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Abstract: Using an eigenvalue decomposition of variance matrices, Celeux and Govaert
(1993) obtained numerous and powerful models for Gaussian model-based clustering and
discriminant analysis. Through Monte Carlo simulations, we compare the performances of
many classical criteria to select these models: information criteria as AIC, the Bayesian
criterion BIC, classification criteria as NEC and cross-validation. In the clustering context,
information criteria and BIC outperform the classification criteria. In the discriminant
analysis context, cross-validation shows good performance but information criteria and BIC
give satisfactory results as well with, by far, less time-computing.
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Choix de modéles en classification automatique
et en discrimination

Résumé : Par le moyen d’une décomposition spectrale des matrices de variance, Celeux
et Govaert (1993) ont obtenus de nombreux modéles trés utiles pour la classification au-
tomatique ou la discrimination lorsque ces méthodes reposent sur des modéles de mélange
gaussiens. De nombreuses simulations de Monte-Carlo nous permettent de comparer la per-
formance de plusieurs critéres pour choisir ces modéles : des critéres d’information comme
AIC, le critére bayésien BIC, des critéres de classification comme NEC et le critére de vali-
dation croisée. En classification automatique, les critéres d’information et BIC donnent de
meilleurs résultats que les critéres de classification. En discrimination, le critére de valida-
tion croisée a un bon comportement mais les critéres d’information et BIC donnent aussi de
bons résultats avec beaucoup moins de calculs.

Mots-clé : Modéles de mélange gaussiens, décomposition spectrale, validation croisée,
critéres d’information, critéres de classification



Choosing Models in Model-based Clustering and Discriminant Analysis 3

1 Introduction

Finite multivariate Gaussian mixture distributions lead to commonly used models for mul-
tivariate data analysis and statistical pattern recognition (see for instance McLachlan 1992
and Ripley 1996). Recently several authors have exploited the eigenvalue decomposition of
the group variance matrices in Gaussian mixtures to propose numerous and powerful mo-
dels for clustering (Banfield and Raftery 1993, Celeux and Govaert 1995, Bensmail, Celeux,
Raftery and Robert 1997) and discriminant analysis Flury, Schmid and Narayanan 1993,
Bensmail and Celeux 1996). This parametrization of the mixture components provides a
general and flexible framework to give raise to efficient, although somewhat unusual, cluste-
ring criteria and classification rules. It consists in writing the variance matrix Xy, in terms
of its eigenvalue decomposition

Y = M D Ap Dy, (1.1)

where )\, = |Ek|l/ ¢ d denoting the number of variables, D; the matrix of eigenvectors of
¥ and Ay a diagonal matrix, such that |Ay| = 1, with the normalized eigenvalues of ¥, on
the diagonal in a decreasing order.

The parameter A determines the volume of the kth group, Dy, its orientation and Ay
its shape. By allowing some but not all of these quantities to vary between groups, we
obtain parsimonious and easily interpreted models which are appropriate to describe various
clustering or classification situations. For instance Celeux and Govaert (1995) and Bensmail
and Celeux (1996) considered 14 different models related to different assumptions on the
group variance matrices. Eight of these models are obtained by assuming equal or different
volumes, shapes or orientations ([ADAD'], [\txDAD'], [A\DAD'], [\xDAD'], [A\D,AD;],
[AxDrAD], [\DArD}], and [\y Dy A D}].) We use the following convention: writing, for
instance, [ADAjD'] means that we consider a mixture model with equal volumes, equal
orientations, and different shapes. Four models assume diagonal variance matrices, we
denoted them by [AB], [AB], [AByg], [MByg] with |B| = 1 or |Bg| = 1, and two models
assume spherical shapes [AI], [AxI], where I denotes the identity matrix.

In this framework, selecting a relevant and parsimonious model is a difficult task of
crucial importance. In this paper, we review different approaches of model selection in
cluster analysis and in discriminant analysis. For both situations, we report Monte Carlo
numerical experiments to illustrate the performance of the considered approaches.

In the cluster analysis context, we propose to compare the performance of information
criteria, criteria derived from approximations of the integrated likelihood and classification
criteria for choosing the model producing the lowest empirical error rate.

In the discriminant analysis context, we compare the performance of the cross-validation
procedure to information and Bayesian criteria for selecting the model producing the lowest
error rate in a small sample setting.

RR n~° 3509



4 Christophe Biernacki, Gérard Govaert

2 Choosing a mixture model in cluster analysis

In the multivariate Gaussian mixture model, data z;,...,2, in R? are assumed to be a
sample from a probability distribution with density

f@) = med(@, ax) (2.1)
k=1

where the p;’s are the mixing proportions (0 <py < 1lforallk=1,...,K and ), px =1)
and ¢(z, ay) denotes the d-dimensional Gaussian density with mean g, and variance matrix
¥y with ap = (g, k). In what follows, the number of clusters is assumed to be known and
the variance matrices ¥ are supposed to be modelized according to one of the 14 models
described in the introduction. The maximized log likelihood of ((p1,a1),...,(pk,axk)) for
the sample x4, ..., x, is denoted

L(M) = Zlog lz ﬁk¢(mi;ak)] ) (2:2)

with py and @y, denoting the maximum likelihood estimates of the corresponding parameters.
In this formula, M is one of 28 models: namely, the 14 models previously defined with equal
or different mixing proportions.

Various criteria to be minimized have been proposed to measure a model’s suitability
by balancing model fit and model complexity. In this paper, we only mention those criteria
that we have experimented: information criteria (AIC, AIC3, ICOMP), a Bayesian informa-
tion criterion (BIC) and classification criteria (entropy, NEC, fuzzy classification likelihood,
classification likelihood). Other approaches to the problem of assessing mixture models,
including their resampling approach, are cited in McLachlan and Peel (1996).

2.1 Information criteria
The Akaike information criterion (Akaike 1974) takes the form
AIC(M) = —2L(M) + 2v(M), (2.3)

where v(M) is the number of free parameters in the mixture model M. Because the re-
gularity conditions on which the AIC criterion relies do no hold when the likelihood ratio
A is designed to contrast two hypotheses on the number of components (see for instance
Aitkin and Rubin 1985), Bozdogan (1987) proposed to use the approximation to the null
distribution of —21log(A) given by Wolfe (1971). It leads to a modified AIC criterion

AIC3(M) = —2L(M) + 3v(M). (2.4)

In this paper, only the Gaussian model has to be selected since the number of clusters is
fixed, and, so, AIC3 has no justification in our context. For choosing parsimonious models,

INRIA



Choosing Models in Model-based Clustering and Discriminant Analysis 5

Bozdogan (1990) proposed also an informational complexity criterion,

v(M)
2 %800

trF—1 1 _
~ S log|F, (2.5)

ICOMP(M) = —2L(M) +

where F' is the Fisher information matrix of the model. Thus, when measuring the com-
plexity of a model with ICOMP, there is a need to approximate F. The calculation of
F' depends on the parametrization of the model and can be difficult. In our experiments,
following Cutler and Windham (1993), we approximate F' with its empirical mean given by

!
9)’

where 0 is the vector of parameters ((p1,a1),...,(Pr,ak)) of M.

2.2 A Bayesian information criterion

In a fully Bayesian inference for Gaussian mixture models, a simple way to determine the ap-
propriate model is to calculate the integrated likelihood (Kass and Raftery 1995). Integrated
likelihood of the data d = (x1,...,2,) given the model M is

Pr(d|M) = / Pr(d|M, 0)Pr(6|M)de, (2.6)

where Pr(#|M) is the prior density of 6. A classical way to approximate the integrated
likelihood consists in using the Bayesian information criterion (Schwarz 1978). Noting 6
the maximum likelihood estimate of @, this approximation is

P M
logPr(d|M) =logPr(d|M,0) — % logn + O(1). (2.7)
Thus the Bayesian information criterion (BIC) is given by

BIC(M) = —2L(M) + v(M)logn. (2.8)

2.3 Classification criteria

The classification criteria we propose in this section measure the ability of a mixture model to
provide well-separated clusters. They are derived from a relation emphasizing the differences
between the likelihood and the “fuzzy” classification likelihood of the mixture (Hathaway
1986) or, in the same manner, between the likelihood and the classification likelihood of the
mixture (Biernacki and Govaert 1997). Let

Pep(x;, ay)
PORR T CINTY

ti, =

RR n~° 3509



6 Christophe Biernacki, Gérard Govaert

be the estimated conditional probability that x; arises from the kth mixture component
(1<i<mnandl<k<K). Direct calculations show that

C(M) = L(M) — E(M), (2.9)

with the fuzzy classification likelihood

K n
- Z Z tix log[pro(x;, ax)l,

k=

[y
[y

=

and the entropy term
n

Z tir logty, > 0.

i=1

E(M) =

Mw

B
Il
-

C(M) is related to the fuzzy classification matrix ¢ = {¢;;}. If the mixture components
are well-separated, the classification matrix ¢ tends to define a partition of (x1,...,x,)
and E(M) =~ 0. But if the mixture components are not well-separated, E(M) has a large
value. Thus, E(M) can be regarded as a measure of the ability of the K-component mixture
model to provide a relevant partition of the data (x1,...,x,). Relation (2.9) shows that
the classification likelihood term C(M) can be regarded as a compromise between the fit of
the data to the mixture model, measured with the log likelihood L(M), and the ability of
the mixture model to provide a classification in well-separated clusters, measured with the
entropy term E(M).

As a consequence, the entropy of the classification matrix ¢ gives raise to several clas-
sification criteria (see Celeux and Soromenho 1996, Biernacki 1997) which are E(M), its

normalized version
NEC(M) = E(M)/[L(M) — Ly (M)],

where L; (M) denotes the maximized likelihood for a single Gaussian distribution and C(M)
the fuzzy classification likelihood.

A relation between the likelihood and the classical classification likelihood exists in the
same manner (Biernacki and Govaert 1997). Direct calculations show that

CLM(M) = L(M) — EC(M), (2.10)

with the classification likelihood

Z zik log[Prd(x;, ar)],

11i=1

Mw

CLM(M
k

and a kind of entropy term

K n
— _ZZziklogtik >0,

k=1 1i=1

INRIA



Choosing Models in Model-based Clustering and Discriminant Analysis 7

where z;, = 1 if argmax,t;; = k and 0 otherwise. The behaviour of EC(M) is analogous
to the behaviour of E(M) since EC measures the cluster overlapping and EC(M) =~ 0 if
clusters are well-separated. Relation (2.10) shows that CLM, as C, makes a compromise
between the fit of the data and the ability of the mixture model to provide a classification.
So, CLM(M) and EC(M) are two other classification criteria of interest (Biernacki 1997,
Biernacki and Govaert 1997).

3 Choosing a discriminant analysis model

In the discriminant analysis context, the partition and the number of classes K are known.
A natural way to choose a model is to select the model that minimizes the sample based
estimate of future misclassification risk by cross-validation. This is done in Bensmail and
Celeux (1996) to choose a model among the 14 models mentioned in the introduction.

It is worth noting that in many circumstances several models provide exactly the same
cross-validated misclassification rate. In such cases, several strategies are possible and in
the present paper we investigated two strategies. The first one consists in selecting the most
parsimonious model (i.e. the model for which the number of parameters is the smallest);
we denoted this strategy by CV—. The second one consists in selecting the most complex
model for which the number of parameters to be estimated is the greatest. This strategy is
denoted by CV+.

However, it can happen that, for some specific values of K and d, different models
have the same number of parameters. In such cases, we complete the CV— strategy in
the following manner: at first, a spherical model is preferred to a diagonal model which is
preferred to a non diagonal model; secondly, a model with different volumes is preferred to
a model with different shapes which is preferred to a model with different orientations. For
the strategy CV+, we proceed exactly in the opposite way.

But, it appears that cross-validation procedures are painfully slow, even if it is generally
possible to reduce the calculations when computing the cross-validated classification rules
(see Appendix A for details). Then, it would be of interest to use one of the criteria presented
in Section 2. Thus, we experimented with the criteria AIC, AIC3, BIC in comparison with
the cross-validation criteria CV— and CV+.

4 Numerical experiments

4.1 Choosing a clustering model

We assessed the practical ability of the criteria L (the log likelihood), AIC, AIC3, BIC,
ICOMP, NEC, EC, E, CLM, and C to choose a model when the number of clusters K is
known. We simulated two-component bivariate Gaussian mixtures with different variance
matrices. The variance matrices were determined according to the 14 models based on their
eigenvalue decomposition as described in Table 1.

RR n~° 3509



8 Christophe Biernacki, Gérard Govaert

Moreover, two kinds of mixing proportions have been choosen (Table 2). The centres of
the two components were g, = (0,0)" and @, = (¢,0)’. Defining the optimal misclassification
rate as the misclassification rate obtained with the true parameter 8, we choose the value ¢
to get three degrees of overlapping: a small one corresponding to an optimal misclassification
rate of 5%, a medium one corresponding to an optimal misclassification rate of 15% and
a large one corresponding to an optimal misclassification rate of 30%. Note that for some
quite different variance matrices, we were unable to reach the large misclassification rate,
and finally we get 73 different mixtures models.

For each of those 73 models, we simulated 30 times a sample of size n = 40 and 30 times
a sample of larger size n = 200. Then the EM algorihm (Dempster et al. 1977) is started
with the true underlying centres for each model in turn. Figures 1 and 2 summarize the
results. They give, for each criterion, the histogram of the ratio of the minimum empirical
misclassification rate obtained with one of the 28 models over this misclassification rate
obtained with the model chosen by the criterion. This ratio takes value between zero and one,
and its ideal value is one. Moreover, Tables 3 and 4 give the mean number of parameters in
the mixture model selected by the criteria which has to be compared with the mean number
8.14 of the true underlying model. Note that the mean number of parameters of the models
selected by L is little less than the expected number of parameters of the most complex
model (11 parameters) because a suboptimal solution may be found by the EM algorithm
since this one is started only once with the true centres. In these tables, we also mentioned
the mean number of parameters obtained when using the empirical misclassification rate
(column mis. r.) as a criterion of selection.

In the small sample size case (n = 40), each criterion gives similar low performance (less
than 6.5) with an especially bad performance for the classification criteria NEC, EC and E
(ratio less than 6.0). Moreover, it is very amazing that the likelihood L criterion leads to
the best performance since it theoretically selects only the most complex model.

All criteria improve their performance with the larger sample size n = 200. The mean
number of parameters for the selected model increases for information criteria and the BIC
criterion whereas it decreases for the classification criteria. It appears that the best results
are obtained with the criteria AIC3 and AIC and that the information criteria and BIC
outperformed the classification criteria. It is somewhat amazing that AIC3 gives the best
performance since, in the context where K is known, it has no theoretical justification.

4.2 Choosing a discriminant analysis model

In a discriminant analysis context we simulated the same models than in section 4.1. The
only differences are that we only consider equal proportion models and that for each situa-
tion, we consider two small sample sizes n = 10 and n = 50 instead of n = 40 and n = 200.
As before, each situation (37 models with n = 10 and 37 models with n = 50) was simulated
30 times. The compared criteria were L, AIC, AIC3, BIC, CV— and CV+. Figures 3 and
4 give, for each criterion, the histogram of the ratio of the minimum misclassification rate
obtained with one of the 14 models over this misclassification rate obtained with the model

INRIA



Choosing Models in Model-based Clustering and Discriminant Analysis 9

Times shapes and orientations
volum
sl T =1 7] | [B] | [Bx] | [C] | [Ck] | [DARD'] | [DxAD;]
0[1)\] v | 12 2 | 2| 2 2 2
, =
different || Ay =1 a || 1] 2 4 2 4 4 2
D] N — 3 S| - | 90 | 90 | 45 | 45 45 45
k 2 S || - |90 | 0 |45 | 45 45 45

Table 1: Variance matrices related to the 14 simulated models. ay is the first diagonal term
of the shape matrix Ay and &y is the angle in degrees of the rotation matrix Dy,.

proportions
equal p1 =05

different || p;1 = 0.3
[Px] p2 =0.7

Table 2: Proportions related to the simulated models.

L AlC AIC3 BIC ICOMP
20 | 20 | 20 | 20 | 20 |
& 0.654 | 0.645 | 0.635 | 0.621 | 0.647 |
~ | | | | |
§’15 (0.0853)| 15} (0.0873)| 15} (0.0949)I 15} (0.102) | 15} (0.0808)
£ | | I I |
% | | | |
s 10 [ 10 10 10 | 10 l
E | I | I
2 I I I
(2]
5 5 | 5 I 5 5 | 5 I
= | H | | |
0 [T 0 H 0 I 0 [ i 0 HH |

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
Relative performance

NEC E CLM C
20 | 20 | 20 20 |
0.577 | 0578 | 0.645 0.634 |

| | |

(0.116)1 (0.121)1 (0.0893) 15| (0.0921)!

| | |

|

(&

|
I
I
I
I
l
I 10
I
I
I
I
I
I

Figure 1: For each criterion, histogram, mean value, and, in parentheses, standard deviation
of the ratio of the minimum misclassification rate over the misclassification rate of the model
chosen by the criterion with the sample size n = 40.

RR n~° 3509



10

Christophe Biernacki, Gérard Govaert

L AlC AIC3 BIC ICOMP
20 20 20 20 |20 |
0.828 I 0.843 I 0.845 I 0.841 I 0.832 I
Q | | | | |
Els (0.074) 15t (0.0648) [ 15} (0.07) n 15} (0.0865) 1| 15} (0.0779) |
S I | I I
R I |
210 10 10 Il 10 I 20
2 \ I |
©
2 I I
25 5 ! 5 I 5 5
z I I
I I
0 0 Lo o i 0
0 0.5 1 0 0.5 0 0.5 1 0 0.5 1 0 0.5
Relative performance
NEC EC E CLM C
20 | 20 | 20 | 20 | 20 |
0.605 | 0.629 | 0.621 | 0772 | 0738 |
I I I I I
15t (0.163) | 15t (0.145) | 15} (0.149) | 15 (0.107) | 15 (0.122) |
I I I I I
I I I I I
10 I 10 I 10 I 10 I 10 I
I I I | |
I I I
5 5 5 | 5 5
0 0 0 0 0 o )
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

Figure 2: For each criterion, histogram, mean value, and, in parentheses, standard deviation
of the ratio of the minimum misclassification rate over the misclassification rate of the model
chosen by the criterion with the sample size n = 200.

[mis. r. ]| L [AIC [AIC3 [BIC [ICOMP [NEC| EC | E |[CIM | C |
[ 790 [[1059[8.16] 7.6 | 7.19] 8.65 | 8.34 | 8.59 | 8.61 | 10.03 | 9.88 |

Table 3: For each criterion, the mean number of parameters for the selected model with the
sample size n = 40. The mean number of parameters for the true underlying model is 8.14.

[mis.r. | L [ AIC | AIC3 [ BIC [ ICOMP [ NEC [ EC | E [CLM | C |
[ 860 [[10.72[840] 8.04 | 7.67 | 9.08 | 7.95 | 8.46 | 8.50 | 9.67 | 947 |

Table 4: For each criterion, the mean number of parameters for the selected model with the
sample size n = 200. The mean number of parameters for the true underlying model is 8.14.
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Choosing Models in Model-based Clustering and Discriminant Analysis 11

chosen by the criterion. This ratio takes value between zero and one, and its ideal value is
one. Tables 5 and 6 summarize the results in the same way as Tables 3 and 4.

Those simulation experiments show that for the very small sample size n = 10 the cross-
validation criteria can be preferred to information criteria. Moreover, the parsimonious
cross-validation strategy CV— outperforms the strategy CV+.

For n = 50, information criteria now outperform the two cross-validation strategies. The
best results are obtained with AIC3 and the same remark concerning the lack of justification
of this criterion is in order. .. Maybe the BIC criterion can be preferred since its performance
is just behind AIC3 and its justification holds in this context. Moreover, all the criteria,
except L, prefer a more complex model in comparison to the smaller sample size n = 10. It
is interesting also to note that the strategy CV+, which selects quite complex models, give
best performance that the more parsimonious criterion CV—.

We simulated also 30 samples of size n = 60 from two quite overlapping clusters in high
dimension (d = 10):

11 1 1 1 11 1 1 1
12 11 111 1 1 1

113 1 111 1 1 1

g (1) 111 4 1 1 1 1 1 1

m=p=05m=| . |om=| . [ m=m=| T 17 601
o 0 111 1 11711 1

111 1 1 1 1 8 1 1

111 1 11119 1

111 1 1 1 1 1 1 10

Ratio of the minimum misclassification rate over this misclassification rate obtained with
the selected model and also mean number of parameters of this model are diplayed in Table
7 for previous criteria. The good behaviour of CV— is strengthened by this numerical
experiment and the information criteria and the BIC criteria confirm a good performance
as well.

We considered also a model with a non-Gaussian class in dimension two. The first class is
Gaussian with mixing proportion 0.5, center (2,0)" and variance matrix identity whereas the
second class is a mixture of two Gaussian distributions. Parameters of this two component
mixture are: equal mixing proportions, same center at (0,0)’, variance matrices equal to
diag(0.25,4) and diag(4,0.25). Figure 5 displays isodensity curve of the three Gaussian
distributions and the optimal classification boundary as well. Overlapping of the Gaussian
and the non-Gaussian class is moderate.

As before, 30 samples of size n = 10 and 30 samples of size n = 50 are generated and all
the criteria are computed on each sample for the 14 models. Results are displayed in Tables
8 and 9 in the same way as Table 7.

The CV— criterion outperforms all other criteria for both sample sizes. Contrary to
previous simulations, mean number of parameters for the selected models for information
criteria and BIC decreases with the sample size.

RR n~° 3509



12 Christophe Biernacki, Gérard Govaert

L AlC AIC3 BIC
20 | 20 | 20 | 20 |
| 07499 [ 0.7658 [ 0.7841 [ 0.7706 [
& (0.1099) ' (0.0979) ' (0.08705) ! (0.09479) !
215 | 15 | 15 | 15 |
g | | | |
8 | | | |
© 10 [ 10 [ 10 [ 10 [
g | | | |
E | | |
» 5 | 5 | 5 | 5
g M |
i I
0 0 I 0 0 H 0 I 0 0 H
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
Performance relative
VvC- VC+
20 | 20 |
0.8004 [ 0.7871 [
| |
0.08548 0.07569,
15] ¢ ) 15] ¢ )
| |
| |
10 [ 10 [
| |
| |
I
0 il 0 l
0 0.5 1 0 0.5 1

Figure 3: For each criterion, histogram, mean value, and, in parentheses, standard deviation
of the ratio of the minimum misclassification rate over the misclassification rate of the model
chosen by the criterion with the sample size n = 10.

[mis. 1. | L [AIC]AIC3[BIC [ CV— [ CV+ |
| 733 [|10.00][749] 691 | 7.32] 6.10 [ 8.14 |

Table 5: For each criterion, the mean number of parameters for the selected model with
sample size n = 10. The mean number of parameters for the true model is 7.54.

| mis. r. | L [ AIC | AIC3 | BIC | CV— [ CV+ |
| 811 [[10.00 | 7.84 [ 7.59 | 7.45 [ 7.06 | 8.84 |

Table 6: For each criterion, the mean number of parameters for the selected model with
sample size n = 50. The mean number of parameters for the true model is 7.54.
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L AIC AIC3 BIC
20 | 20 | 20 r 20 I
- 0.9485 I 0.9555 I 0.9579 | 0.9577 |
5 | r | |
™ 0.03224 0.03361 0.03455 0.03475
g:lS ( ) | 15 ( ) 15 ( ) | 15 ( ) |
g | | | |
8 | | | |
¢ 10 | 10 | 10 | 10 |
S | | | |
E | | | |
® 5 | 5 | 5 | 5 |
S | | | |
| | | |
0 I 0 m 0 m 0 N
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
Performance relative
VC- VC+
20 | 20 |
0.9035 I 0.9303 I
| |
0.05964; 0.03531
15 ( ) | 15 ( )
|
|
10 | 10
|
5 5
0 f 0
0 0.5 1 0 0.5 1

Figure 4: For each criterion, histogram, mean value, and, in parentheses, standard deviation
of the ratio of the minimum misclassification rate over the misclassification rate of the model
chosen by the criterion with the sample size n = 50.

| [mis. r. | L [ AIC [ AIC3 ] BIC | CV— [ CV+ |
perf. | 1.000 [| 0.972 [0.985 | 0.994 | 0.996 | 0.997 [ 0.972
nb. par. | 87.00 [| 130.00 | 80.70 | 76.63 | 75.40 | 75.00 [ 129.93

Table 7: Ratio of the minimum misclassification rate over this misclassification rate obtained
with the selected model (perf.) and mean number of parameters for this model (nb. par.)
with samples in dimension d = 10.

| [mis. r. [ L [ AIC JAIC3 [ BIC [ CV— [ CV+ |
perf. [ 1.000 [ 0.685 | 0.723 [ 0.758 | 0.751 | 0.832 | 0.799
nb. par. | 7.13 [ 10.00 | 7.03 | 6.50 | 6.70 | 5.96 | 7.73

Table 8: Ratio of the minimum misclassification rate over this misclassification rate obtained
with the selected model (perf.) and mean number of parameters for this model (nb. par.)
with non-Gaussian class samples of size n = 10.
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Figure 5: Isodensity curves and optimal classification boundary in the case of the non-
Gaussian class.

| |mis.r. ]| L | AIC | AIC3 | BIC [ CV— | CV+ |
perf. 1.000 0.882 | 0.881 | 0.882 | 0.888 | 0.918 | 0.899
nb. par. 6.96 10.00 | 6.76 6.23 6.10 6.43 7.76

Table 9: Ratio of the minimum misclassification rate over this misclassification rate obtained
with the selected model (perf.) and mean number of parameters for this model (nb. par.)
with non-Gaussian class samples of size n = 50.
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5 Discussion

We compared many criteria in the ability to choose a Gaussian model in both the clustering
and the discriminant analysis context. It emerges the following remarks from this study.

In the cluster analysis context, information criteria as AIC3 and also BIC criterion show
reasonable performances to choose a good mixture model when the number of groups K
is known and when the sample size is moderate. Nevertheless, the BIC criterion has to
be preferred to AIC3 since it is more justified in this context. But, both these criteria
are known to overestimate the number of clusters when the model is fixed (Biernacki and
Govaert, 1997). On the contrary, although often having a good behaviour to detect the
number of clusters, classification criteria C, CLM and NEC give poor results to select one of
the considered model. Such results are somewhat disappointing to recommand one criterion
in order to select both the number of clusters and the Gaussian model.

In the discriminant analysis context, results are much more encouraging. The cross-
validation criterion has been shown to be a good way to choose a model especially in a
small sample setting. But simple information criteria as AIC3 or the simple approximation
of the integrated likelihood BIC can be regarded as advantageous alternatives to it in a
large or even moderate sample size setting. We have to remind that, in the case of large
sample size, the cross-validation criterion is a very time-consuming criterion. Moreover, as
in the clustering context, the BIC criterion has to be preferred to the AIC3 criterion from
a theoretical point of view.

Acknowlegments We are indebted to Van M6 Dang for its contribution in the cluster
analysis studies.
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A Reducing calculations for cross-validation

With a sample ((x1, 21),-- -, (€n, 2,)), the label z; being equal to k if x; belongs to the kth
cluster, the cross-validation criterion of a model M is given by

1 n
= Zc (D (x4), 2),
i=1

where 8(a,b) is the 0-1 cost and 7() is the “plug-in” discriminant rule obtained from the
whole sample without the element (z;, z;). Calculation of these n discriminant rules is time-
consuming and we establish, for some models M, updating formulae of r(?) from r (the rule
obtained from the whole sample).

The decision rule r is entirely determined with the mlxmg proportions pi, the centers
fty,, the determinants |¥| and the inverse matrices £;*. For eight models ([\xI], [\xBy],
[AeDrArDy), [M], [AB], [ABk], [A\DAD'] and [/\DkAkD .]), updated determinants and in-
verse of variance matrices can be directly computed from some updated terms: the sample
size, the kth cluster size ny, the within cluster scattering matrix Wy = 377" 3. (z; —
wp)(x; — py) of each cluster, their determinant, inverse and trace and same characteris-

;3

tics for the scattering matrix W = Zszl Wi. The six remaining models use an iterative
procedure to compute the variance matrix and, so, their is no way to simplify calculation
although the iterative procedure needs also some of the previous updated terms.

Tables 10 and 11 give the updating formula for the terms to be calculated. Note that a
slightly more general situation is taken into account: a point y is added (e = +1) to or is
removed (¢ = —1) from the cluster ¢t (¢t = 1,..., K). The formulae are proved in Section B
of Appendix.
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Term Updating formula
to be updated k=t | k#t

Tk ng +€ unchanged
equal py, unchanged unchanged
different py, (ny +€)/(n+e) ng/(n + ¢€)
Ly, (nefe, + ey)/(ne + ¢€) unchanged
Wi, W; + eh;h; unchanged
(W | (Wi |(1 + eh,W, "hy) unchanged
W, W, ' — {e(W, Thy)(W, *hy)'}/(1 + eh,W, *h;) | unchanged
tr(Wy) tr(W;) + ehjhy unchanged

Table 10: Updating formulae of sizes, mixing proportions, centres, scattering matrices, their

determinant, inverse and trace. We noted h; = wi(y — f1;) and w? =

ng
nite’

| Term to be updated |

Updating formula

n n+e

W W + eh;h}

W] W1+ eh;WTh,)
Wt W= —{eW-Th,)(W=Thy)} /(1 + eh]WTh,)
tr(W) tr(W) + ehyhy

Table 11: Updating formulae of the sample size, the within cluster scattering matrix, its

determinant, inverse and trace. We noted h; = w;(y — f1;) and w? =

RR n~° 3509
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B Proof of updating formulae

The aim of this section is to detail how updating formulae displayed in Table 10 have been
obtained. Results displayed in Table 11 are simply deduced from these formulae.

Let E be a set of n points & of IR? with center g = Y zck ®/n and within scattering
matrix @ = Y (@ — g)(® — g)'. Adding (respectively removing) a point y € R? to
(respectively from) the set E gives a new set E* of sample size n* = n + € with e = +1
(respectively € = —1). Noting g* the center and Q* the within scattering matrix of E*,
relations between g*, Q*, Q*~1, |Q*|, tr(Q*) and g, Q, Q~L, |Q|, tr(Q) are now proved.

B.1 Updating the center
Proposition B.1 The center g* of E* is given by
«_ngtey
 n4e
Proof The definition of the center directly gives:

g*= ZmEE*m — ZzeEm+ey — ng + €y
n+e n+e n+e

B.2 Updating the within scattering matrix
Proposition B.2 The within scattering matriz Q* of E* is given by

Q* = Q + ehh’

n
n+e”

with h = w(y — g) and W? =
Proof We have

Q= ) (z-g)z—g"

zeEE*
= Y @-g+9-9g)e—9g+9-9") +ely—g )y —g")
z€EE
= Y @-g)z—9)'+> (x-9)g-9)+>Y (g—g)(z—g)
zeE zeE zeE
) Pt a v T v ’
+> (9-9)9g—g) +ely—g)y—g")
z€E

= Q+n(g-9g")g—9g") +ely-g)(y—-g").
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The updating formula of the center gives also

{ 9-9"=—3=y—9)
y—-g* =

=y —-9).
Consequently
Q= Qi Wy -9) +e— - g)y—g)
(n+¢€)? (n+¢€)?
= Q+eni€(y—g)(y—g)’-

B.3 Updating inverse of the within scattering matrix
Proposition B.3

(Q'h)(Q 'Ry

x—1 _ »—1
=0 1+eh/Q-'h

Proof It suffices to prove that Q*Q*~! =1I:

Q*Q**l — (Q +€hhl) (Ql _G(Q_lh)(Q_lh)l>

1+ ek Q- 1h
0 0 because r'Q-'rheclR
_ . hRQT —RRQ " +chh'Q W Q Th— RR'Q 'hR'Q

1+ eh'Q-1h

B.4 Updating determinant of the within scattering matrix
Lemma B.1 For all h € R?, we have
|I + ehh'| =1+ eh'h.
Proof If h = (z1,...,24)", we have
%+aﬁ 1Ty ... 124 %"'1 1 1
[T+ ehh/| = €

r1X2

T1Tq %—}—mg 1 ee . = +1

RR n~° 3509
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1
5{‘1*'1 :11 LR 1+ ex? ex? exd ... ex?
N -1 1 0 ... 0
_ d 2 1 T :
=e*(z1...24) = 0 . - = -1 0
A 1 -1 1
—ar 0 0 0 0
l+e(zi+...+22) e exd ... ex?
0 1 0 0
= : 0 . . I | =14e?+...+22)=1+€chh.
: 0
0 0 0 1

Proposition B.4
Q"] = 1Q[(1 + eh'Q™ h).

Proof The non-singular symetric matrix () can be written ) = BB’ where B is a non-
singular matrix. Then, we obtain

Q"] = |Q+ehh/|

= |BB' +¢hh/|
|BIII + (B~ h)(h'B'~H)||B|
|B|(1+€(B~th) (B 'h))|B'| (from Lemma B.1)
= |Q|(1+eh'Q 'h).

B.5 Updating trace of the within scattering matrix
Proposition B.5

tr(Q*) = tr(Q) + eh'h.
Proof The function trace is a linear operator and, so,
tr(Q") = tr(Q) + etr(hhR).
Since tr(hh') = tr(h'h), we have
tr(Q") = tr(Q) + etr(h'h).

We conclude by noting that the quantity h'h is a scalar and, so, that tr(h'h) = h'h.
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