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Abstract: The purpose of this work is to identify 2D cracks by the mean of elastic boundary mea-
surements. A uniqueness result is first proved in the general case, as well as the local lipschitzian
stability in the case of line segment emergent cracks. In this last case, the search of the unique zero
of the reciprocity gap functional related to the singular solution of the elasticity problem provides a
fast algorithm to determine the unknown crack tip.
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Identification de fissures 2D par des mesures de frontiere en
élasticité

Résumé : On se propose dans ce travail d’identifier des fissures 2D au moyen de mesures de
déplacements effectuées sur une partie de la frontiere. On montre d’abord un résultat d’unicité de
la solution, sous réserve que le chargement imposé géneére des facteurs d’intensité de contraintes non
nuls. Puis, on démontre des résultats de stabilité locale lipschitzienee, seulement dans le cas de fissures
droites débouchantes. Une méthode numérique rapide, basée sur la recherche du zéro de la fonction
d’écart a la réciprocité, est ensuite proposée.

Mots-clé : Controle non destructif, identification de fissures, identifiabilité, stabilité, principe de
réciprocité
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1 Introduction

We are interested in this paper in the identification of a surface breaking line segment crack by
overspecified elastic data. Up to our knowledge, theoretical results on identifiability of cracks are
seldom and are concerned mainly with the Laplace Equation ( i.e. steady state thermal equation or
electrical conduction). The uniqueness (identifiability) result for a buried crack has been first given
by Friedman and Vogelius [12]. They proved that two appropriate current fluxes, toghether with the
corresponding voltages, are necessary and suffice to determine uniquely the crack. In the same paper,
a partial stability result has been established. For the same problem, Alessandrini, Beretta and Vess
1 ela [1] proved a Lipshitz stability result.

Bryan and Vogelius [9], followed by Alessandrini and Diaz Valuenzia [3] examined the multiple crack
problem, always in 2D situation. In [7], Andrieux, Ben Abda and Jaoua proved that the inverse surface
breaking line segment crack problem is well-posed in Hadamard’s sense (uniqueness and Lipschitz
stability). More recently, Alessandrini and Di Benetto [2] studied the general 3D case for crack’s
determination by over determined electric data.

For the elastic case, when the crack is a priori known to be planar, and provided that complete
data are available on the boundary 02 , Andrieux, Ben Abda and Bui [6] have proved a complete
identification result based on the reciprocity gap principle introduced in [5]. The second section of
this note concerns the uniqueness result, which is obtained, provided that the solution is not smooth
at the crack tips. In the thermal case, such an assumption was only needed for stability purposes [7].
The third section is devoted to the stability result which uses, as for the thermal case, the domain
derivative technique as a main tool. A restrictive assumption on the stress intensity factors is also
needed. Finally, we present in the last section a fast algorithm to recover line segment cracks. The
algorithm is based on the reciprocity gap functional, but used in a somewhat different way from [8]
: the solution turns out to be a zero of the RG functional applied to some singular solution of the
elasticity system. A line search algorithm is then used to find out this zero, after the line has been
determined by explicit formulae [6].

2 Identifiability

Let Q be a smooth open domain of R?, with boundary 09, and let ¥ be a crack in Q. The direct
linear elastic problem, in the plane stress framework, is the following :

dive = 0 inQ\X

c.m = g only

c.m = 0 onX (1)
u = 0 only

where 'y and T'y is a partition of 9. The stress tensor o and the strain tensor ¢ are related by the
Hooke’s constitutive law, the medium being supposed homogeneous and isotropic. Therefore :

1+v 1%
gij(u) = i ~ Edu&'j (2)

E being the Young modulus, v the Poisson ratio, and ¢;; the Kronecker symbol.
Let us also define the two following spaces :

H = {7‘ € (L2(Q))4; Tij = Tjis 4,J = 1,2}
and :

W = {v € (Hl(Q))2; v =0 on Fo}
RR n~ 3438
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Let I'yy denote the set of admissible geometries and M be some open subset of I'; on which the
measurements are realised. The identification process consists in putting some prescribed load g on
I'1, and measuring the displacement induced by it on M. The identifiability result is based on a unique
continuation theorem for the elasticity system, similar to Holmgren’s theorem for elliptic operators,
and known as the Almansi Lemma [13]. Let us recall hereafter this result :

Lemma 1 (Almansi) Let Q be a domain in R? and (o,u) the solution of the linear elastic problem
(1) (2) (with a source term eventually). Assume that there ezxists some open subset L of 0 such that :

3)

co.mn = 0 onlL
u = 0 onlL

Then, 0 = 0, and u = 0 in Q.

The identifiability result is a consequence of this lemma, provided that the stress intensity factors,
which are the coefficients of the two singular functions describing the behaviour of the solution at a
crack tip, do not both vanish.

Theorem 1 (Identifiability) Let ¥ and ¥ be two cracks in Q, and let u, @ be the solutions of the
direct problem (1) (2) on Qs and Qs for the loading g. Assume that the solution w is not smooth at
the wvicinity of the crack tips (i.e. u & H?(?9), ¥ being any neighbourhood of the crack tips). Then, if
Y and ¥ both lead to the same measured displacement on M, we have ¥ = 3.

Figure 1: Two cracks with the same crack tips

Proof : Let Q be the connected component of Q\(ZUZX) containing M. 7 := ¢ —& and v := u — 4 are
therefore solution of the homogeneous elastic problem on €2y and v vanishes on M. By the Almansi
lemma, we derive that :

ag =

U =

Since  is not smooth at the vicinity of the crack tips of ¥, it follows that ¥ and 3 have the same crack
tips, otherwise % would be singular at the vicinity of the crack tips of 3, which are interior points of
Q\ .

in QO
in QO

Q:

(4)

=4

Suppose now that & # % and let O be a connected component of {2 \ Qo, which boundary is composed
by a part of 3 and a part of . Then :

dive = 0inO
o = R(e(u)) in O (5)
o.n OondONXE

INRIA
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Furthermore, o.n = &.n = 0 on 9 N E. On the other hand, since o.n is continuous across £, we
derive that o.n = 0 on 8O N X.

It follows that w is a rigid displacement in (. Let U be this rigid displacement, defined by by
U(z) = a+ b x z in the whole Q\ (£ NX). Hence, we get :

u—U = Ooni:lﬂao (6)
Re(u—U)m = 0onXNoO

By the Almansi lemma, v — U = 0in Q\ (2 U ), and therefore o.n = 0 on 8, which is in contra-
diction with the assumption that the load is not identically zero (g # 0).

Remark 1 : The same uniqueness result holds for C* unknown boundaries, with fixed endpoints. In
this case the only assumption needed is that the load g # 0.

3 Stability

In this section, we shall focus on surface breaking line segment cracks. The main result needed is an
expansion of the solution with respect to the geometry, and the tool used to obtain it is the domain
derivative.

We define a family Fj, = Id + hé of diffeomorphisms mapping 2\ ¥ on Q \ Xj. Let now (op,up) be
the solution of the elastic problem (1) (2) in Q\ &5 and let u* = uy, o F, and " = o, o F,. By [11],
we have the following expansion :

Theorem 2 (0", u") has the following expansion in H x Vy :
(o™, u™) = (6°,u®) + h(a?, u') + ho(h) (7)
where :
o (00, u®) is the solution of the elastic problem in Q\ X
o h]LITolo||0(h)|| =014 H x V)

o (b, ul) is the solution in H x Vi of the following problem :

(V7 € H and Vv € V)

1+v 1 oul / ou® ov
/Q\E i Tr(o 1) —Tr(o)Tr(r) — Tr(ra—M) = — o Tr(Ta—Ma—M)

ov 00 ov
(e 0V 90 (ot OV ) gi
/Q\E T(TaM oM /Q\Z (o oM )div 0]

ov
— Tr(ol=—)=—
L7 g

\

Let F' be the interior endpoint of the crack, and let us choose a particular field 8 :

o) = { 30 o)

RR n~3438
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where x is a smooth fonction equal to 1 in a neighbourhood 4 of F' which vanishes in the exterior of an
other neighbourhood @ of F . Id+ h describes then a variation of the length of the crack. To describe
a variation of the angle, we shall use another field # : ¥ and O being two open neighbourhoods of ¥
in Q such that: 9 C O C QU {S} and such that O N 9Q = {S} :

0(z,y) = { ;y in 9 i (10)
O(z,y) =0in (2\X)\ O

e &

Figure 2: Neighbourhoods of the
crack tip

The local stability result is then the following :

Theorem 3 Assume that u is not smooth (i.e. H?) near the crack tip. Then, for 0 defined by (9),
we have the stability result with respect to the length :
e v =

1
hl—I>I(1) h

>0 (11)

For 0 defined by (10), and assuming that the stress intensity factor Ko does not vanish, we get the
stability result with respect to the angle variation :

i 91—l
h—0 h

>0 (12)
Proof : Two kinds of stability have to be studied.

o Stability with respect to the length :

By the asymptotic expansion given by theorem 2, we have :

e v =]
lim
h—0 h

= |u1|L2(M) (13)
Suppose that |u1|L2(M) = 0. Then, because of the particular choice of 8, the pair (¢*, u') satisfies :

dive' = 0 in a neighbourhood of 99

oln. = 0 onM (14)
ut = 0 onM
1 —
where 0! = R(e(u')). Therefore, the Almansi lemma gives that : { Zl _ g in a neighbouhood of
0f). Using the results in [11] we deduce that :
1 ut = —l(K 21 K)Y) =0 (15)
2 ) 9 = g\ 27) =
1

INRIA
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and therefore
Ki=Ky=0

which contradicts the assumption we made on the stress intensity factors.

o Stability with respect to the angle :

As for the first part of the proof, we derive from theorem 2

- |uP | — ] 1
e [ z2an)
lim [(c"|m)n — (o|ar)-n]
h—0 h

= |O'1.TL|L2(M)

Suppose that |u! r2(v) = 0 and consider a bole B, around the interior crack tip of .

Figure 3: The neighbourhood Bj of the crack tip

Denote by
(2\X)s = (2\X)\ Bs
and let

S = {we (H'(Q)"; div{oc())} =0 in Q\ X}
where o(v) = R(e(v)).
The two following technical lemmas lead then to the contradiction.

Lemma 2 Let v be a field in S and let T = o(v). Then (1,v) satisfies :

ov 00 ov oul 06 ou'
| e 2Ly | 70 2 i Tr(r 2% 2y Tr(r T4
/Q r(o gar oar) /Q rlo aM)d“’H/Q r(raaaar) = Hm Bs " o)

Lemma 3 Let v be a field in S. If

o' _ ot _
oy ox
then 5 5 50
09V \_ g0 09V . OU
grad(Tr(o BM)) div(o 6M) dw(raM

by
E n v v
1+v 1-v

Let v be defined on Q by v(z,y) = ( o ) where a and b are two real numbers satisfying :

(

RR n~°3438

(16)

(17)

(18)

(19)

(20)
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Such a field v € S. By lemma 3, we get then :

ov 00 oul 06 ou'
_ 0z =7 27 77y — 1 it
( /(Q\E) R L BM)dwé?) /(Q\E)T rearaar) = im [, T g 09

Due to our particular choice of v, 7 is smooth, so that :

. oul
lim | Tr(rg5p) =0 (26)
and ov 00 o Ov ou® 00
Tr(o® 22 7 Tr div0 / Tr(r 2
(/m\z)& anan) (2\%); ) - (\9) Tom onr) o)
27
ov 00 v oul 60
— 0__ —_ - - ) =
(/B&TT(U BMaM) /B,;TT(U a]V‘[)clwﬂ) /BﬁTT(TaMaM) 0
The functions to integrated onBs are in L'(Q \ X). Therefore,
ov 06 v oul 08
. O—— vv ou- ov _ 2
) TV Tl /35 Tr(o" aM)d“’“/B& Trr st oar) =" (28)

By Green’s formula, we obtain :

ou’ ou® v
— Tr (T—)0 + / AT — div(c® =)0
, /(n\mg oM ), OM Sz, oM
lim =0 (29)

6-0 ov ov Ov
-I-/ a° grad(Tr(c® 5—))0 — / Tr(o®=—)nb
sy, M Jam), oM A(ANE), oM

Since 7.n = 0 on X, 0%.n = 0 on ¥ and # = 0 in a neighbourhood of 852, we can conclude that the

limits (when § (])of/ ar 00 L 8“00ad/ 20" g are

imits (when § — nT—10, no ——0, nT — 0 an —
a\x);  OM 7 Jaam), oM " Jap, OM 8B; oM

all equal to zero.

Therefore, (29) is equivalent to :

v
lim Tr(o® )7 = 0 30
6—0 AO\D)4 ( 8M) ( )
Using the previous arguments, we deduce that :
ov
Tr(o®=—)nf = 0 31
/2+U2 rle aM)n (31)
and hence
/ (alon] + blowal)(I +7) = 0 (32)
bX

where [ | denotes the jump of the function between the brackets across the crack ¥. Since [011] =
—4K.

(27r7")%

and [092] = 0, we obtain that

—4K, [Y(+7) -
(%)%/ “Har =0 (33)

and therefore Ky = 0, which is again in contradiction with our assumption.

INRIA
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4 Numerical issues and comments

To solve numerically the problem under consideration, let us assume that the overspecified data is
given on the whole external boundary of 2. We use the reciprocity gap principle introduced in [5] in
the framework of the thermal conductivity and generalised in [6] to the elastic case.

The reciprocity gap functional for the considered problem is then defined on the space S by:

RG(v) = /a _gv = u{R(e(w)n) (34)

which, by Green’s formula, is also :

RG() = [ [l{R(=(0).N) (35)
[u] being the jump of u accross .

This last expression of RG gives rise to the explicit reconstruction of the line supporting the crack,
by calculating its normal vector N [6]. The reciprocity gap principle can be exploited beyond to
reconstruct X ( that is to find its length). For a given crack % of length ), the idea is to select a
particular singular displacement field corresponding to a divergence free stress tensor (in €2), and such
that the normal component of the related stress tensor vanishes on 3. The singular function S, defined
in polar coordinates (with respect to the crack tip of f]) by :

where
1 0
—cos(5)(3 — y(1 +v)cos(0))
poy = { G2 (36)
(ZH)%ESZTL(E)(?) — 1+ v)cos(0))

is divergence free and satisfies 0(5’ ). N = 0on both sides of the crackﬁ]. By calculating the reciprocity
gap functional (34) for this field, we define a function of the length A :

rg(A) = RG(S) (37)

Figure 4: The polar coordinates with respect to the crack by

2 being the crack to identify, and A its length, by the Maxwell-Betti reciprocity principle, it is clear
that, rg(A) = 0 if ¥ = X. The location of the second endpoint of ¥ can then be found by seeking a
zero of rg.

RR n~ 3438
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Let us check the behaviour of this function at the vicinity of its zero, for example for A > /\~(the case
A < Aworks exactly the same way, by exchanging the roles of u and S, and those of ¥ and¥). Then,
we have :

rg(3) = /i\ (]{R(e(w).N} (38)

Since the crack intensity factors do not both vanish, R(e(u)).N(u) can be expanded as follows on S\ X
(b€ [As A -

0
REeS)Nw=| L2 B ) (a2 Fe(u— ) +...
@Qm)E 1+v  1+v

Hence, by an easy computation,we get the following local expansion of the rg, at the vicinity of A :

rg(A) = BK1(A = X) + (A= A0\ = X) (39)

where 8 # 0 is a non vanishing constant.

(39) shows that a non vanishing opening mode stress intensity factor insures a non vanishing derivative
of rg with respect to the crack length in the neighbourhood of its solution. This is due to our choice
of the opening mode singular function to define rg. Choosing the shear mode singular function would
lead to an expansion involving Kj instead of K. Anyway, nonvanishing stress intensity factors have
important effects on the local behaviour of the rg function, and therefore on the performance of the
line search algorithm used to compute its zero.

The numerical trials have been performed using synthetic data calculated by a direct finite element
method using the Modulef library.

Figure 5 shows how the r¢g function looks like in various situations, depending on the crack lengths,
for a prescribed load. Any line search algorithm, such as the fixed point one, may be used to find out
the zero of rg. Only few iterations are necessary to converge to a satisfactory solution.

Figure 6 shows how, by choosing an appropriate load, one can improve the identification process
(Bryan and Vogelius [10]).

An important issue to be discussed is related to the behaviour of the algorithm with respect to noise
on the measured data. Actually, it turns out to be amazingly robust : Up to 25 % noise, the zero
is only slightly perturbated. At a 40 % noise level, the rg function has more than a zero, but they
remain not far from the actual one. Things become bad at 60 % and 80% noise level (see figure),which
is somewhat expected.

Figure 8 displays the error on the crack tip location with respect to the crack length, and with respect
to the noise level on the data.

Issues remaining to be discussed concern the interior crack identification. It seems possible to generalize
the algorithm to such situations, but this have not been done yet. A full numerical analysis of the
algorithm, including an error analysis and a characterization of the solution of the identification
problem as the unique zero of the r¢g function, is also an interesting problem to be studied.

INRIA
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Figure 5: Zeros of the function rg for various crack lengths A; A=0.2; X = 05;SW:A=1.0,d=;SE: A=1.5
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Figure 6: Improving the identification by choosing an appropriate loading (actual length = 1.)

RR n~ 3438



Amel ben Abaa , Hend ben Ameur ana Mohamed Jaoua

o F S % SO o Srm——— a— — — -
3 o / 11 12 13
-10000
-5000
-20000
-10000
-30000
-15000
-40000
-20000 /
-50000
/ -25000
-60000
30000
-70000 ‘
-35000
8 09 1 12
09 i 11 17 13
3
-20000 /
-10000 / -40000
/ -60000
-20000
80000 /
o} | /
~s0000F |
//
- 40000 -120000 /

300000

200000

100000

0

- 100000

- 200000

-300000

il

N

N -
I\ \/\ o
N
200000 | \ |

Figure 7: The rg function for noisy data : 5%,

10%, 20%, 40%, 60% and 80%
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