occurs when the Gamma prior distributions G(A, B) and G(a, b))
of v and X are too tight around their mode. Thus, when EMV and EMT are different we
multiply A and B by M (M < 1) and @ and b by m (m < 1). Consequently, the means
of the prior Gamma distributions are unchanged, but their variance are multiplied by 1/M
and 1/m respectively. (This is the reason why we take M,m < 1.) The values M and m
are chosen by trial and error to get close EMV and TMYV values. This modification of the
prior distributions results in a more mixing Markov chain and produces an acceleration of
the Gibbs sampler convergence, and consequently allows to take a larger J value.

Table 1, respectively Table 2, displays the posterior means of the actual number of flaws
est(n), the shape parameter 3 and the scale parameter ¥ of the Weibull distribution for three
different prior values of 7 = 50,10, and 4 and a 4 mm detection threshold (one measured
flaw), respectively a 2 mm detection threshold (three measured flaws). Those tables display
also the corresponding EMV and TMV values and the variance dilatation coefficients M
and m.

| est(n) S ¥ |EMV TMV M m
50 45 24 046 | 2.03 193 0.1 0.1
10 10 20 043 | 2.24 206 0.1 0.1
4 4 2.5 036 | 2.99 246 0.1 0.1

Table 1: For a detection threshold s = 4 mm and different prior assumptions 7 on the actual
number of flaws, posterior means of the actual number of flaws est(n), the shape parameter
B and the scale parameter 5 of the Weibull distribution. EMV : empirical mean value of
the flaw size; TMV : theoretical mean value of the flaw size; M and m are the dilatation
coefficients chosen for the prior Gamma, distributions.
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7 | est(n) S ¥y |EMV TMV M m
50 44 2.1 049 | 1.87 1.81 0.1 0.1
10 11 24 040 | 242 222 01 0.1
4 6 2.5 038 | 2.77 234 01 0.1

Table 2: For a detection threshold s = 2 mm and different prior assumptions % on the actual
number of flaws, posterior means of the actual number of flaws est(n), the shape parameter
( and the scale parameter 7 of the Weibull distribution. EMV : empirical mean value of
the flaw size; TMV : theoretical mean value of the flaw size; M and m are the dilatation
coefficients chosen for the prior Gamma distributions.

Typically, the variance dilatation factors M = 0.1 and m = 0.1 produce good results
in these numerical experiments. The estimates posterior values of n, § and v are quite
reasonable according to the small sample size in both situations. Note for instance that with
a detection threshold s = 2 mm (three measured flaws) and the prior assumption i = 10, we
get Bayesian estimates of 8 and v very close to the maximum likelihood estimates obtained
from the complete flaw data (ten actual flaws). Not surprisingly, the estimates are slightly
better when s = 2 mm. But the influence of the prior assumption concerning the actual
number of flaws seems to be a more important factor. For instance, as expected, the mean
flaw sizes EMV and TMYV are decreasing functions of 7.

6 Discussion

In this paper, we proposed a fully Bayesian analysis of flaw size distribution and flaws density
of PWR vessels. This Bayesian modelling allows various assumptions concerning the flaw
size distributions, the flaw sizing error distribution and the probability of detection of a
flaw. The resulting model is estimated with a Gibbs sampler avoiding technical difficulties.
Moreover, numerical experiments exhibit good performances even for poor sample sizes. The
price to be paid is twofold:

e The Gibbs sampler is high time consuming.

e The tuning of some of the prior hyperparameters must be performed by trial and error
to get reliable estimates. But, we have conceived an efficient rule of thumb to achieve
this tuning operation.

In our experiments, we revealed a sensitive prior parameter to be fixed: the number 7 of
actual flaws guessed by the experts. In our opinion, it is possible to go further by taking
into account the “indications” beyond the detection threshold s. Indeed, the indications are
either small flaws or artifacts. It is natural to assume that the artifacts are the realizations of
a Poisson process with mean value ps. Thus, the extension to a model handling indications
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does not seem to produce major additional difficulties. And designing a Gibbs sampler to
identify such a model will be possible without tears.

In this framework, the sensitive parameter of the model will be the mean measure y of
the Poisson process rather than the mean number n of actual flaws. Choosing the prior
distribution of p will be facilitated by the fact that we know that ps is smaller than the
number of observed indications. And, clearly, a model taking account of this new information
(the number of indications smaller than s) will be a more accurate model than the present
one. Our future work will consist in designing such a model handling the indications in a
fully Bayesian perspective.
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