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Abstract: This paper proposes a framework for segmenting different textured areas over
synthetic or real textured frames by curves propagation. We assume that the system has the
ability to be taught over different texture prototypes. For each prototype a global statistical
model is generated, as a set of probability density functions attributes from a multi-valued
frame analysis, where different filter responses are used to create this multi-valued frame.
Then, each prototype is represented by a reliable statistical model. Given an input frame
composed of different texture types, the same bank of filters is applied. Over the generated
multi-valued frame, we define an energy as a special form of a geodesic active contour
model, a Geodesic Active Region Model, where we integrate boundary finding and
region based segmentation approaches. This energy is minimized using a steepest gradient
descend method, where smoothing, edge-based, and region statistics forces, move the curve
toward the minimum of the designed objective function. Using the level set formulation
scheme, complex curves can be detected, while topological changes for the evolving curves
are naturally managed. In order to deal with the problem of noise influence, as well as to
reduce the required computational cost, a multi-grid approach has also been considered.
Finally, two different methods are used for the level set implementation, the Narrow Band
and the Hermes Algorithm. Very promising experimental results are provided using synthetic
and real textured frames.
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Régions Actives Géodésiques pour la Segmentation de
Textures

Résumé : Dans ce rapport, nous présentons une méthode de segmentation d’images
texturées, en faisant évoluer une courbe initiale qui converge, tout en pouvant changer de
topologie, vers les frontiéres des différentes parties texturées présentes dans 'image. La
méthode repose sur plusieurs parties dont la premiére consiste en une phase d’apprentissage
préalable qui permet d’associer & chaque texture donnée un vecteur d’attributs issus d’une
analyse statistique des densités de probabilité d’un ensemble de sous-images. Celles-ci pro-
viennent de I'application & la texture concernée d’un banc de filtres bien adapté pour cette
tache de modélisation..Une énergie, qui intégre des informations sur la texture de la région
et sur sa frontiére, est ensuite proposée afin de formaliser la tiche de segmentation en une
approche variationnelle. L’équation d’Euler-Lagrange, déduite de la minimisation de cette
énergie, est alors utilisée afin de déformer une courbe initiale, considérée comme un contour
actif géodésique qui va converger vers les différentes frontiéres des régions texturées pré-
sentes dans l'image, d’ou le nom de Régions Actives Géodésiques associé & cette approche.
La résolution de ’EDP par la méthode des courbes de niveau d’Osher et Sethian permet
ensuite de mettre en oeuvre de maniére efficace le processus d’évolution des contours tout en
gérant automatiquement d’éventuels problémes de changement de topologie durant la phase
d’évolution.Une approche multi-résolution et les versions rapides, connues sous le nom de
NBA et Hermes sont aussi utilisées pour mettre en oeuvre la méthode. Divers résultats
expérimentaux sur des données synthétiques et réelles illustrent les remarquables capacités
de cette nouvelle méthode.

Mots-clés :  Segmentation de textures, Modélization statistique, Contours actifs Géodé-
siques, EDP, Courbes de niveau, Minimisation d’énergie.
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4 Nikos PARAGIOS and Rachid DERICHE

1 Introduction

Image segmentation as well the edge/boundary detection are critical problems of early vision
and they have been widely studied. Despite the progress which has been done in this area
the proposed algorithms suffer in robustness and generality over large frame datasets. In this
paper, we are interesting for a special application of image segmentation, the segmentation
of texture frames. The ability of understanding and characterizing texture is an essential
process and has great practical value in image processing applications, since different objects
can be easily segmented, characterized and categorized based on texture information.

A common initial step in texture segmentation is texture analysis and modeling. In
computer vision, the goal is to create a general statistic model capable of describing a
wide variety of textures prototypes in a common framework, usually consistent with the
understanding human texture perception. In this area, two main approaches have been
considered:

e Filtering theory, suggests the decomposition of retinal image into a set of different
sub-bands, which are the responses of the convolutions of the input image with a bank
of linear and non-linear filters. This bank is usually composed of Gabor Filters [14]
and Wavelets pyramids [23, 35]. These methods seems to have impressive performance
in texture segmentation [5, 13, 16].

e Statistical modeling, supposes that the texture prototypes are probability distributions
of random fields [11, 25]. The problem of texture analysis is formulated as a well-
defined statistical problem, and a small number of parameters are involved in the
representation. The main drawback of these models, is that they have limited forms,
hence suffer from the lack of expressive power.

Similarly, concerning the segmentation process, we find two different categories of ap-
proaches. One is region based, which relies on the homogeneity of spatially localized features,
whereas the other one is based on the methods of boundary finding relying on the gradient
features at a subset of the spatial positions of an image (near an object boundary).

e The region-based approaches can be decomposed in two sub-categories. The region
growing and merging techniques [32, 33] and the global optimization approaches, based
on minimizing energy functions using Bayesian criteria [18, 24]. The main advantage
of region growing methods, is that they generate, adapt and test the statistics inside
the region, however they generate small holes and irregular boundaries. On the other
hand using energy-based global formulation, we are less affected from the presence of
noise, but is usually very difficult to minimize them, and the computational cost is
also a quite significant drawback.

INRIA



Geodesic Active Regions for Texture Segmentation 5

e Similarly, the boundary finding is divided in two different categories. One is local
filtering techniques [19], such as edge detectors [6, 12], whereas the other one are Snakes
and Balloons [8, 10, 17] methods. Filtering approaches use only local information
and cannot ensure continuous edge-detection. Snake/Balloon models are based on
information along the boundaries, and usually require a good initialization [17] to
yield correct convergence. Opposite to these Snake/Balloon models, geodesic active
contour models have been recently proposed, [8, 20, 22] whose initialization step is not
crucial. The use of boundary finding techniques provides some important advantages.
Shape variations can be easily handled, the model is less sensitive in changes in the
grey scale distributions over the image since it relies on changes in the grey level,
rather than their actual values. Finally by the use of these techniques, edges are
better localized. In spite of the advantages offered by boundary finding techniques,
their use for texture segmentation seems to be problematic, since they are based on
edges-features that are completely unreliable for texture frames.

¢ Finally, there is some recent work seeking to integrate region growing and edge de-
tection [9, 21, 31, 36, 37, 38]. The difficulty lies in the fact that even though the two
methods yield complementary information, they involve conflicting and incommensu-
rate objectives, as region based segmentation attempts to capitalize on homogeneity
properties whereas boundary finding techniques use the non-homogeneity of the same
data as a guide.
In [37], a statistical framework for image and texture segmentation is proposed, which
combines the geometrical features of snake models and the statistical methods for
region growing. Although in this approach snake models have been involved, the
“boundary detection” information is not utilized. Additionally the algorithm has two
separate steps, which are not coupled, the segmentation step, and the region growing
step. Finally, the number of initial regions as well as their initialization, seems to be
a very crucial step, strongly related with the efficiency of the proposed approach.

Our overall goal is to develop a framework which combines the existing approaches
in the domain of texture analysis (Filtering and Statistical modeling), as well as in the
domain of texture segmentation (Region-Based and Boundary Finding). The first step of
our approach consists of texture analysis and modeling. This is achieved by fusing filtering
theory and statistical analysis. This step is performed off-line. Our goal is to generate a
global statistical model for each texture prototype. As a first step, we select from a general
filter bank a set of linear and non-linear filters, to capture the features of the texture. Then
the marginal distribution of each filter response is used for specifying the statistic character
of the prototype. This distribution is approximated as a mixture synthesis of Gaussian
distributions. The set of these distributions defines a global multi-vector statistical model
for each texture prototype.

RR n° 3440



6 Nikos PARAGIOS and Rachid DERICHE

The second step, consists of creating a global segmentation framework, where region
based and boundary finding techniques are cooperating in a coupled common model. This
would lead to a system where the two modules would operate simultaneously. The combina-
tion of these two modules presents a set of quite important advantages. We try to integrate
boundary finding and region based segmentation rather than edge detection and region grow-
ing, by defining a new Geodesic Active Region Model where smoothing, “edge-based”,
and statistics region forces move the region boundary. The main difference of our model
compared with the classic geodesic active contour model [8, 20] is that the interface evolves
using information not only among it, but also information which come from the regions
inside and outside of it. Thus, the contour is propagating by means of velocity that contains
three terms, one which is related to the regularity of the curve, a second which shrinks or
expands it towards the boundary, and a third which supports the region “homogeneity” of
the internal and the external region, defined by the boundary. This model is motivated as
a combination of a curve evolution approach and an energy minimization one. The changes
of topology can be easily obtained using a level-set approach [27], thereby several texture
regions can be detected simultaneously. In order to deal with noise influence and to achieve
a faster algorithm, the front propagation methods are combined with a multi-grid approach.
Finally, for the front propagation problem, two different schemes are used, the Narrow Band
[2] and the Hermes [28].

The main properties of our approach are:

e A global statistical model is proposed for texture description which integrates the
filtering theory with the statistical analysis.

e A coupled energy model is proposed (objective function) which integrates, the bound-
aries detection with the region segmentation.

e A Geodesic Active Region model is proposed, which connects the minimization of the
objective function with the surfaces propagation.

e The model is parameter-free, changes of topology can be easily treated and the initial-
ization step is not important.

The remainder of this paper is organized as follows. Section 2 describes the statistical
model for texture representation, based on filtering methods and statistical analysis. This
section is divided in two parts: First classical filtering methods for texture segmentation are
revised. Then, the global statistical model for texture description is proposed. In Section
3, we present the main result of the paper the Geodesic Active Region model: the
connection between curves propagation, geodesic active contours and texture segmentation.
This section is divided in four parts: First the objective function is defined as a special form
of a Geodesic Active Contour. Second, the minimization of this function is demonstrated,

INRIA



Geodesic Active Regions for Texture Segmentation 7

while third the multi-grid model is integrated. Finally, the problem is solved using the level-
set formulation, briefly introduced in the the fourth part of this Section. The level-set front
propagation algorithms are shortly introduced in Section 4, while experimental results with
the proposed approach, followed by conclusions and discussion appear in Section 5.

2 Texture Description Model

2.1 Filtering Methods

In many different applications like texture segmentation, target detection, etc., the use
of linear or non-linear filter operators has been applied for feature extraction with quite
satisfactory results. The main difficulty of this method is the selection of these filters,
especially in the case of a very general application. Concerning the texture characterization
problem, it is well known that the bank of filters which deal successfully with this problem
is composed of intensity filters, isotropic and anisotropic filters, Gabor filters and their
spectrum analyzers.

In this bank of filters, the Gaussian function serves a quite important role, since it acts
like a low-pass frequency analyzer. To fix the notation we define a symmetric center-surround
two dimensional Gaussian function as

1 _12+y2
g(z,ylo) = 53¢ (1)
o

Using this notation the bank of used filters is:
o The intensity filter, 6(z,y) = I(z,y): [fig. 1(a)]

¢ An isotropic center-surround filter, which in our case is the Laplacian of Gaussian filter
(LOG filter),

2 7‘2
F(z,ylo)=S - (1—21;7> e 27 | 12 =g2 42 (2)

where S is a scale factor. Concerning the variance of these filters, we have o €
{1,2,3,4,5}. A response of an isotropic filter of this form is shown in [fig. 1(b)].
Additionally, this category contains the (x,¥y) anisotropic directional derivatives filters.

e Gabor bandpass filters,
G(z,ylo, ¢,¥) = g(a,y|o)e /2 (¢=+vy) )

with ¢, € {0,%,%,%, 25 3% 7 27},

RR n° 3440
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™
(a) (b) (c) (d) (e)

Figure 1: (a) Intensity Filter Response, (b) The Laplacian of Gaussian Isotropic Filter
Response, (¢) Spectrum Analyzer of Gabor (%,0) filter, (d) Spectrum Analyzer of Gabor
(%,0) filter, (d) Spectrum Analyzer of Gabor (%, %) filter

e The spectrum analyzer, whose response is the power of the Gabor pairs [fig. 1(c, d,

e)]
S(z,y) = [|(G * D) (=, y)|I? (4)

smoothed by a Gaussian function.

2.2 Statistical Analysis

Let T = {t1,ta, .., tr,} be the set of input texture prototypes, and let F' = {f1, fa.., fr, } be
the bank of the selected filters, where Ty (resp. Fy) is the number of texture prototypes
(resp. the number of selected filters).

The first step of our approach is to teach the system over the different prototypes, which
is equivalent of creating a global statistical model for each texture prototype, based on the
available data. The set of available data concerning the texture prototypes, is composed of
their input frames I;, {i € [1...,Ty]} and the responses I;;, {5 € [1,...,Fy]} of the selected
filters over these frames. We assume that each filter response can be modelized statistically,
using low-level statistics. In other words, we propose to generate a probability density
function p;;(x|©,;) of the filter response I;; (where i corresponds to the texture prototype
t; and j corresponds to the filter f;). We suppose that this probability density function is
homogeneous, i.e independent of the pixel location, and it can be decomposed into many
different components, where each component is under Gaussian law, that is: p(z|u,0) =
)2

1 (==
[ 202

oV2m

Let Pj; be the a priory probability of the component k. The observed filter response
values I;;, are assumed to be obtained by selecting a component k with probability P{;, and
then selecting a value z according to the probability law pf;(«|uf;, o7;). Thus the probability

INRIA
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(a) (b) () (d)

Figure 2: Mixture Analysis for [fig. 1.c| (Spectrum Analyzer of (%,0) Gabor filter)
Solid Line: Samples, Dashed Line: Probability Density Functions.

(a) One Component, Mean Approzimation Error: 7.3861e-05, Mazimal: 0.0039875
(b) Two Components, Mean Approzimation Error: 4.3575e-05, Mazimal: 0.0084018
(c) Three Components, Mean Approzimation Error: 4.184e-05, Mazimal: 0.0028997
(d) Four Components, Mean Approzimation Error: 4.1353e-05, Mazimal: 0.003001

density function is given by

Cn

pz‘j($|@i]‘) = sz'];p?j(xlﬂfjaafj) (5)
k=1

where Cy is the number of mixture components, and ©;; is the vector of the unknown
mixture synthesis parameters: ©;; = {(P}, uj;,07;) - k € [1, ..., Cn]}. Under this hypothesis
there are two key problems: the number of different components C, and the estimation of
the unknown parameters ©;; of these components. Concerning the number of components,
experimentally in most of the cases it has been found to be equal to two, but there are
some cases where at least three components must be assumed. This case appears very
often for textures prototypes which are not quite homogeneous. The determination of the
components number is based on the mean approximation error between the given samples
and the mixture approximation, in other words we increment the number of components
until the mean approximation error drops down from a given threshold. Concerning the
example of [fig. (2)], the improvement of the approximation between the use of two and three
components is not significant, thus we approximate this filter response with two components.
The estimation of the unknown parameters ©;; is obtained using a well known non-linear
minimization method, the Levenberg-Marquardt algorithm [26].

This operation is applied over the set of different filters responses. This permits us
to create a vector of probability density functions p; = (p1,pia, ..., DiFy ), for the texture
prototype t;. The same operation is applied for every texture prototype, and as an output
we determine a multi-valued statistical representation of each prototype (see [fig. (3)].

RR n° 3440
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(a) (b) (c) (d) (e)

Figure 3: (1) Texture Prototypes, (2) Statistical Analysis: (2,a) Analysis of the Intensity
Filter Response, (2,b) Analysis of the Laplacian Filter Response, (2,c) Analysis for the
Real Part of Gabor Filter (%, %) Response, (2,d) Analysis for the Spectrum Analyzer of

Gabor Filter (%, %), (2,e) Analysis for the Spectrum Analyzer of Gabor Filter (2, 2)

3 Geodesic Active Regions

The problem of texture segmentation consists of creating a partition over a given frame re-
gion R, into different subregions with homogeneous properties and characteristics, hopefully
corresponding to different texture types. We suppose that there is a “dominant” texture type
(tr,), and let Ry be the subregion corresponding to this texture type. The interpretation of
the “dominant” texture type differs from the classical ones, since in our case it corresponds
to the background texture type, in other words the texture type which covers the borders of
input frame I. We suppose that a set of different texture types has been randomly placed
onto the “dominant” texture type. The goal of our work is to create a partition of R into Ry
piecewise homogeneous regions {R;},i = 1,2,..,Ry, i.e R = U* R;, RiNR; =0, if i # j,
correspond to different texture types. Let OR; be the boundary of region R; corresponds
to texture type tg,, and let OR = ORy = U?“ZlaRi be the segmentation boundaries of the
entire frame (the orientations of the boundaries are not examined).

3.1 Setting the Energy

The ideas of curves propagation have been generously studied and successfully applied over
a reach variety of problems in computer vision. Based on work developed in [8, 20, 22, 29,
28, 30], we will try to reformulate the problem of texture segmentation within the framework

INRIA
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of curve evolution theory, by proposing a new model called Geodesic Active Regions.
Let E(OR) be the objective function to be minimized. The classic geodesic active contour
model consists of minimizing

BOR) =36 [ 10R(pPdpi+ [ 42 (TXOR: ()i ©)

~~ ~~

~ v

termy termy

where OR;(p;) : [0,1] — R? is a parameterization of the region boundary R; in a planar form,
and {f3,~} are real positive constants. The first energy component accounts for the expected
spatial properties (i.e. smoothness) of the contour while the second energy component stands
for the attraction energy term of the curve towards the objects contour. Finally, g is a
monotonically decreasing function such that g(r) ~» 0 as r ~ oo and ¢(0) = 1.

Following the work of [3, 7], it can be proved that the minimization of (6) leads to a
geodesic curve with a new metric,

BOR) =¢3 [ d(VIORpDIOR(p) )

where ( is a positive constant.

It is well known that in the case of texture segmentation, the edges don’t always corre-
spond to region boundaries, thus if one wants to take into account the texture information,
the function g(.) must be replaced. Let h : R? — R be an alternative selection of function
g(.), with values close to zero over the regions boundaries, and close to one otherwise.

3.1.1 Setting the Energy Using "texture-boundary" Measurements

The definition of function h(.) for the case of texture frames is a quite interesting step. The
role of function h(.) is to incorporate the available texture edge-boundary information. It
is quite obvious that in the case of texture images the gradient features don’t rely always
to real boundary edges. In order to obtain these features we try to design a local operator
which neither selects the “best” observed frame, neither uses the entire set of the observed
frames, and gives a measure of the likelihood of a pixel lying on the boundary between the
dominant texture region and another texture region. We propose two different methods,
one which makes use of a single frame and a second method which makes use of several
differently parametric images or images from different modalities.

Let s be a pixel in the image grid. At each pixel s, a small neighborhood is defined [fig.
4]. Now, given a possible boundary point s and a direction 6, the neighborhood is divided
into parts N,, and N, . Concerning the different orientations 6, four different possible

x x 3

directions are assumed, 6 = {0, %, 5,3 }.

RR n° 3440
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Figure 4: Local Operator to derive Image Information

¢ Obtaining texture edge-boundary Measurement using a Single Frame

We define the normalized probability that s lies on the boundary between the dominant
texture region Ry and the texture region R, as:

_ p(NsL S RO) : p(NsR S Rr) +p(NSL € RT) p(NsR S RO)
p(s,@) -
p(NSL € RO) 'p(NSR € RO) +p(NSL € RT) 'p(NSR € RT)

(8)

The problem which arises, is how we are going to define the probability of a given set
of pixels belonging to a region, and what type of data we are going to use to define
this probability. Although different parameterized frames are available, we are going
to use, here, a single frame to estimate these probability values. We select the frame
(filter response) which “best” discriminates the dominant texture prototype from the
other prototypes. Thus the probability density functions corresponds to the statistical
analysis of this filter responses over the different texture prototypes. This distribution
is selected by maximizing:

Dy = 4% {%Z"o—mj) [1(Ptny ) —u(pﬁ)]?} 9)

Jj € [1,Fy] 0(ptR0j i1

The interpretation of the above objective function is obvious. We are looking for the
filter response which best segments the dominant texture, that provides small variance
(0(pts, ;) for probability density function corresponding to the dominant texture case.
Complementary, this filter response best discriminates the dominant texture prototype
from the others, that the sum of distances between the mean value corresponding to
tr, and the means values corresponding to the other texture types is maximized. This
step can be easily performed off-line.

e Obtaining texture edge-boundary Measurement using Multiple Frames

INRIA
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Let x;(s;) (resp. x;(s,)) be the mean neighborhood value of N;, (resp. Nj.) for the
observed frame I,;: the response of filter f;. Since several differently parametric frames
are available, we can estimate the vector x(s;) = [z1(81), ..., Zry(81)] (resp. x(sr)).
Based on the texture statistical model (explained in the previous Section), we can
estimate for a given neighborhood region (with observation data set x) the probability
vector corresponding to each texture prototype, thus we generate the matrix

p1(x) pui(@1) - Pirg(TRy)
P(x) = : = : : : (10)
an(X) Pry1 (ml) pTNFll(xFN)

~ vl

FyXTy

Now given a point s, a partition over the neighborhood (Nj,, N;, ), and its correspond-
ing data vectors (x(s;),x(s,)), we define the probability that s lies on the boundary
between the dominant texture region Ry and the texture region R, using a correlation
criterion, as the dissimilarity between the two corresponding probability vectors :

|I” I?

e 4

p(s,6) = |lPtr, (X(s1)) — Prg, (X(sr)) Ptz (X(s1)) = Prg, (X(sr))
T IPer, REDIP + [Per, (X(so DI [1Prr, (X(s))I? + [IPrg, (x(s

where .
lPm(x) —PaWI* 25 [Pmi()) = pnj(25)]?
[[Pm (3)||* + |[Pn(¥)][? 25“:1 Pmj(x)? + E?:l Pnj(Y5)?

The correlation scores are computed by comparing the corresponding probability vec-
tors between the texture prototypes tgr, and tg,. Supposing that we are in the bound-
aries of a texture region, then the correlation between the probability vectors of tg,
and tp, is very bad, thus the probability that s lies on the boundary goes to one.

(12)

Since the probability that s lies on the boundary between the dominant texture region
Ry and the texture region R, is defined for both cases, the next problem is to define the
texture prototype t; corresponding to the region R,, as well as the orientation §*. The best
way to select ¢ as well as the orientation 8* is to generate the matrix

p(oatl) p(%atl) p(gatl) p(%atl)

™ ™ 3
Peoce(t,0) = P(0,t5,—1) p(g»ttRo—ﬂ p(ZattRO—l) p(éTﬂattRO—l) (13)
p(O,ttR0+1) p(ZattRO-i-l) p(EattRO-I-l) p(TattRO-I-l)

p(07tTN) p(§7tTN) p(gatTn) p(%vtTu)

RR n° 3440
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W S )

(c)

Figure 5: (a) Input frame (b) Texture edge-boundary features extraction using a single
frame, (c) Texture edge-boundary features extraction using multiple frames

and ¢ , 0* correspond to the biggest element in matrix P. Thus for each point s = (z, y)
the “edge” features [fig. 5] are captured by the function h(.):

h(s) = e=P1" (3] (14)

Motivated by work proposed in [7] we can rewrite the geodesic active contour equation
as:

BOR) =¢ Y- [ bR p)IoR:(p) (19

where the texture edge-based features have been incorporated to the model.

3.1.2 Setting the Energy Using Region-based Measurements

The main goal of region-based segmentation methods is to classify a particular texture frame
into a number of regions. Thus for each pixel in the image, we need somehow to decide or
estimate which class it belongs to. There is a variety of approaches to do region based
segmentation, but most of them are finally turn out to be minimization of objective-cost
functions. Usually these objectives-costs functions consist of two different terms. One,
which express the expected spatial properties (homogeneity of the segmentation map), and
a second which express the adequacy between the segmentation map and the observed data.
An important advantage in our case comes from the fact that we have an idea concerning
the elements which have to be segmented, based on the statistical analysis over the different
texture prototypes. This means that we can define the adequacy term between the observed
data and the segmentation maps
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Guided by the way of defining these objective functions for Markov Random Fields and
avoiding the term which express the hypothesis of homogeneity, for our texture segmentation
problem we define the objective function as:

Ry Fy
BR) =a_ [ [ Y wlog [pin,; (T (w.0)] dudy (10
i=0 Ri j=1

where I; is the response of filter f; over the input frame, o is a negative constant, and w; are
positive weight constants. The above equation has a simple interpretation. Supposing that,
for a given point (x,y) the proper decision has been taken. This means that the probability
values pq . ;(I;(z,y)) for each filter response support this decision. These probability values
have to be closed to one, thus the function log [ptﬂi ;@ (x,y))] gives a very small negative
value, which is multiplied by «, gives a small positive value. On the other hand if a wrong
decision has been taken the corresponding probability values are closed to zero, and the
function log [py ;(L;(2,y))] gives very big negative values, which multiplied by a, charge
the objective function excessively.

3.1.3 Geodesic Active Regions: The Energy Integration

Motivated by the excellent work proposed in [9, 36, 37], and following our previous work on
tracking using geodesic active contours [29, 28, 30] and tracking using classical snakes and
region information [4], we incorporate the two different segmentation models, by defining
an objective function as an improved geodesic active contour model:

E(R) =
Ry 1 . Ry Fy
¢y [ ror @R pan+ad [ [ Y wlog oy @iz )] dedy (1)
=1 0 =0 1 j=1
Boundary FTirnding Term Segment;ionTerm

The above equation has a simple interpretation. The region segmentation is obtained by
minimizing two kind of “energy terms”. The first one (Boundary Finding) gives a minimal-
length smoothed curve over the region boundaries, while the second one (Segmentation)
minimizes the objective function inside this region, by supposing homogeneity. Concerning
the boundary of the dominant texture (ORy), it doesn’t appear in the objective function
because it corresponds to the union of the other Regions Boundaries (the orientation is
different). The optimization problem can be reformulated as

E(OR) = / /R zN:wjlog(pmoj(lj(x,y))dwdy

0 j=1

+3°8¢ [ noRGORpldps +a [ [ 3 wow (L )dady b (19
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Although the objective function (18) is well-defined, there are still some unknown vari-
ables. We want to minimize this function over the region boundaries, and as an output we
would like to obtain also the region segmentation. In order to do this, as it is quite clear
from the definition of the objective function, we need a correspondence between the regions
R, and texture prototypes tr, something which we don’t have a priory. This problem is
going to be confronted later (Subsection 3.2).

3.2 Minimizing the Energy

Finally, the objective function is minimized using a steepest gradient descend method. Let
i = (x,y) be a point of the initial curve. We compute the Euler-Lagrange equations ! , and
according to them, in order to deform each point @ of the initial curve towards the local
minima of the objective function [8],we should use the following equation:

dit = I
T =a Y wlog(p; (L (@) p Nor, (D)+

=1

IThe following nice development can be found in [36, 37]. The problem of taking functional derivatives
of integrals along contours and integrals over regions can be confronted using Green’s theorem, which is a
special case of Stokes theorem.Consider

E[aR]Z//f(m,y)dxdy
R

where OR = (2(,), Y(s)) is the boundary of the contour of region R, with 0 < s <1 is the arc-length. Greens
theorem states that: for a planar region R, (P(z,v), Q(z,v)) is any vector field with continuous first order

derivatives, then
l
P
// <@ _ a_) dzdy = / Pdg + Qdy = / (Px+Qy)ds
g \0z Oz R 0

where %,y denotes the differentiation with respect to s. Let Q(z,y) = %foz f(t,z)dt and P(z,y) =

—% Oy f(z,t)dt. In that case %—S - ?9—1: = f(z,y), thus

1
E[aR]://f(w,y)dxdy:/ L(z,%,y,¥)ds
R 0

where L(z,%,y,y) = Q(z,y)%x + P(z,y)y. By Euler-Lagrange equation, we get the gradient of E[OR] with
respect to any point (z(s),y(s)) € OR we have:

§E_OE ddL
br Oz ds 8%

§E _9E  d 3L

= flzy)y E = B_y - Eg =..=—f(z,y)x

and since ./\7'(m,y) = (¥, —%) is the normal along the contour, by setting @ = (z,y) we have

6F

Bu

.f(z’ y)'/\?(m,y)
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¢ (W@Konr, (@) + Vh(@) - Nor, (@) No, (@) +a {3 w;log(p; (1,)(@) ¢ Nox, (@) (19)

where r is the index of the region in which the point @ belongs, Ksg, is the Euclidean
curvature with respect to the curve R, and Nyg, is the unit inward normal to OR,.. Since
the curves ORy and OR, have inverse inwards vectors at each common point %, we have
N =N, R, = -N, R,- Taking this into account and replacing Kr, by K, the motion equation
for @ can be rewritten as:

di I Lo N e L@) || o
== CIh(u)K(u)+Yh(u) -N(u))l+a ;wjlogm N@)  (20)
Boundary Finding Forces ~ ~- 4

Statistics Region Forces

The obtained motion equation has a quite obvious interpretation. There are two kind of
“forces” acting on the contour, both in the direction of the inward normal. The first term, is
a contour force which contains information regarding the boundaries of the different region
areas. This term takes into account the boundary image characteristics, and at the same
time is a smoothing force, since its value depends on the curvature term. The second term is
a statistic-region force. We will try to interpret this term. Supposing that # is a pixel of the
dominant texture font. In such a case the input data I as well as the responses of the filter
bank I;, must support the hypothesis Ry, thus p:, ;(I;(@)) > pe,;(I;(@)), V t; # tr,. The
influence of the statistics region forces, now is quite evident. In the case where the observed

mR,‘j(wn) >0, Vg we

Pigy i (L (@)
are going to compresses the region, otherwise we are going to expa(;ld the region. This is a
very nice property, since the contour can evolve either inwards, either outwards at the same
time for different pixel sites. This is possible due to the fact that the contour propagation
is guided by a speed function which is either positive, either negative, and is estimated
according to the observed data. Opposite to this, on the classic geodesic active contour
model we don’t meet this property, since we have negative speed values only because of
the curvature effect. As a consequence, the contour initialization doesn’t pose significant
problems.

Finally, the problem of correspondence regions and texture prototypes in not solved yet.
Giving a second look on the motion equation (20), we can see that the term of textures-
regions correspondence appears only in the statistics force, which is estimated locally. Taking
this into account, the textures-regions correspondence is obtained by maximizing the statistic
force. In other words for each point of the given boundaries we compare the dominant
texture hypothesis, with the texture hypothesis which fits better with the observed data on
this point.

multi-value data at i fits better to the dominant texture alog (
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18 Nikos PARAGIOS and Rachid DERICHE

Surface Propagation Multi-Value Data

Figure 6: A Multi-Grid Approach for Geodesic Active Regions

3.3 Multi-Grid Geodesic Active Regions

However, analyzing the motion equation (20), we can see some hidden drawbacks. It is quite
obvious that the statistic forces at each boundary point @ will depend on the probability
distributions of the different texture prototypes. This force seems to be plausible, since
the vector of values in the ideal case fits better with the texture prototype corresponding
to it, but this hypothesis may not be always valid. First, the texture analysis can give
similar distributions for two different texture prototypes. Additionally, it is quite difficult to
categorize a pixel based on its local data, since the homogeneity of the texture prototypes
is usually defined over small block or regions. Second the presence of noise, could generate
similar problems. This is not allowed in our case, since as an obvious result the model
will converge to many different contours and regions corresponding to noise and not to real
texture prototypes.

To cope with these problems, we can use a circular window approach, as proposed in
[37]. In such a case, a circular window W (@) of m pixels is defined around each point, which
corresponds the the neighbor set of this point. The effect of this is to replace the probability
density values p; ;(I;(@)) by the joint probability [[,cyy (z) Ptr,;(Li(¥)), which could also
be adopted for our case. As we are going to explain later, a quite significant drawback
of the methods for contour propagation, is the excessive and sometimes the unbearable
computational cost. Taking into account this fact, together with the problems analyzed in
the previous paragraph, we adopt the idea of a “circular” window by proposing a multi-grid
approach, which at the same time decreases the required computational cost.

The main idea is to solve the Geodesic Active Region problem in many different spaces,
which are subsets of the original one. Each contour point corresponds to a set of pixels in the
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original space. A quite sophisticated approach consists in defining a consistent multi-grid
contour propagation model by using contours which are constrained to be piecewise constant
over smaller and smaller pixel subsets [15]. The objective function which is considered
at each level is then automatically derived from the original finest scale energy function,
as well as the partial differential equation which deforms the initial contour. Also, full
observation space is used at each contour level and there is no necessity for constructing a
multi-resolution pyramid of the data [fig. 6]. Correspondingly for the level L, we obtain a
generalized objective function:

BOR) =Y [ hulORE)IOR! (0)ldpi+

* i og |p:. ,i(Li(u,v))| dudv p dedy (21
Z//RL ]Z jlWL | //U‘U)EWL(z,y) [ taROJ( J( ))] ( )

where ORF is the boundary of region R (corresponds to level L), W(x,y) the window in
full data space corresponding to the point (x,y) of data space at level L, and

1
hL(ORE (pi)) = ———— // h2 (u, v)dudy
LR (p2) |WL(5RiL(Pi))|\/ (2.9)EWE(IRE (p:) (v

The multi-resolution approach solves our problems. At low resolution levels a block of
data points is used to move the boundary points, thus the chance to be representative in
terms of the texture prototype are quite bigger. On the other hand, at these low resolution
levels the size of the window is quite big and the boundary is not located precisely. This is
not a problem since moving from the low resolution to the high resolution levels, the window

size gets smaller and smaller, and the statistics forces moving the boundary points are more
accurate. Additionally at low resolution level, we have obtained a segmentation where the
noise influence has been removed, and since this result is used to initialize the operation at
the next level we don’t have the problems mentioned above.

3.4 Level Set Implementation

The motion equation (20) could be implemented using a Lagrangian approach, where we
produce equations of motion for the position vector dR(p,t), and then updating these posi-
tion using difference approximation scheme. However, there are several problems with this
approach. The main problem is that the evolving model is not capable to deal with topo-
logical changes of the moving front. Additionally, this method cannot be easily extended to
three dimensions.
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This could be avoided by introducing the work of Osher and Sethian [27]. The central
idea is to represent the moving front OR(t) as the zero-level set {® = 0} of a function ®.
This representation of dR(t) is implicit, parameter-free and intrinsic. Additionally, it is
topology-free since different topologies of the zero level-set do not imply different topologies
of ®. It easy to show, that if the moving front evolves according to

—

S OR(p,1) = F)A

for a given function F, then the embedding function ® deforms according to

%é(p, t) = F(p) [V®(p, t)|

For this level-set representation, it is proved that the solution is independent of the embed-
ding function ®, and in our case is initialized as a signed distance function. Based on (18)
and embedding (20) in ® we obtain that minimizing the Geodesic Active Region Function
is equivalent to searching a steady-state solution of the following equation:

do

ae Pig,.j (Ij)
dt (I

troI\1J

Fy
= | ¢[hK+Vh-V®] +a | ) w,log

=1

Ve (22)

where the OR(p,t) is represented by a level-set of ® and the value of K is estimated on ,
K =div(V®/|Ve|).

4 Front Propagation Algorithms

A direct implementation approach of equation (22) involves the re-estimation of the char-
acteristic image of all the level set pixels (not simply the zero level set corresponding to
the front itself). This front evolution method is computationally very expensive, due to
many useless operations that are performed during the front propagation (especially in pix-
els which are out of interest). In order to overcome this drawback two different methods
have been proposed: (i) the “Narrow Band” method that works with a small percentage of
pixels (those which are around to the latest estimation of the contour) [2], (ii) the “Hermes”
method, a fast approach suitable to a large variety of applications [28].

4.1 Narrow Band Approach

The key idea is to deal only with pixels which are close to the latest estimation of the zero
level-set contour in both directions (inwards and outwards). This is known as Narrow Band
Approach [2], and proposes to modify the level-set method so that it only affects the points
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close to the current propagating contour. This band is created dynamically based on the
actual propagating contour, by including points that lie less than some given distance away
from the actual contour points (band size). The problem is that the contour position changes
dynamically (from iteration to iteration), as well as the narrow band pixels. The estimation
of the contour position from iteration to iteration increases dynamically the cost (in terms
of complexity), thus the contour position is re-estimated only in cases where the contour is
very close to the borders of the band. The selection of the band size affects significantly
the efficacy of this algorithm. A significant cost reduction is achieved through this approach
(compared to the classic method), but the cost remains considerable.

4.2 Hermes Algorithm

Hermes algorithm was originally proposed in [28], and tries to combines two well-known
level-set algorithms, the Narrow Band and the Fast Marching [34]. Despite the fact that
Fast Marching is a very fast algorithm, it cannot be used for our case since it demands a
curve which evolves using an only positive or negative speed function during its evolution.
In our case this is not-valid, because of the region-statistics forces. As it is explained, these
forces shrink the curve if it is located on the dominant texture region, otherwise they expand
it.

The main characteristic of Hermes algorithm is that it proposes a fast way to deform the
initial curve towards the global minimum of the objective function. In our case the equation
which deforms the initial curve (22) can be rewritten in a more general form as:

S =@, )+ V(z,y,®)dt (23)

(E,y)

where V(z,y,®) is the speed function, depending on geometric features (curvature) and
image features (“edge-based” forces and “region-based” forces). Since the speed V(z,y, ®) is
basically estimated according to image characteristics, there are some points for which the
front evolves faster compared to the others. The key idea on which Hermes approach is
based, is to evolve the contour according to the speed values of its points. The algorithm at
each step selects the point with the biggest speed from a set of actual contour points, and
deforms the level-set frame locally.

First we initialize the contour and we set both the contour points and their neighbors
as active. We select from the set of active points the one with the biggest speed and we
iteratively modify the level-set frame for this point as well as for its neighborhood using
(23). This operation is applied for a certain number of iterations. Since there are modified
level-set frame values, there are some affected active points (in terms of curvature), as well as
some affected neighborhood points which are not active, that we add to the set of active. If
the level-set value of the selected point changes sign, which means that the contour deforms
locally, we remove this point from Active ones. Periodically we find the contour position
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in order to avoid the creation of a large set of Active pixels and we reinitialize the level-
set frame using a distance function, since this frame is partially modified. Concerning the
neighborhood definition we use a 5 x 5 centralized window, while the number of the locally
applied iterations varies between 10 and 50. Both parameters affect drastically the CPU
computational cost.

The key issue for an efficient version of the Hermes algorithm lies on a fast way of locating
the grid point among the Active points with the biggest speed. For this reason, a variation
of a heap-sort algorithm is used. Initially all the narrow points are sorted in a heap-sort
(so that the smallest member can be easily located). When a point is removed from the
heap-sort, the values of its neighbors are recomputed, and the results are bubbled upwards
until they reach their correct locations. Moreover, whenever we want to add a point to the
heap-sort, we put it at the end and we process it in the same way.

5 Experimental Results, Conclusions and Discussion

In this paper, we presented some new ideas concerning the integration of boundary-finding
techniques and region-based approaches for texture segmentation.

5.1 Implementation Issues

Although we proposed a complete model, there are some technical aspects which affects its
efficiency. These aspects consist of: the filter bank selection, the number of multi-grid levels,
the contour initialization, and the Level-Set algorithm selection. We will try to give an idea
of how we deal with these aspects.

e Filters Bank Determination

This problem involves the definition of the Filter Bank, which includes three aspects:
the filters number, their selection, and their size. We can say that the first two problems
are strongly related. It is quite obvious that a “good” selection of filters decreases their
required number to discriminate the texture prototypes. Experimentally, we could say
that in most of the cases, we use five or six filters, but these filters are manually selected
to be optimal, i.e. to extract features which are clearly discriminated between the
different prototypes. The filter size holds an important role on the features extraction
process. The texture homogeneity cannot be captured using a small window, since
this homogeneity appears in the forms of repeated “patterns”. On the other hand a
big filter size creates problems between the boundaries of different texture regions and
makes their localization quite problematic in terms of accuracy. Experimentally the
filter size is selected to be 10 x 10 or 15 x 15.

INRIA



Geodesic Active Regions for Texture Segmentation 23

o Multi-grid Levels
The selection of multi-grid levels is strongly related to the size of the input frames,
in terms of the pyramid compensation cost. Since this approach is not based on the
construction of a frame pyramid, we can easily go to very low resolution levels. This is
possible due to the use of the full data observation space in each level. Experimentally,
in most of the cases, this number is selected to be either three or four.

¢ Contour Initialization

The contour initialization is low-risk step. Supposing that the dominant texture is
known, then we can initialize the contour at the borders of the input frame, and the
proposed model will deform it towards the global minimum of the objective function
[fig. (7,8,10,12)]. Additionally the model, deforms successfully contours which have
been initialized randomly, towards the global minimum of the objective function [fig.
(9,11,13)]. This is achieved thanks to the region-statistics forces which deform the con-
tour outwards to regions different from the dominant one. This “random” initialization
supposes that a part of each texture prototype appears in the region inside the initial
contour.

¢ Level-Set Propagation Algorithm
The selection of the Level-Set implementation algorithm is not a crucial step. Concern-
ing the Narrow Band approach, it converges smoothly towards the optimal solution,
but it is time consuming. On the other hand, Hermes algorithm deforms faster the
initial contour towards the optimal solution, but it doesn’t ensure a smooth propaga-
tion since the Level-Set frame at each step is updated locally. As a consequence the
Level-Set frame refinement must be performed quite often.

5.2 Experimental Results

Real-word texture frame, as well synthetic texture frames have been used to test and validate
the proposed approach.

Concerning the synthetic case some texture prototypes have been selected from a database
of texture images. As a first step the system is taught on these prototypes by applying the
bank of preselected filters, and analyzing their responses. The output of this operation is
the creation of a global statistical description model for each prototype. Then a synthetic
frame is created where regions of the selected texture prototypes appear randomly. This is
considered as the input frame, on which the same bank of preselected filters is applied. Then
using the different filter responses, as well as the texture description models, the Geodesic
Active Region models is activated, and deforms the initial curve to the optimal solution of
the texture segmentation problem.
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The first experimental result [fig. (7)] involves a texture synthesis frame composed of
two quite different prototypes (in terms of intensity distributions). As a consequence, the
number of required filters is small, and the segmentation process is easily performed. On the
contrary, the second example [fig. (8,9)] involves a texture synthesis frame with two quite
similar prototypes (in terms of intensity distributions). Additionally, the non-dominant
texture prototype is not quite homogeneous (in terms of a repeated pattern). For this case,
two different contour initializations have been used: the “proper” (at the borders of the input
frame) [fig. (8)], and a random one which contains a part of the dominant texture as well as
a part of the the non-dominant texture [fig. (9)]. As it is shown for this example, the contour
shrinks if it is located in the dominant texture region; otherwise the contour is expanded.
Finally, the last experimental result [fig. (10,11)] involves a texture synthesis frame with five
different texture regions, where two different contour initializations are shown. The large
number of different texture regions requires the selection of a representative filter bank. In
this example, the famous level-set property of changing the topology is demonstrated, where
the initial curve breaks into multiple curves corresponding to the different texture regions.

On the contrary for the real case, the inverse operation is followed since the input is the
real-texture synthesis frame [fig. (12,13,14,15,16)]. Small patterns are selected to represent
the different texture prototypes appearing to this frame, and the system is taught with
these patterns. Then the same process is followed as in the case of synthetic texture frames.
Concerning the firt “real-world” example that consists two demonstrations (zebra and chita
photos) [fig. (12,13,14)], we select from a 256 x 256 textured frame three different window
patterns 64 x 64 (resp. 96 x 96) [fig. 12.1] (resp. [fig. 14.1]) that are the different
texture prototypes, and based on these patterns we activate the Geodesic Active Region
Model which segments quite well the different texture regions. The independence of the
model from the contour initialization is clearly presented using two completely different
contour initializations. The second “real-world” example related to medicine [fig. (15,16)],
is a microscopic medical breast image, which exhibits an inflammatory carcinoma with
metastasis. Three different texture patterns have been selected [fig. 15.1], and nine different
filters have been applied, which give as output the texture description models. The power of
the Geodesic Active Region model is demonstrated using two different contour initializations.
The first one is at the borders of the frame [fig. (15)], while the second contains only non-
dominant texture regions [fig. (16)].

5.3 Discussion and Conclusion

Summarizing, we have considered a Contour Propagation approach for texture segmen-
tation. The main contribution of our approach is the Geodesic Active Region Model, a
contour propagation model for texture segmentation, which incorporates the existing
approaches in the domain of texture analysis, as well as in the domain of texture
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segmentation. Firstly, a global texture description model is generated for each texture
prototype. This model is obtained by fusing filtering theory and statistical analysis, where
various filters responses are modelized statistically using mixtures synthesis of Gaussian dis-
tributions. The second step, consists of creating a global segmentation framework, where
region based and boundary finding techniques are cooperating in a coupled common model.
The contour propagation is obtained by integrating two different modules, region based
module and boundary finding module in a common model. This leads to a system where the
two modules operate simultaneously, where the contour propagation is guided by smooth-
ing, “edge-based”, and statistics region forces. The main advantage of our model is that
the contour evolves using information not only among it, but also information which come
from the regions inside and outside of it. The changes of topology can be easily obtained
using a Level-Set approach, thereby several texture regions can be detected simultaneously.
The noise presence is confronted multi-grid approach, which simultaneously decreases the
computational cost.

Various experimental results (in MPEG format), including the ones shown in this article,
can be found at:

http://www.inria.fr/robotvis /personnel /nparagio /demos. html
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Figure 7: Curve Propagation (left to right, top to down), Texture Prototypes: 2, Number of

applied filters:3: Intensity, Laplacian of Gaussian, Spectrum Analyzer of Gabor (2m,27)
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Figure 8: Curve Propagation (left to right, top to down), Texture Prototypes: 2, Number
of applied filters:4, Intensity, Laplacian of Gaussian, Spectrum Analyzer of Gabor (2m,27),
Spectrum Analyzer of Gabor (%,0)
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Figure 9: Curve Propagation (left to right, top to down), Texture Prototypes: 2, Number
of applied filters: & Intensity, Spectrum Analyzer of Gabor (2m,2x ), Spectrum Analyzer of
Gabor (%,0)
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Figure 10: Curve Propagation (left to right, top to down), Texture Prototypes:5, Number
of applied filters:5: Intensity, Laplacian of Gaussian, Spectrum Analyzer of Gabor (2m,27),
Spectrum Analyzer of Gabor (%,0), Spectrum Analyzer of Gabor (5,7%)
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Figure 11: Curve Propagation (left to right, top to down), Texture Prototypes:5, Number
of applied filters:5: Intensity, Laplacian of Gaussian, Spectrum Analyzer of Gabor (2m,27),
Spectrum Analyzer of Gabor (%,0), Spectrum Analyzer of Gabor (5, %)
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Figure 12: (1) Texture prototypes, (2) Curve Propagation (left to right, top to down),
Number of applied filters:6: Intensity, Isotropic Directional Derivatives, Spectrum Analyzer
of Gabor (2m,2m), Spectrum Analyzer of Gabor (%,0), Spectrum Analyzer of Gabor (35,0),
Spectrum Analyzer of Gabor (0, %
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Figure 13: Curve Propagation (left to right, top to down), Texture Prototypes:3, Number
of applied filters:6: Intensity, Isotropic Directional Derivatives, Spectrum Analyzer of Gabor
(2m,2m), Spectrum Analyzer of Gabor (%,0), Spectrum Analyzer of Gabor (%,0), Spectrum
Analyzer of Gabor (0, %
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Figure 14: (1) Texture prototypes, (2) Curve Propagation (left to right, top to down), Num-
ber of applied filters:8: Intensity, Spectrum Analyzer of Gabor (2x,2w), Spectrum Analyzer
of Gabor (%,0), Spectrum Analyzer of Gabor (5,0), Spectrum Analyzer of Gabor (0,7%)

Spectrum Analyzer of Gabor (0, % ), Spectrum Analyzer of Gabor (%, %), Spectrum Analyzer
of Gabor (5, %
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Figure 15: (1) Texture prototypes: 3, (2) Curve Propagation (left to right, top to down),
Number of applied filters:9: Intensity, Laplacian of Gaussian, Spectrum Analyzer of Gabor
(2m,2m), Spectrum Analyzer of Gabor (%,0), Spectrum Analyzer of Gabor (%,0), Spectrum
Analyzer of Gabor (0, % ), Spectrum Analyzer of Gabor (0, %), Spectrum Analyzer of Gabor

™

(%), Spectrum Analyzer of Gabor (3, %
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Figure 16: Curve Propagation (left to right, top to down), Texture Prototypes:3, Number
of applied filters:9: Intensity, Laplacian of Gaussian, Spectrum Analyzer of Gabor (2m,27),
Spectrum Analyzer of Gabor (%,0), Spectrum Analyzer of Gabor (%,0), Spectrum Analyzer
of Gabor (0,%), Spectrum Analyzer of Gabor (0,% ), Spectrum Analyzer of Gabor (%, %),
Spectrum Analyzer of Gabor (3,5
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