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Analyse de stabilité d’une loi de contréle longitudinal pour
véhicules autonomes

Résumé : Nous nous intéressons dans cet article a I’analyse d’une loi d’accélération existante pour
véhicules autonomes. La stratégie de contrdle consiste & maintenir un délai frontal constant avec le
véhicule leader. Nous définissons tout d’abord une fonction qui évalue le positionnement du véhicule
suiveur par rapport au véhicule leader et au délai frontal désiré. Nous étudions la convergence et
les bornes de cette fonction de positionnement et établissons plusieurs résultats clé dans le cas idéal,
c’est-a-dire quand les accélérations des véhicules ne sont pas bornées. Puis nous procédons a des
simulations qui valident nos résultats théoriques et qui montrent leurs limitations dans le cas réel,
c’est-a-dire quand les accélérations sont bornées par les limites technologiques. Enfin nous appliquons
des techniques de découplage et de linéarisation afin de calculer une nouvelle loi d’accélération dont la
convergence est exponentielle dans le cas idéal. Nous comparons les deux lois d’accélération et nous
concluons.

Mots-clé : Loi d’accélération, stabilité asymptotique, véhicules autonomes, route automatisée, délai
frontal constant, controle longitudinal, micro-simulation, contraintes de saturation.



Stability Analysis of a Longitudinal Control Law for Autonomous Vehicles 3

1 Introduction

Passenger safety and traffic congestion are growing problems in several urban corridors. Two ap-
proaches can be used to alleviate these problems: construction of more lanes on congested highways or
use of emerging technologies for more automated traffic control. The first approach, constructing more
lanes or highways, is rapidly becoming untenable because of lack of right of ways, complexity of high-
way design and layout, costs and environmental considerations, and so on. Hence several metropolitan
transportation agencies are turning towards higher levels of automation technologies to address these
problems.

Different automation strategies have been proposed in [1, 8]. They are classified according to their
distribution of intelligence and cooperative attributes. In this paper, we address the case where all
automation intelligence is concentrated within individual vehicles, leading to the so called autonomous
scenario, where there is no communication between vehicles and the infrastructure. Finally, vehicles
are equipped with several sensors, allowing them to perceive the speed and position of the nearby
vehicles. This system is known as AICC, for “Autonomous Intelligent Cruise Control.”

Our starting point is a traffic simulation that was conducted for the Houston Metro [2, 3]. We
simulated 10 kms of a single lane freeway, approximately modeled after the Katy Corridor of Interstate
Highway 10. We considered two traffic densities, a low density of 1800 vehicles/hour, and a high
density of 4000 vehicles/hour. Vehicles were autonomous, i.e., there was no communication with other
vehicles or with the infrastructure. Each vehicle had an autonomous controller in charge of insuring
the correct insertion of the vehicle at the merge junction, as well as preventing collisions with other
nearby vehicles. For this purpose, we designed an acceleration control law, and we empirically tuned
its parameters. This allowed us to achieve a no-collision simulation, even in the high density case. In
this paper, we study analytically this control law and we prove some key stability results. Specifically,
we prove that under some dynamic condition, the vehicles never collide. We first conduct this analysis
in the non-saturated case, and then in the saturated case.

2 Vehicle controller

The vehicles are autonomous, i.e., they do not communicate with each other and sensor range is limited.
Thus, at any time a vehicle knows which vehicles are in front of and behind him, both in its own lane
and in the side lane. The longitudinal speed of each vehicle within sensor range is also known. Each
vehicle has its own controller that outputs the current longitudinal acceleration and the lateral speed.
Then the kinematic model is a basic 2 dimensions model.

The controller will naturally have several modes, and within each mode will have a continuous
behavior. On the other hand, switching to one mode to another one is a discrete evolution. Modes
are linked to the environmental situation of the given vehicle: is there a vehicle in front, is the vehicle
trying to merge in the traffic, is the vehicle yielding to another vehicle, and so on. This combination
of a continuous behavior and a discrete behavior makes the controller a hybrid system.

In this paper we focus on the continuous behavior of the controller. Precisely, we wish to study the
stability of the control law. For this purpose, we restrict our case study to two vehicles driving along a
single lane straight highway. The behavior of the leading vehicle is fixed and consists in alternatively
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4 Alain Girault , Sergio Yovine

braking and accelerating (within technology bounds). The following vehicle drives right behind the
leading vehicle while trying to avoid collisions, and its behavior is dictated by an acceleration control
law. There exist three basic classes of such control laws that vary according to the desired following
distance between the leading and the following vehicle [6]:

e Constant spacing: such systems are most suitable for use at very short spacings, particularly
within platoons of vehicles. However, they require information about the acceleration of the
leading vehicle as well as inter-vehicle communication.

e Constant time headway: such systems use only information derived from sensors, and they main-
tain spacing proportional to the speed v.

o Constant safety factor: such systems are designed so that the instantaneous stopping of the
leading vehicle does not cause the following vehicle to collide with it. Typically, they maintain
spacing proportional to v2.

For these reasons, we choose an acceleration law that maintains a constant time headway. We
present this acceleration law in the next Section.

3 Design of the acceleration law

At any time ¢, the leading vehicle and the following vehicle are defined by the following data:

data leading vehicle | following vehicle
acceleration ai(t) az(t)
velocity v (t) vg(t)
position mi(t) pr(t)

At any time the acceleration must remain within technology bounds. The maximum braking a,,;»
is set to —0.5¢g, while the maximum acceleration @,z is set to +0.2g, and g = 9.81 ms—2.

The aim of the controller is to try to keep a constant time headway h. We thus compute the time
before impact, i.e., the gap divided by the vehicle speed. We then compute the ratio of the time before

impact by the time headway. This ratio (¢) is a pure number in the range [0, +00):

The ratio measures the correct positioning of the following vehicle relatively to the leading vehicle:
a value between 0 and 1 means that the following vehicle is too close to the leading vehicle and must
brake. A value greater than 1 means that the following vehicle is too far from the leading vehicle
and can accelerate; a value equal to 1 means that the following vehicle is exactly at the desired time
headway from the leading vehicle. We therefore choose an acceleration proportional to the positioning
error:

ag(t) = A(r(t) — 1) (2)

INRIA



Stability Analysis of a Longitudinal Control Law for Autonomous Vehicles 5

To achieve a faster adaptation to the driving of the leading vehicle, we also take into account the
relative speed:

ag(t) = Mr(t) — 1) + p(vi(t) —ve(t)) (3)

Here )\ and p are two positive parameters, respectively of dimension ms~2 and s~!. Following [4],
we can compute the Laplace form which leads to take g = 1/h. Therefore:

as(t) = Xr(t) - 1)+ 20220 @
The value of the desired time headway h has a direct influence on the maximal density that can
be accommodated by an automated highway. Intuitively, for a given density and nominal speed,
it is possible to compute the average gap between two successive vehicles. In [2], we have conducted
extensive simulations of an automated highway which show that this gap divided by the nominal speed
is the time headway that will not cause congestion. The current technology on sensors, actuators, and
computing systems allows a time headway as low as 0.3 s.
Our acceleration law is intuitively satisfying: when the following vehicle is too close it brakes, while
when it is too far it accelerates. We now wish to prove that we avoid accidents, that is, we keep the
ratio strictly greater than 0. Since vy(t) = p;(¢) and ay(t) = p(t), we can rewrite equation (4) as:

pi(t) = Api(t) —py(t) — hp',;l (12)(5 Pr()(ui(t) — p(t)) 5)

which yields:

hp ()P () + Aps(t) + Aap(t) — vi(8)p (t) + Pp(1)* = Apu(t) (6)

The differential equation (6) is not integrable. So it is not possible to study analytically the
variations of pr(t). Besides, according to equation (1), the variations of the ratio depend on the
variations of a;(t), on which we can make no assumption. Our idea is therefore to study analytically
the t — 7(t) function rather that the ¢ — ps(t).

In the first part of this article, we establish some key results on the asymptotic stability of our
acceleration law. In particular, we give a dynamic condition on the gain A under which the ratio r(¢)
converges towards 1. We then prove that when r(t) = 1, if a;(t) is bounded then ay(t) is also bounded
by the same bounds. In the second part, we present the results of several simulations which indicate
the limit of what can be proved in the general case. We always assume that a;(t) € [-0.5g,+0.2g]. We
first study the case where ay is unsaturated, i.e., ay(t) € (—00, +00), and then we also saturate ay to
the technology bounds, i.e., az(t) € [-0.5g,+0.2¢]. In the last part, we apply decoupling and feedback
linearization techniques to derive a new acceleration law whose convergence is always exponential in the
ideal case, i.e., az(t) € (—o0,+00). We compare both accelerations laws and draw some conclusions.
Throughout this article, we assume that the jerks on a;(t) and ay(t) are potentially infinite.

Similar work on asymptotic stability analysis of dynamic systems with saturation constrains in-
clude [9, 7]. However these works deal with linear and second order dynamic systems, so their results
are not transposable to our problem.

RR n“ 3498



Alain Girault , Sergio Yovine

4 The ratio function ¢ — r(t)

We first study the variations of the ratio function. This leads us to distinguish three exclusive cases:
r(t) € [0,1), r(¢t) = 1, and r(¢) € (1,+00). We then prove that in both cases where r(t) # 1, there
exists a limit when ¢ — +00. We prove that in both cases the limit is equal to 1. Finally, we prove
that in the r(t) = 1 case, if the acceleration of the leading vehicle is bounded, i.e., a;(t) € [@min, Cmaz),

then the acceleration of the following vehicle is also bounded, i.e., af(t) € [@min, @maz]-

4.1 Study of the variations of ()

We restrict ourselves to the case where vy(t) # 0, i.e., the following vehicle is moving. Since we
consider automatic highway applications, we can also assume that both vehicles are moving forward.
Thus we assume v¢(t) > 0 and v;(¢) > 0. Under this assumption, the ¢ — r(¢) function is continuous
and infinitely derivable, and its derivatives are also continuous: we say that r is a C*-function. Its

first derivative is:

r'(t)

where

hvy () (0 (t) = vy (E) = hay(8)(pi(t) — ps (1))

ERREE

wt) —vpt)  ag(t)r()

o) vs(0)
w(®) —vs(t) MOt =1 r()l) — vy (1)
hor () 0 hos (8
u(t) = vy () Ar(f)
M= — ey - 25000 -1
L= r(t) (ut) vy (8)
O ( R +”“0
(1 — (1) X3(1)

vy (t)

xe(y - M) ()

5 + Ar(t) = ag(t) + A

Replacing XJ(t) in equation (7) yields:

(1L =r()(as®) +A)
vg(t)

r'(t) =

9)

For any to such that 7(ty) = 1, we have /(o) = 0. Our goal is to prove that Vn,r(™)(ty) = 0. First
we compute the second derivative of r:
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Stability Analysis of a Longitudinal Control Law for Autonomous Vehicles 7

P8 = —r' () X3 (H)vs(t) + (1 — T(t))jii)(z)vf (t) — (1 —r()) X3 (t)as (t)
_ (A-r@)X3 (t)vs () — X((?t(;)af () — ' ()X (t)vs (2)
vy
_ (- T(t))Xff(Z)-; r'(H)X1(t) (10)
where
{ ﬁ’gg = Xg";_ St()!;i (t) = X0 (t)as(t)
1) = —Xg(t)ve(t)
We now prove by induction that the nt! derivative is:
() = (1=r®)X3_1 () + Xicy rO ()X, (t) (11)

vp(t)2"

This is true for n = 0 and n = 1. The computation of the n + 1" derivative is left in annex.
Therefore, if 3ty such that r(¢p) = 1, then we have:

e r(tg) =1=17'(tx) =0,

e 7(tg) =1AT(tg) =0=1"(tx) =0,

e 7(tg) =1AT(tg) =0AT"(tg) =0=1""(to) =0,
e and so on.

So if Ity such that r(tg) = 1, then Vn,r(™(ty) = 0. Moreover, a C®-function such that all its
derivatives are null in one point is a constant function. Therefore, the following proposition holds:

Proposition 1 If 3ty such that r(to) = 1, then Vi, r(t) = 1.

Corollary 1 The ratio function t — r(t) is such that:
o Vt,r(t) € 10,1), or

o Vi, r(t)=1, or

o Vi, r(t) € (1,+00).

Now let us study the variations of the ¢ — 7(t) function. According to equation (9), if as(t) > —A,
then we have the two following variation tables:

RR n“ 3498



8 Alain Girault , Sergio Yovine

r € [0,1) r € (1,+00)
t |0 +00 t |0 +00
r! + ! -
r | —7 ro| T

This is an important result since it establishes that, under the condition ay(t) > —A, the ratio
evolves in the good direction: if the following vehicle is too close, i.e., r(t) < 1, then the ratio increases,
while if the following vehicle is far away, i.e., r(¢) > 1, then the ratio decreases.

4.2 Study of the limit of (%)

Throughout this Section, we suppose that ay(t) > —A.

In the r € [0,1) case, since the function ¢ — r(t) is increasing and bounded, it has a limit, say
I. Similarly, in the r € (1,400) case, since the function ¢ — 7(t) is decreasing and bounded, it has a
limit, say L. In summary:

o If r €]0,1) then lim r(¢t) =1<1.
t—+o0

e If r € (1,+00) then tliinoo r(t)=L>1.

Now let us prove that [ = 1. Since lim;_ 1, r(t) is finite, then it is an asymptotic limit and
therefore lim;_, o 7'(t) = 0. According to equation (9), either lim; ,, (1 —7(t)) = 1—-1=0, or
limy 4o (af(t) +A) =0, or limy_, 4 o v#(t) = +00. Let us suppose that [ < 1.

If limy 4 oo(af(t) + A) = 0, then lim; 4 o vf(t) = —oo. This must hold whatever be the behavior
of a;(t) and v;(t). Since lim;_, o r(t) = I, it is impossible. The case where lim;_, 4 vy (t) = Fo0 is
analogous. As a consequence, our hypothesis [ < 1 is false. Hence [ = 1.

The proof that L = 1 is similar. We thus have the following result:

Proposition 2 If 3¢y : Vt > tg,ar(t) > —A, then . lim r(t) =1.

——400
This is a major result since it establishes that, under the condition a¢(t) > —A, the following vehicle

never collides with the leading vehicle!

4.3 Study of the bounds of r(t)

We assume that the acceleration of the leading vehicle is bounded, i.e., a;(t) € [@min, @maz]- According
to our technology bounds, amin = —0.5g and ape; = +0.2g. We also assume that r(¢) = 1. Then the
acceleration of the following vehicle and its derivative are:

INRIA



Stability Analysis of a Longitudinal Control Law for Autonomous Vehicles 9

ag(t) = " (12)
ai(t) — ay(t)
ap(t) = ! (13)
Equation (13) is a differential equation of the form:
ap(t) _ at)
ay (t) + A = T (14)
Its general solution is:
e t/h [ qt
af( ) = A (/ ez/hal(m)dx + kh) (15)
0
The initial conditions give us:
1
ar(0) = E(O-}-kh) =k (16)
Now since a;(t) € [@min; @maz), We have:
Amin S a’l(x) S Amax
A4 ew/hamin < em/hal (t) < ez/hamaw
t t
EN / e Maindr < fot e*/hay(x)dx < / e M amaede
0 0
t t
z/h . t z/h z/h
2N [he amm] . < [y €/"ay(x)de < [he amaw] .
= het/hamin - hamz’n S fot em/hal(x)d:ﬂ S het/hamaic - hamaic
& het/hamin — hamin + hay(0) < fot ez/hal(m)dw +har(0) < het/hamw — h@mag + hay(0)
< Omin — e_t/ha‘mi" + e_t/ha‘f (0) < af (t) < Gmaz — e_t/hamaw + e_t/ha‘f (0)
& Amin + e_t/h(af (0) - amin) < ar (t) < @maz + e_t/h(af(o) - a’maw)

Furthermore, if we assume that a;(0) € [@min, @maz], then:

{ af(0) — @maz <0
af(O) — Qmin > 0

Therefore, we have the following proposition:

Proposition 3 If Vt,r(t) = 1, a;(t) € [amin,maz] and af(0) € [@min,Gmaz], then Vi,az(t) €

[amin; a'maw] -

RR n "~ 3498



10 Alain Girault , Sergio Yovine

Let us look closely at the condition on az(0):

Amin S af(O) S Amax

1(0) —vs(0
= aminsw Samaz

a4 hamin S 1)[(0) - 1}]”(0) S hamaz (17)

Equation (17) is actually an initial condition of the speed difference between the two vehicles,
which is easy to check at the beginning of the simulation. In [2, 3] we made several simulations of an
automated highway with multiple merge junctions. We choose h = 0.6 s to eliminate all accidents even
in the high density case and to accommodate the merging traffic without causing too much congestion.
With this value and with our chosen technology bounds, equation (17) becomes:

—2.94ms * <v(0) —vs(0) < 1.18 ms ™ * (18)

Now can we generalize proposition 3 to the cases r(t) < 1 and r(t) > 1?7 When r(t) # 1, the
differential equation of the system is given by (6) instead of (15), so it is not integrable. Therefore, it
is not possible to prove analytically that our result still holds when 7(¢) # 1 and we will have to rely
on simulations: see Section 6.

5 Influence of the A\ parameter

The condition af(t) > —AX is a dynamic condition and we can make no assumption on ay(t) which
depends on v;(t) and p;(t). We therefore rely on experimental results. As said in Section 4.3, we choose
h=0.6 s. We use the SHIFT hybrid system simulator [5]. The specification of the leading vehicle is
represented by the following hybrid automaton:

t:=0
Ul(())
vy = 26

Figure 1: Hybrid automaton of the leading vehicle

Here we assume that the jerk of the leading vehicle is infinite. This behavior is among the worst
possible cases. Indeed, the leading vehicle alternatively brakes and accelerates, making it hard, a priori,
for the following vehicle to adjust its speed and position.

We first take the following initial conditions:

INRIA



Stability Analysis of a Longitudinal Control Law for Autonomous Vehicles 11

{ pi(0) :=10m { p(0) :=0m
v1(0) :=22ms ! v£(0) := 26 ms !

With these conditions, the initial value of the ration is r(0) = g9z = 0.641, which means that

the following vehicle is too close. The corresponding evolution of the ratio, with values of A ranging
from 3 to 17 is shown in Figure 2.

110
initial conditions: v;(0) = 22ms~ ", p;(0) = 10 m, v;(0) = 26 ms~ ', p;(0) = 0m

104

————————————————————————————————————— - 02°g

0.98

0.92
- otg
0.80

0.74

~— leading acceleration

0.68 —

0.641
0.62 —

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, L | -05%
0.56 —

0.50 T T T T T T T T T T T T T T T
0.00 244 4.87 7.31 9.74 12.18 14.61 17.05 19.48 2191 24.35

Figure 2: Evolution of the ratio function ¢t — 7(t)

As expected, the evolution of the ratio is influenced by the leading acceleration a;. Concerning
the influence of A, just like we expected from our Houston highway simulations, the higher value is
apparently the best. However, as we will see later, other factors have to be taken into account, like
the saturation of the acceleration and the speed limit.

Now let us study when the derivative 7'(t) changes its sign. Recall the condition which tells when
r'(t) = 0:

r'(t) =06 ap(t) + A =06 apt) = —\ (19)

Note that A appears inside the definition of a¢(t). Yet, condition (19) allows us to reason. A priori,
ay(t) varies between —oo and +o0o. Each time ay(t) cuts the horizontal line —, there is a corresponding
minimum or maximum of r(¢) along with a sign inversion of #'(¢t). Figure 3 shows the functions as(t)

RR n "~ 3498



12 Alain Girault , Sergio Yovine

and r(t). The function r(t) is the same as in Figure 2. The horizontal line —\ helps locating the
maxima and minima of r(t). Finally, the function a;(¢) is drawn for comparison. As shown in Figure 2,
for values of A greater than 7, there are no maxima and minima. This is easily understandable. Except
at the beginning where 7(t) < 1 and v;(t) — v¢(t) < 0, af(t) stays approximately between —0.5g and
+0.2g, which are the minimum and maximum of a;().

3.0 110
initial conditions: v;(0) = 22 ms~1,p;(0) = 10 m,vs(0) = 26 ms~1,p;(0) = 0 m
I By AOTRRPPPRES
14 94 — 104
0*g

02 - — 0.98
1.8 T = e — 0.92
A=-3 s I SN | A I o

34 — 0.86

0.5%

50 A R - 0.80
-6.6 \ — 0.74

Lo : ai(t)

82 - : r(t) - 068
98 =<~ - 062
-114  — — 0.56
-130 L e B A 0.50

0.00 244 4.87 7.31 9.74 12.18 14.61 17.05 19.48 2191 2435
Figure 3: Maxima and minima of r(t) for A =3
We now take the following initial conditions:
p(0) :=20m ps(0) :=0m
v(0) := 26 ms~! v£(0) 1= 22ms™?
With these conditions, the initial value of the ration is 7(0) = 0?2;32 = 1.515, which means that

the following vehicle is too far away. The corresponding evolution of the ratio, again with values of A
ranging from 3 to 17 is shown in Figure 4.
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1.60

153

15157

146 —

139 —

132

118

111

097 —

initial conditions: v;(0) = 26 ms™!,p;(0) = 20m,vs(0) = 22ms~1,ps(0) = 0m
———————————————————————————————————— - 0.2+g
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,  org
~4— |eading acceleration
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -05g
T i T i T i T T i T i T i T

5.06 7.59 10.12 12.65

15.18 17.71 20.24 22.77 25.30

Figure 4: Evolution of the ratio function ¢ — 7(t)

The conclusions here are the same as with Figure 2. Of course this case is less crucial since collisions
are less likely to occur when r(t) > 1. We study in the next section the influence of the saturation,
ie., az(t) € [-0.5g,40.2¢g], and we focus on the r(¢) < 1 case.

6 Influence of the saturation [—0.5g,+0.2¢]

Figure 5 shows the acceleration of the following vehicle with the initial conditions of Figure 2 (only
the cases A = 3 and A = 17 are traced).
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14 Alain Girault , Sergio Yovine

3.0

s initial conditions: v;(0) = 22 ms~1,p;(0) = 10 m,vs(0) = 26 ms~1,ps(0) =0 m
250
14 —

0*g

34

-0.5+g

A=17
-6.6 —

-0.79°g
-8.2

leading acceleration

|

-98 —

B e S
000 244 48 731 974 1218 1461 1705 1948 2191 2435

Figure 5: Acceleration of the following vehicle

For A = 17, the acceleration bounds are [—12.77,41.97] while for A = 3, they are [—7.74, +2.05].
This is well outside the technology bounds [—0.5g,+0.2g]! We now wish to take into account the
technology bounds for the following vehicle, i.e., we saturate ay. We thus modify the acceleration
given by equation (4):

FO) = My -1+ 2000
ag(t) = if f(t) > 0.2g then 0.2g
else if f(t) < —0.5g then — 0.5g
else f(t) (20)

We perform the same simulations as in Figure 2. The result is shown in Figure 6.
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Figure 6: Evolution of the ratio in the saturated case

Clearly, the result given in proposition 1 does not hold anymore: for A = 17, the function 7(t)
crosses the horizontal line » = 1! Indeed, when the leading vehicle accelerates, the following vehicle
can’t catch up because his acceleration is limited t0 @y,q,. Therefore the gap increases to the point
where the ratio becomes greater than 1. Yet, the ratio does not oscillate around the value 1, and even
in the saturated case the system is asymptotically stable. Finally, note that the greatest value of A
still provides the best behavior for the following vehicle. For A = 30, the ratio reaches even faster its
limit 1 and does not even become greater than 1.

Moreover, as stated in Section 4.3, when 7(¢) is close enough to 1, proposition 3 is valid. For A = 17,
Vt > 13.4 s, we have |1 — r(¢)| < 0.01 and indeed, ay(t) € [-0.5g,+0.2g]. Of course the value after
which 7(t) is considered to be close enough to 1 depends on A.

7 Decoupling and linearization
We propose in this final Section a new acceleration law. The technique used here is inspired from the
decoupling and feedback linearization well known in the automatic control field.

The idea is to choose ay(t) such that the ratio r(t) converges exponentially towards 1. Hence we

want:

r(t) = 1+ r(0)e* (21)
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This yields:

r'(t) = =Mr(0)e M = —A(r(t) — 1) (22)

Now from equation (1) we compute:

Pt = hog(8)(ui(t) — vy (2)) — hay () (pi(t) — pr(t))
h2vy(t)?
_oul) —vp(t)  ap(t)r(t)
= T o (@)
By combining equations (22) and (23), we get:
wlt) =) ag(Ort) _ o
) o O
ag(O)r(t) _ wlt) —vr®) oy
T Tu® T b O
_vr(@) [uit) —vs(?)
o o= 2 (M= 1y - )
& ap(t) = W + Avg (1) (1 - %) (24)

Now with the acceleration law of equation (24), propositions 1 and 2 are trivial to prove thanks to
the exponential convergence. Moreover, proposition 3 still holds since 7(t) = 1 yields

ui(t) — vy (t) vi(t) — vy ()
ap(t) = = EF 4 dwp(B)(1 = 1) =
which is the same as equation (12).
For the same value of A, the “new” acceleration law, given by equation (24), is much better than

the “old” one, of equation (4), even in the truncated case. For instance, for A = 17 with non truncated
accelerations, we get:
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Figure 7: Old law versus new law (non truncated)

24.35

In the truncated case, we have added the the curve of the old acceleration obtained for A = 30:
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Figure 8: Old law versus new law (truncated)

We could conclude at this point that the new acceleration law is much better than the new acce-
leration law. However this comparison is merely a question of gain. For instance, the old acceleration
with A = 30 is very close to the new acceleration with A = 17. Moreover, if we take into account the
maximum jerk, then both laws are comparable.

8 Conclusion

We have studied in this article the convergence of an acceleration law for an autonomous vehicle. The
following vehicle must maintain a constant time headway behind a leading vehicle which alternates
hard breaking and hard acceleration. We compute a ratio which measures how accurately is the
following vehicle positioned with respect to the leading vehicle. The acceleration law is designed by
taking into account the positioning error as well as the relative speed error. Both informations can be
made available to the following vehicle only through sensors, i.e., no inter-vehicle communication is
needed.

We have first studied this acceleration law analytically in the ideal case where the acceleration is
not limited to any technology bounds. We have proved two major results. The first one states that
under some dynamic condition on the leading acceleration, the ratio converges towards 1, which means
that the following vehicle never collides with the leading vehicle. The second result states that when
the ratio is equal to 1, if the leading acceleration is bounded, then the following acceleration is also
bounded and by the same bounds.
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Then we have performed extensive simulations to understand the influence of the gain parametering
the acceleration law as well as the technology bounds on the acceleration. These simulations show to
which extent our results are valid in the non ideal case, i.e., when the acceleration is saturated.

Finally, we have applied decoupling and feedback linearization techniques to design a new acce-
leration law for which the ratio is guaranteed to converge exponentially towards 1. The simulations
performed with this new acceleration law show that in the non ideal case, both laws are comparable
provided that we take a greater gain for the old law than for the new one.
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Annex: Proof of proposition 1

Our induction hypothesis is that the nt" derivative is:

rM@) =

1=—r@®)XS () + X rO®XE (1)
vp(t)2" !
(1 —r()XI_4 (&) + ' () XL, () + -+ rP DX ()
vp(t)2 !

Let us compute the n + 1** derivative:

where

T(n+1)(t)

Xnmi()
X5 (1)

1

r(t)XE_,
)Xn i (t

r(m) (t

2n71

n—

n—1_
vp(t)? !

21:—1

W [—r'(t)Xg—l(t)”f (t) +

(1= r(®)Xn_y (t)vr(t)
() X5y (H)vy (¢

2n—1
+

2n—1

+

SO Ly (XL (8) — e —
a O DO X))
(1= r(@)X3() + Xr, r® () XA (%)

vy (t)*"
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