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Irrégularité des trajectoires optimales dans le probléme
de controle optimale pour un robot mobile

Résumeé : Nous considérons le probléme de trouver les trajectoires les plus courtes joignant
deux points dans R?, la dérivée de la courbure étant bornée par 2, les tangentes et les
courbures du départ et de ’arrivée étant données, la tangente et la courbure de la trajectoire
étant continues.

Aux points de continuité de la fonction controle la trajectoire optimale est un arc de
clothoide (& isométrie prés une clothoide est définie par les intégrales de Fresnel z(t) =
fot cosT2dr, y(t) = f(f sin 72d7) ou un segment de droite.

Si la distance entre les positions initiales et finales est plus grande que 320/7, on prouve
que les trajectoires optimales génériques sont irréguliéres (i.e. la fonction contrdle a une
infinité de points de discontinuité).

Mots-clés : robot mobile, chemin (sous)optimal, clothoide, principe du maximum de
Pontryagine
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1 Introduction

We consider the problem to find the shortest path connecting two given points of R? with
given initial and final tangent angles and curvatures. The tangent angle and the curvature
vary continuously, the speed of changing the curvature is bounded by 2 (we denote this
derivative of the curvature by u(t)). The real background of the problem is to find the
shortest paths for a car-like robot to go from one given point to another with the above
mentioned initial and final conditions. One can turn the wheels of a car with a bounded
speed. Hence, the speed of changing the curvature of the path of a real car is bounded.

This and similar problems have been the object of several efforts recently. Dubins in [§]
considers the problem of constructing the optimal trajectory between two given points with
given tangent angles and with bounded curvature (cusps are not allowed). He proves that
there exists a unique optimal trajectory which is a concatenation of at most three pieces;
every piece is either a straight line segment or an arc of a circle of fixed radius. The same
model is considered by Cockayne and Hall in [7] but from another point of view: they provide
the classes of trajectories by which a moving "oriented point" can reach a given point in a
given direction and they obtain the set of all the points reachable at a fixed time.

Reeds and Shepp in [17] solve a similar problem, when cusps are allowed. They obtain
the list of all possible optimal trajectories. This list contains forty eight types of trajectories.
Each of them is a finite concatenation of pieces each of which is either a straight line or an
arc of a circle.

Laumond and Souéres in [14] obtain a complete synthesis for the Reeds-Shepp model in
the case without obstacles.

A complete synthesis for the Dubins model in the case without obstacles is obtained by
Boissonnat, Bui, Laumond and Souéres (1994, see [4] and [5]).

All these authors use very particular methods in their proofs. It seems very difficult
to generalize them. That is why the same problem is solved by Sussman and Tang in [18§]
and by Boissonnat, Cérézo and Leblond in [1] by means of simpler arguments based on the
Maximum Principle of Pontryagin.

Using these arguments allows to treat more difficult models as the one considered in
this paper. Here we consider a similar problem but now with a bounded derivative of the
curvature (cusps are not allowed).

The same problem is considered in [3] by Boissonnat, Cérézo and Leblond. After applying
the Maximum Principle of Pontryagin they obtain the following result: any extremal path is
a C? concatenation of line segments in one and the same direction (u(t) = 0) and of arcs of
clothoid (u(t) = £2), all of finite length. They study the possible variants of concatenation
of arcs of clothoid and line segments and obtain that if an extremal path contains but is
not reduced to a line segment, then it contains an infinite number of concatenated arcs of
clothoids which accumulate towards each endpoint of the segment which is a switching point.

Thus, in the generic case, an optimal path can have at most a finite number of switching
points only if it is a finite concatenation of arcs of clothoid (u(t) = £2). Therefore to solve
the problem of the irregularity of an optimal path in the generic case we consider extremal
trajectories such that they contain a finite number of concatenated arcs of clothoids.

RR n® 3411



2 FElena Degtiariova-Kostova Viadimir Kostov

In the paper we obtain the following result: if the distance between the initial and
the final points is greater than 320/, then, in the generic case, optimal paths have an
infinite number of switching points. We prove this by showing that a path which is a finite
concatenation of arcs of clothoids can be shortened while preserving the initial and final
conditions, the continuity of the tangent angle and curvature and the boundedness of the
curvature’s derivative.

In Section 2 we consider the theoretical aspect of the problem, using the Maximum
Principle of Pontryagin, and we formulate the main result of the paper in Theorem 2.7.
In Section 3 we give the general outline of the solution of the problem. In this section we
explain the main idea of the proof and we give a plan of Sections 4-11.

2 Statement of the problem, existence of an optimal so-
lution and application of the Maximum Principle of
Pontryagin to this problem

We study the shortest path on the plane joining two given points with given tangent angles
and curvatures along which the derivative of the curvature remains bounded. We solve this
problem in the class of all paths which are a C? concatenation of a finite number of open C3
arcs of finite length. The tangent angle a(t) between the axis Ox and the tangent-vector to
the path is a continuous and piecewise C? function, the curvature x(t) is a continuous and
piecewise C! function.

We have the following system (from now on we denote "d/dt" by ”-”):

Z(t) = cos a(t)
=4 M) Z5mel) »
R(t) = u(t) lu(t)| < B
with the following initial and final conditions:
X(0)=(2°y%a% k"),  X(T)=@"y" o k"), (2)

Here z(t) and y(t) are the coordinates of some point in R?, k(t) is its curvature, a(t) is
the angle between its tangent vector and the axis Oz.

A suitable changing of variables (homothety in z, y and t) allows us to consider only the
case B = 2. From now on we set B = 2 (not B = 1 — which is more classical for optimal
control problems) because it simplifies calculations. So, we consider the following system:

i(t) = cosaf(t)
0= 20 »
R(t) = u(t) [u(t)] <2

INRIA



Irregularity of optimal trajectories in a control problem for a car-like robot 3

with initial and final conditions (2).

We control the derivative of the curvature by the control function u. The control function
u is a measurable, real-valued function and u € U, where U = [-2,2]. We want to find X (¢)
such that the associated control function () should minimize the length of the path

T
J(u) =T:/0 dt . @)

Here the variable ¢ is the arc length but it will be called the time because the point moves
with a constant speed 1, that is why this "minimum length problem" is also a "minimum
time problem".

The controllability of system (3), (2) and the existence of an optimal solution to the
problem (2)—(4) is proved in [3].

To obtain necessary conditions for the control function u(t) and for the trajectory (z(t),
y(t), a(t), k(t)) to be optimal we can apply the Maximum Principle of Pontryagin (see the
details in [3]).

If we denote by U(t) = (o, 1,12, 13,1%4) the vecteur of "dual” variables, then for the
Hamiltinian H we have the following formula:

H(X,T,u) =1y + 11 cosa + Yo sina + 3k + ¥au, for every t € [0,T]. (5)

We have the following adjoint system (for every ¢ € [0,T]):

)
. 1(t)
B(t) =S 4o(t) = (6)
P3(t) = ¥1(t) sina(t) — a2(t) cosa(t)
)

A measurable control function u and the associated trajectory of (1) satisfying all con-
ditions of the Maximum Principle of Pontryagin (see [6], th.5.1i, [16], Chapter 1, th.1 and
[3] Section 3.1) will be called extremal control and extremal trajectory. A point X (t,) of an
extremal trajectory will be called a switching point if at t = ¢, the control function w(¢) has
a discontinuity. An extremal trajectory is called regular extremal trajectory if it has a finite
number of switching points.

After applying the Maximum Principle of Pontryagin we obtain the following result (see

[31):

Lemma 2.1 Any regular extremal path is a C? concatenation of line segments in one and
the same direction (u = 0) and of arcs of clothoids (u = £2), all of finite length.

A clothoid is a curve along which the curvature k(t) depends linearly on the arc length
t and varies continuously from —oo to +00. In our case we consider only clothoids which
satisfy the following equation (see Lemma 2.1):

RR n® 3411
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k(t)==£2t, te€(—o0,+00). (7)

We can also define the clothoid by its parametrized form (setting x(0) = y(0) = 0,
a(0) =0, k(0) = 0)

{ 2(t) = fot cos T2dr

y(t) = ifot sin72dr

The two possible choices of the sign correspond to the two possible orientations of the
clothoid. Here t is the natural parameter and the curvature at the point (x(t),y(t)) equals
+2t. A clothoid is a curve symmetric with respect to its point of zero curvature. The part

of the clothoid corresponding to ¢t € [0,400) or to t € (—o0,0] is called a half-clothoid (see
an example of a half-clothoid on Figure 1).

v A

ay

Figure 1

Define as "the centre of the half-clothoid” the point O, with coordinates (zo,, yo, ) defined

as follows:
zo, = [, cosTdr = V7] (2v/2)
Vo, = i~ sin7dr = /7 /(2v2)
Denote by R the length of the line segment |OO,|. Then

R=\7/2. (8)

INRIA



Irregularity of optimal trajectories in a control problem for a car-like robot 5

From now on we use the following notations for the arcs of clothoid and for the line
segments:

1) "CI*” — an arc of clothoid with u(t) = B, ¥4(t) <0

2) ”Cl1~” — an arc of clothoid with u(t) = —B Pa(t) >
3) ”5¥” — a line segment of the direction ¢ (u ( ) =0, ¢ ( ) =0),
4) """ — a switching point.

Proposition 2.2 At any switching point (CI.Cl, Cl1.5% or S¥.Cl) one has ¥4(t) =

Proof

On S? the continuous function ¥4(t) = 0, hence, ¥4(t) = 0 at any switching point C1.5¥
or S¥.Cl. At a switching point CI.C1 the signs of u(t) and 4 (t) change, hence, 14(t) = 0 at
this point. The proposition is proved. m|

Proposition 2.3 The expression s (t)—1(t)y(t)+12(¢)x(t) is constant along any extremal
path.

Proof
Calculate £ [13(t) — 1 (£)y(t) + Ya(t)(t)):

%[%(t) = Y1)y (t) +Y2(t)z ()] = Pa(t) = L)y (t) — PL()G(E) + Pa(t)a() + Pa(t)i (D) -

Hence, using (6) and (3), we obtain

L 1s(t) — () + va(D)a(t] = 0. ©

Thus, it follows from (9) that there is some constant ¢ € R such that 13(t) — 1 (t)y(t) +
P2(t)z(t) = cp.

The proposition is proved. |

Lemma 2.4 For every extremal path there is a coordinate system Ozxy such that in this
coordinate system the mean values of the y coordinate on any interval between two consecutive
switching points are equal to zero.

Proof

We consider some extremal trajectory. It follows from Proposition 2.3 that 3(t) =
Y1 (t)y(t) —1=2(t)x(t) —co along any extremal path. Hence, we can rotate the given coordinate
system Ozy to some angle & such that in the new coordinate system 3(t) = y(t) along the
extremal path under consideration.

Thus, using (6) we obtain

Pa(t) = —y() (10)

RR n° 3411



6 FElena Degtiariova-Kostova Viadimir Kostov

This equation holds along the extremal path. Consider some interval [t1,t2] € [0,T]
between two consecutive switching points. Then it follows from (10) that

t2
dalts) == [ u(0)+valt) ()
t1
But 94(t1) = ¥a(t2) = 0 (it follows from Proposition 2.2). Hence, we obtain fttf y(t) =0
for any interval between two consecutive switching points, i.e. the mean values of the y
coordinate on any interval between two consecutive switching points are equal to zero.
The lemma, is proved. |

In [3] Boissonnat, Cérézo and Leblond study the following problem: how are the arcs of
clothoid and the line segments arranged along an extremal path? They obtain the following
result:

Theorem 2.5 If an extremal path contains but is not reduced to a line segment, then it
contains an infinite number of concatenated arcs of clothoid which accumulate towards each
endpoint of the segment which is a switching point.

Remark: We can easily reprove Theorem 2.5 using Lemma 2.4. Really, we suppose that
some regular extremal path contains but is not reduced to a line segment. So, for this path
we choose a coordinate system Ozy such that in this coordinate system the mean values
of the y coordinate on any interval between two consecutive switching points are equal to
zero. In this coordinate system 3(t) = y(t) along the extremal path under consideration,
ie. P1(t) =1, ¥a(t) = 0 (hence, A = 1, ¢ = 0). Thus, along the line segment S¥ we have
y(t) = 0 (we denote this interval by [t1,¢5]). But along any neighbour piece of clothoid (which
corresponds, for example, to the interval [t2,t3]), we can’t have Lt;’ y(t)dt = 0 (because
y(t2) = 0, k(t) = 0 and k(t) is either positive, or negative on the interval (¢s,¢3]; hence,
y(t) is either positive, or negative on the interval (¢2,t3]) — a contradiction with Lemma 2.4.

Thus, in the generic case an optimal path can have at most a finite number of switching
points only if it is a finite concatenation of arcs of clothoids. Therefore in the present paper
we consider extremal trajectories such that they contain a finite number of concatenated
arcs of clothoids and we prove the following theorem:

Theorem 2.6 If the distance between the initial and the final points is greater than 320/,
then, in the generic case, an optimal path can’t consist of a finite number of concatenated
arcs of clothoid.

The proof of this theorem is given in Section 11. The reader who doesn’t want to go
into technical details but will be satisfied with the broad outlines of the proof can read only
Section 3 and Section 11.

As a corollary of Theorem 2.5 and Theorem 2.6 we obtain Theorem 2.7 which contains
the main result of the paper:

Theorem 2.7 If the distance between the initial and the final points is greater than 320/7,
then, in the generic case, optimal paths have an infinite number of switching points.

INRIA



Irregularity of optimal trajectories in a control problem for a car-like robot 7

3 General outline of the solution of the problem

The main idea of the proof is to consider a class of C? and piecewise C® paths defined on the
interval [0,7], which are finite concatenations of arcs of clothoids defined by the equation
k(t) = £2t and which satisfy the initial and final conditions. We describe a procedure
allowing to shorten an arbitrary path P from this class and at the same time to preserve
the initial and final conditions and the bound of the derivative of the curvature. Denote
by N the number of switching points of P and denote by ts (s = 1,...,N) the value of ¢
corresponding to some switching point.

Remark 3.1 Remind that it follows from Lemma 2.4 that for any extremal path there is
some coordinate system Oxy such that in this coordinate system the mean values of the y
coordinate on any interval between two consecutive switching points are equal to zero. Hence,
without loss of generality from now on we suppose that we consider this coordinate system.
Remark that it is defined after the path.

Consider the graph of the curvature x as a function of the arc length ¢ of the path P.
This graph is a piecewise linear function on [0, 7] and all pieces are line segments of the kind
k(t) = £2t + &% (see an example of such a graph on Figure 2).

w(t) A

~Y

Figure 2

We carry out a modification of the path P by modifying the graph of its curvature. We
want to modify the graph k(t) outside some neighbourhood of the initial point so that at
the final point we shall have the same values of the final conditions and that the modified
path will be shorter than the initial one.

RR n° 3411



8 FElena Degtiariova-Kostova Viadimir Kostov

Denote by

Final Conditions 3.2 a) the given value kT of the curvature;
b) the given value o™ of the tangent angle;
c) the given value x7 of the coordinate x;
d) the given value y* of the coordinate y.

Denote by t,, the switching points (with even p for the maxima of the curvature and with
odd p for the minima of the curvature). Respectively, denote by x, and vy, the curvature
and the y-coordinate at the point ¢,,.

To prove Theorem 2.6 we introduce three different methods of modification. The choice
of the method depends of the type of the path P.

The path P consists of a finite number of arcs of clothoid. Hence, a priori we have 4
posibilities:

1) the generic case (ys # 0 for any s);

2) the special case when there exists ¢, such that y; =0, y., # 0;

3) the special case when there exists ¢, such that y, =0, y, =0, y./ # 0;

4) the special case when there exists ¢, such that ys = 0, y, = 0, y = 0,
v 0.

The are no other possibilities because the derivative of the curvature of the clothoid isn’t
equal to zero (it is equal to +2). Hence, no line can have a contact of order higher than 3
with a clothoid.

In the case when the mean values of the y-coordinates on every interval except the first
and the last one are zero possibility 4) is absent. Really, if some point (¢ = ts) has y-
coordinate with a zero of third order, then this point is an inflexion point of the clothoid
with y(t;) = ¥'(ts) = y"(ts) = 0. Hence, the value of the y-coordinate of the path on the
interval [ts,ts41] is positive (as on Figure 3) or negative, because in any coordinate system
such that the inflexion point of the clothoid has y and 3’ equal to zero any half-clothoid
of this clothoid is situated either above or below the axis Oz. So, the mean value of the
y-coordinate of the path on the interval [ts, ts41] is positive (as on Figure 3) or negative, but
it can’t be equal to zero — a contradiction. Hence, we’ll consider only the first three cases.

Consider, at first, the generic case when y; # 0 for any s. In the generic case we must
consider two possibilities:

19) there exist two indices p and q of the same parity such that Yp X Ygq < 0;
2%) y, x y, > 0 for any p and ¢ of the same parity.

The possibility 1°) is considered in Section 8. Consider now the possibility 2°). Without
loss of generality we can assume that y, > 0 for any even p. In this case there are two
subcases:

a) yp > 0 for any p,
b) y, > 0 for any even p and y, < 0 for any odd p.

INRIA
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vy A

__ (m(teq1), y(tag1))

=Y

o (z(ts),0)

Figure 3

The subcase a) is considered in Subsection B.1.

The subcase b) is considered in Section 10 (the case when y, > 0, k, > 0 for any even
pand y, < 0, K, < 0 for any odd p) and in Section 9 (the case when y, > 0 for any even
p; yp < 0 for any odd p; and there exists at least one even index p (odd index p) such that
kp <0 (kp > 0)).

The special case 2) (i.e. the case when there exists t; such that ys = 0, y, # 0) is
considered in Subsection B.2.

The special case 3) (i.e. the case when there exists ts such that ys =0, ., =0, ¢/ #0)
is considered in Subsection B.3.

One can see the scheme of all cases on Figure 4.

So there are many cases to consider, but in all these cases one uses only three different
methods of modification of the path.

The first method is described in Sections 4-8 and in Appendix B. As a result we obtain
a new path with the given initial and final conditions, which is shorter than the initial one
and which is a finite concatenation of arcs of clothoids. In this method we use three types of
modifications (see modification of type A in Section 5, modification of type B in Section 6
and modification of type C in Section 7).

The second method is introduced in the case when y, > 0 for any even p, y, < 0 for any
odd p (with the possible exception of the first and of the last one) and there exists at least
one even index p (odd index p) such that k, <0 (k, > 0).

We describe this method in Section 9. As a result we obtain a new path with the given
initial and final conditions, which is shorter than the initial one. However, it belongs to
another class of paths, i.e. it consists of a line segment and of a finite number of arcs of
clothoids.

The third method is introduced in the case when y, > 0, k, > 0 for any even p and
yp < 0, kp < 0 for any odd p (with the possible exception of the first and of the last one).

RR n° 3411
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CASES TO CONSIDER

the generic case the special case when the special case when

when y, # 0 for any s there exists ¢, such that there exists t. such that
Ye =0,y #0 ys =0,y =0,y #0
(see Appendix B.2) (see Appendix B.3)

there exist two indices p and ¢ Yp X Yq >0

of the same parity for any p and ¢

such that y, X y, <0 of the same parity

(see Section 8)

yp is of the same sign yp is of one sign
for any p for any even p and

(see Appendix B.1) yp is of the opposite sign
for any odd p

— =

yp and k, have one the same sign

yp is of one and the same sign

for any even p and for any even p;

yp and k; have the opposite sign yp is of the opposite sign
for any odd p for any odd p;
(see Section 10) and there exists at least one index p

such that x; is of the opposite sign

to the sign of the corresponding y,

(see Section 9)

Figure 4

INRIA
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We describe this method in Section 10. As a result we obtain a new path with the
given initial and final conditions, which is shorter than the initial one, but which belongs
to another class of paths, i.e. it consists of a line segment and of a finite number of arcs of
clothoids.

We prove Theorem 2.6 in Section 11.

Hence, we can conclude that there is no optimal path in the class of paths under consid-
eration.

4 General description of an elementary modification

We consider some path P and we define an elementary modification as follows:

1) if we denote by P; . some modified path, then P; . contains a finite number
of concatenated arcs of clothoid defined by the equation x(t) = £2¢; it is defined
on the interval [0, T] and satisfies the initial conditions,

2) for P; . all switching points are the same as the ones of P, except the i-th
one which changes from ¢; to t; + ¢

(see an example of some such modification on the graph x(t), Figure 5).
On Figure 5 the dotted lines denote the pieces of the new graph. We remark that we
can consider positive and negative ¢ such that ¢ € (t;—1 — t;, t;41 — t;)-

Proposition 4.1 For any path P; . obtained from the path P by means of some elementary
modification, the final conditions are analytic functions of ¢ defined for e € (ti—1 —t;, tip1 —
ti).

Proof

The coordinates, the tangent angle and the curvature at the final point of the path P; .
corresponding to the value t; + ¢ of the modified path depend analytically on € because they
are expressed by formulas containing only analytic functions of ¢. For the same reason the
coordinates, the tangent angles and the curvatures at the points corresponding to the values
tit1,tiy2,-.., 1 are also some analytic functions of e.

The proposition is proved. |

5 General description of a modification of type A

We consider some path P and we define a modification of type A as follows:

1) we modify the graph (t) of P on two different intervals [t;,t,41] and
[tj,tj+1] (except the first and the last one) such that if x(¢) has some local
maximum at the moment ¢;, it has some local minimum at the moment ¢; and
vice versa,

2) any modification of type A is a superposition of four elementary modifica-
tions:

RR n° 3411
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ti =t + 04K,
tiy1 — tip1 + 04K,
ty—t; + 6AK’J',
tj+1 — t]'+1 + (SAK'J'.

Here we denote by 64 some small parameter (we can consider positive or negative §4)
and we denote by K;, K, two positive constants such that d4K; € (ti—1 — i, tit1 — i),
0aK; € (tj—1 —t;,tjy1 — t;). We remark that for the modified path (we denote it by P,)
condition a) of Final Conditions 3.2 holds (because by definition x(T") doesn’t change, see
an example of some such modification on Figure 6).

I{(t) A B
4 G
H
D
C
F
ti lit1 ti L | tiva >
o >
t; + 64K tiy1+6aK; tj+6aK;  ti+1+ 04K, T i
Figure 6

On Figure 6 the dotted lines denote the pieces of the new graph. We denote by z (%),

ya(t), aa(t), ka(t) the coordinates, the tangent angle and the curvature of a point of Py
corresponding to ¢.

Proposition 5.1 If we want that on the path obtained from the path P by means of some
modification of type A condition b) of Final Condition 3.2 hold, then we must construct this
modification by means of constansts K;, K; such that equality (12) holds:

Ki(tiy1 — t:) = K;(tj41 — t;) (12)
(i.e. the area of ABCD is equal to the area of EFGH, see Figure 6).
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14 FElena Degtiariova-Kostova Viadimir Kostov

Remark 5.2 We modify on two intervals ([ti,ti+1] and [t;,t;41]) to preserve condition b)
of Final Conditions 3.2.
Proof of Proposition 5.1

The tangent angle of the path P4 at the final point (we denote it by a4 (7)) is equal to
fOT ka(t)dt. Hence, if we want that aa(T) = o, then the area of ABCD (we denote it by

Sapcp) must be equal to the area of EFGH (we denote it by Sprgm). We have
Sapcp = 46aKi(tip1 —t;) Seram = 46aK;(tj11 —t5) .
So, we obtain the following equality:
Ki(tiyr — i) = Kj(tjp — t5) -
The proposition is proved. |

Proposition 5.3 For any curve Pa obtained from the curve P by means of some modifi-
cation of type A, the final coordinates x o(T) and ya(T) are some analytic functions of §4.

Proposition 5.3 follows from Proposition 4.1 and from the definition of a modification of
type A.

Proposition 5.4 If k(t) of P has some local mazimum at the moment t; and if we consider
a modification of type A such that on the new path Pa a) and b) of Final Conditions 3.2 hold,
then for the coordinates of the final point of the path Pa we have the following formulas:

24(T) = 27 + 64K + 0(82) |
(13)
ya(T) = yr + 64K +0(6%) ,

where
KW =Caly(p) —y@) =0, KM =-Ca(a(¥) - 2(x)) , (14)

CA - 4Kz(t1_|_1 - tz) == 4Kj(tj+1 - tJ) .

Here the point p (the point v) is a point of the interval [, tiy1] ([t;,tj41]) such that y(p)
(y(v)) is equal to the mean value of the function y(t) on this interval (respectively, x(19)
(z(x)) is equal to the mean value of the function x(t) on the interval [t;,tix1] ([t;,¢+1]))-
Remind that y(n) = y(v) = 0 for all the intervals [t;,t;y1] and [t;,t;41] (with the possible
exception of the first and of the last one, see Remark 3.1).

INRIA
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Proposition 5.5 If k(t) of P has some local minimum at the moment t; and if we consider
a modification of type A such that on the new path Pa a) and b) of Final Conditions 3.2
hold, then for the coordinates of the final point of the path Pa we have formulas (18) where

KM = =Caly(w) —y()) =0, KM = Ca(a(d) - 2(x))

(see the definition of the points u, v, 9, x and the definition of the constant C4 in Proposi-
tion 5.4).

One proves Proposition 5.5 in the same way as Proposition 5.4.
Proof of Proposition 5.4

By definition we have the following formulas:

2a(T) = /0 ¥ cosaua(t)dt | ya(T) = /0 " sinaa(t)dt |

T T
zT = / cosa(t)dt , y' = / sin a(t)dt .
0 0

Hence, we obtain

24(T) — 2T = /T cosaa(t)dt — /T cosa(t)dt = /T(cos aa(t) — cosa(t))dt =
0 0 0

N T aalt)—a(t) . aalt)+at)
_—2/0 sin 5 5

For the small 64 we have aa(t) — a(t) = O(64), hence,

sin aA(t)2— a(t) _ aA(t)z— a(t) +0(82) |

Thus,

2A(T) — 2" = - /T(aA(t) — a(t)) sin Mdt+ 0(8%) =
0

T T
= —/0 (aa(t) — at))sin a(t)dt + O(6%) = —/0 (aa(t) —a(t)y(t)dt + O(8%) .

Now we integrate by parts and we obtain
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16 FElena Degtiariova-Kostova Viadimir Kostov

T
2a(T) — &7 = —[(a(t) — o(E)y@)T + / (6a(t) — a(t))y(8)dt + O(F4) =
T
—0+ / (ka(t) — K(6))y(8)dt + O(52) =
0

tit1 tj+1
- / 484K y(t)dt — / 484K y(t)dt + O(6%) =
t t

i 3J

=45, +0(6%) =

tit1 tj+1
K, / y()dt — K; / y(t)dt
t t

i J

= 464[Ki(tiv1 — t)y(n) — Kj(tj41 — t;)y(v)] + O(63)
(here the point g (the point v) is a point of the interval [t;,t;41] ([t;,t;j+1]) such that
y(p) (y(v)) is equal to the mean value of the function y(t) on this interval). Remind that
y(u) = y(v) = 0 for all the intervals [t;,t;+1] and [t;,¢;41] (with the possible exception of
the first and of the last one, see Remark 3.1).
Using (12), we obtain:

2a(T) — 2" =464 Ki(tiy1 — t:)(y(n) — y(v)) + O(8%) -
So, we obtain the following formula:
2A(T) =27 + KMo+ 0(83)
where
KM = Cay(p) —y(v)) =0, Ca = 4Ki(tip1 — t;) = 4K;(tj41 — t5) -

We obtain the formula for y4(7T") by analogy.
The proposition is proved. o

6 General description of a modification of type B

We consider some path P and we define a modification of type B as follows:

INRIA
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1) we modify the graph x(t) of P on the two last intervals (we denote them by
[tf—2,t5—1] and [t;_1,T] so that the modified path (we denote it by Pg) should
be shorter than the initial one,

2) any modification of type B is a superposition of three elementary modifi-
cations:

tf_g — tf_g + 6BK1,

ty_1—=tp_1+ 6pK1 + (53]&’2/2,

T—T+ 6K
(note that the modification of type B should shorten the path P, therefore we
consider only negative 6p).

Here we denote by 65 some small parameter and we denote by K;, K2 two positive
constants such that 6p K1 € (ty_3 —ty_2,0), 6pKa € (ty—1 —T,0). We remark that for the
modified path a) of Final Conditions 3.2 holds (because, by definition, x(T') doesn’t change,
see an example of some such modification of Figure 7).

On this figure the piece ADG belongs to the new graph and the piece ABEF belongs to
the old graph. We denote by x5(t), yp(t), as(t), kp(t) the coordinates, the tangent angle
and the curvature of a point of Pp corresponding to ¢t and we denote by 75 the final point
of the path Pg (i.e. T =T + 6pKo>).

Proposition 6.1 If k(t) of P has some local mazimum at the moment ty_1 and if we want
that on the path obtained from the path P by means of some modification of type B condition
b) of Final Conditions 3.2 holds, then we must construct this modification by means of
constants K1, Ko verifying:

4K1(tf71 - tffz) - K2|I-€f71| + 6B (K'2(2K1 - K2/2)) =0 (15)
(i.e. the area of ABCD is equal to the area of CGKLFE, see Figure 7).

Proof

The tangent angle of Pg at the final point (we denote it by ap(Tg)) is equal to
OTB kp(t)dt. Hence, if we want that ag(Ts) = o, then the area of ABCD (we denote it

by Sapcp) must be equal to the area of CGKLFE (we denote it by Scgixrre). We have
Sapop = —46pKi(ty 1 —t; 2 +6pKa/2), Scexrre = —|ks 1|6pK2 — 65K2/2 .
Thus, we obtain the following equality:
—46pK(tj 1 —t; o+ 6pK2/2) = —|ks 1|6pKs — §5K3/2 ,

i.e.
4K1(tf_1 — tf_2) — K2|K/f_1| + 6B (K2(2K1 — K2/2)) =0.

The proposition is proved. |
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Proposition 6.2 If k(t) of P has some local minimum at the moment ty_1 (see an example
of some such modification on Figure 8) and if we want that on the path obtained from the
path P by means of some modification of type B condition b) of Final Conditions 3.2 hold,
then we must construct this modification by means of constants K1, Ko verifying:

4.K1(tf,1 — tffz) + K2(|K,T| — 2(T — tffl)) + 6B (Kz(?.Kl — K2/2>) =0 (16)

(i.e. the area of ECGN is equal to the sum of the area of ABCD and of the area of KNFT,
see Figure 8).

w(t) A
W b T
I{f_g 7777777777777777777777777777777777777
Kf_1 === ----------------\------f---------F - r
o t
tA:tf—2+5BK1 tc:tf_1+6BK2/2
tp =ty_1 + 6p(K1 + K2/2) tg =tf-1
Figure 8
Proof

The tangent angle of Pg at the final point (we denote it by ag(Tg)) is equal to
OTB kp(t)dt. Hence, if we want that ap(Tg) = a”, then the area of ECGN (we denote it
by Secen) must be equal to the sum of the area of ABC'D (we denote it by Sapcp) and

the area of KNFT (we denote it by Sknrr). We have
Sapop = —46pKq(ty_1—t5 2+0pK2/2), Sgoan = 65K35/2—26pKy(T+6pKa—t;_ 1),
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Sknrr = —6pKs|k"| — 6L K7 .
Thus, we obtain the following equality:
—4(53K1(tf_1 —tf_2+5BK’2/2) —(SBK2|I€T| —6123K22 = 6123K'§/2—26BK’2(T+5BI(2 —tf_l) ,

i.e.
4K1(tf,1 — tf,Q) + K2|I€T| — ZKQ(T — tffl) + 6B (K2(2K'1 — K2/2)) =0.
The proposition is proved. |

Proposition 6.3 For any path Pp obtained from P by means of some modification of type
B, the final coordinates 5(Tr) and ys(Ts) are some analytic functions of ép.

Proposition 6.3 follows from Proposition 4.1 and from the definition of a modification of
type B.

Proposition 6.4 If k(t) of P has some local mazimum at the moment ty_1 and if we
consider a modification of type B such that on the new path Pp the condition b) of Final
Conditions 3.2 hold, then for the coordinates of the final point of the path Pg we have the
following formulas:

25(Ts) = 27 + 65K %) + 0(6%) ,

(17)
y5(Ts) = yT + 65 K{® +0(83) ,
ol 5
K = —dlyy(u) + dy(v) + Ko(y(Ts)|KT| + cos (Tx)) =
= dy(v) + Ka(y(T)|c"| + cos (Tx)) (18)

K = diga(¥) — dz(x) + Kao(—2(T)|67T| + sina(Tg)) ,

IB = 4K1(tf_1 — tf_g) >0, 73 = 2K2(T - tf_l) >0.

Here the point p (the point v) is a point from the interval [ty_o,tr_1] ([tf-1,T]) such that
y(p) (y(v)) is equal to the mean value of the function y(t) on this interval (respectively, x(19)
(2(x)) 4s equal to the mean value of x(t) on the interval [ty_2,tr—_1] ([ty—1,T])). Remind
that y(u) = 0 on the interval [ty_o,t;_1] (see Remark 8.1).

Proposition 6.5 If k(t) of P has some local minimum at the moment ty_1 and if we
consider a modification of type B such that on the new path Pg the condition b) of Final
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Conditions 3.2 holds, then for the coordinates of the final point of the path Pp we have
formulas (17) where:

KSP) = dgy(p) — djy(v) + Ko(y(Ts)|KT| + cos a(Tg)) =
= —dy(v) + Ka(y(Tp)|K"| + cosa(T5)) (19)

K = —diyu(9) + da(x) + Ka(~2(T5)|k7| + sina(T5)) ,

(see the definition of the points u, v, 9, x and the definition of the constants d'y, d’f in
Proposition 6.4).

See the proofs of Proposition 6.4 (of Proposition 6.5) in Appendix A.1 (A.2 respectively).

Conclusion 6.6 We can choose a modification of type B such that the modified path is
shorter than the initial one and on the modified path conditions a), b) of Final Conditions 3.2
hold (by choosing suitable constants K1, Ky — see Proposition 6.1).

7 General description of a modification of type C

A modification of type C can be considered as some modification of type A but in this case
we modify the graph x(t) not on an interval but on a small neighbourhood of a switching
point. We can carry out this modification on two small neighbourhoods of two switching
points or on a small neighbourhood of some switching point and on some whole interval.

Consider an example of some modification of type C. Modify the graph x as a function
of ¢ (corresponding to a given path P) on a small left half-neighbourhood of the point ¢, + ¢
(i.e. on the interval [t, — (,%,]) and on the interval [t;,¢;41] (see Figure 9).

On this figure the pieces ADC and FEH belong to the new graph and the pieces ABC
and FGH belong to the old one. We denote the obtained path by Pc and we denote by
zc(t), yo(t), ac(t), ko(t) the coordinates, the tangent angle and the curvature of a point
of P¢ corresponding to t.

Remark 7.1 Note that if we decide that the point t, — ¢ is a ’double’ switching point (i.e.
at the point t, —  we change the vector field &k = 2 to the vector field k = —2 during the time
26r0), a modification of type C is some modification of type A and we can use the results
obtained in Section § paying attention on the sign of é¢ .

Remark 7.2 We remark that

1) in the case when we carry out a modification in the left half-neighbourhood
of some local mazimum (minimum) of the graph k(t) we consider only positive
bc and we consider only switching points t; which are local mazima (minima) of
the graph k(t),
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Figure 9
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2) in the case when we carry out a modification in the right half-neighbourhood
of some local mazimum (minimum) of the graph k(t) we consider only negative
bc and we consider only switching points t; which are local minima (mazima) of
the graph x(t).

As in Section 5 we obtain the following

Proposition 7.3 If we want that on the path obtained from the path P by means of some
modification of type C condition b) of Final Conditions 3.2 hold, then we must carry out
this modification by means of constants K,, K; such that equality (20) holds:

Kp( = Ki(tiy1 — 1) (20)
(i.e. the area of ABCD is equal to the area of EFGH, see Figure 9).

Proposition 7.4 For any path Pc obtained from P by means of some modification of type
C, the final coordinates xc(T) and yo(T) are some analytic functions of é¢.

Proposition 7.5 If k(t) of P has some local mazimum at the moment t, and if we con-
sider a modification of type C such that on the new path Pc conditions a) and b) of Final
Conditions 3.2 hold, then for the coordinates of the final point of the path Pc we have the
folowing formulas:

2o(T) =27 + 6c K9 + 0(82) ,

yo(T) = yT + ¢ K9 + 0(62) |

where

K9 = -Coly(p) —yw)) = —Coy(p) , K =Colz(®) —2(x)),  (22)

Co = 4Kl(tl+1 — tl) = 4Kp< .

Here z(9), y(p), (x(x), y(v)) are equal to the mean values of the corresponding coordi-
nates on [t, — (,tp] ([ti,tix1]). Remind that y(v) = 0 for all the intervals [ti,ti41] (except
the first and the last one, see Remark 3.1).

Proposition 7.6 If k(t) of P has some local minimum at the moment t, and if we consider
a modification of type C such that on the new path Po conditions a) and b) of Final Con-
ditions 8.2 hold, then for the coordinates of the final point of the path Pc we have formulas
(21) where:

K9 = Coly(w) —yw) = Coy(w) ,  K{¥ = =Co(a(®) —a(x)  (23)

(see the definition of the points p, v, ¥, x and the definition of the constant Co dans la
Proposition 7.5).
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8 Proof of the non-optimality of the path P — case I

Remind that we denote by ¢, switching points (with even n for the maxima of the curvature
and with odd n for the minima of the curvature). Respectively, denote by k., and ¥, the
curvature and the y-coordinate at the point ¢,.

Definition Call ’case I’ the case when y, # 0 for any n and there exist two indices p
and g of the same parity such that y, X y, < 0.

Without loss of generality we suppose that ¢, and ¢, are the switching points corre-
sponding to two local maxima on the graph k() of the path P whose y-coordinates have
different signs. Assume, that y(t,) > 0, y(¢,) < 0. Hence, there exist small neighbourhoods
[tp,— ¢, tp+¢] and [t, —7, t,+ ] where the y-coordinates are positive or negative respectively.

Without loss of generality we suppose that the curvature of P has some local maximum
at the moment ¢;_;.

Now we perform two modifications. At first we modify the graph of k() on two intervals
[tp, — ¢, tp] and [t;, t141] (it’s a modification of type C, see Figure 9). We obtain the path
Pci1 and the graph kc1(t). For zc1(T), yo1(T) we obtain formulas (21), (22).

The second modification is a modification of the graph of x(t) on two intervals [t, — 7, t4]
and [t1, t41] (it’s a modification of type C). We obtain the path Pco and the graph ko2 (t).
For z¢2(T), yo2(T') we obtain formulas of the kind of formulas (21), (22).

Now we modify the given path P in two different ways and we show (see Lemma 8.1)
that one of them shortens the path.

1) We make the first modification which amounts to simultaneously performing three
modifications: a modification of type B (on the intervals [t;_o,t7_1] and [t;_1,7]), a modi-
fication of type A (on the intervals [t;,¢;41] and [t;,¢;41]) and a modification of type C (on
the intervals [t, — (,t,] and [t;,ti41]). We obtain the path Praci.

2) The second modification is performed in a similar way but we perform a modification
of type C on the intervals [t; — v,t,] and [t;,t;41] (instead of the intervals [t, — ¢,t,] and
[t1,t1+1]). We obtain the path Pgaco.

We remark that all points t;, ti11, t5, tj41, tq, tp, ti, tig1, ty—2, ty—1, T are different.

We formulate the fundamental result of this section in Lemma 8.1.

Lemma 8.1 In case I we can choose three modifications (a modification of type A, a modi-
fication of type B and a modification of type C) such that the corresponding path Ppac1 (or
P aca) should be shorter than the initial one and that for Ppaci1 (or Peacs2) all conditions
of Final Conditions 3.2 should hold.

Lemma 8.1 follows from Propositions 8.2, 8.3 and from Lemma 8.4.

Using the results obtained in Propositions 5.1, 6.1 (or 6.2) and 7.3 we obtain:

Proposition 8.2 If we carry out a modification which amounts to simultaneously perform-
ing three modifications (a modification of type B (on the intervals [ty_a,t;_1] and [t;_1,T]),
a modification of type A (on the intervals [t;, ;1] and [t;,t;41]) and a modification of type
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C (on the intervals [t, — ¢, tp] and [ti,ti41])) such that for the corresponding constants K,
Ky, K;, K;, K,, K; the following equalities hold:

K2:]-7 Klzf((SB),
K=ty —t;, K =tj41—t;,
K =, K,=1t41 -1,

(f is defined from formula (15) (or (16))), then for the thus constructed path Ppac1 condi-
tions a) and b) of Final Conditions 3.2 hold.

Evidently, the same statement holds for the path Pgacs.

From now on in this section we consider three modifications such that for the corre-
sponding path Ppac1 (Peac2) conditions a) and b) of Final Conditions 3.2 hold.

Recall that we denote the coordinates of the final point of the path Pg by (z5(T"),y5(T)).

For the paths P4 and Ppac1 (Ppacz2) we have respectively (xpa(T),ypa(T)) and (xpaci(T),

ypac1(T)) (xac2(T), ypaca(T)))-
Using formulas (13), (17) and (21) (see Propositions 5.4, 6.4 and 7.5) we obtain:

Proposition 8.3 The coordinates (xpac1(TB),ysac1(TB)) (xBac2(TB),ypac2(TR))) are
described by analytic functions defined in a small neighbourhood of zero with respect to the
small parameters (6p, 64, 6c1) (6B, 64, 602)).

Set
Azpact = zpac1(Tg) — 2t , Aygpact = ygac1(Ts) —yT ,
Azpace = zpace(Tg) — 21, Aypacz = ypac2(Tr) —yT .
So
Azpaci = Axpaci(6B,64,06c1) , Aypaci = Aypaci(6s,04,0c1) ,
Azpace = Axpac2(6B,64,0c2) , Aypacas = Aypac2(6B,04,0c2) .

We must prove that we can chose some path (either in the class of paths Ppaci1 or in
the class of paths Ppac2) such that for this path all conditions of Final Conditions 3.2 hold
and which is shorter than the initial path P (it means that we can express 64 and é¢1 (or
64 and 6¢2) as functions of 65 verifying system (24) (or system (25)).

Axpac1(6B,04,0c1) =0 (24)
Aypaci(6B,64,6c1) =0
Axpac2(6B,04,002) =0 25)
Aypac2(6B,04,6c2) =0

Lemma 8.4 In case I one can choose some path (either in the class of paths Ppac1 or in
the class of paths Ppaca) such that for this path all conditions of Final Conditions 3.2 hold
and which is shorter than the initial path P.
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Proof

At first we study system (24).
In the equation Azgac1(6p,64,001) = 0 the term in 64 equals K£A)6A = 0 (see formula
(14)), the term in §¢1 equals K£01)<501 = —Cc1Cy(pn)éc1 # 0 (see formula (22)), the term

in 6p equals K;B)ég (see formula (18)). Also in Axgaci1(6B,64,0c1) = 0 there are some
terms of higher order. We denote them by O(646¢1), O(65éc1), O(6468) and O(8%).

In the equation Aypaci1(6B,04,0c1) = 0 the term in §4 equals K,E,A)éA = —Ca(z(9) —
z(x)) (see formula (14)), the term in §¢1 equals KgSCl)écl (see formula (22)), the term in 65

equals K?SB)ég (see formula (18)). Also in Aypac1(6B,64,0c1) = 0 there are some terms
of higher order. We denote them by O(648¢1), O(6dc1), O(6465) and O(6%).

We remark that in the formula KIE,A)6A = —Ca(z(9¥) —z(x)) the constant Cy is positive
and the point ¥ (the point x) is a point from the interval [t;,ti41] ([tj,%;41]) such that
z(¥) (z(x)) equals the mean value of the function z(t) on this interval. As the distance
between the initial and final points is rather great and as the mean value of the function
y(t) equals zero for all intervals (with the possible exception of the first and of the last one,
see Remark 3.1), then one can always find two intervals [¢;,t;41] and [t;,t;41] such that
2(9) # 2(x). So, KyM64 # 0.

1f (K%, K$P)) = (0,0), then among the terms of order 6%, &%, ... there are some terms
which don’t vanish in at least one equation from system (24), because the path P consists
of several arcs of half-clothoid (not of a line segment).

Thus there exist some p, ¢ and k£ > 1 such that (p,q) # (0,0) and that in the first
equation O(6%) = pé% + O(8%), in the second equation O(8%) = ¢&% + O(s5H).

Now we study system (25).

In the equation Axgac2(6B,04,0c2) = 0 the term in 69 equals K,(Cw)écg =—Coavy()bca #
0 (see formula (22)). In the equations Axpac2(65,64,0c2) =0 and Azxgaci1(65,64,8c1) =
0 the term in §4 and the term in g are the same because they don’t depend on the mod-
ifications of type C. The terms of higher order in these two equations are different but we
always denote them by O(64801), O(6pdc1), O(8465) and O(8%™).

In the equation Aypac2(65,04,6c2) = 0 the term in §¢2 equals K,f,cz)écg (see formula
(22)). In the equations Aygac2(65,04,0c2) = 0 and Aypaci(6s,64,6c1) = 0 the term in
04 and the term in dp are the same because they don’t depend on the modifications of type
C. The terms of higher order in these two equations are different but we always denote them
by O(646¢2), O(66c2), O(6465) and O(§5).

We remark that as the functions participating in the equations are analytic at 0 (i.e.
they admit convergent Taylor series expansion with respect to 64, 65, 6c1 (with respect
to 64, 6B, 6c2)), to find the terms 6% it is sufficient to consider the case when there is no
modification of type A and C (i.e. 4 = ¢ = 0). Thus, p and ¢ are the same in systems
(24) and (25).

So, we can rewrite system (24) (system (25)) as system (26) (as system (27) respectively):
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0+ K601 + pok, + O(64601) + O(65601) + O(6465) + O(85) =0
K64 + K601 + q6% + 0(846c1) + O(68801) + O(6465) + O(65T) =0

0+ KL9%605 + po% + O(64602) + O(65602) + O(6465) + O(65T1) =
KM64 + K805 + q8% + 0(64800) + O(6580s) + O(6465) + O(51) =

Here
KV = —Coi¢y(n) <0, KD = ~Coayy(k) >0

(because Co; > 0, Coa >0, > 0,7 > 0and y(u) > 0, y(k) <0, as y(u) (y(k) respectively)
equals the mean value of the y-coordinate of the path P on the interval [t, — (,t,] (on
[tg — 7, tq] respectively), see the definition of these intervals at the beginning of the section).
I. At first we consider the case p # 0. In this case we choose what modification of type
C we'll carry out in the following way.
Consider system (26). We can apply the implicit function theorem (for the germs of
analytic functions) because the Jacobi matrix of system (26)

(Azpaci) 9(Azpaci)

A c1 0 K’g(col)
9(Aypaci) O9(Aysaci) B -K?E’A) ‘KZ(/CI)

064 ddéc1 da=6p=6c1=0

is non-degenerate.

So, there exists a unique pair of Taylor series 64 = 64(6B), 6c1 = 6c1(6B) satisfying
system (26) and §4(0) =0, §c1(0) = 0.

Set

Sa=Xidly . M=M(1+0(1))
bo1 = by, 1 =p(l+o(1)).
It is sufficient to prove that there exist some Taylor series (formal) A;(65), fi1(65); the
uniqueness of §4, 6c1 (assured by the implicit function theorem) implies that 64, d¢1 of
(28) is solution of (26).
Using (28) we can rewrite (26) as follows:

(28)

{ 0+ Ky +p+ A O(8%) + u10(85) + MO(85) + O(85) = 0 (29)

k
B
KN + K 1 + g+ A O(8%) + 11 0(85) + MO(85) + O(65) = 0

We can apply the implicit function theorem to system (29) (here A\; and pu; are variables)
because the Jacobi matrix of this system is non-degenerate:

0 KLY

#0.
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So from (29) we obtain A\; and p;:

0 + K% + p =0
EfN + K + ¢ = 0
i.e. o o1
A\ _ K7V - K{7q __p
1 — KiCnK,A(JA) ) H1 = Kicn .

We consider system (27) by analogy, i.e. we search for 4 and §¢2 as functions of §p in
the following form:

04 = 5\25?3 . A2 =X(1+0(1),

z - 30
bc2 = fi26% ,  fiz = p2(1+0(1)) (30)

and we obtain () (©2)
K - Kz
o= B = oy
KK K
Recall that éc1 > 0, éc2 > 0, 6 < 0. Hence, we must consider four cases.
1) If k (see (28), (30)) is an even number, then 6% > 0 and p; > 0, pz > 0. There are
two subcases depending on the sign of p.

a) If p > 0, then, using K%Y < 0and K9 > 0, we obtain
_ b _ P
Nl——W>0a H2——W<0-

Hence, we carry out a modification of type C on the intervals [t, — (,t,] and [t;,¢41] (see
system (26)).
b) If p < 0, then, using K <0 and K% > 0, we obtain

p p
N1=—W<07 M:_W

>0.
Hence, we carry out a modification of type C on the intervals [t, — 7, t,] and [t;, t141] (see
system (27)).

2) If k is an odd number, then 6% < 0 and p; < 0, ug < 0. There are two subcases
depending on the sign of p.

a) If p > 0, then, using K%Y <0 and K197 > 0, we obtain

p p
=t >0, pp=——r<0.
K;(ECI) K§;C2)

Hence, we carry out a modification of type C on the intervals [t, — 7, t,] and [¢;,t141] (see
system (27)).
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b) If p < 0, then, using KY <0 and K99 > 0, we obtain

p p

m=-—on <0 m=oy >0

0,

Hence, we carry out a modification of type C on the intervals [t, — (,t,] and [t;,¢141] (see
system (26)).

IT. Consider now the case p = 0. In this case (consider, for example, system (26)) instead
of the variable 64 we introduce the variable 6541) in the following way:

q

Y

Then, we can rewrite system (26) as the following system of the variables 6(Al), bc1 and
(53:

{ 0+ K601+ 0(6Y501) + O(688c1) + 081 65) + O(851) = 0 (32)

K{M6W + K801 + 06 6¢1) + O(688c1) + 064 65) + O(8%1) =0

The path P consists of arcs of half-clothoids. Hence, in the first equation of system (32)
among the terms of order 8%, §%+2 .. there are some terms which don’t vanish. So, using
some consecutive substitutions of variables of type (31), we obtain the following system
(with m # 0):

0+ K% + ... o+ msS + 0@t = o (33)
Kg(;A)(SE;S) + Kg(/CI)ém + o+ st 4+ O = 0

and we can study this system as in the previous case (i.e. the sign of m defines what
modification of type C we’ll carry out).

. gn 1system (33) we denote by dots all terms of higher order except the terms of order
SpteTt.

The substitutions (31) which are done up to this moment don’t depend on the choice
between systems (26) and (27), hence one can first find out (after a finite number of such
substitutions) which system is to be chosen and then solve this system; it will provide the
existense of 6545)(63), bc1(6B) (or 6545)(63), 6c2(6p)) with the right sign for small ép.

The lemma, is proved. |

The method introduced in case I can be used in several cases (see Appendix B).

9 Proof of the non-optimality of the path P — case II
Definition Call ’case II’ the case when y, > 0 for any even p, y, < 0 for any odd p and

there exists at least one even index p such that k, <0 or at least one odd index p such that
Kp > 0.
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Without loss of generality we suppose that there exists one local minimum with non-
negative curvature (see Figure 10).

K(t) A

Y

Figure 10

It follows from the definition of case II that there are many possible subcases. We divide
all possible cases in the following way:

1) the case when the path P has at most one point of zero curvature (call it
’subcase A’),

2) the case when

1° the path P has more than one point of zero curvature,

20 there exists at least one piece of the path P between two con-
secutive points of zero curvature such that there are three switching
points belonging to this piece and the tangent angle makes a turn of
at least 27 on this piece

(call it ’subcase B’),
3) the case when

1° the path P has more than one point of zero curvature,

20 there exists at least one piece of the path P between two con-
secutive points of zero curvature such that there are three switching
points belonging to this piece and the tangent angle makes a turn of
less than 27 on this piece

(call it ’subcase C’),
4) the case when

1° the path P has more than one point of zero curvature,
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(call

20 there exists at least one piece of the path P between two consec-
utive points of zero curvature such that there are at least five switching
points belonging to this piece

it ’subcase D’).

Evidently, any path belonging to case IT belongs to some of these subcases. We study any
case in the corresponding subsection and, summarizing the obtained results, we formulate
the following lemma:

Lemma 9.1 In case II if the distance between the initial and final points of the path P is
greater than 3204/, then we can modify P so that the obtained path should be shorter than
P and should satisfy the initial and final conditions. Hence, the path P isn’t optimal.

Lemma, 9.1 follows from Lemmas 9.2, 9.3, 9.12, 9.16 (see the description of these lemmas

below).

Plan of Section 9

1) At first we consider the subcase A and we obtain that if the distance
between the initial and final points of the path P is greater than 25.25./, then,
P isn’t optimal (see Lemma 9.2, Subsection 9.1).

2) Then we consider the subcase B and we obtain that if the distance between
the initial and final points of the path P is greater than 90.5\/w, then we can
modify P so that the obtained path should be shorter than P and should satisfy
the initial and final conditions, hence, the path P isn’t optimal (see Lemma 9.3,
Subsection 9.2).

3) Then we consider the subcase C and we obtain that if the distance between
the initial and final points of the path P is greater than 3204/7, then we can
modify P so that the obtained path should be shorter than P and should satisfy
the initial and final conditions, hence, the path P isn’t optimal (see Lemma 9.12,
Subsection 9.8),

4) Finaly we consider the subcase D and we obtain that if the distance be-
tween the initial and final points of the path P is greater than 90.5./m, then
we can modify P so that the obtained path should be shorter than P and
should satisfy the initial and final conditions, hence, the path P isn’t optimal
(see Lemma 9.16, Subsection 9.9).

9.1 Proof of the non-optimality of the path P — subcase A

Definition Call ’subcase A’ the case when the path P has at most one point of zero curvature.

Lemma 9.2 In subcase A if the distance between the initial and final points of the path P
is greater than 25.25./m, then, P isn’t optimal.
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Without loss of generality we suppose that the curvature of the path P is non-negative.
Proof

Denote by d the distance between the initial and final points of the path P and by [ the
length of P. Denote by Pp a point belonging to P such that the length of the piece of P
between the initial point and the point Pp equals k°/2. Denote by Qp a point belonging to
‘P such that the length of the piece of P between the final point and the point @p equals
kT /2. Denote by dp,g, (by lp,g,) the distance (the length of the piece of the path)
between the points Pp and Qp.

Plan of the proof

1) Construct some auxiliary path S.
2) a) Using some property of the suboptimal path, we obtain

lpp@p < dppgp + (6.5 +4V2)/7

(see (37)).
b) Using some property of the path P, we obtain
5 10
lPpgpr > gdPPQ’P - ?\/7_r

(see (41)).
c¢) So, comparing the results obtained in a) and b), we obtain

dppop < (14.75 + 63/2)y/7

(see (42)), and as
d<dpy,gp + 2/

(see (36)), then
d < (16.75 + 6V/2)\/T = 25.23/7 < 25.25\/7

(see (43)).
Hence, we conclude that if d > 25.25./7, then

dpyo, > (14.75 4+ 6v/2)\/T

(see (44)), this is a contradiction with (42) which follows from the fact that
we suppose that the path P is optimal (i.e. [ is at most the length of some
suboptimal path, i.e. [ is at most the sum of d and some constant).

So, the path P isn’t optimal. Hence, the lemma is proved.
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k(1) A

i

o m0/2

Figure 11

1) Construct some auxiliary path S as follows.

Construct, at first, the arc of half-clothoid corresponding to k(t) = —2t + x° on the
interval [0, k°/2]; construct the arc of half-clothoid corresponding to x(t) = 2(t— (T — 7 /2))
on the interval [T — T /2,T] (see Figure 11: there are the segments IP and FQ).

Now consider the points P and @) as two points on the plane with fixed tangent angles
and with zero curvature. Construct some suboptimal path joining these points as in [10],
[12], [13]. We give below the general idea of the construction of some suboptimal path
connecting the points P and Q. The justification of this construction is given in [10], [13].

We construct the path from P to @ by means of the graph of the curvature as a function
of the path length (see an example of such graph on Figure 12). The graph of the curvature
is a continuous piecewise-linear function (any piece is of type k£ = £2t + k., or k = 0). The
piece of the graph between the points V and W corresponds to the line segment, the other
pieces correspond to arcs of a half-clothoid.

Here &', £" are the lengths of the path and they can be considered as two parameters.

To construct some path from P to @ we vary £’ and &” on the interval [0,24/7] so that
the tangent lines at the points V' and W should be parallel (i.e. £ should be some function
of ¢') and the tangent vectors at the points V and W should have opposite directions. If &’
(or if £") varies on the interval [0, 24/7], then the tangent angle ay (or ay ) at the point V
(or at the point W) takes continuously all values from [ap,ap + 27] or [ap — 27, ap] (from
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Figure 12

ag — 27, aq] or [ag,ag + 27]) (the choice of interval depends on the sign of kg (on the
sign of ky respectively)).

For ay = 7/2, aw = —n/2 and for ay = —7/2, aw = 7/2 the angles between the
tangent line at the point V' and the vector VW have different signs. Thus, varying £’ and
&" on the interval [0, 24/7], we obtain that for some values of £, " this angle becomes equal
to zero. Thus, we obtain the desired path from P to Q.

See the graph of the curvature of the constructed path S on Figure 13.

The thus constructed path S consists of at most 6 arcs of half-clothoid (because some
arcs can degenerate in a point) and of at most one line segment (because this line segment
can degenerate in a point).

2) Denote by dpg the distance between the points P and @ of the path S and by Ipg
the length of the piece of S between the points P and Q.

a) The maximal distance between the points I and P (F and Q) is smaller than 3R/2 =
3/7 /4 (as the maximal distance between two points of a half-clothoid is smaller than 3R/2 =
3/ /4 — see Proposition 5.3 of [13]). Hence,

dpg <d+2x3/r/4=d+3yn/2. (34)

As the piece of S between the points P and (@ is some suboptimal path, then, it follows
from Proposition 8.1 of [11] that for Ipg we have the following estimation:

lpg <dpg+ 3+ 4\/5)\/7_1' .

As lp,g, = lpg, S0, using (34), we obtain

lprgr =1lpg < dpq + 3+ 4\/§)ﬁ <

INRIA



Irregularity of optimal trajectories in a control problem for a car-like robot 35
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Figure 13
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<d+3vT)24+ B+4V2)VT =d+ (4.5+4V2)/7 . (35)

It follows from Proposition C.2 (see Appendix C) that the distance between the initial
point of P and the point Pp (between the final point of P and the point Qp respectively) is
smaller than /7. Hence, for the minimal value of dp, g, we have the following estimation:

dprgr >d— (VT + V1) =d—-2V7,

ie.
d<dpygp + 27 . (36)
Now, the following inequality follows from (35) and (36):

lppoy < d+ (45 +4V2)V/7 <

< (dpp@p +2VT) + (4.5 + 4V2)V/T = dppqp + (6.5 +4V2)\/7 . (37)

Remark that we have obtained inequality (37) using some property of the suboptimal
path (namely, the fact that the difference between the length of the suboptimal path and
the distance between the initial and final points is at most (3 4 4v/2)y/7).

b) Denote by L the first point belonging to PpQp such that the tangent angle at this
point equals zero (modulo 27). Denote by K the last point belonging to PpQp such that the
tangent angle at this point equals zero (modulo 27). Denote by L,, (by K,.) the projection
of the point L (of the point K') on the axis Ox and denote by dr,, k,, the distance between
these projections. -

Apply the result of Proposition C.3 (see Appendix C) to the piece LK of P and obtain
the following inequality:

5
Lk > gclL,,,J(p,w . (38)
But Ip,g, > lLk. Hence, the following inequality follows from (38):
5
lp,‘;,Q7> > gde”‘Kf”‘ . (39)
We have
deerr > dPPQP - 2\/7_1' (40)

(because it follows from the definition of the points L and K that
dprgp <dr,. K, +4R=dr, K, +4xVT/2=dL, K, +2V7).
So, from (39) and (40) we obtain

10

5
lpp@r > 3dPpar — 5 VT - (41)
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Remark that we obtain inequality (41) using some property of the path P (more precisely,

the fact that the length of the piece LK of P is greater than % of the distance between the
points L and K).

c) Now, using (37) and (41), we obtain

5 10
39Pr0r — ?\/77 <dpy,gp + (6.5 +4V2)/7 ,

i.e.
dpygp < (14.75 + 6V2) /7 . (42)

So, using inequalities (36) and (42), we obtain
d<dp,g, +2y7 < (16.75 4+ 6V2)/7 . (43)

Thus, if the distance d satisfies inequality (43), then [p,q, satisfies inequalities (37) and
(41) and there is no contradiction. But if

d > (16.75 + 6v2)\/7 ~ (16.75 + 6 x 1.41421)\/7 ~ 25.2353/7 ,

i.e. if d > 25.25/7, then, it follows from (36) that

dp,qp > (14.75 + 6V2) /7 . (44)

This is a contradiction with (42). This contradiction comes from the fact that we suppose
that the path P is optimal (i.e. [ is at most the length of some suboptimal path).

Hence, if d > 25.25,/7, then the path P isn’t optimal.

The lemma is proved. o

9.2 Proof of the non-optimality of the path P — subcase B

Definition Call ’subcase B’ the case when

10 the path P has more than one point of zero curvature,

20 there exists at least one piece of the path P between two consecutive points
of zero curvature such that there are three switching points belonging to this piece
and the tangent angle makes a turn of at least 2w on this piece

Lemma 9.3 In subcase B if the distance between the initial and final points of the path P
is greater than 90.5/7, then we can modify P so than the obtained path P should be shorter
than P and that it should satisfy the initial and final conditions, hence, the path P isn’t
optimal.

See the proof of Lemma 9.3 in Subsection 9.7.

Consider, at first, some lemma important for the demonstration of Lemma 9.3.
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Lemma 9.4 In the case when

10 the path P has more than one point of zero curvature,

20 there is no couple of points of zero curvature such that the distance between
these points is greater than 404/,

39 the distance between the initial and final points of the path P is greater
than 90.5/T,

then, P isn’t optimal.

Proof

Prove Lemma 9.4, using Lemma 9.2.

Denote by I (by F) the initial point (the final point) of P and denote by A (by E) the
first (the last) point of zero curvature.

If the distance between the initial and final points of the path P is greater than 90.5/7
and if the distance between the points A and E is at most 40/7, then the sum of the
distances between the points I and A and between the points E and F' is greater than
50.5¢/m. Hence, at least one among these distances is greater than 25.25,/7. Thus, it
follows from Lemma 9.2, that the corresponding piece of P isn’t optimal. Hence, the path
P isn’t optimal.

The lemma is proved. m|

We consider only the part of the path P from the initial point to the first point of zero
curvature (if kK° # 0) and the part of the path P from the last point of zero curvature to the
final point (if 7 # 0). So, the initial and final points of the new path (we denote it by P;)
are points of zero curvature. Thus the graph of the curvature x as the function of ¢ for the
path Py is of the kind of the graph shown on Figure 14.

w(1) A P

«Y

Figure 14
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Without loss of generality we suppose that the local minimum of the graph x(t) is situated
outside some small neighbourhood of the initial point and outside some small neighbourhood
of the final point of the path P, because if not, then we can consider only the part of the path
‘P4 outside these neighbourhoods and it is case III considered in Section 10. We define these
two small neighbourhoods as two circles with centres at the points O and T respectively and
of radius /7.

We denote by P,,;: an optimal path. We denote by Pr,;» a path such that it isn’t longer
than P,,; and that it satisfies all initial and final conditions (but it may not satisfy the
condition of continuity of variables). Thus,

|Popt| Z |Pm1n| -

General idea and plan of the proof of the non-optimality of the path P,.

1. The general idea is to modify the path P; so that the new path (we denote it by 73)
should be shorter than the path P;. One can see an example of such a modiﬁcation~on
Figure 15 (the path P, is marked by the points O, R, P, S, @, Z, V and T, the path P is
marked by the points O, R, X, Y, V and T'; we denote the line segment between the points
X and Y by I).

Figure 15

2. We prove the inequality |P| < |P,| in three stages:
a) at first we compare the lengths of the paths P; and Pp,in — we obtain the following
inequality:
[Pa| = [Prmin| > 1.139456743

(see Lemma 9.8),
b) then we compare the lengths of the paths P and Pmin — we obtain the following
inequality: _
|P| — | Pumin| > 1.050758327

(see Lemma, 9.9),
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c) then we compare (using the results obtained in Lemmas 9.8, 9.9) the lengths of the
paths P and P, — we obtain the desired inequality:

Pl < [Pl
(see Lemma 9.3).
Construction of some path P.

We show how one can construct some path P from the initial point of P4 (we denote
it by O) to the final point of P, (we denote it by T') with four switching points (P is the
concatenation of four arcs of a half-clothoid and of a line segment; along P the tangent angle
and the curvature are continuous).

We construct P by means of the graph of the curvature as a function of the path length
(see an example of such graph on Figure 16). The graph of the curvature is a continuous
piecewise-linear function (any piece is of type kK = +2t + k4 or & = 0). The piece of
the graph between the points X and Y corresponds to the line segment, the other pieces
correspond to arcs of a half-clothoid (remind that the initial and final points of P, are the
points of zero curvature).

Here £/, £" are the lengths of the path and they can be considered as two parameters.

n(t) A

Y

Figure 16

We consider the piece of the path P from the initial point O to some point X (the point
X of the path P corresponds to the point X of the graph of the curvature).

Increasing £ monotonously we obtain the increasing of the absolute value of the tangent
angle « at the point X (we denote it by ax), because the curvature doesn’t change sign on
[0,£'] and the angle ax — ap is the integral of the curvature on the interval:
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EI
ax —oo = / K(t)dt .
0

The absolute value of ax — ap is equal to the area of the triangle ORX, i.e. to {’2/2.
If we want that |ax — ao| < 2, then, £ < 47 and ¢ < 24/7.

Hence, if ¢ varies on [0, 2/7], then the tangent angle ax at the point X takes continu-
ously all values from [ap, a0 + 27] or [ap — 27, ap] (the choice of the interval depends on
the sign of KR).

To construct some path from the point O to the point T we vary £’ and £” on the interval
[0,2+/7] so that the tangent lines at the points X and Y should be parallel (i.e. " should
be some function of ¢’) and the tangent vectors at the points X and Y should have the
opposite directions. Remind that if & (or if £”) varies on the interval [0,2/7], then the
tangent angle ax (or ay) at the point X (or at the point Y') takes continuously all values
from [ap,ap + 27] or [ap — 27, ap] (from [ar — 27, ar] or [ar,ar + 27]) (the choice of
interval depends on the sign of kg (on the sign of ky respectively)).

For ax = 7/2, ay = —7/2 and for ax = —7/2, ay = w/2 the angles between the
tangent line at the point X and the vector XY have different signs. Thus, varying £’ and £”
on the interval [0, 2/7], we obtain that for some values of &', £” this angle becomes equal to
zero. Thus, we obtain the desired path P. The constructed path P satisfies all requirements.

Generally, if we construct some path P by this method, there exist four possibilities.
These possibilities correspond to the 4 possible choices of sign of the curvature x(t) on the
intervals (0,¢"), (T —¢&",T) (see Figure 17).

We denote by Vo (by Vr) the tangent vector at the point O (at the point T').

_ Among these 4 possibilities we choose a modification such that the constructed path
‘P should be the shortest. From now on when we say "the constructed path P”, it means
that we have chosen the best modification among these 4 possibilities (i.e. that we have
constructed the shortest path P).

9.3 Subcase B: some remarks on the aspect of the path P,.

Remind that it follows from the definition of subcase B that the tangent angle of the path
P4 between the points A and E makes a turn of at least 27 (i.e. the piece of the path P,
between the points A and FE is of the kind of the path shown on Figure 18). Hence, the area
of ABCDE (we denote it by SapcpE, see Figure 10) is at least 2.

We denote by p the maximal value of the curvature on the interval [ta,tg] (i.e. p is
equal either to |BF|, or to |DG|). We have Sagcpr > 2m. We consider only the case
27 < Sapepe < 4w, because if we prove that for Sygope < 47 (i.e. in the case when the
tangent angle of the path P, between the points A and E makes a turn of at most 47) the
path P is shorter than the path Pgy; evidently, it proves the statement also for the case when
Sapcpe > 4w (see Remark 9.7).
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Proposition 9.5 For p we have the following inequalities:

2/ < p<2V2r . (45)

Proof

For Sapcpr we have the following inequalies:
27 < Sapepe < 4w .

We obtain the maximal possible p if Sapopr = p?/2. Hence,
2r < p?/2<4n, e 2T < p<2V2r.

The proposition is proved. O

We consider now the piece of the path P, from the point A to the point E (see Figure 10).
On Figure 19 we denote by Vi, (by Vi, by Vn, by Vi, by V) the tangent vector at the
point M (at the point K, at the point N, at the point L, at the point J). We denote by M
the first point belonging to P4 such that Vi is perpendicular to the straight line connecting
the initial and the final points of P; (we denote it by p), we denote by N the first point
belonging to P4 such that the vectors Vi, and Vi /skould have opposite directions. We
denote by K a point belonging to P, such that K € M N and Vi is parallel to p. We denote
by @ the first point (after the point M) belonging to P, and to the straight line m.

Set R, = 1/p. We consider the tangent circle at the point K (at the point INV); its radius
is equal to R, and we denote its centre by Ox (by On). We denote these circles by Co,,
Coy,- We denote by H a point belonging to the arc |]TTZ)| such that |J@| = |Wf| =7R,/2.
We denote by V' the projection of the point H on the line segment NOp. The line segment
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JL is parallel to the straight line p and the line segments WOy, HV are parallel to the
straight line n.

Lemma 9.6 The length of the piece of Py between the points M and @ is greater than
(37/2+1)/(2v27), i.e

|MQ| > (3n/2 + 1)/(2v/27) ~ 1.139456743 . (46)

Proof

A tangent angle to the path is equal to the integral of the curvature on the corresponding

arc. Hence, as VM VL and as the curvature at every point of the arc MK i A is at most p and
the curvature at every point of the arc LK is equal to p, then, |MK| > |LK| =7R,/2. By

analogy we obtain that |KN| > |KJ| =7R,/2. So,
IMKN| >R, . (47)
As |J@ | = |ﬁﬁ/’ | = 7R, /2 and as the curvature at every point of the arc NQ is at most

p (the curvature at every point of the circle Cp,, is equal to p), so, V is situated to the left
with respect to the point Opy. We remark that the distance between the point Oy and the
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straight line m (we denote it by dist(Ox,m)) is greater than the distance between the point
Ok and the straight line m. Hence, dist(On,m) > R,.
So,
INQ| = |NH|+ |HQ| > nR,/2 + dist(Oy,m) > (1/2+ 1)R, . (48)

It follows from inequalities (47) and (48) that:
|MQ| = |MN| +|NQ| > nR, + (r/2+ 1)R, = (37/2+ 1)R, .

As R, =1/p and p < 2v/27 (see Proposition 9.5, formula (45)), so, R, > 1/(2v/2w) and
for |M Q| we have the following estimation:

|MQ| > (37/2+ 1)R, > (3n/2 +1)/(2v/21) ~ 1.139456743 .

The lemma is proved. o

Remark 9.7 If we prove that in the case when 2w < Sapcpr < 4w the path P is shorter
than Py, it will prove the statement also for the case when Sapcpr > 4.

Really, in the case Sapcpr > 47w we can choose a moment ty € (ta,tg) such that
21 < Sapown < 4w (see Figure 20), i.e. the tangent angle of the path P; between the
points A and W makes a turn of at most 4w. Hence, considering the piece of the path Py
from the point A to the point W, we obtain Proposition 9.5 and Lemma 9.6 for the new p
(now we denote by p the maximal value of the curvature on the interval [t4,tn]). So, in the
case Sapcpe > 4m we have obtained Proposition 9.5 and Lemma 9.6 utilised in the proof
of the inequality |P| < |Pyl.

K(t) A b

Y

ta ta tE

Figure 20
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9.4 Subcase B: aspect of some path P,,;,.

The type of a curve P,,;, depends on the constructed path P. So, without loss of generality,
we consider the following case (see Figure 21).

Y

Figure 21

We consider two coordinate systems — O&n and T¢én — such that the axis O¢ (T€) and
the vector OT should have the same directions (see Figure 22).

K 7 A

o~y
i J

Figure 22

We denote by aop (by ar) the tangent angle at the point O (at the point T') in the
coordinate system O&n (in the coordinate system T¢n).

If ap = 0 and ay = 0, then it is evident that the optimal path is a line segment p
between the points O and T'.

If ap € [0, 7] and ar € [0, 7] (except the case when ap = 0 and ar = 0), then an optimal
path is longer than the distance between the points O and T'. We construct a path P,,;, by
means of its graph of the curvature (it is of the kind of the graph shown on Figure 23).

On this figure the point I (corresponding to ¢t = t*) is the first point belonging to the arc
OI of a half-clothoid such that the tangent line at the point I becomes parallel to the straight
line p. Respectively, the point W (corresponding to t = T — t**) is the first point belonging
to the arc TW of a half-clothoid such that the tangent line at the point W becomes parallel
to the straight line p (if we construct the arc TW of a half-clothoid from the point T to
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K(t) A

i J

Figure 23

the point W). Thus, the tangent lines at the points I and W are parallel but they may not
coincide. In this case there is a point of discontinuity of the variables z and y (in general,
see Figure 24). The points I and W are always points of discontinuity of the curvature.

I

Vo

Figure 24

9.5 Subcase B: the comparison of the lengths of P; and P,
Lemma 9.8 The path Py is longer than the path P by no less than 1.139456743, i.e.

|Pa| = [Pumin| > 1139456743 . (49)
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Proof

We denote by @ a point belonging to P4 such that |5Z)| = |6\I | (see Figure 25). Respec-
tively, we denote by Z a point belonging to P, such that |T'Z| = |TW/|. We denote by Q.
(by Ip, by Wy, by Z,.) the projection of the point @ (of I, of W, of Z) on the straight
line p.

Figure 25

As the derivative of the curvature of an optimal path is at most 2 and as the arc OI is
an arc of a half-clothoid with x(t) = 2, then either @ coincides with I, or @ is situated to
the left with respect to I.

Respectively, either Z coincides with W, or Z is situated to the right with respect to W.
Hence,

|QPTZPT| - |IP7‘WP7‘| >0. (50)

It follows from Lemma 9.6 that P4 has a "lace” of length at least 1.139456743 (we denote
this length by lj4cc). Here we use the word "lace” in order to define a piece of the path P, of
“useless length”: when a point goes through the path P,, the length of this "lace” is useless
because the projections of the initial and final points of this lace on the straight line lying
the initial and final points of the path P4 coincide, so, the projection of the point of the
path Py on this straight line has not avanced to the final point when the point has gone
through this lace.

This lace is situated between the points ) and Z because we suppose that the local
minimum of the graph x(t) is situated outside the two circles with centres at the points O
and T respectively and of radius /7 (|(/)t7| </, |fW| < ).

We have the following equalities:
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Hence,
[Pa| = [Pmin| = (10Q| = |OI]) + (ITZ| = |TW]) + (IQZ] — [prWpr|) = |QZ| — [Ipr Wy | -
Using inequality (50), we obtain
|Pd| - |7)71’L1n| Z |QpTZpr| + llace - |Ip’r‘WpT| Z llace > 1.139456743 .

The lemma is proved. O

9.6 Subcase B: the comparison of the lengths of P and Prnin

Lemma 9.9 If the distance between the initial and final points is greater than 40+/m, then
the path P is longer than the path Pin by no more than 1.050758327, i.e.

|P| = [Pmin| < 1.050758327 . (51)

To prove this lemma we need some auxiliary propositions (more precisely, Proposi-
tions 9.10 and 9.11; see the proof of Lemma 9.9 at the end of Subsection 9.6).

1) At first we compare the lengths of P,,., and P in some neighbourhoods of the initial
and final points. Without loss of generality we consider only some neighbourhood of the
initial point. - - - _

We consider the arc ORI of the path P,,;, and two arcs OR and RX of the path P. We
suppose that the tangent line at the point X is parallel to the straight line p (see Figure 26).
Remind that the tangent line at the point I is parallel to p. We denote by H a point
belonging to the tangent line at the point I and such that |ORI| + |HI| = |ORX|.

Now we can define more precisely the neighbourhood of the initial point O: we compare
the piece of P consisting of two arcs of half-clothoid (i.e. the arcs OR and RX) and the

piece of P,,.,, consisting of an arc of half-clothoid (i.e. the arc ORI ) and a line segment T H.

Figure 26
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We denote by J the projection of the point X on the tangent line at the point I and we
denote by h the straight line passing through the point 7" and perpendicular to the straight
line p.

If J is situated to the right with respect to H, then the distance between X and the
straight line h is smaller than the distance between H and the straight line h, i.e. we can
say that in the neighbourhood of the point O the path P is shorter than the path P,,;,.

If not (see this situation on Figure 26), we can’t say that in the neighbourhood of the
point O the path P is shorter than the path P,.in, but we can estimate the maximal length
of the segment HJ (see Proposition 9.10).

Proposition 9.10 For max,,,co,«]|H J| we have the following estimation:

max,, cjo.] | HJ| < vV7/(3V2) ~ 0.4177713791 . (52)

See the proof of Proposition 9.10 in Appendix D.1.

2) Now we compare the lengths of P, and P outside the neighbourhoods of the initial
and final points (see the definitions of these neighbourhoods in 1)).

The path P outside the neighbourhoods of the initial and final points consists of the line
segment XY (remind that we denote it by [). The path P,,;, outside the neighbourhoods
of the initial and final points consists of a line segment IW (remind that there can exist a
point of discontinuity of the variables z and y between the points I and W). We denote by
Imin the line segment TW.

We want to estimate max a0 € [0,7] (1 = llmsnl)-

ar € [O, 7r]
We consider the case when the distance between the points O and T is greater than
40+/7 (the choice of this bound on the distance is explained in Lemma 9.3).

Proposition 9.11 If the distance between the points O and T is greater than 404/, then

for max a0 € [0, 7] (1] = [lmin|) we have the following estimation:
ar € [0, 7]
max e o] (1= lminl) < 02152155686 . (53)
ar € [0,m)

See the proof of Proposition 9.11 in Appendix D.2.
Proof of Lemma 9.9

Using the results obtained in Propositions 9.10 and 9.11, we obtain the following esti-
mation:
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max ([P| = [Puml) =2x  max [HJ|+ max (| = [lmin]) <
ao € [0, 7] ao € [0,7] ao €0,
ar € [0,7] ar € [0,7] ar € [0,

< 2x 04177713791 + 0.2152155686 ~ 1.050758327 .

Hence, |P| — |Ppmin| < 1.050758327.
The lemma, is proved. o

9.7 Subcase B: the comparison of the lengths of the initial path P
and the modified path P (proof of Lemma 9.3)

Remind that we consider only the part of the path P from the initial point to the first point
of zero curvature (if K% # 0) and the part of the path P from the last point of zero curvature
to the final point (if k7 # 0) and that we denote this path by Pg4. It follows from Lemma 9.4
that if the distance between the initial and final points of the path P is greater than 90.5/7
and if there don’t exist two points of zero curvature belonging to the path P such that the
distance between these points is greater than 40,/7, then the path P isn’t optimal. So, we
must consider the following case: the distance between the initial and final points of the
path P is greater than 90.5,/7 and there exist two points of zero curvature belonging to the
path P such that the distance between these points is greater than 40,/7.

In this case we can use the result of Lemma 9.9.

Tt follows from Lemma 9.8 that the path Py is longer than the path P,,;, by no less than
1.139456743, i.e.

|Pa| = [Prmin| > 1.139456743 .

Hence,
[Pa| > |Pmin| + 1.139456743 . (54)

It follows from Lemma 9.9 that the path P is longer than the path P,,;, by no more
than 1.050758327, i.e. B
|P| = | Pmin| < 1.050758327 .

Hence, B
|Pin| > |P| — 1.050758327 . (55)

So, using inequalities (54) and (55), we obtain the desired inequality:
[Pal > [Pumin| + 1.139456743 > [P| — 1.050758327 + 1.139456743 =

= |P| + 0.088698416 > |P| .

But |P| > |P4|. Thus, |P| > |P|.
The lemma, is proved. |
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9.8 Proof of the non-optimality of the path P — subcase C
Definition Call ’subcase C’ the case when

10 the path P has more than one point of zero curvature,

20 there exists at least one piece of the path P between two consecutive points
of zero curvature such that there are three switching points belonging to this piece
and the tangent angle makes a turn of less than 27 on this piece.

Lemma 9.12 In subcase C if the distance between the initial and final points of the path P
is greater than 320/7, then we can modify P so that the obtained path P should be shorter
than P and should satisfy the initial and final conditions, hence, the path P isn’t optimal.

The proof of Lemma 9.12 follows from Propositions 9.13, 9.14 and 9.15.

So, consider the case when the tangent angle makes a turn of less than 27 on the piece
ABCDE of the path P (see the graph of its curvature on Figure 27).

w(t) A D

Figure 27

As the mean value of the y-coordinate between two consecutive switching points equals
zero, then the piece CDEF is of the kind of the one on Figure 28 or of the one on Figure 29,
i.e. with or without vertical tangent line on the arc LF.

Denote by L a point belonging to the arc DF such that its tangent line is horizontal.
Denote by K (by @) the intersection point of the arc CD (of the arc DF respectively) and
the axis Oz.

Proposition 9.13 In the case when the distance between the initial and final points of the
path P is greater than 90.5\/7 and if on the arc LF there is at least one point with vertical

tangent line, then we can modify P so that the obtained path P should be shorter than P
and it should satisfy the initial and final conditions, hence, the path P isn’t optimal.
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See the proof of Proposition 9.13 in Appendix E.1.
Denote the piece of the path P from the point E to the final point by Pg.

Proposition 9.14 In the case when the distance between the initial and final points of the
path P is greater than 90.5\/7 and if on the arc LF there is no point with vertical tangent
line and if the path Py, has at least one switching point ty (here q is some even number,
i.e. it corresponds to some mazimum of the graph of k(t)) with k(ty) < 0 or at least one
switching point t, (here p is some odd number, i.e. it corresponds to some minimum of the
graph of k(t)) with k(t,) > 0, then the path P isn’t optimal.

See the proof of Proposition 9.14 in Appendix E.2.

We have considered the piece of the path P from the point C to the final point. By the
same way we can consider the piece of the path P from the initial point to the point C' and
we can obtain two propositions of the type of Propositions 9.13 and 9.14. As a corollary of
these four propositions we obtain the following result: we must consider only the case when
the curvature changes sign on any interval (except the intervals BC and C D, see Figure 27).
This case is considered in Proposition 9.15.

Proposition 9.15 In the case when the curvature changes sign on any interval (except the
intervals BC' and CD, see Figure 27) and if the distance between the initial and final points

of the path P is greater than 320/, then we can modify P so that the obtained path P
should be shorter than P and that it should satisfy the initial and final conditions. Thus the
path P isn’t optimal.

See the proof of Proposition 9.15 in Appendix E.3.

9.9 Proof of the non-optimality of the path P — subcase D
Definition Call ’subcase D’ the case when

10 the path P has more than one point of zero curvature,

20 there erists at least one piece of the path P between two consecutive points
of zero curvature such that there are at least five switching points belonging to
this piece.

Lemma 9.16 In subcase D if the distance between the initial and final points of the path P
is greater than 90.5\/7, then we can modify P so that the obtained path P should be shorter
than P and should satisfy the initial and final conditions, hence, the path P isn’t optimal.

Proof

Consider the case when there are five switching points between two consecutive points
of zero curvature (see Figure 30).

INRIA



Irregularity of optimal trajectories in a control problem for a car-like robot 55

w(6) A b .

Figure 30

As the mean value of the y-coordinate between two consecutive switching points equals
zero (i.e. the piece of the path corresponding to any such interval intersects I’axis Oz) and
as the curvature doesn’t change sign between the points A and G (see Figure 30), then the
tangent angle makes a turn of at least 27 on the piece between the points A and G. Evidently,
in the case when there are more than five switching points between two consecutive points
of zero curvature, we obtain also a lace. Thus, we have brought subcase D to subcase B
(because the crucial point of the proof is the presence of at least one lace” on P, i.e. the
presence of some "useless” length).

The lemma is proved. |

10 Proof of the non-optimality of the path P — case III

Definition Call ’case III’ the case when yp, > 0, kp > 0 for any even p and yp, <0, K, <0
for any odd p.

Lemma 10.1 In case III if the distance between the initial and final points of the path P
is greater than 135.5\/7, then we can modify P so that the obtained path should be shorter
than P and that it should satisfy the initial and final conditions.

Lemma 10.1 follows from Lemmas 10.3 and 10.7.

In order to prove Lemma 10.1 we use other technique than in previous cases (see Sec-
tions 4 -9).

We don’t consider the part of the path P from the initial point to the first point of zero
curvature (if k° # 0) and the part of the path P from the last point of zero curvature to the
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final point (if &7 # 0). Hence, the initial and final points of the new path (denote it by Pg)
are points of zero curvature.

From now on in Section 10 we call interval of some path the part of the axis Ot corre-
sponding to the part of this path between two consecutive points of zero curvature (and not
the part between two consecutive switching points).

Plan of Section 10 and of the proof of Lemma 10.1

1) At first we give the general idea of the proof (see Subsection 10.1).

2) Then we study the path P and we obtain that if the distance between
the initial and final points of the path P is greater than 90.5,/7 and if there
exists some interval [t;,t;+1] C [O,T] such that |t;11 — ¢;| > v/2.9267, then there
exists some lace on this interval and, then we can shorten the given path P (see
Subsection 10.2, Lemmas 10.2, 10.3).

3) Then we consider the paths P consisting of intervals whose lengths are
smaller than 1/2.9267, we construct some auxiliary path P, and we formulate
the following result: in case III if the path P consists of intervals whose lengths
are smaller than 1/2.9267 and if the distance between the initial and final points
of P is greater than 135.5/7, then we can modify P so that the obtained path
should be shorter than P and that it should satisfy the initial and final conditions
(see Subsection 10.3, Lemma 10.7).

4) Then to prove Lemma 10.7 we give the general description of two possible
cases (i.e. the case when the paths P and Py have no lace and the case when
the path P has no lace, but the constructed path 731 has at least one lace, see
Subsection 10.3).

5) Then we prove Lemma 10.7 for every of these two cases.

We consider the first case in Subsections 10.4, 10.9 and we obtain that if
the distance between the initial and final points of the path P is greater than
135.54/7 and if the paths P and P; have no lace, then we can modify P so that
the obtained path should be shorter than P and that it should satisfy the initial
and final conditions (see Subsection 10.4, Lemma 10.8).

We consider the second case in Subsections 10.5-10.8 and we obtain that if
the distance between the initial and the final points of the path P is greater
than 135.5,/m and if the path P has no lace, but the path P; has at least one
lace, then we can modify P so that the obtained path should be shorter than P
and that it should satisfy the initial and final conditions (see Subsection 10.5,
Lemma 10.9).

6) Thus, Lemma 10.7 follows from Lemmas 10.8 and 10.9; and Lemma 10.1
follows from Lemmas 10.3 and 10.7.
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10.1 General idea of a modification of the path P such that the
obtained path satisfies the initial and final conditions and is
shorter than the initial one.

Remind that the path P consists of N + 1 arcs of half-clothoids, where by N we denote
the number of switching points of P. Denote by Ny the number of switching points of Py.
Evidently, 0 < N — N4 < 2. Then the graph of the curvature x as a function of ¢ for the
path P, should be as shown on Figure 31.

k(t) A

t2

Y

Figure 31

The general idea is to modify some piece of the path P; so that the new path (we
denote it by 731) should be shorter than P;. We can see an example of such modification on
Figure 32. On this figure we show the parties of the paths which are different for Py and
P1. The piece ADBCLHGK belongs to P; and the piece ADEFGK belongs to P;.

Figure 32
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10.2 Some remarks on the aspect of the path P,.

Definition (x) We say that there is o Tace” between two consecutive points of zero curvature
if there exists at least one intersection point of the path Py on this interval.

Remark that in Section 9 we have introduced other definition of ”lace” (more precisely,
we say that there is a "lace” on some piece of P if the tangent angle makes a turn of at least
27 on this piece). But when we use the word ”lace” in Section 10, we consider Definition (x).

Lemma 10.2 There exists a lace on any interval [t;,ti+1] C [O,T] whose length is at least
vV 2.9267 (ze |Cu+1 - ai| 2 146267()

See the proof of Lemma 10.2 in Appendix F.1.

Using the results obtained in case IT and Lemma, 10.2, we obtain the following lemma:

Lemma 10.3 If the distance between the initial and final points of the path P is greater than
90.5\/7 and if there exists some interval [t;,tir1] C [O,T] such that |tiy1 — ti] > 2.9267
(i.e. |aiy1 — a;| > 1.46267 ), then we can shorten the given path P.

See the proof of Lemma 10.2 in Appendix F.2.

Remark 10.4 From now on in Section 10 we consider only paths Py consisting of intervals
whose lengths are smaller than v/2.9267 (i.e. the difference between the tangent angles at
the end and at the beginning of the interval is smaller than 1.46267 ).

10.3 Construction of some path P, and general description of two
possible cases depending on the values of the parameters o

and 0

Remind that in Section 10 we call interval of Py the piece of the axis Ot corresponding
to the piece of P, between two consecutive points with zero curvature (and not the piece
between two consecutive switching points). We denote by dp, the distance between the
initial and final points of the path P4. Consider an interval [ts,ts41] such that t; < dp,/2
and ts41 > dp, /2. We denote by A (by C) the point of the path P4 corresponding to ¢t = t,
(to t = tsy1), see Figure 33.

We consider an interval [tq, 1] such that

1) ts < tsp1 < tg < tgt1,
2) the distance between the points corresponding to ¢ = t, and ¢ = t,41 is at
least 13.4R = 6.7\/7 (R = \/7/2, see formula (8)).

The requirement that the distance between the points corresponding to ¢ = t; and
t = tq4+1 should be at least 13.4R = 6.7,/ will be explained in Remark 10.5.

We denote by L (by K) the point of the path P4 corresponding to t = t, (to t = t441),
see Figure 34.
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Modify the graph of the curvature x(t) on the interval [t;,ts + o] (see Figure 33).

On this figure the pieces AB and BC belong to the graph of Py and the pieces AD and
DFE belong to the graph of the new path P;.

The parameter o varies in the interval [0,d'], where d’ is some positive constant which
is defined below. We denote by a4, ap the values of the tangent angle a at the points A
and E respectively.

We can increase the absolute value of the angle ag by increasing ¢ from 0 to d’ because
the curvature doesn’t change sign on the interval [ts,ts + d'] and the angle ag — a4 is the
integral of the curvature on this interval:

ap —ap = / K(t)dt .
0

The absolute value of ag — a4 is equal to the area of the triangle ADE, i.e. to o2 /2. If
we want that |ag — a4| < 2, then, 02 < 47 and ¢ < 24/7. Thus,

d =27 . (56)

Hence, when o varies in [0,2+/7], then the tangent angle ap assumes continuously all
values from [aa, a4 + 27] or [aa — 27, 4] (the choice of the interval depends on the sign
of the curvature on the interval (¢s,ts41)).

Modify the graph x(t) of the curvature of the path P, on the interval [t;41 — 0, t41] by
means of the parameter 6 (see Figure 34). The parameter 6 varies in the interval [0, 2,/7].

We denote by Casr (by Ck 3r) the circle with center at the point A (at the point K')
and with radius 3R = 3/7/2 (remind that R is defined by (8), see Section 2).

Remark 10.5 If the distance between the points A and K is at least 13.4R = 6.7+/7, then

1) ts +0 <ty -0,

2)CasrNCksr=Q,

3) the point E € C4 3r and the point F € Ck 3r for every value of o , 6 from
the interval [0,2+/7].

This is important for the construction of a path Py.

Remark that in order this three conditions to hold, it is sufficient that the distance between
the points A and K should be at least 8R = 4y/7. We consider some greater distance because
this simplifies the proof (see Subsections 10.5, 10.6 and 10.7).

Evidently, if the distance between the points A and K is at least 13.4R = 6.7/, then
ts + 0 < tgy1 — 0 (because o € [0,2+/7], 6 € [0,24/7]) and Casr N Cx 3r = @.

The distances between the points A and D, D and E, K and G, G and F are smaller
than 3R/2 = 3/7 /4 (see Proposition 5.3 from [11]). Hence, the distances between the points
A and E, K and F are smaller than 3R = 3./m/2. But as the distance between the points
A and K is at least 13.4R = 6.7+/7, then E € C4 3 and F € Ck 3g for every value of o , 6
from the interval [0, 2/7].
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Construction of some path P.

We denote by Va, Vg, Vi and Vr the tangent vectors at the points A, E, K and F.
Vary o so that the vectors Vg and Vi should have the same directions. Hence, the obtained
value of the parameter ¢ depends on the point K. Now we modify the path Py on the
interval [tg4+1 — 6,t4+1] by means of the parameter . Simultaneously for every value of the
parameter 6 we find the corresponding value of the parameter o so that the vectors Vg and
Vi should have the same directions. Thus, ¢ is a function of §. For some values of ¢ and 6
the tangent lines at the points E and F coincide (we denote this line by [). So, we obtain
the path 751.

Now we must prove that varying o and 8 on the interval [0, 24/7] in the above-mentioned
way, we can always construct some path Py.

Consider some value of parameter o (denote it by o) such that the tangent line at the
point of the path corresponding to the point E of the graph x(t) (see Figure 33) should be
vertical for ¢ = o (see Figure 35). Denote this point of the path by E;. Denote by Vg, the
tangent vector at the point Ej.

A
Ve, /\ /N\
Ck 3R Vr,
E;
Ca,3r F
Vi, v
Y Y
Figure 35

Choose now another value of the parameter o (denote it by o2) such that the tangent
vectors Vg, and Vg, should have opposite directions (here we denote by Es the point of
the path corresponding to the point E of the graph for 0 = 05 and we denote by Vg, the
tangent vector at the point E,).

Also we choose two values of the parameter 6 (denote them by 6; and 6) such that the
vectors Vg, and Vi, (Vg, and Vg,) should have opposite directions (here we denote by Vi,
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and Vg, the tangent vectors at the points corresponding to the point F' of the graph (see
Figure 34) for § = 6, and 6 = 0> respectively).

So, the oriented distances between the tangent lines at the points of the path corre-
sponding to the points E and F of the graph for these two pairs of values ¢ and 6 (i.e. for
(0 = 01,0 =0;) and for (o = 03, 8 = 65)) have opposite signs. These distances don’t equal
zero because Ca3r NCk 3r = @ (see Remark 10.5). The oriented distance from the point F
to the tangent line at the point E of the path is some continuous function of the parameter
o (see Proposition 10.6). It follows from Bolzano’s Theorem that there exists at least one
value of o € [0, 03] for which the oriented distance equals zero (it gives the path P ).

So, varying ¢ and @ in the interval [0,24/7] in the above-mentioned way, we can always
construct some path 731.

Proposition 10.6 The oriented distance from the point F of the path to the tangent line
at the point E is some continuous function of the parameter o.

Proof

Denote the tangent line at the point E of the path by pg. The straight line pr admits
some parametrisation of the class C' in ¢, the coordinates of the point F' of the path are
some functions of the class C2? in §. As we require that the vectors Vg and Vp have the same
direction, so the parameter 6 is some function of the parameter o. Really, we can express
the tangent angles at the points £ and F' by the following formulas:

= +/ k(t)dt = as +0%)2,
0

[4
aF = ag —/ Kk(t)dt = ax £ 6%/2
0

(the choice of sign depends on the sign of the curvature k(t) on the intervals (ts,ts + o),
(tq+1 - 9» tq+1))-
Thus, the condition
®(0,0) =ag(c) —ar(@) —7m=0

defines some function 6(o) of class C, because
1) &(c,0) € C'(0,0);
2) ®(0,0) = £0?/2+6%/24+ a4 —ak — is some strictly increasing or strictly

decreasing function of 6, hence, there exists one and only one value of § = 0(c)
for which ®(0,0) = ag(c) — ar(d) —7 =0.

It follows from the implicit function theorem that the function (o) belongs to the class
C.
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The proposition is proved. o

_ Now we must prove that the thus obtained path Py is shorter than the path P, or that
P1 can be modified so that the new path should be shorter than Py.

Lemma 10.7 In case III if the path P consists of intervals whose lengths are smaller than
V2.926m and if the distance between the initial and final points of P is greater than 135.5/7,
then we can modify P so that the obtained path should be shorter than P and that it should
satisfy the initial and final conditions.

Lemma 10.7 follows directly from Lemmas 10.8 and 10.9.

In the proof of Lemma, 10.7 there are two cases to consider.

Remind, at first, that it follows from Lemma 10.2 that there exists one lace on any
interval [t;,t;41] C [O,T] whose length is at least v/2.9267 (i.e. |a;y1 — ;| > 1.46267).
Hence, if o > 1/2.9267 (or § > 1/2.9267), then the constructed path P, has at least one lace
(remind that when we use the word ”lace” in Section 10, we consider Definition (*) (see the
beginning of Subsection 10.2)).

Set v/2.926m = I". So, we must consider the two following cases.

1. The case when ¢ < T and § < T (i.e. the modified path P; and the
constructed path P; have no lace).
2. The case when at least one of the parameters o, 8 is in [T, 2/7] (i.e. the

case when the modified path P4 has no lace, but the constructed path P; has at
least one lace).

The first case is studied in Subsections 10.4, 10.9, the second case is studied in Subsec-
tions 10.5-10.8.

10.4 General description of the case when ¢ < I and 6 < T (i.e.
when the paths P and P; have no lace)

Lemma 10.8 In case III if the distance between the initial and final points of the path P is

greater than 135.5y/7 and if 0 <T and @ < T (i.e. when the paths P and Py have no lace),

then we can modify P so that the obtained path should be shorter than P and that it should
satisfy the initial and final conditions.

See the proof of Lemma 10.8 in Subsection 10.9.

There exist four cases depending on the values of o and 6:

1) tsy1 —ts <o <T,
2) tgy1 —tg<O<T,
3) o <tsy1—ts <T,
4) 0 <tgp1—t,<T,
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but in all cases we use the same method of proof.

This method is described in detail in Subsection 10.9. We give here only some general
ideas of the proof. B

1°. If |Py| < |P4|, then, Lemma 10.8 is proved. If |P;| > |P,|, then instead of the
interval [ty,t,41] we consider the next interval [tg41,t442], instead of the interval [t,, 1]
we consider the previous interval [ts_1,ts], and we construct some new path ﬁg by modifying
the graph x(t) of the initial path P4 on two intervals [ts_1,ts—1 + 0], [tg+2 — 0, tq+2]-

2°. Now there are two possibilities: either |Ps| < |P4| or [Pa| > |Pa|. In the last
case we construct some new path Ps by modifying the graph x(t) of P; on two intervals
[ts—2,ts—2 + 0], [tg4s — 6, tg43]- o B _

3% We obtain some sequence of paths Py, Pa,...,P;, ..., Pk such that we construct
every new path ﬁj by modifying the graph r(¢) of the initial path P; on two intervals
[ts—(j—1),ts—(j—1) + 0], [tg4; — O,tq4;]. If we suppose that for every path 73j we have
|P;| > [Pal, then the sequence of A_; + A; is bounded from below by some increasing
geometric progression, see Proposition 10.22. Here by A; we denote the difference between
the length of the interval [tq4;—1,%4+;] and the sum of the lengths of two chords connecting
the points of Py corresponding to ¢t = t44;-1, t = t44+; with the switching point of Py be-
longing to [ty+j—1,tq+;]; we denote by A_; the difference between the length of the interval
[ts—(j—1):ts—(j—2)] and the sum of the lengths of two chords connecting the points of Py
corresponding to t = t,_(;_1), t = t,_(j_2) With the switching point of Py belonging to
[ts—(j-1); to-(i-2)]:

It follows from Remark 10.4 that in Section 10 we consider only paths consisting of
intervals whose lengths are smaller than 1/2.9267. We set +/2.926m = I'. Hence, for some
value 7 = K the sum of the length of the piece of Py corresponding to A and the length
of the piece of Py corresponding to A_ g becomes greater than the admissible constant 2T
(because the sequence of A_; + A; is bounded from below by some increasing geometric
progression).

4°. Then we prove that the sequence A_x + Ax,A_(x_1) + Ax_1,...,A_1 + Ay and
the sequence of the lengths of the corresponding arcs |_x + Ik, (k1) +Ik—-1,---,1-1 +
l; are two decreasing sequences bounded from above by some geometric progressions (see
Proposition 10.25 and Lemma 10.26).

As a corollary of Lemma 10.26 we obtain the desired result (see Lemma 10.27): if the
distance between the initial and final points is greater than some constant C, then |75K| <
|P4| (the estimation of the constant C' is given in Lemma 10.28: C' = 135.5/7).

So, Lemma 10.8 follows from Lemmas 10.27 and 10.28.
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10.5 General description of the case when at least one of the pa-
rameters o, 0 belongs to [[',2\/7] (i.e. when the path P has no
lace, but the path P; has at least one lace).

Lemma 10.9 In case III if the distance between the initial and the final points of the path
P is greater than 135.5v/m and if at least one of the parameters o, 6 belongs to [T, 24/7] (i.e.
when the path P has no lace, but the path 751 has at least one lace), then we can modify P
so that the obtained path should be shorter than P and that it should satisfy the initial and
final conditions.

See the proof of Lemma 10.9 in Subsection 10.8.

Without loss of generality we consider only the case when T' < ¢ < 24/7 (for the two
other cases we use the same reasoning).

In this subsection we consider the case when, constructing some path 751, we obtain
V2.926r < 0 < 2¢/7 (i.e. 1.4626m < |ag — aa| < 27). In this case we obtain one lace
between the points A and E, hence, we cannot apply the method described in Subsection 10.4
and we must introduce some new method.

Denote by V4 the tangent vector at the point A. Denote by a the tangent line at the point
A and denote by a the straight line passing through the point A and which is perpendicular
to the straight line a.

The straight line a, divides also the plane in two half-planes (*half-plane I’ and ’half-
plane IT).

Definition We call ’half-plane I’ a half-plane such that it doesn’t contain the vector V4.
We call ’half-plane IT’ a half-plane such that it contains the vector V.

Now we can divide all paths P; in two classes ("class I’ and ’class IT’).

Definition We say that a path P4 belongs to the ’class I’ (to the ’class IT’) if the first
intersection point of the straight line a and of the path P4 on the interval (¢, T] belongs to
the half-plane I (to the half-plane II).

The general idea is to modify the path P, on the interval [ts,ts+1] changing the sign of
the curvature (see an example of some modification of this type on Figure 36).

Construct some path Py as in Subsection 10.3, varying the parameters o and 6 (but
now the curvature x(t) is positive on the interval (¢s,ts + o) and k() < 0 on the interval
(tq+1 — 0,tq41) for the constructed path, see Figures 36 and 34; we denote this path by

Pinew)-

Denote by E*, F*, [* the points E, F' and the line segment belonging to the path Py
constructed in Subsection 10.3 and denote by E**, F**, [** the points F, F' and the line
segment belonging to Pipey- Denote by Vg (by Vi) the tangent vector at the point E*
(at the point E** respectively).
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Figure 36

10.5.1 Plan of the study of the case when at least one of the parameters o, 6
belongs to [[,2y/7] (namely, when I" < o < 24/7)

1) At first we consider the subcase when the path P, belongs to the class
I and we obtain that this modification shortens the path Py at the left (see
Lemma 10.11, Subsection 10.6).

2) Then we consider the subcase when the path P; belongs to the class
IT and we obtain that we can modify P4 on the interval [ts_1,t541] so that
either the new path Panew has no lace (so, we obtain the case already studied in
Subsection 10.4), or we modify the path P4 on the interval [ts_2, t,41] so that this
modification shortens the path P, at the left (see Lemma 10.18, Subsection 10.7).

In the two cases (i.e. when P, belongs to the class I or to the class II) we use some
property concerning the relative position of the tangent lines at the points A and E**.

It follows from the construction of the path Pjne. that on the interval (¢s,%s41] the paths
Py and Pinew are in different half-planes (with respect to the straight line a).

Denote by 7 the angle between the vector Vg«+ and the vector —V4. So, ¥ = |ag —
aa| — m (see Figure 37).

Proposition 10.10 The angle 9 belongs to (7/6,].

See the proof of Proposition 10.10 in Appendix G.

Denote by P € P; a point such that |A/B\P| = |A/D\E**| and we denote by P, the
projection of the point P on the straight line [**.
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a)

A

Figure 37

10.6 The case when I' < ¢ < 24/7 — the subcase when the path P,
belongs to the class 1

Lemma 10.11 In the case when T < o < 2¢/7 and the path Py belongs to the class I this
modification shortens the path Py at the left (because the points P,., E** and F** are in
this order on the straight line I**).

Plan of the proof of Lemma 10.11

1) At first we prove that in the case when ¢ € (7/6,7/2) this modification
shortens the path Py at the left (because the points P,,, E** and F** are in this
order on the straight line I**, see Lemma 10.12).

2) Then we prove that in the case when ¢ € [r/2,57/6] this modification
shortens the path P, at the left (because the points P,., E** and F** are in this
order on the straight line [**, see Lemma 10.13).

3) Finally we prove that in the case when ¢ € (57/6, 7] this modification
shortens the path Py at the left (because the points P,,, E** and F** are in this
order on the straight line I**, see Lemma 10.16).

4) Thus, as the angle ¢ € (7/6, 7] (see Proposition 10.10), so , Lemma 10.11
follows from Lemmas 10.12, 10.13 and 10.16.

10.6.1 The case when ¢ € (7/6,7/2)

Lemma 10.12 In the case when i € (n/6,m/2) this modification shortens the path Py at

the left (because the points P,., E** and F** are in this order on the straight line I**).
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To prove Lemma 10.12 we need some auxiliary paths. Consider the part of the axis Ot
between the points t; and ¢, + V3. Consider the part of the path P, and the part of
the path Pipeq on [ts,ts + \/%] The path Piner consists on [ts,ts + \/ﬁ] of two arcs of
half-clothoid and of a line segment (see its graph of the curvature on Figure 38: it consists
of three segments — AD, DE and EH). The path P, consists on [ts,ts41] of two arcs of
half-clothoid (on Figure 38 they are the segments AB and BC); we know only that the path
Pgon [tsy1,ts + \/5] consists of at least one arc of half-clothoid, but its exact aspect isn’t
important for the proof. Consider some path Cyp on [ts,ts + \/ﬁ] it consists of two arcs of
half-clothoid (see its graph of the curvature on Figure 38: it consists of two segments — AZ
and ZH). Consider some path Cy on [ts,ts + \/ﬁ] it consists of two arcs of half-clothoid
and of a line segment, the tangent angle is continuous, but the curvature has a point of
discontinuity (see its graph of the curvature on Figure 38: it consists of three segments —
AZ, ZR; and RH; q is a constant belonging to (0, \/?F], we choose a value of ¢ such that
the tangent vector at the point R of the path C; should be parallel to the tangent vector at
the point E** of the path Piney (see Proposition H.2)).

w(t) A

Figure 38

Denote by P, € C; a point such that |A§P1| = |A3E**| and denote by Pi,, the
projection of the point P, on the straight line [**.

Proof of Lemma 10.12

We prove Lemma 10.12 in three stages.
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19 At first we compare the positions of the points Py,,, E** and F** on the
straight line [** — we obtain the following statement: the points Pi,,, E** and
F** are in this order on the straight line I** (see Proposition H.1, Appendix H).

2° Then we compare the positions of the points P, Pi,,, E** and F** on the
straight line [** — we obtain the following statement: if the points P;,,, E** and
F** are in this order on the straight line {**, then the points P, Pi,-, E** and
F** are in this order on the straight line I** (see Proposition H.6, Appendix H).

39 Finaly, using the results obtained in Propositions H.1 and H.6, we obtain
the desired statement: in the case when ¢ € (7w/6,7/2), the points P,,, E** and
F** are in this order on the straight line I** (i.e. this modification shortens the
path P, at the left); so Lemma 10.12 is proved.

10.6.2 The case when ¢ € [7/2,57/6]

Lemma 10.13 In the case when ¢ € [1/2,57/6] this modification shortens the path Py at
the left (because the points Py, E** and F** are in this order on the straight line I**).

To prove Lemma 10.13 we need two auxiliary propositions (namely Proposition 10.14
and Proposition 10.15).

Introduce now some notation. Denote by S; (by S2) the first (the second) point belonging
to the arc ABC such that its tangent line is orthogonal to the straight line I** (i.e. |ag, —
as, | = ), see Figure 39.

Proposition 10.14 In the case when ¢ € [1/2, 57 /6] the point Sy belongs to the arc BC.

Proposition 10.15 In the case when ¢ € [r/2,57 /6] the point P belongs to the arc 5, 5s.

See the proof of Proposition 10.14 (of Proposition 10.15) in Appendix I.1 (in Appendix I1.2).

Proof of Lemma 10.13

Denote by S3 a point belonging to the arc ADE"" such that |Z.\5’3| = |11:5’1|, and denote
by Ssp- the projection of the point S3 on the straight line I** (see Figure 39).

As k(t) > 0 on the arc 2\53 and «(t) < 0 on the arc Z\Sl, then the points Sipr, S3pr,
E** and F** are in this order on the straight line [**.

As P € 515, (it follows from Proposition 10.15), then the whole projection of the arc
§173 on the straight line [** is to the left with respect of the point Si,,.

The whole projection of the arc §3\E** on the straight line I** is to the right with respect
to the point S3,,.

Hence, the points P,,., E** and F** are in this order on the straight line {** (i.e. this
modification shortens the path Py to the left).

The lemma, is proved. o
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Figure 39
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10.6.3 The case when ¢ € (57/6,7]

Lemma 10.16 In the case when 9 € (57/6, | this modification shortens the path Py to the
left (because the points P, E** and F** are in this order on the straight line I**).

In order to prove Lemma 10.16 we need some auxiliary proposition (namely Proposi-
tion 10.17).

As in the previous subsubsection denote by S; the first point belonging to the arc ABC
such that its tangent line is orthogonal to the straight line [**.

Proposition 10.17 In the case when ¢ € (57/6, 7] the point P € AS.

See the proof of Proposition 10.17 in Appendix J.
Proof of Lemma 10.16

The point P belongs to the arc AS; (see Proposition 10.17). The curvature x(t) is non-

negative on the arc ADE" and non-positive on the arc AP. Hence, the points P, E**
and F** are in this order on the straight line [**.
The lemma, is proved. |

10.7 The case when I' < ¢ < 24/7 — the subcase when the path P,
belongs to the class 11

Lemma 10.18 In the case when I' < o < 24/ and the path Py belongs to the class II, we
modify Pa on the interval [ts—1,tq41] so that either the new path Panew has no lace (so, we

obtain the case already studied in Subsection 10.4), or we modify the path Py on the interval
[ts—2,tq+1] so that this modification shortens the path Pq to the left.

See the proof of Lemma 10.18 at the end of Subsection 10.7.

Remind that it follows from Proposition 10.10 that the angle ¢ belongs to (7/6, 7] for
all values |ags — a4l € [1.4626m,27).

In the case when T’ < ¢ < 24/7 and the path P4 belongs to the class II, we modify P,
on the interval [t;_1,%,41] (instead of the interval [t,t,41]) by means of two parameters o
and 6 (as in Subsection 10.3). We obtain some path Ponew (see an example of graphs of the
curvature of the path Py and of the path Ponew O the interval [ts—1,ts—1 + o] on Figure 40:
the segments JI, IA, AB and BC belong to the graph of P; and the segments JR and RS
belong to the graph of Paney). Remark that o can be greater than ¢, — ¢,_1 or not greater
than t; — t,_1 (méme si on Figure 40 we have ¢ > ¢, — ts_1).

If for this path ﬁgnew we obtain o < T (i.e. there is no lace on the interval [ts_1, ts—1+0]),
then we have the case already studied in Subsection 10.4. If not, the path ;ﬁgmw has one
lace on the interval [t;_1,ts—1 + o]. We must study this possibility.

As we have obtained one lace on the interval [ts_1,ts_1 + o], then we apply the method
introduced in Subsection 10.5, i.e. we construct some path ﬁgnew modifying the initial path
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P4 on the interval [ts—1,t4+1] by means of two parameters ¢ and 6, but now x(t) < 0 on the
interval (ts_1,ts—1 +0) and k(t) < 0 on the interval (tg41 —6,t541) for the path Pspe,, (see
Figures 41 and 34).

(8 A

=Y

o1 te—1+o0,/ ts tot1
. .

Figure 41

Remark that we don’t know whether o is greater than ¢t — ts_1 or not, but it isn’t
important for the proof. B

Denote by R (by .S) the point belonging to the path Ps,,.., and corresponding to the point
R (to the point S) of the graph x(t) (see Figure 41). Denote by F the point belonging to
the path Ps,e. and corresponding to the point F of the graph «(t) (see Figure 34). Denote
by [ the line segment belonging to the path £3new. P\enote by Pa point belonging to the

path P, on the interval [t,_1,T] such that |JP| = |JRS| and denote by P,, the projection
of the point P on the straight line [.
Plan of the proof of Lemma 10.18

We prove Lemma 10.18 in four stages.

19 At first we construct some auxiliary path Cy and we study the connection
between the paths Cy and Payery — we obtain the following statement: considering
all cases when the path Cy has one lace on the interval [t 1,51 +0], we consider
all cases when the path Ponew has one lace on this interval (see Remark 10.19).
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29 Then we calculate the minimal length of the arc JIA such that the path Co
has one lace on the interval [t;_1,ts—1 + 0] — we obtain the following inequality:

|JTA| > \/(4/3 =2 x 0.0374)w

(see Proposition K.1, Appendix K).

—

39 Then we calculate the maximal length of the arc JRS — we obtain the
following inequality:
|JRS| < V2x
(see Proposition K.2, Appendix K).
4% And at the end, using the results obtained in Propositions K.1 and K.2,
we obtain the desired statement: in the case when T’ < ¢ < 24/7 and the path
P4 belongs to the class II, we modify the path P4 on the interval [ts_2,%q+1]

so that the points ]3, S and F are in this order on the straight line [ (i.e. this
modification shortens the path Py to the left, see the proof of Lemma 10.18).

Construct some auxiliary path Cy in the following way: modify the path P; on the
interval [ts_1,ts] by means of the parameter o — choose a value of the parameter o such
that the tangent vector at the point S (denote it by Vg) should be collinear to the vector
Vg« of the path Plnew (see an example of the graph of the curvature of such modification
on Figure 40). Remark that o can be greater than t; — ts_; or not greater than ¢, — ts_;.

The path Cy consists of two arcs of half-clothoid (on [ts—1,ts—1+0]) and of a line segment
(on [ts—1 + 0,T]). This line segment (denote it by l¢,) is parallel to the line segment of the
straight line [**. See the graph of the curvature of the path Cy on Figure 40: it consists of
three segments — JR, RS (which correspond to the arcs of half-clothoid) and ST (which
corresponds to the line segment).

See an example of some path Cy (namely the arcs jj%, RS and the line segment, ST') on
Figure 42.

Remark 10.19 It follows from the construction of the paths Co and ﬁznew that if ﬁ2new has
a lace on the interval [ts_1,ts—1+0], then, Cy has also a lace on this interval, and if Cy has a

lace on the interval [ts—1,ts—1 + 0], then, Panew can have or not have a lace on this interval.
Hence, considering all cases when the path Cy has a lace on the interval [ts—1,ts—1 + 0], we

consider, evidently, all cases when the path ﬁgnew has a lace on this interval.

Proof of Lemma 10.18

If modifying the path P4 on the interval [t,_1,¢,+1], we obtain that the new path Ponew
has no lace, then this is the case already studied in Subsection 10.4. If not, we modify the
path Py on the interval [t;_»,t,41] and we obtain some path Pspew.

Consider now the paths P; and Psnew ON the interval [ts—2,tgt+1]-

Introduce some notations (as in Subsection 10.5).
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The straight line j, divides the plane in two half-planes. We call them ’half-plane I;’
and ’half-plane IT1;’.

Definition We call ’half-plane I;’ a half-plane such that it doesn’t contain the vector
V. We call ’half-plane I7;’ a half-plane which contains the vector V.

Now we can divide all paths Py in two classes (’class I;’ and ’class I1;’).

Definition We say that the path P; under consideration belongs to the ’class I;’ (to
the ’class I1;’) if the first intersection point of the straight line j and of the path P, on the
interval (ts_1, 7] belongs to the half-plane Iy (to the half-plane II;).

We have proved in Subsection 10.6 that if the path P, belongs to the class I, then the
points Pi,., E**, F** are in this order on the straight line I** (i.e. this modification shortens
the path P4 to the left) By analogy we can prove that if the path P, belongs to the class
Iy, then the points Ppr, S F are in this order on the straight line I (i.e. this modification
shortens the path P, to the left).

Hence, we must study only the case when the path P, belongs to the class II;. There
are two subcases: the case when P € JIA and the case when P ¢ . JIA, ie. |JP| > |JIA|

If the point P belongs to the arc JIZ A, then, the points Ppr: S F are in this order on
the straight line [ (i.e. this modification shortens the path P, to the left — we prove this
statement by analogy to the proof in Subsection 10.6).

So we consider only the case when P ¢ JIA. As the path P, belongs to the class I1;,
the first intersection point of the straight line j and of the path Py must belong to the
half-plane II;. Hence, a point W € AT such that the tangent line at the point W should
be perpendicular to the straight line ¢ must exist (see Figure 43).

Figure 43

The point P belongs to the arc JAW. Really, we obtain the minimal value of the
length of the arc AW if the curvature k(t) on the interval [ts, ty] is defined by the following
equation:

k(t) = =2(t—ts), forté€ [ts,tw] .
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The following equalities hold:
law —aal =7/2, |aw —aal = |AW)?,

hence, .
|[AW | =+/7/2 .

To prove that the point P belongs to the arc Jjﬁl\W', we must prove the following inequal-
ity:
|JTA| +|AW| > |JP| = |JRS| ,

i.e. (using the results of Propositions K.1 and K.2, see Appendix K) we must prove that

V(4/3 =2 x0.0374)x + \/7/2 > V27 ,

i.e.

4/3—2x0.0374 > 2+1/2 - 2v2/1/2=1/2

(it is correct). Hence, the point P belongs to the arc Jjéﬁ/V, S0, in the case when the point
P ¢ m, the points ]Bpr, §, F are in this order on the straight line [ (we prove this statement
by analogy to the proof in Subsection 10.6).

The lemma is proved. o

10.8 Proof of Lemma 10.9

In case III if we obtain for the constructed path P; that at least one parameter o, 6 belongs
to [T, 24/7], then, either we can apply Lemma 10.11 (if the path P; belongs to class I), or
we can apply Lemma 10.18 (if the path P; belongs to class II). We apply Lemma 10.8 on
all intervals where for the new path we obtain o € [0,T), 6 € [0,T").

The lemma, is proved. o

10.9 Detailed description of the case when o0 < I' and 6 < T (i.e.
when the paths P and P; have no lace)

Denote by X; (by X;) a point corresponding to ¢ and belonging to the path Py (to the new
path P respectively). Denote by X?" the projection of the point X, on the straight line L.

Consider now the graph of the curvature of the path P; (see Figure 44). On this figure
we see an example of the graph of the curvature of P, where ¢ € [0,ts41 — ts) and 0 €
[0,t441 — tg), but it isn’t important because the following reasoning is correct for all values
of o and 6 de [0,T).

Denote by thﬂ (by X’tq) the point of P; corresponding to ¢t = t,41 (to t = ty), denote
by X:.,, (by X,) the point of Py corresponding to ¢ = t,41 (to t =t,) and denote by X/" |
(by X{7) the projection of the point Xy, (of the point X,) on I.
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Figure 44

Set :E|X'ts+1Xff+1| =a_q, :t|)?thqu| = a;. Here we write "+" if the point X7~ (the

point X/") is to the right (to the left) with respect to the straight line perpendicular to the
straight line [ and passing through the point X,

"_n

.41 (through the point X’tq). If not, we write

At first we explain the sense of the expression “shorten the path Py to the left (to the
right)”.

Definition We say that some modification shortens the path Py to the left (to the right)
if for the constructed path Py we obtain a—_; < 0 (ay <0).

Remark 10.20 If for some path Py we obtain ay < 0 and a_1 < 0, then, \731| < |Pq|. If
we obtain that for P, at least one of the following inequalities holds: oy > 0, a1 > 0, then,
we don’t know whether |Py| < |Pq| or whether |Py| > |Py|; so this case needs to be studied
separately.

See an example where a1 > 0, a; > 0 on Figure 45.

Plan of the proof of Lemma 10.8.

1°. If |Py| < |Pa, then Lemma, 10.8 is proved. If [Py| > |P4|, then instead of the interval
[tg tq+1] we consider the next interval [tg11, t+2], instead of the interval [t,,s41] we consider

the previous interval [ts_1,ts], and we construct some new path P, by modifying the graph
k(t) of the initial path P4 on two intervals [ts_1,ts—1 + 0], [tg+2 — 0, tg42].
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Figure 45

2°. Now there are two possibilities: either |Py| < [Py4| or |Pa| > [P4]. In the last
case we construct some new path Ps by modifying the graph x(t) of P; on two intervals
[ts—2,ts—2 + 0], [tors — 0, tg13]- o N ~

3%. We obtain some sequence of paths Py, Pa,...,P;, ..., Pk such that we construct
every new path ﬁj by modifying the graph r(¢) of the initial path P; on two intervals
[ts—(j—1),ts—(j—1) + 0], [tg4; — O,tq4;]. If we suppose that for every path 73j we have
|P;| > [Pal, then the sequence of A_; + A; is bounded from below by some increasing
geometric progression, see Proposition 10.22. Here by A; we denote the difference between
the length of the interval [tg4;_1,tq+;] and the sum of the lengths of two chords connecting
the points of Py corresponding to ¢ = t44;_1, t = tg4; with the switching point of Py be-
longing to [tg4+j—1,tq+;]; we denote by A_; the difference between the length of the interval
[ts—(j—1),ts—(j—2)] and the sum of the lengths of two chords connecting the points of Py
corresponding to t = t,_(;_1), t = t;_(;_2) With the switching point of Py belonging to
[ts—(j-1); to-(5-2)]:

It follows from Remark 10.4 that in Section 10 we consider only paths consisting of
intervals whose lengths are smaller than /2.926m. We set v/2.926r = I'. Hence, for some
value 7 = K the sum of the length of the piece of Py corresponding to A and the length
of the piece of Py corresponding to A_ g becomes greater than the admissible constant 2T
(because the sequence of A_; + A; is bounded from below by some increasing geometric
progression).

4°. Then we prove that the sequence A_x + Ax, A_(k—1)+Ak-1,...,A_1 + Ay and
the sequence of the lengths of the corresponding arcs |_x + Ik, l_(x_1) +Ik—-1,---,1-1 +
l; are two decreasing sequences bounded from above by some geometric progressions (see
Proposition 10.25 and Lemma 10.26).

As a corollary of Lemma 10.26 we obtain Lemma 10.27 which contains the desired result:
if the distance between the initial and final points of P is greater than some constant C,
then |Pk| < |Pal; we give the estimation of the constant C in Lemma 10.28: C = 135.5\/T).

So, Lemma 10.8 folows from Lemmas 10.27 and 10.28.
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At first, we introduce some notation.
We construct some path P; by modifying the graph (t) on two intervals [t,_(;_1),
ts—(j-1) + 0, [tgr; — 0, tq45] G 2 1)

Definition Denote by Aq the difference between the length of the arc Xy, , X;, € Pg
and the sum of the lengths of the chords between the points of zero curvature and the nearest
switching points of the path X;  , X: € Pa.

Denote by o (by a_;) the distance between the point of ’ﬁj corresponding to t =tg4;_1
(tot = t,_(j—2)) and the projection of the point of Py corresponding to the same value of
XP" | and a_; = £|X;

q+i—1" gy -1
in the same way as for ax, a_1).
Denote by A; (by A_;) the difference between the length of the interval [ty4j—1,tq+;] (of

the interval [t,_(j—1),ts—(j—2)]) and the sum of the lengths of the corresponding chords.

tonl;, ie. a; ==X,
n_n

pr _ "n
3_(]._2)th_(]__2)| we choose "+" or

Definition We say that some modification shortens the path Pq to the left (to the right
respectively) if we have a—_; < 0 (a; < 0) for the constructed path P;.

Set
E,j:A,1+A,2+...+A,j, EJZA1+A2++A]

Proposition 10.21 If for some path P; we have |P;| > |Pa|, then the following inequality
holds:
a_; +a; > E,(j,l) + E]‘_l .

In this subsection we use some auxiliary propositions from Appendix L.
Proposition 10.21 follows from Proposition L.3 (see Appendix L).

Proposition 10.22 Construct a path 733- by modifying the graph k(t) on two intervals
[te Go1yte 1) + 0], ltars = Oteas] (G = 2). I [P] > [Pal, then we have the follow-
g inequality:

2 ‘
A_j+A; > M(A,l + A1 +2/M)2 for j>2. (57)

See the proof of Proposition 10.22 in Appendix L.

Proposition 10.23 If for any path 73j from the sequence of the paths 75]- (5 > 2) we have

|ﬁj| > |Pal, then the sequence of A_; + A; is bounded from below by some increasing
geometric progression and for some value 7 > 2 the sum of the length of the piece of Py
corresponding to A_; and A; becomes greater than the admissible constant 2T".
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Proof
Set

d=2(A_1+A)/M >0, ¢g=1+2/M>1.

Then we can rewrite inequality (57) as follows:
Aj+A;>dg™? forj>2, (58)

where ciqj ~2 is an increasing geometric progression (so, the first statement of the proposition
is proved).

Consider a function h(t) = |O/I/T/' | — |OW]| for any point W belonging to the half-clothoid
(see Figure 82). From Proposition 8.9 of [11] we know that the function h(t) is monotonously
increasing. By definition, Aj = 2k ((fq4; — tg4j-1)/2), A_j = 2h ((ts_(j—2) — ts—(j—1))/2).

Remind that in Section 10 we consider only paths P4 consisting of intervals whose lengths
are smaller than v/2.9267 (Remark 10.4). We have set /2.926w =T

Hence, we obtain from (58) that for some j > 2 the sum of the lengths of the pieces of
P4 corresponding to A; and A_; becomes greater than the admissible constant 2T.

The proposition is proved. |

Definition Denote by A i the mazimal admisible value of A; (i.e. lg <T andlgiq >T:
here we denote by lx (k1) the length of the arc of clothoid corresponding to Ak (Axy1)).
Respectively we denote by A_x the mazimal admisible value of A_j.

Estimate the value of the sum X _g + X k.
Proposition 10.24 For X and X_k we have the following estimation:
S_k <(6+8/2)R and Ik < (6+8V2)R,

hence,
Y k+Xx<(12+ 16\/§)R ,

(where R = /7 /2).
See the proof of Proposition 10.24 in Appendix L.

Proposition 10.25 A_x+Ak, A_(K_1)+AK_17 ..., A_1+ A1 form a decreasing sequence
bounded from above by a decreasing geometric progression.

Proof

Tt follows from Proposition 10.21 that if for some path P; (j > 2) we have |P;| > |Pal,
then the following inequality holds:

a_j+aoa; > E—(j—l) + 21;1 .
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It follows from Proposition L.2 that

M M
oa_; < EA,]' and a; < ?A] .

Hence,

2
A_j +AJ > M(E,(‘jfl) + E]‘_l) .

Using this inequality we obtain
2

2
T+ =oAL F(E A > (B oy + Mz_(j_l)) + (21 + i

Tia)=

M+2
=1 +2/M)E_oyy +Zj1) = =3~ (B + Tj1)

i.e.
M .
Z—(j—l) + E]'_l < M—+2(Z_j + E]) forany j > 2. (59)
Consider inequality (59) for 2 < j < K:

E,(K,I) + ¥k 1 < (Z—K + EK) ,

M
M+2

M

2
M—-‘,-Q) (27K+EK) etc.

M
E—(K—2) +Xk o< M—-i—Q(E_(K_l) +Xx 1)< (

Hence,
M L
E—(K—s)+EK—S<(M—_'_2> (Z_K+EK) fOI‘8=1,...,K—1,

and, using the inequality A_(x_,) + Ax s < ¥_(k_s) + Xk s, we obtain

A—(K—5)+AK—S< ( ) (E_K-FEK) fors=1,....,. K —1. (60)

M+2
From Proposition 10.24 we know that ¥_ g + S < (12+16v/2)R. Hence, all A_(gk—s+
Ag_s (s =1,...,K — 1) form a decreasing sequence bounded by a decreasing geometric
progression.
The proposition is proved.

Lemma 10.26 The sequence of the sums of the lengths of the arcs I_x + lk,l_(x_1) +
lk—1,--., l_1 + l1 is decreasing as a geometric progression and, hence, the sum of these
lengths is finite.
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Proof

Consider the function h(t) = |O/I/\V | — |OW| for any point W belonging to the half-
clothoid (see Figure 82). From Proposition 8.9 of [11] we know that the function h(t) is
monotonously increasing positive-valued. We have A; = 2h ((tg4; — tq+;-1)/2), A_; =
2h ((ts—(j-2) = ts—(5-1))/2)-

From Proposition 10.25 we know that A_x +Ax, A_(x_1)+Akg-1,...,A_1+A; form
a decreasing sequence bounded from above by a decreasing geometric progression. Hence, if
we consider the values of A;, A_; outside a small half-neighbourhood of zero, we obtain that
the sums of the lengths of the correspondings arcs | x +1k,l_(x—1)+lk—1,...,1-1+I; form
a desreasing sequence bounded from above by a decreasing geometric progression. Consider
now the function A(t) in a small half-neighbourhood of zero. We obtain for the small ¢

2

t t
h(t) = |OW| - |OW| =t - \/(/ COST2d7‘> + (/ sinrsz) =
0 0

=t— (t—2t°/45+ O(t°)) = 2t°/45 + O(¢t°) .

2

Hence, in a small positive half-neighbourhood of zero A; = 2t°/45 + O(t°) (A_; =
2t5 /45 + O(t°)) and, hence, I; ~ (45A,;/2)5 (I_; ~ (45A,;/2)%).
The lemma is proved. a

As a corollary of Lemma 10.26 we obtain Lemma 10.27 (the main result of this subsec-
tion).

Lemma 10.27 If we require that the distance d between the initial and final points be greater
than some positive constant C, then

P| <[Pl -
Proof
Suppose that for maximal admisible A we have [Px| > |Pa|. The sum of the lengths of
corresponding arcs I_g,...,l_1, lk,...,[1 is some finite number, see Lemma 10.26 (denote

this number by L). Hence, if the sum of the distances between the points corresponding to
ty and ¢4 7 and to .41 and ts_(x—1) is greater than L, then the part of the path P4 between
the points corresponding to ¢,_(x_1) and t;4, can’t exist. Hence, if the distance between

the initial and final points is greater than some positive constant C, then |Pg| < |Pal.
The lemma, is proved. |

The estimation of C is given in Lemma 10.28.
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Lemma 10.28 If the distance d between the initial and the final points of P is greater than
135.54/7, then

Pl < [Pal ,

i.e. we can construct some path P such that it should be shorter than P and that it should
satisfy the initial and final conditions.

See the proof of Lemma 10.28 in Appendix M.

11 Proof of Theorem 2.6

To prove Theorem 2.6 we summarize the results obtained in Sections 3-10.

Remind that we have given the scheme of all cases on Figure 4.

In all cases (except case II described in Section 9 and case III described in Section 10) we
can apply the method studied in Section 8 for case I and obtain using suitable modifications
of types A, B and C some new path with the given initial and the final conditions, which
is shorter than the initial one and which is a finite concatenation of arcs of clothoid (see
Section 8, Lemma 8.1 and Appendix B). In all these cases we consider the initial and final
points which are situated not far from each other.

Case II (i.e. the case when y, > 0 for any even p, y, < 0 for any odd p (with the possible
exception of the initial and the final points) and there exists at least one even index p (one
odd index p) such that k, < 0 (k, > 0)) is studied in Section 9. In this case we prove that if
the distance between the initial and final points is greater than 320/, then we can modify
the path P so that the new path should be shorter than the given one and should satisfy the
initial and final conditions (see Lemma 9.1). As a result we obtain some new path which
belongs to other class of paths, i.e. which consists of a line segment and a finite number of
arcs of clothoid.

Case III (i.e. the case when y, > 0, k, > 0 for any even p and y, < 0, £, < 0 for any odd
p (with the possible exception of the initial and the final points) is studied in Section 10. In
this case we prove that if the distance between the initial and final points is greater than
135.5/7, then we can modify the path P so that the new path should be shorter than the
given one and should satisfy the initial and final conditions (see Lemma 10.1). As a result
we obtain some new path which belongs to other class of paths, i.e. which consists of a line
segment and a finite number of arcs of clothoid.

Thus, summarizing, we have proved that if the distance between the initial and final
points is greater than 320/, then we can shorten the given path P preserving the initial
and final conditions. Hence, the optimal path can’t consist of a finite number of concatenated
arcs of clothoids.

The theorem is proved. |
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A Appendix: Proofs of Propositions 6.4 and 6.5

A.1 Proof of Proposition 6.4

By definition we have the following formulas:

Ts Tp
z5(Th) :/ cosag(t)dt , ye(TR) :/ sin ap(t)dt ,
0 0

T T
T = / cosa(t)dt , y' = / sin a(t)dt .
0 0

Hence, we obtain

Ts Tp T
zg(Tg) —zt = / cosap(t)dt — / cos a(t)dt — / cos a(t)dt =
0 0 T

Tg T
= /0 (cosap(t) — cosa(t))dt —/T cosa(t)dt . (61)
At first we calculate fOTB (cos ap(t) — cos a(t))dt:
/OTB (cosap(t) — cosa(t))dt = —2 /OTB sin aB(t)z— a(t) sin aB(t);‘ a(t) dt .

For a small §p we have ap(t) — a(t) = O(6g), hence,

ap(t)—a(t)  ap(t) —a(t)

sSin B = 2

So,

/TB (cosagp(t) — cosa(t))dt = — /TB (ap(t) — a(t))sin Mdt +0(6%) =
0 0 2

Tg T
_ —/0 (as(t) — a(t)) sin a(t)dt + O(8%) = —/0 (an(t) — a(t)j(t)dt + O(63) .

Now we integrate by parts and we obtain

Ts

Tp
/0 (cos ap(t)—cosalt) )dt = —[(as(t)—a(t))y (D) + / (65 (£) — 1))y (£)dt+ O(6%) =

iy
= —y(Ts)(as(Ts) - a(Ts)) + / (k5() — KBt + O(83) .
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For calculate —y(Ts)(ap(TB) — a(Ts)) we remark that (ap(Ts) — a(Ts)) is equal to
the area of NGKLF (see Figure 7). We denote this area by Sygkrr and we obtain the
following formula:

Svaxrr = —|k" |68 Ks + 63 K3

(remind that §p is always negative).
Really, aB(TB) — a(TB) = SygkTr if kT > 0. If not, OtB(TB) — a(TB) = —|I€T|63K’ —
6% K2. But in two these cases

—y(Tp)(as(Ts) — a(Ts)) = 65y(Ts)|x" | Kz + O(8%) . (62)

We calculate now fOTB (kp(t) — K(t))y(t)dt:

Tp tr—1 T
/ (kp(t) — k(t)y(t)dt = / —46p Kyy(t)dt + / 20pKay(t)dt =
0

ty_o ty_1

tr_1 T
= 454K, / y(t)dt + 265K / y(t)dt =

= —46pKi(ty—1 —tr—2)y(p) + 265 K2(Tp — ty—1)y(v) =
= —0p [4K1(tj—1 —t;2)y(p) — 2Ko(T — t;_1)y(v)] + O(63)

(here the point x4 (the point v) is a point of the interval [t;_o,t5 1] ([tf—1,7]) such that
y(p) (y(v)) is equal to the mean value of the function y(t) in this interval).
Thus, we obtain the following formula:

/TB (cosap(t) — cosalt))dt =
0

=6py(TB)K" Ky — 65 [AK1(ty—1 — ty—2)y(p) — 2Ko(T — ty_1)y(v)] + O(6%) =
=6 [y(Tp)r" Ky — 4Ky (t7 1 —tyo)y(n) + 2K2(T — t;1)y(v)] + O(6%) - (63)

We calculate now qu; cos a(t)dt: for the curvature in the intervale of integration [IT's,T]
we have the following formula:

K(t) = =2t + (k7 +2T) fort e [Tg,T).

So, we have the following equalities for «(t) in the interval of the integration [Tz, T:

17 t

k(T)dr = a(Tp) + /7: (=27 + (&7 + 20))dr =

a(t) = a(Tg) +/

Tp

= a(Tp) = 72y, + (57 +2T)7ly, = a(Ti) — (2 = T3) + (v +2T)(t — Ts) .
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We change the variable t to7 =t —-Tp =t — T — 6 K5. Hence,
T —op Ko —6B Ko
/ cosa(t)dt = / cosa(r)dr = / cos(a(Tg) + O(r))dr =
Ts 0 0
—6p K>
= / (cosa(Tg) cos O(1) — sin a(Tg) sin O(7))dT = 65Ky cosa(Tg) + O(8%) . (64)
0

Summarizing the results obtained in the formulas (61), (63) and (64), we obtain
zp(Tp) =" + 65K(P) + 0(6%)

where

KP) = Ka(y(Tp)|r"|+cos a(T))~dpy(u) +d5y(v) = Ka(y(Tp)|k" [+cos a(Tp))+dpy(v) ,

dlB :4K1(tf_1 —tf_g) ) d% :2K2(T—tf_1)

(remind that y(p) = 0 for the interval [t;_2,t7_1], see Remark 3.1).
We obtain the formula for y5(T) by analogy. We have

yp(Ts) —yt = /0 B(sin ap(t) —sina(t))dt — /T sin a(t)dt .

At first we calculate fOTB (sinap(t) — sin a(t))dt:

ap(t) — a(t) agp(t) + a(t)

TB TB
/ (sinap(t) — sin a(t))dt = 2/ sin cos dt =
0 0 2 2

(t) + a(t)

_ / " an(t) — alt)) cos 28 dt + 0(6%) =
0

- /0 " (an(t) — alt)) cos a(t)dt + O(5%) = /0 " (as(t) — a(®)(t)dt + O(62) .

Now we integrate by parts and we obtain (using (62))

(65)

Tg Ts .
[ s ~sina()at = [an(o) - a()a(Olf” - [ (@nlo) - at)a(oie+ o) =

T
=2(Ts)(as(TB) — (TB)) — / (kB(t) — K(t))x(t)dt + O(63) =
0

= —6pa(Tp)|K" | K2 — 6p [=4Ki(t;—1 — t;—2)x(9) + 265 Ka(T — t—1)x(x)] + O(6%)

(here the point ¢ (the point x) is a point from the interval [tf_2,t7_1] ([tf—1,T]) such that

z(9) (z(x)) is equal to the mean value of the function z(¢) on this interval).
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Thus we obtain the following formula:

Tp
/ (sin s (£) — sin a(t))dt =
0
= 6p [—a(Tp)|c"| Ky + 4K1(t; 1 — t7o)x(d) — 2Ko(T — ty 1)x(x)] + O(6%) . (66)

Now we calculate fg} sin a(t)dt:

/ " ima(t)dt = / T na(r)dr = / T (a(T) + O()dr =
0 0

T

—6pKs
= / (sina(Tg) cos O(7) + cos a(T'g) sin O(7))dT = —65 Ko sina(Tg) + O(6%) . (67)
0
Summarizing the results obtained in the formulas (65)—(67), we obtain

y5(Ts) =y" +65K(® +0(5%) ,

where
K = Ky(—a(Tp)|c"| + sina(Tp)) + dpz(9) — dpz(x) ,
IB:4K1(tf,1—tf,2) 5 d;’;IQKQ(T—tffl) .
The proposition is proved. |

A.2 Proof of Proposition 6.5

We prove Proposition 6.5 in the same way as Proposition 6.4, but there are some changings
in calculations.

1) For calculate —y(T)(ap(Ts) — a(Tg)) we remark that (ap(Ts) — a(Tg)) is equal
to the area of NKTF (see Figure 8). We denote this area by Syxrr and we obtain the
following formula:

SNKTF = —|HT|5BK2 - (523}(22

(remind that §p is always negative).
Really, aB(TB) — a(TB) = Syvrrr if &7 > 0. If not, OéB(TB) — a(TB) = —|I€T|(5BK2 +
6% K2. But in two these cases

~y(Ts)(ap(Ts) — aTs)) = 65y(Th)|K" | Kz + O(63) - (68)

2) We calculate now [ (kp(t) — k(t))y(t)dt:

T tr—1 Ts
/ (ki (1) — K(E)y(t)dt = / 465 Ky(t)dt — / 265 Koy (t)dt =
0

ty_a ty_1
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T

tr—1
— 465K, / y(B)dt — 265 K, / y(t)dt =

tf_o tf_1

=46pK1(ty—1 —ty—2)y(n) — 26pK2(Tp — ty—1)y(v) =
=6p [4K: (t5—1 — ty_2)y(n) — 2Ko(T — t;_1)y(v)] + O(63)

So, we obtain the following formula:

T
/ (cosap(t) — cosa(t))dt =
0

= 6py(Ts)|K" | K2 + 65 [AK1(tp—1 — tr_2)y(p) — 2Ko(T — ty_1)y(v)] + O(6%) =
=65 [y(Tp) k" |Ky + 4K (ty—1 — ty—2)y(p) — 2Ko(T — ty_1)y(v)] + O(6%) .

3) We calculate now f;; cos a(t)dt: for the curvature in the interval of integration [T's, T
we have the following formula:

k(t) =2t + (kT —=2T) fort € [T, T].

So, for a(t) in the interval of integration [Tz, T] we obtain
T
a(t) = a(TR) + / k(T)dr = a(Tg) + (12 = T%) + (k1 = 2T)(t — T) .
Ts
We change the variable t to 7 =t — T — 6 K». Hence,
T —6p Ko —éB K2
/ cos a(t)dt = / cosa(r)dr = / cos(a(Tg) + O(7))dr =
0 0

Ts

= /07 B 2(Cos a(Tp)cos O(1) — sina(Tg) sin O(7))dr = —6pK; cosa(T) + O(8p) -

4) So, we obtain
z5(Tg) =27 +6sKP) + 0(8%) ,

where
K{P) = Ko (y(Ts)|w"|+cos o Tp)) +dpy(n)—dpy(v) = Ka(y(Ts) k" |+cos a(Ts))~dpy(v)
dlB:4K1(tf,1—tf,2) ) %ZQK'Q(T—tffl) B

5) We obtain the formula for y5(T") by analogy. We calculate as in the proof of Propo-
sition 6.4 and we obtain (using (68)):

T
/ (sin o (t) — sin a(t))dt =
0
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= 6 [~2(Tp)|k" | Ky — 4K (tj1 — tg-2)a(¥) + 2K(T — t;-1)z(x)] + O(6%) -
We calculate f:,:; sin a(t)dt as in the proof of Proposition 6.4:
T —6pKa —6pKs
/ sin a(t)dt = / sin a(7)dr = / sin(a(Tg) + O(7))dr =
Tg 0 0

= —6pKysina(Tg) + O(6%) .

6) Hence, we obtain
ys(Ts) =y" + 85K +0(6%) ,

where
K{P) = Ko(~2(Tg)|K"| + sina(Tp)) — dpz(d) + dpa(x) ,
dlB=4K1(tf_1—tf_2) ) %:2K’Q(T_tf_1) -
The proposition is proved. |

B Appendix: Proof of the non-optimality of the path P
— some cases

B.1 The case when y, > 0 for any p

Consider some switching point (t = ¢,) corresponding to a local minima. Then modifying
the graph of x(t) on two intervals [t, — (,t,], [ti, ti+1] (as in Section 8, here by ¢, we denote
the switching point corresponding to some local maxima on the graph k(t) of the path P)
we obtain system (26). In two cases (when either k is an even number and p > 0 or & is an
odd number and p < 0) we express from this system §41 and §¢1 as some functions of §p
(see the proof of Lemma 8.4 — the cases 1) and 4)).

In the two other cases (when either k is an odd number and p > 0 or k is an even
number and p < 0) we modify the graph of x(t) on two intervals [t,. — 3, t,], [tm,tm+1] (see
Figure 46). On this figure we denote by dotted line the pieces of the new graph. For this
modification we have o2 > 0.

Recall that y(t) > 0if ¢t € [t, — 3,t,] and that the mean values of the y-coordinates on
every interval belonging to [0,7] except the first and the last one are equal to zero. Hence,
for the thus obtained path Ppic2 we have system (27) with K. 5,02) defined by the following
formula

K{9% = CoaBy(k) —y(v)) = CeaBy(r) > 0 . (69)
So, in the two cases (when either k is an odd number and p > 0 or k is an even number

and p < 0) we express from system (27) (with K (©?) defined by formula (69)) 641 and b¢o
as some functions of ép (see the proof of Lemma 8.4 — the cases 2) and 3)).
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B.2 The case when there exists t; such that y, =0, y, # 0

In this case for any small neighbourhood [ts — 7,5 + 7] of the point ¢, the function y(¢)
has one sign in the left half-neighbourhood [ts — 7,ts] and another sign in the right half-
neighbourhood [¢s,ts ++]. Hence, in this case we can use the same technique as in Section 8,
i.e. modify, at first, the given graph x(¢) on two intervals [t; — 7, ts] and [t;,t;4+1] (as on
Figure 9) and then modify the graph x(t) on two intervals [ts,ts + 7] and [t;,t141]. As a
result of these two modifications we obtain two systems (26) and (27) and then depending
on the sign of p we can consider the suitable system to express §41 and é¢1 (respectively
bc2) as some functions of §p.

B.3 The case when there exists t; such that y, =0, y. =0, y” #0

Consider now the case when there exists ts such that ys = 0, y. = 0, y # 0 (the point
(z(ts),y(ts)) isn’t the inflexion point of a clothoid).

In this case there exists some small neighbourhood of ¢, ([ts — v, ts +7]) such that for all
t € [ts — v, ts + ] the function y(¢) is either positive or negative (except the point ¢t = t).
Hence, we can use the same technique as in the case when the y-coordinates of the path P
at all switching points are non-zero (see Sections 8-9 and Subsection B.1) because the mean
value of y on [ts — v, ts + 7] is positive or negative.

C Appendix: Subcase A — some auxiliary propositions

To prove Lemma 9.2 we need of some auxiliary propositions (more precisely, Proposi-
tions C.1-C.3).

Consider some point belonging to P whose tangent angle equals zero (modulo 27), denote
it by A. Denote by B the first following point belonging to P such that ap = a4 +7/2 and
denote by C' the first following point belonging to P such that ac = ap + 7/2. Denote by
c the straight line passing throught the point C' and perpendicular to the tangent vector at
the point C and denote by D the intersection point of the straight line ¢ and of the path P
(see an example on Figure 47).

Proposition C.1 The following estimation holds:

|BC| > |AB|/4 . (70)

See the proof of the proposition in Appendix C.1.
Proposition C.2 Consider some path D of the class C? which is a concatenation of arcs

of half-clothoids (k(t) = £2, k(0) = ko) and of length ko/2. Then the euclidian distance
between the initial and final points of D is less than /7.
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L%D

Figure 47

Proof

Consider some path ¢l on the interval [0, ko/2] which has the same initial conditions
(29, %0, g, ko) that the path D and which is some piece of half-clothoid with the curvature
defined by the equation K = —2t + k¢ (see Figure 48).

w(t)A

Ko

>
t

Figure 48
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Denote by O the centre of cl, by g.;(t) the radius-vector of a point of ¢/ in the coordinate
system with centre at the point O.;. Denote by gp(t) the radius-vector of a point of D in
this coordinate system. For t = 0 there is g,;(0) = pp(0).

So, it follows from Lemma 7.1 of [11] (one can find the same statement in [13] (Lemma 3.13)
and in [10] (Lemma 3.10)) that the following statement holds: for the path D (defined as
behind) and for the path ¢l we have

pe(t) > pp(t), for any t € (0,£0/2] .

Any half-clothoid is situated in the circle with centre at the centre of the half-clothoid
and of radius R = /7/2. So, the distance between the initial and final points of ¢l is smaller
than 2R = /7. Hence, as p.(0) = pp(0) and pei(t) > pp(t) for any ¢ € (0, k¢/2], then, the
distance between the initial and final points of D is smaller than 2R = /7.

The proposition is proved. |

Denote by N the first point belonging to P whose tangent angle equals zero. Denote
by N the first following point belonging to P whose tangent angle equals zero and such
that between N and M there are at least 10 switching points. Denote by N, (by M,,) the
projection of the point N (of the point M) on the axis Ox. Denote by dy,, a,, the distance
between the points N, and Mp,.

Proposition C.3 If the curvature of the path P is non-negative, then, for the length of the
piece of P between the points N and M (denote it by In ) we have the following estimation:

5
INnv > ngp,‘Mp,, . (71)

Proof

As the mean value of the y-coordinate on any interval between two consecutive switching
points equals zero and as the curvature is non-negative, then, between any ¢,, t,13 switching
points the tangent angle makes a turn of at least 2.

Consider Figure 47. We have proved (see Proposition C.1) that

|BC| > |4B|/4 = (JAC| - |BC|)/4 .

Hence, - A
BC| > |AC|/5 . (72)

When some point moves along the path P from A to C' (see Figure 47), the length |D/B\C |
is 7useless” in the following sense: the projections of the points D and C on the axis Oz
coincide. Hence, the projection of the point of the path on the axis Ox doesn’t advance with
respect to the final point from D to C.
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Consider the case when the projection of the point D is situated closer to the projection
of the final point of P than the point A. The following inequality holds:

|DB| > |BC)| (73)

(evidently, in the case when the projection of the point D is situated further than the point
A, when a point moves along the path P from A to C it doesn’t advance in the sense to
shorten the distance between it and the projection of the final point on the axis Oz; so, in
this case the length |AC| is "useless”).

Thus, using inequalities (72) and (73), we obtain

IDB| > |BC| > [AC|/5 ,
hence,
— — 2
IDB| +|BC| 2 £|AC|
and

— — — — 3 —
AD| = [4C| - (DB| + |BCI) < Z[AC| (74)

So, we obtain that the "usefull length” (i.e. |Zl\7|) of the arc AC is at most 3/5 of the

length of all arc AC.

We have proved that if the curvature is non-negative on the interval [ty, ], then be-
tween any 4 consecutive switching points the tangent angle makes a turn of at least 2.
Hence, the path "oses” 2/5 of its length on any turn on 2.

Thus, we have the following inequality:

3
ANy My < ZINM
i.e.
5
INnv > ngp’l‘MpT .

The proposition is proved. |

C.1 Proof of Proposition C.1
Plan of the proof
The main idea is to modify the path ABC' so that

1) the tangent angle and the curvature at the point B of the new path ABC
coincide with the ones of the path ABC,

2) aB—aZ:aB—aA:ﬂ/Q and ac —ap =az —ap =7/2,

3) |AB| > |AB| and |BC| < |BC|.
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If we prove for the path ABC the following inequality holds:
|BC| > |AB|/4, (75)

then (as |[AB| > |AB| and |BC| < |BC|) we obtain inequality (70).

At first we modify the piece BC' of the path ABC. Denote by kp the value of the
curvature at the point B. If we fix kg, then in the case when the curvature of the arc BC
is defined by the following formula:

Kk(t) =2(t —tg) + kB

(see Figure 49) we obtain |BC| < |BC| (because the tangent angle is equal to the integral

of the curvature on the arc, so, as ac — ap = ag — ap, then we obtain that |BC| < |BC|
for any piece BC).

x() |

=Y

Figure 49

Now modify the piece AB of the path ABC. As the mean value of the y-coordinate on any
interval between two consecutive switching points is equal to zero and as ap — a4 = 7/2,
then between the points A and B there exist at most two switching points. Really, any
piece of clothoid delimited by two switching points intersects the axis Ox. The condition
ap —aa = /2 imposes that there exists at most one intersection point with the axis Ox
on the piece AB, i.e. that at most two switching points belong to the piece AB. Hence, we
must consider the three following cases:

1) there is no switching point belonging to the piece AB of the path ABC,
2) there is one switching point belonging to the piece AB of the path ABC,
3) there are two switching points belonging to the piece AB of the path ABC.

I. Consider the case 1). There are two possibilities:

INRIA



Irregularity of optimal trajectories in a control problem for a car-like robot 97

a) either for the piece AB one has k(t) = 2(t—ta)+ k4 on the interval [t4, ¢ 5]
(see Figure 50 a)),

b) or for the piece AB one has k(t) = —2(t —t4) + k4 on the interval [ta,t5]
(see Figure 50 b)).

k(t) A

(1) A

«Y
e J

a) b)
Figure 50

a) Consider the case 1 a). In this case we don’t modify the piece AB of the path ABC,

i.e. we consider as the path ABC the path AB@, and we want to obtain the following
estimation: B
|BC| > |AB|/4 . (76)

Really, if we set |Bé | =k, |AB| = p and kp = ¢, then we obtain the following equalities:

ag—agqu+k2:7r/2,

ap—aa=pq—p*=7/2.

Hence,
kK +kqg+p°—pg=0,

k=—q/2+/¢*/4A—D*+ pg

i.e.
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(because k > 0). We must prove that

k>np/4,
i.e. that
V@& /4-p*+pg>q/2+p/4,
ie.
C/A—p*+pg> ¢ /A+ /16 + pg/4
i.e.
3¢/4 > 17p/16
i.e.

q>17p/12

(it’s true because ¢ > 2p).
So, in the case 1 a) inequality (76) is proved.

b) Consider the case 1 b). There are two possibilities: if kp is rather great, then we
construct the piece AB as on Figure 51 i); if not, we construct the piece AB as on Figure 51 j).

K(t) A

(1)

Figure 51

N I£1 the first case the piece AB is as the piece AB in the case 1 a). Hence, for this path
ABC inequality (75) holds.
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In the second case the piece AB is “as the piece AB in the second subcase of the case 2
a) (see Figure 53 j). So, for this path ABC inequality (75) will be proved during the study
of the case 2 a) (see below).

IT. Consider the case 2) (i.e. the case when there is one switching point belonging to the
piece AB of the path ABC). There are two possibilities:

a) either this switching point is some local minimum of the graph of the
curvature on the interval [t4,t5] (see Figure 52 a)),

b) or this switching point is some local maximum of the graph of the curvature
on the interval [t4,tp] (see Figure 52 b)).

K(t) A (0 A

Figure 52

a) Consider the case 2 a). There are two possibilities: if kp is rather great, then we
construct the piece ABason Figure 53 1); if not, we construct the piece ABason Figure 53j).

In the first case the piece AB is as the piece AB in the case 1 a). Hence, for this path
ABC inequality (75) holds.

In the second case we must prove inequality (75) for the constructed path ABC (see
Figure 53 j).

Set |[BC| = k, |AK| = m and KB = n, so, we obtain the following equalities:

aa—a3=2kn+k2=7r/2,

— m2 2 _
ap—ay=m"+n°=7/2.
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w(t) RO

Figure 53

Hence,
K +2kn—m?—-n2=0,

ie.
k=-n+v2n?+m?

(because k > 0). We must prove that

k> (m+mn)/4,
i.e. that
V2n?2+m?2>n+(n+m)/4d=>5n/4+m/4,
i.e.
2n? +m? > 25n?/16 + m?/16 + 5nm /8 ,
ie.
™2 /16 + 15m? /16 — 5nm/8 > 0 ,

ie.

n? +15m?/7 — 10mn/7 >0,
ie.

(n —5m/7)% 4+ 80m?/49 > 0
(it’s true).

So, in the case 2 a) inequality (75) is proved.
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b) Consider the case 2 b). There are three possibilities: if kp is rather great, then we
construct the piece AB as on Figure 54 i); if not, either we construct the piece AB as on
Figure 54 j), or we construct the piece AB as on Figure 54 k).

KO K1),

Figure 54

More precisely, we construct the piece AB as on Figure 54 j) if the straight line passing
throught the point K and such that #(t) = —2 doesn’t intersect the piece AB of the graph
of the curvature. It’s evident, that in this case the constructed piece AKB is longer than
the piece AB. The piece AB is as the piece AB in the second subcase of the case 2 a) (see
Figure 53 j). Hence, for this path ABC inequality (75) holds.

We construct the piece AGKB ason Figure 54 k) if the straight line passing throught the
point K and such that £(t) = —2 intersects the piece AB of the graph of the curvature. It’s
evident, that in this case the constructed piece AKB is longer than the plece AB (because
in this case we can always find the points G and A such that the _area of AGW At 4 should
be equal to the area of WK BYV). The piece AB is as the plece AB in the second subcase
of the case 3 a) (see Figure 56 k). Hence, for this path ABC inequality (75) will be proved
during the study of the case 3 a) (see below).

ITI. Consider the case 3) (i.e. the case when there are two switching points belonging
to the piece AB of the path ABC). There are two possibilities:

a) either the first switching point is some local maximum of the graph of the
curvature on the interval [t4,tg] (see Figure 55 a)),

b) or the first switching point is some local minimum of the graph of the
curvature on the interval [t4,tp] (see Figure 55 b)).
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HONY Ol

a) b)

Figure 55

a) Consider the case 3 a). There are three possibilities: if kp is rather great, then we
construct the piece AB as on Figure 56 i); if not, either we construct the piece AB as on
Figure 56 j), or we construct the piece AB as on Figure 56 k).

More precisely, we construct the piece AKB as on Figure 56 j) if the straight line passing
throught the point K and such that £(t) = —2 doesn’t intersect the piece AB of the graph
of the curvature. It’s evident, that in this case the constructed piece AKB is longer than
the piece AB. The piece AB is as the piece AB in the second subcase of the case 2 a) (see
Figure 53 j). Hence, for this path ABC inequality (75) holds.

We construct the piece AGKB ason Figure 56 k) if the straight line passing throught the
point K and such that i(t) = —2 intersects the piece AB of the graph of the curvature. It’s
evident, that in this case the constructed piece AGKB s longer than the piece AB (because
in this case we can always find points G and A such that the area of AGW At4 should be
equal to the area of WVUK). So, we must prove inequality (75) for the constructed path
ABC.

Set [BC| =k, |AG| = |GK| = a and KB = b. We obtain the following equalities:

aa—aB:2kb+k2:7r/2,

aB—ozZ:2a2+b2:7r/2.

Hence,
k2 4+ 2kb—2a2 -2 =0,

INRIA



Irregularity of optimal trajectories in a control problem for a car-like robot 103

k(1)) 5 r(t) ) K(t) )
KB
KB KB
o T ¢ > o
i) ) k)
Figure 56
i.e.

k=—b+/2(a® + b2)

(because k > 0). We must prove that

k> (2a+b)/4,

i.e. that
V2(a? +b%) > b+ (2a+b)/4 = (2a+ 5b)/4 ,

i.e.

2a% 4 2b? > 25b%/16 + a%/4 + 5ab/4 ,
i.e.

7a*/4+ Tb%/16 — 5ab/4 > 0,
i.e.
a® 4+ b%/4 —5ab/7> 0,

i.e.

(a — 5b/14)% 4+ (1/4 — 25/196)b* > 0
(it’s true).

Thus, in the case 3 a) inequality (75) is proved.

b) Consider the case 3 b). There are three possibilities: if kp is rather great, then we
construct the piece AB as on Figure 57 i); if not, either we construct the piece AB as on
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rc(t) ‘

Figure 57

Figure 57 j), or in order to construct the piece AB we introduce some other method (see its
description below).

More precisely, we construct the piece AKB as on Figure 57 j) if the straight line passing
throught the point K and such that £(t) = —2 doesn’t intersect the piece AB of the graph
of the curvature. It’s evident, that in this case the constructed piece AK B is longer than
the piece AB. The piece AB is as the piece AB in the second subcase of the case 2 a) (see
Figure 53 j). Hence, for this path ABC inequality (75) holds.

So, we must consider only the case when the straight line passing throught the point K
and such that £(t) = —2 intersects the piece AB of the graph of the curvature.

We modify the piece AUV B of the graph (see Figure 58) so that the value of |t4 — t5]
should increase and that the surface under the graph should not change. For this we replace
the part AU by the piece AU or A'WU; the choice of the case depends of the surface under
AU (it equals the one under the AU or A'WU respectively). The case when AU is replaced
by AU brings us to the case 2 b) already considered.

So, we consider the case when AU is replaced by A'WU. Two situations are possible:

1° the curvature at the point Al is greater or equal to the one at the point
B,
20 the curvature at the point A’ is smaller than the one at the point B,

In situation 1° we replace the graph A'WVB by the graph which is symmetric to it with
respect to the straight line m, the symmetral of ¢ 1,t5 (see Figure 59). We obtain the graph
PQRS. As the curvature at the point S can be strictly greater than the one at the point B,
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this fact obliges us to change eventually the part BC also (it is replaced by sC' , the surface
under SC’ equals the one under BC).
Thus,
[ts — t5,| <|tp —t~| .

c
It follows from the case 3 a) that

1 1
|t5 —t5,| > Z|tp —t5| = Z|t;, —tB| .

Hence,

1 1
~[tz —tp| > Z|tA —tgl,

[tg —tc| > |tB—t5| > e

i.e. inequality (70) is proved in situation 1°.
In situation 2° we replace the graph A'WV B by the graph EFK HB defined as follows:

— the piece K HB is obtained from the piece AWz by translation,

— the surface under EFK equals the one under ZV B,

— the curvatures at the points E, A’, K are equal (as they are smaller than the
ones at the points Z and B, we have [tg—ti| > [tz—tg|), so, [tp—tp| > |t3,—tB|.

The graph EFH B corresponds to the case 3 a) already considered, hence,

1 1 1
[te —tc| > |tg —t5] 2 thE —tp| > Z|tg, —tpl > Z|tA —tgl,
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Figure 60

i.e. inequality (70) is proved in situation 2°. Thus, the case 3 b) is considered.
Hence, we have proved inequality (70) in all cases.
The proposition is proved. |

D Appendix: Subcase B — some auxiliary propositions
to prove Proposition 9.10 and the proofs of Proposi-
tions 9.10 and 9.11

To prove this proposition we prove two auxiliary propositions (Propositions D.1 and D.2);
see the proof of Proposition 9.10 in Appendix D.1. .
We denote by t; (by t2) the length of the arc OR (the length of the arc ORI). One can

see the graphs of the curvature of the arcs ORX and ORI on Figure 61.

Proposition D.1 If the tangent angle at the point I is equal to the tangent angle at the
point X, then,

t =ty/V2 . (77)

Proof
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Figure 61

We have the following equalities:
|OR| = |RX|=t:, |ORI|=t,.

We denote by ar (by ax) the tangent angle at the point I (at the point X). We denote
by Sorp (by Sorx) the area of OIP (of ORX respectively), see Figure 61. So,

ar =ao — Sorp =aop — 15,
ax = oo — Sorx :ao—2t§ .
As ay = ax, we obtain the following formula:
ti =ta/V2 .
The proposition is proved. o

Proposition D.2 For |HI| we have the following formula:

HI| = Jao(v2-1) . (78)

Proof

It is more easy to estimate max,,,¢[o,»|HJ| if one considers the paths ORX and ORI
in another coordinate system (see Figure 62).

So, we have some given angle ap € [0,7]. We consider the coordinate system Ozy such
that the angle between the axis Ox and the straight line
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p is equal to ap (see Figure 62).
The graphs of the curvature of the paths ORX and ORI in this coordinate system are
defined as follows:

2t , for t € [0,¢1] ,
—2t 4 4ty fort e (tl, 2t1] s

ORX : k(t) = {
ORI: «(t)=2t, forte][0,ts].
Remind that the tangent angle of the path ORI (of the path ORX) at the point corre-
sponding to t = t2 (to t = 2t;) is equal to ap.
There are the following equalities:
|HI| = |ORX| —|ORI| = 2t; —t, .
Using formula (77), we obtain

|HI| =2t —ty = t5(2/V2 — 1) = t,(V2—1) = Jao (V2 — 1) .

The proposition is proved. o
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Figure 63

D.1 Proof of Proposition 9.10

We consider the paths ORX and ORI in the coordinate system X¢n (see Figure 63).

We denote by ag the tangent angle at the point R (ag = t7 = ap/2) and we denote by
R, (by I,.) the projection of the point R (of the point I) on the axis X¢.

We have the following equalities (see Figure 63):

\HJ| = |HI| - |JI| = |[HI| = |XIp,| = [HI| = [X Rpr| + [Ipr Rpr| -
Tt follows from formula (78) that
|HI| = Jao(V2-1) .

For | X R,.| we have the following formula:
Jam Vao 2
| XR,-| = / cost?dt = / cost?dt .
0 0

Now we calculate |, Rp-|. For this purpose we consider a point £ € RI , E corresponds
to t € [t1,t2]. We denote by ag the tangent angle at the point E. For the curvature of the
path Hs on the interval [t1,t2] there is the following formula:

Ii(t) = -2t fort € [thtg] .
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Hence,
t
ag =aR+/t (=27)dTr =ap —t* +t2 =t —t* +t =ap —t*, fort€ [t ta] .
1
Now we calculate |I,, R, |:
| Ipr Rpr| = /t2 cos(ap — t?)dt = /\/% cos(ap — t2)dt .
t1 Veo/2

Thus, we obtain the following formula for |H J|:

\/Déo/Q ) \/%
|HJ| = ao(V2-1)— / cos t*dt +/ cos(ap — t?)dt .
0 vVeo/2

Remind that ap € [0,7]. We calculate the maximal possible value of the length |H J]|
for ap € [0, n]. For this purpose we must give an estimation for every term.

Set
Veao/2 Jao
L = / cost’dt, I, = / cos(ap — t2)dt .
0 vVao/2

Thus we obtain
maXa0€[077r]|HJ| = maxaoe[o,w],/ao(ﬂ — 1) — minaoe[o,w]h + maxaoe[o,,,]fg .

To estimate I, we use the following inequality: cos(ap — t2) < 1 for any t € [t1,ts].

Hence,
I, < \Jag —vao/2. (79)

Now we calculate min,, ¢jo,»1/1- After the change of the variable 7 = t? the expression

I; becomes:
Vao/2 @0/2 cos7
I z/ cost2dt=/ —dT
0 0 2yT
To find min,, epo,-]/1 we consider instead of the function cos7 the function f(r) =

—27/7 + 1 (because cosT > f(r) for 7 € [0,7/2], see Figure 64).
Hence,

ap /2 ap /2
I >/0 (—2T/w+1)/(z\/?>d7=/ (=) +1/(2/7))dr =

0

a0/2 a0/2

_ 27T - __%V% V9
_37r0+f0_3m/§+\/§. (80)
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Using formulas (79), (80), we obtain

< VB2 1) - (~PUEE 42 ) 4 oo~ Vo2 =

1 1\ . aovao _ a0/
—vao(vi-1- L 1o _) ¥ . .
o ( V2T TVR) T e T a2
Hence,
maxe, efo,«] | H J| < 3:::/\/2 = % = 0.4177713791 . (81)
The proposition is proved. m|

D.2 Proof of Proposition 9.11

Remind that it follows from Proposition 5.3 of [11] that the maximal distance between two
points of a half-clothoid is smaller than 3R/2 = 3./m/4 (because R = /7 /2). Hence, the
maximal distance between the points O and X (and between the points T and Y') is smaller
than 3R = /7 /2 (because the pieces OX and TY of the path P consists of two arcs of a
half-clothoid).

We obtain max (7] = llmin]) if IW € p and the line segment XY is of the

ap € [0,7!']
ar € [0,71']
kind of the line segment shown on Figure 65.

There are the following equalities (see Figure 65):

[IW| = 40v/7 — 3/7/2 — 3\/7/2 = 3T\/7
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Figure 65

IX|+|WY| =37,

IX|+[WY| _ 37 _ 3
[TW| 37w 37

B = arctan(3/37) =~ 0.0809041 ~ 7/38.83 .

tan 8 =

Hence,
|XY| = [IW][/cos 3,
| XY| = |[IW]| = |IW]|(1/cos B — 1) = 37y/m(1/cos(arctan(3/37)) — 1) =
~ 37y/7(1/0.9967290481 — 1) ~ 0.2152155686 .
Thus,
max  (|I] = |lmin|) < 0.2152155686 .

ap € [0,71']

ar € [0,71']
The proposition is proved. |

E Appendix: Subcase C — proof of Propositions 9.13,
9.14 and 9.15

E.1 Proof of Proposition 9.13
We must consider two cases:

a) the curvature on the interval following the arc DF is non-positive (see
Figure 66, here the following interval is the arc f@),

b) the curvature on the interval following the arc DF changes sign (see Fig-
ure 67, here x(t) < 0 on the arc FJ and k(t) > 0 on the arc jl\f)
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1° Consider the case a). In this case there is one lace between the points F' and V
because the mean value of the y-coordinate on the intervals between F' and G and between
G and K equals zero, the curvature doesn’t change sign between the points F' and V' and
on the arc LF there is at least one point with vertical tangent line. Here we use the term
"lace” in the following sens: yhe tangent angle makes a turn of at least 27 on this piece.

Hence, we use the method introduced in subcase B and we construct some path P which
satisfies the initial and final conditions and such that |P| < |P|. Thus, the path P isn’t
optimal. -

29 Consider the case b). Denote by Z the first point belonging to the arc LF with
vertical tangent line (see Figure 28).

The following equality holds

|az — ozL| = 71'/2
(see Figure 28).

But L € ﬁ’, hence,
laz —ag|>7/2.

The point Z belongs to the arc EI\T, the arcs EF and FJ are symmetric with respect to
the perpendicular to the tangent line at the point F' (see Figure 67), hence, as

|ap—aE|2|ozZ—ozE|>7r/2,

then
oy —ap| >7/2. (82)

If the piece Z7J intersects the tangent line at the point Z (at some point different from
the point Z), then between E and this intersection point the tangent angle makes a turn of
at least 2w, so, there is a "lace” on E’_j, hence, we use the method introduced in subcase B
and we prove that the path P isn’t optimal.

If the piece ZJ doesn’t intersect the tangent line at the point Z (at some point different
from the point Z), then all length |Z] | is "useless” (because the projection of the point of
the path on the axis Ox doesn’t advance with respect to the final point from Z to J).

As the point Z belongs to the arc LF, then it follows from (82) that

oy —az| >7/2. (83)

The piece Z7J consists of at most two arcs of half-clothoid (we obtain two arcs when the
points F' and Z don’t coincide, if not, we obtain one arc). For fixed |a; — az| we obtain the
minimal length of ZJ in the case when F coincides with Z.

Really, as |ay —az| is fixed, then the area of OZF J equals the area of 0Z1J (see Figure 68,
here by Z (by J) we denote the point Z (the point J) in the case when F coincides with
7). Hence,

|0J| < |0J] .
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So, as |ay —az| > 7/2 (see (83)), then we obtain
min |ZJ| > |OP|

(see Figure 69).

¥y A
P
o .
Figure 69
We have
|ap—a0| =7T/2 ,
hence, -
|OP| = /|ap — ao| = \/7/2 ~ 1.253314 .

So,

1ZJ| > |OP| > 1.25 > Lyin ~ 1.139456743 ,

where by l,,:n, we denote the minimal "useless” length (see Lemma 9.6, this minimal "useless”

length is sufficient to apply the method introduced in subcase B).

Hence, in the case when the piece 77 doesn’t intersect the tangent line at the point Z

(at some point different from the point Z) the path P isn’t optimal either.

Thus, in all cases we obtain that we can apply the method introduced in subcase B,

hence, the path P isn’t optimal.
The proposition is proved.
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E.2 Proof of Proposition 9.14

1° At first we consider the case when the curvature on the interval following the arc DF is
non-positive (see Figure 66).

___As the curvature doesn’t change sign between the points E and V and as on the arc
LF there is no point with vertical tangent line, then in order the mean value of y on the
intervals between the points F' and G and between the points G and K to be equal to zero,
the tangent angle between the points E and V must make a turn of at least 27 (remind that
the mean value of y on any interval between two consecutive switching points equals zero
and, hence, the piece of the path corresponding to any such interval intersects the axis Ox).

So, the path P has a "lace” between the points F' and V' (i.e. P has a "useless” length),
hence, we can apply the method introduced in subcase B and, hence, the path P isn’t
optimal.

20 Now we consider the case when the curvature changes sign on the interval following
the arc DF and the curvature is non-negative on the interval following the arc FU (see
Figure 67).

In this case as the position of the point J is defined by the position of the point E (the
arcs EF and FJ are symmetric), as the curvature doesn’t change sign between the points
J and H and as the mean value of y on the intervals between U and S and between S and
W equals zero, then, the tangent angle must make a turn of at least 27 between the points
J and H, i.e. there is a "lace” between the points J and H (in both cases: the case when
on the arc JU there is at least one point with vertical tangent line and the case when on
the arc JU there is no point with vertical tangent line). Really, the path intersects the axis
Oz at least three times between the points J and H (more precisely, there is at least one
intersection point between J and U, between U and S and between S and W). Hence, we
can apply the method introduced in subcase B and, hence, the path P isn’t optimal.

3% To study any interval belonging to the path P, we apply the same method and we
obtain the following result: if the path P4, has at least one interval such that the curvature
doesn’t change sign on this interval, then, there exists a "lace” on the path Pg.. Hence, we
can apply the method introduced in subcase B and, so, the path P isn’t optimal.

The proposition is proved. |

E.3 Proof of Proposition 9.15

Denote by I (by F) the initial point (the final point) of P and denote by P (by R) the first
(the last) point of zero curvature.

If the distance between the initial and final points of the path P is greater than 320/7
and if the distance between the points P and R is at most 269,/7, then the sum of the
distances between the points I and P and between the points R and F' is greater than
51/m. Hence, at least one among these distances is greater than 25.25./w. So, it follows
from Lemma 9.2 that the corresponding piece of P isn’t optimal. Thus, the path P isn’t
optimal.
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Hence, we consider the case when the distance between the points P and R is greater
than 269,/7. Denote by P4 the part of the path P between the points P and R. Thus,
the distance between the initial and final points of the path P, is greater than 269/7. Tt
follows from Lemma 7.1 of [11] (one can find the same statement in [13] (Lemma 3.13) and
in [10] (Lemma 3.10)) that the piece ABCDE of the path P is situated inside the circle of
radius R = /7 /2. Hence, the maximal possible distance between the points P and R is /7
and, so, there exists some piece of P4 such that the curvature changes sign on any interval
belonging to this piece and that the distance between the initial and final points of this piece
is greater than 134,/7 ((269/7 — \/7)/2 = 1344/7). So, this piece of P4 corresponds to case
IIT (see Section 10). Hence, we apply the method introduced in case III and we obtain that
this piece of P4 isn’t optimal. Thus, the path P isn’t optimal.

The proposition is proved. |

F Appendix: Proof of Lemmas 10.2 et 10.3
F.1 Proof of Lemma 10.2

Consider some interval [t;,tn] C [O,T] (see Figure 70).

K<) A

I

Figure 70

We want to calculate a minimal length of the interval [¢t;,tx] such that there exists a
lace on this interval.

Construct two arcs of half-clothoid corresponding to the graph k(t) of Figure 70. We
can calculate the minimal interval on which there exists a lace if we consider that the points

I and H coincide (see Figure 71). So the vectors IM and Vj; must be perpendicular (here
we denote by Vj, the tangent vector at the point M, tyy —t; = tg — tar)-

In the coordinate system Izy the vector I M has the coordinates ( fot cos T2dr, [, Ot sin 72dr);
the vector Vs has the coordinates (cos t2,sin t2). Thus, we must solve the following equation

t t
®(t) = cos t2/ cos T2dT + sin t2/ sin72dr = 0
0 0
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on the interval [0, 27]. We solve this equation by means of MAPLE: ®(1/2.297439573) = 0.
Calculate corresponding values of ap; — oy and ayg — ag:

oy —or = 2.297439573

o — oy =2 x2.297439573 = 4.594879146 = 1.462595458 .

But
ag — oy = (tH —t1)2/2 .

Hence,

tg —tr = \/2(ag — ar) = V2.9250909167 < v/2.9267 .

So, if |ty — tr| > v/2.926m, then there exists a lace on this interval.
The lemma, is proved. |

F.2 Proof of Lemma 10.3

We consider case ITI when the distance between the initial and final points of the path P
is greater than 90.5./7 and when there exists some interval [t;,¢;11] C [O,T] such that
|t1'_|_1 — ti| 2 Vv 2.9267 (1e |Oéi+1 — Oéil Z 1.46267T).

Remind the general ideas of the proof in subcase B of case II.

In subcase B of case IT we denote by P, (by P) the modified path (the constructed path)
and we denote by P,in some path such that it isn’t longer than the optimal one and that
it satisfies the initial and final conditions (but it may not satisfy the condition of continuity
of variables). We prove the inequality |P| < |Py| in three stages:

a) at first we compare the lengths of the paths Py and P, — we obtain the following
inequality:

|Pa| = |Pmin| > 1.139456743
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(see Lemma, 9.8),
b) then we compare the lengths of the paths P and Poin — we obtain the following
inequality: _
|P| = |Pmin| > 1.050758327

(see Lemma, 9.9),
c) then we compare (using the results obtained in Lemmas 9.8, 9.9) the lengths of the
paths P and Py — we obtain the desired inequality:

[P < [Pl

(see Lemma 9.3).

Construct some path P,,;, in case III in the same way as in subcase B of case II.

In subcase B of case II the crucial point of the proof is the presence of some "useless”
length of the path P;. More precisely, in Lemma 9.8 we use some result of Lemma 9.6
(namely, the statement that this “useless” length is at least 1.139456743) and we prove that
P4 is longer than P,,;, by at least this "useless” length. As in case III we have proved that if
there exists an interval [t;, ;41] such that |t;41 —t;| > v/2.9267 (i.e. g1 — o] > 1.46267),
then there exists a lace on this interval (see Lemma 10.2), i.e. there exists this "useless”
length, so we can prove the lemma analogous to Lemma 9.8 in this case.

In case III we construct some path P; (see Subsection 10.3) and we can obtain the
inequality _

[P1] = |Pmin| > 1.050758327

using the method of the proof of Lemma 9.9.
Then, using these two estimations (analogues to a) and b) for subcase B of case II), we
obtain the inequality B
[P1| < |Pal -

Thus, we have proved the following statement: in case III if the distance between the
initial and final points of the path P is greater than 90.5,/7 and if there exists some interval
[ti7ti+1] C [O,T] such that |ti+1 — til 2 A 2.9267 (1e |ai+1 — Oéi| Z 1.46267r), then we can
shorten the given path P.

The lemma, is proved. |

G Appendix: Proof of Proposition 10.10.

To prove Proposition 10.10 we need of the following auxiliary proposition.

Proposition G.1 As the distance between the point A (corresponding to t = ts) and K
(corresponding to t = tgy1) is at least 13.4R = 6.7/ (see the definition of the intervals
[tsytst1]s [tqstq+1] at the beginning of Subsection 10.3), then the angle between the straight
lines I* and I** is smaller than 0.29547.
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Proof

Really, the distances between the points A and D, D and E, K and G, G and F (see
Figures 36 and 34) are smaller than 3R/2 = 3,/7/4 (see Proposition 5.3 from [11]). Hence,
the distances between the points A and E, K and F are smaller than 3R = 3/7/2. Thus,
the points E*, E** (the points F*, F**) are in the circle with center at the point A (at the
point K respectively) and with radius 3R = 3+/7/2 (see Figure 72).

Figure 72

Consider two tangent lines of these circles (denote them by IJ and M N and denote by
W their intersection point). We have

|AW| = |WK| >6.7TR, |AIl=|AM|=|KN|=|KJ| =3R, |AIl=|AW|sin AAWI

(here we denote by AAWT the value of the angle AWI).
Hence,

| AT
AAWI = — < JTR=~044
sin AAW W] < 3R/6.7TR =~ 0.448

and
AAWT < arcsin0.448 =~ 0.1477n , AIWM =2AAWT < 0.29547 .

So, the values of the angles ITW M and NW J are at most 0.29547. Hence, the values of
the angles between the straight lines [* and [** are smaller than 0.29547.
The proposition is proved. o

Proof of Proposition 10.10

Really, recall that |ag« —aa| € [1.46267,27) and that on the interval (¢, 1] the paths
P4 and ﬁlnew are in different half-planes (with respect to the straight line a).

Hence, using the result of Proposition G.1, we obtain that for all values |ag+ — aa] €
[1.46267, 27) the angle v belongs to ((1.4626 — 1 — 0.2954)7, 7], i.e. ¥ € (7/6,7].

The proposition is proved. o
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H Appendix: The case when ¢ € (7/6,7/2) — proof of
some auxiliary propositions (namely, Propositions H.1
— H.6)

1°. Comparison of the positions of the points P,,, E** and F** on the straight
line [**.

Proposition H.1 In the case when ¢ € (7/6,7/2) the points Piyy, E** and F** are in this
order on the straight line ™.

To prove Proposition H.1 we need some auxiliary propositions (namely Propositions H.4
and H.5; see the proof of Proposition H.1 at the end of 1°).

At first we calculate a value of ¢ (see the definition of the path C; at the beginning of
Subsubsection 10.6.1) such that the tangent vector at the point R € Cy should be parallel

to the tangent vector at the point E** € Plrew- B

Denote the tangent vector at the point R € C; by Vi. Recall that the point E** € Pypeq
corresponds to the point E of its graph of the curvature. We don’t know whether g > ¢4,
whether o > ¢, but it isn’t important for the proof.

Proposition H.2 In order the vector Vg to be parallel to the vector Vg« we must choose

q =31 — /T2 —1.
Proof

At first we denote by Sazy (by Sazr,r, by Srr,n) the area of AZH (of AZR,R, of
RR,H respectively). We have the following formulas:

ag —oa=—Sazg = —(ts +V37T—ts)2/2= —371'/2 ,

ar, —aa=—Sazr,r = —(Sazu — Srryn) = —(37/2 = (V31 — ¢)°) ,
ags —ag=—(Tr+1) .
As we want to choose a value of ¢ such that Vg should be parallel to Vgs+, then
QR; — QA = OE* — QA .

Hence,

T+ =3m/2 - (V31 —q)?,

i.e.

T/2—¢ = (V31 —q)*,
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g=V3r—\/7/2 -1 .
Thus, if we choose ¢ = /31 — \/7/2 — 9, then the vector Vg is parallel to the vector
The proposition is proved.

O

Figure 73

Remark H.3 From now on we assume that we construct some path C1 on [ts,ts + +/37]
such that ¢ = V31 — \/m/2 — ¢ (see Proposition H.2).

such that its tangent line is ortogonal to I**

Introduce now some notations. Denote by @ (by S) a point belonging to Prnew (to Cy)

Denote by ¢ the angle between the tangent
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vector at a point belonging to the path C; (or to the path ’ﬁlnew) and the vector Vgs:.
Denote by U the first point belonging to C; such that cos gy = cos¢p. Denote by S, (by
R,., by Q,:) the projection of the point S (of the point R, of the point @) on the line I**.

Plan of the proof of Proposition H.1

We prove Proposition H.1 in three stages:

a) at first we compare the lengths of the arcs SR and @** — we obtain the
following inequality:
|SR| < [QE |
(see Proposition H.4),

b) then we compare the lengths of the arcs A/S\R, AfC,)\JEibk and the segment
SprQpr — we obtain the following inequality:

—— k3 ——
[AQE | - [ASR| < [SprQpr|
(see Proposition H.5),
c¢) then we compare (using the results obtained in Propositions H.4 and H.5)
the positions of the points Py, E** and F** — we obtain the desired statement:

in the case when ¢ € (7/6,7/2), the points Pi,., E** and F** are in this order
on the straight line I** (see Proposition H.1).

Proposition H.4 For any ¢ € (7/6,7/2) the following inequality holds:

ISR| < |QE | .

See the proof of Proposition H.4 in Subsubsection H.1.
Proposition H.5 For any ¢ € (7/6,7/2) the following inequality holds:

|AQE " | — |ASR| < |SprQypr| -

See the proof of Proposition H.5 in Subsubsection H.2.
Now, using the results obtained in Propositions H.4 and H.5, we prove Proposition H.1.

Proof of Proposition H.1
It follows from the definition of the point P; € C; that

|ABPy| = |[AQE | .
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But . .

|ABP1| =|ASR| + |RP| .
Hence, .

|RP| = |AQE |- |ASR|.

It follows from Proposition H.5 that
|AQE |_ |ASR| < |SPTQPT| .

So,
|RP1| < |SPTQPT| . (84)

It follows from Proposition H.4 that
ISR| < [QE™| . (85)

Hence, it follows from inequalities (84) and (85) that the projection of the point P; on
the straight line [** (remind that we denote it by Pi,,) is to the left with respect to the
point E**.

The proposition is proved. O

2° Comparison of the positions of the points P,,, Pi,., E** and F** on the
straight line [**,

Proposition H.6 If the points Pip., E** and F** are in this order on the straight line [**,
then the points Py, Pipr, E** and F** are in this order on the straight line [**.

Proof

The absolute value of the curvature of the path C; on [ts,ts + ¢] is not smaller than
the absolute value of the curvature of the path P4; hence, the tangent vector at any point
belonging to the path C; rotates faster and becomes parallel to Vg++ sooner than the tangent
vector at the point corresponding to the same value of ¢ and belonging to the path Pg; the
tangent vector at any point belonging to the path Cy on [t + g,ts + v/37] rests parallel to
VE++, so, the projection of any point of C; on [** moves not less quickly than the projection
of the point corresponding to the same value of ¢ and belonging to the path Pg.

The proposition is proved. o

H.1 Proof of Proposition H.4

To prove Proposition H.4 we need two auxiliary propositions (namely Propositions H.7 and
H.8).
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Proposition H.7 For any ¢ € [7/6,7/2) the following inequality holds:

1SU| < |QD| .

Proposition H.8 For any 9 € [7/6,7/2) the following inequality holds:

UR| <|DE | .

Proposition H.4 follows directly from Propositions H.7 and H.8.
See the proof of Proposition H.7 (Proposition H.8) in Subsubsection H.1.1 (Subsubsec-
tion H.1.2).

To prove these two propositions we need the following auxiliary proposition:
Proposition H.9 For any ¢ € [7/6,7/2) the following inequalities hold:

kol <lrsl, [kpl < kvl .

Proof

1. At first we prove the first inequality.
a) Search for the formula for kg. Using the definition of the points @ and D, we obtain
the following formulas:

OéQ—CkA:ﬂ'/z—’l/}, OZD—CBA:(W—TZJ)/Z‘

Hence,
ag —ag < ap —aya forany ¢ € [1/6,7/2) .

Thus, Q € @ and @ doesn’t coincide with the point D.
As @ € AD, the following formulas hold:

HQZQ(tQ—tA), aQ—aA:(tQ—tA)2.

Hence,
kg =2/ag —aa =2/T[2 -1 .

So, kg is some decreasing function of ¢ for ¢ € [7/6,7/2) and

max )HQ =2/7/2 —7)6 =2\/7/3

YE[r/6,7/2
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(i.e. we consider kg for ¢ = 7/6).
b) Now we look for the formula for kg.
Using the definition of the point S, we obtain the following equality:

lag —aal=m/2+7 . (86)

So, |as — 4| is some increasing function of ¢ for ¢ € [7/6,7/2). For ¢ = 7/6 we obtain
las — aa| = 2w/3, for ¥ = w/4 we obtain |ag — aa| = 37/4 and for ¢ = 7/2 we obtain
|as — aa| = 7. For the switching point Z the following formula holds (it doesn’t depend on
P):

|ozZ - aA| = 371'/4 .

Hence, for ¢ € [r/6,7/4) the point S belongs to the arc AZ; for ¢ = 7 /4 the point S
coincides with the point Z and for ¢ € (7w /4,7/2) the point S belongs to the arc ZH. Thus,
|ks — k4| = |Kks| is some increasing function of ¢ on the interval [7/6,7/4] and |kg| is some
decreasing function of ¢ on the interval (7/4,7/2). So,

min K ” K
pel T, gy sl = min( min ksl min ) IRsD) -

As |kg| is some increasing function of 9 on the interval [r/6,7/4], we obtain that

min |f~65| = |f£5|

elx/6,7/4] v=n/6

For ¢ € [r/6,7/4] the point S belongs to the arc AZ, hence, for kg and |as — a4l the
following formulas hold:

|ks| = 2(ts —ta) , las — aa| = (ts —ta)?

Thus, we have
lks| = 2v/|as — aal

ks| = 2¢/27/3 .

min ksl = 2/27/3 .
v, ] /

As |kg| is some decreasing function of ¢ on the interval (7/4,7/2), we have

and for ¢ = 7/6 we obtain

So,

K K .
se(R 5| = Irs] )2

For ¢ € (7/4,7/2) the point S belongs to the arc ZH, so, for kg and |as — aa| we have
the following formulas:

ks = 2(tsg —ta — V3m) , |Oés —aA| = 371'/2— (ts —ta — \/371')2
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Hence,

|t5—tA—\/§|=\/37r/2—|0z5—04,4|=\/7r—¢

(see formula (86)) and
lks| =2vm— 9.
Thus, for ) = 7/2 we obtain

|ks| = V2 .
So,
|Ii,5'| Vom .
‘¢'E(7r/4 w/2)
Hence,
min min
pel oy Irs = min( min e |¢e< iy lesD =

= min(2+/27/3,V/27) =

c¢) Thus, we have obtained the following equalities:

max kg =2v/7/3,

$€[r/6,7/2)
min  |kg| = V27 .
YE[r/6,7/2)
But
T3 < V2.

Hence, for any ¢ € [7/6,7/2) the following inequality holds:
kol < |ks| .
Thus, the first inequality of the proposition is proved.

2. Now we prove the second inequality.
a) Look for the formula for kp. Using the definition of the point D, we obtain the
following formulas:

ap—aa=(1—¥)/2, kp—ka=kp=2Vap —as=2(1—1)/2=2(r - )

So, kp is some decreasing function of ¢ for ¢ € [7/6,7/2).

b) Now we look for the formula for ky. Denote by <W ZV (by <ZWV, by <WV Z, by
W ZU) the absolute value of the angle WZV (of the angle ZWV, of the angle WVZ, of
the angle W ZU respectively ). We have the following equalities:

AWZV =5 —<ZWV —<WVZ, <QZWV =9, AaWVZ=(n—1)/2.

Hence, _
IWZV =mg—tp—(r—)/2=(r—1)/2.
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Using the definition of the point U, we obtain the following formula:
AWZU =W ZV = (m —)/2 .
Hence,
ay —aa| =7 —(AWZU —¢) =7 - ((x* —¢)/2 - ) ,
50,
jaw — aal = 7/2+ 3/2 . (87)

Thus, |y — a4l is some increasing function of 4 for ¢ € [7/6,7/2). For ¢ = 7 /6 we
obtain |ay — aa| = 7/2 4+ 7/4 = 3w /4. For the switching point Z we have the following
formula (it doesn’t depend on ):

|az—aA| =37r/4.

Hence, for ¢ = 7/6 the point U coincides with the point Z and the point U belongs to
the arc ZH for 1 € (w/6,7/2).

Represent now |ky| as function of ¢ on the interval [7/6,7/2).

For ¢ € [r/6,7/2) the point U belongs to the arc ZH, thus for ky and lay — aa| we
have the following formulas:

|I€U| =2(tU—tA—V37T) , |aU—aA| =37r/2—(tU—tA—v37r)2 .

Hence,

[ty —ta — V37| = \/31/2 — |ay — aa| = /7 — 3¢/2
(see the formula (87)) and
|ku| =27 —3¢/2.

Thus, we have obtained that |kp| and |ky| are two decreasing functions of ¢ for ¢ €
[7/6,7/2):
lkp| = V2(r =), (88)

|ku| =2y/m—3¢/2 . (89)
For ¢ = /2 we obtain (it follows from the formulas (88), (89)):
|"€D|:\/7_Tv |K;U|:\/;‘
Calculate d|kp|/dy and d|ky|/dy:

d|I€D| _ 1 d|IiU| _ 3

& Lm—9) A 2 /r—3y2

So, we obtain
‘ dlku|

dy

dlkpl
g ‘ ap
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(because \/2(m — ) > 2+/m — 34¢/2 for ¢ € [7/6,7/2)).
Hence,
|ku| > |kp| for ¢ € [n/6,7/2) .

So, the second inequality of the proposition is proved.
The proposition is proved. |

H.1.1 Proof of Proposition H.7

1. At the beginning of the proof of Proposition H.9 we have obtained the following result:
the point @ belongs to the arc AD and doesn’t coincide with the point D.
2. Now we study all possible positions of the point S for any ¢ € [r1/6,7/2). Remind
the formula (86):
las —aal=n/2+7 .

Thus, the function |ag — a@4| is some increasing function of ¢. For ¢ = 7/6 we obtain
|as — aa| = 27/3, for ¥ = w/4 we obtain |asg — aa| = 37/4 and for ¢ = w/2 we obtain
|as — aa| = w. Remind that for the switching point Z we have |az — aa| = 37/4.

So, we can make the following comclusion: for ¢ € [7/6,n / 4) the point S belongs to the
arc AZ, for ¢ € (w/4,7/2) the point S belongs to the arc ZH, for ¢ = /4 the point S
c01n(:1des with the switching point Z.

3. Now we study all possible positions of the point U for any ¢ € [r/6,7/2). Remind
the formula (87):

oy —aal=7/2+39/2 .

Thus, the function |ay — a4l is some increasing function of . For ¢ = 7/6 we obtain
|aU - aA| = 371’/4.

So we can make the following conclusion: for ¢ € (7/6,7/2) the point U belongs to the
arc ZH and for 1 = /6 the point U coincides with the switching point Z.

4. So, after the studying of all possible positions of the points S and U belonging to the
arc AH C Cj and after the studying of all possible positions of the points @ and D belonging

to the arc AE  C Pinew We can describe all possible relative positions of the points S, U,
Z,@Q and D on the graph of the absolute value of the curvature |k(t)| on [t,,t, + /37| (see
Figure 74).

The following equality holds:

lay — as| = |ap — aq] (90)

(see the definition of the points U, S, D and Q), i.e. the area of QQ'D'D is equal to the
area of SS'U'U (see Figure 74).
It follows from Proposition H.9 that

kgl <lks| . [kp| <l|ky| for¢ € [r/6,7/2) . (91)
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Hence, from (90) and (91) we obtain the desired result:
|SU| < |@QD| for ¢ € [x/6,7/2) .
The proposition is proved. |

H.1.2 Proof of Proposition H.8

1. At first we study all possible positions of the point R for any ¢ € [1/6,7/2).
Using the definition of the point R, we obtain the following formula:

|C¥R—CMA|=7T+¢.

So, |ag — a4| is some increasing function of ¢ for ¢ € [r/6,7/2). For the switching
point Z we have the following formula (it doesn’t depend on %)):

laz —aa|l =37/4.

Hence, for 1 € [1/6,7/2) the point R belongs to the arc ZH and the point R don’t
coincide with the point Z.

2. We study all possible positions of the point U for any ¢ € [w/6,7/2) as in the proof of
Proposition H.7 and we obtain the following result: for ¢ € (7/6,7/2) the point U belongs
to the arc ZH and for 1 = /6 the point U coincides with the switching point Z.

3. So, after the studying of all possible positions of the points R and U belonging to the
arc AH C Cj we can describe all possible relative positions of the points U, Z, R, E and D
on the graph of the absolute value of the curvature |k(t)| on [ts,ts + v/37] (see Figure 75).

We have the following equality:

|aR — aU| = |OéE** - aD| (92)

(see the definition of the points R, U, D and E**), i.e. the area of UU'R'R is equal to the
area of DD'E (see Figure 75).
It follows from Proposition H.9 that

|kp| < |ky| for ¢ € [n/6,7/2) . (93)
It follows from the definition of the point R that
|kr| > |kE| =0 for ¢ € [7/6,7/2) . (94)
Hence, from (92)—(94) we obtain the desired result:
|UR| < |DE""| for ¢ € [r/6,7/2) .

The proposition is proved. |
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H.2 Proof of Proposition H.5

To prove Proposition H.5 we need some auxiliary propositions (namely Propositions H.10
and H.11).

Proposition H.10 For any ¢ € [1/6,7/2) the following equalities hold:

AE" | =2 — ), (95)
|ASR| = V31 —\/7/2— ¢ . (96)

Proposition H.11 For any ¢ € [1/6,7/2) the following inequality holds:

|SprQpr| > 1/V/37 .

See the proof of Proposition H.10 (Proposition H.11) in Subsubsection H.2.1 (in Subsub-
section H.2.2).

Proof of Proposition H.5
It follows from Proposition H.10 that the equalities (95), (96) hold:

AQE | = 2(r —v), |ASR|=VBr— /12— ¥ .

So,
[AQE™"| ~ |ASR| = V/2(x =) —V3r + /72— . (97)
It follows from Proposition H.11 that for |S,, Q.| the following inequality holds:
|Spr@pr| > 1/V37 (98)
At first we prove inequality (99):
V2(r —¢) = VBr + /12— ¢ < 1/V3r . (99)

Really,

V2(r =)+ /7/2 -

is some decreasing function of ¢ for ¢ € [w/6,7/2). Hence,

(V2T =9) + Va2 =) = v/2(r — 7/6)+
+V/7)2 =76 =/57/3+/7/3

max
YE[r/6,7/2)
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(i.e. we consider ¢ = 7/6).
Thus, we must prove that

V51/3 — V31 +\/1/3 < 1/V3T,

i.e.
Vir—3r+m <1,
i.e.
VET < 2m+1 s
i.e.
7 <dr+1

(this inequality is correct).
Hence, we have proved inequality (99).
So, using (97)—(99), we obtain the desired inequality:

|AQE | — |ASR| < 1/v/37 < |SprQpr| -
The proposition is proved. |

H.2.1 Proof of Proposition H.10

1. At first we prove equality (95). It follows from the definition of the point E** that we
have |ZE | = o (see Figure 38). But

A+ —Opg = 0’2/2

(see Figure 38) and
QEw» — Q4 =T — P

(see Figure 73).
Hence,

|AE | =0 =\/2(r — ) .
2. Now we prove equality (96). The following equality holds (see Figure 73):
|ASR| = |ASH| - |RH| . (100)
For the arc ASH we have the following formula:
|ASH| = 37 . (101)

It follows from the definition of the point R that for |ay — agr| the following equality
holds:
lag —agl=m/2—19.
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So, |ag — ag| is some decreasing function of v for ¢ € [r/6,7/2). Hence,

log — agr| = |ag — ag|

max
YE[r/6,7/2) Y=7/6

We obtain
max |ag —agr|=7/2-7/6=7/3.
peimax om —op| =m/2—x[6=n/
Hence, the point R belongs to the arc ZH for any 1 € [7/6,7/2) (remind that |am —
az| = 3m/4).
As R € ZH we obtain
|aH - aR| = |tH — tR|2 -

So, we obtain the equalities

|RH| = |tu — ta| = V]an — arl = V7/2 = . (102)

Using formulas (100)-(102), we obtain equality (96):
|ASR| = |ASH| — |RH| =31 —\/7/2— 1 .

The proposition is proved. |

H.2.2 Proof of Proposition H.11

Consider the piece of the path C from the point A to the point S and the piece of the
path Pi,ew from the point A to the point @ (see Figure 76). Denote by @, the point
of intersection of the straight line passing through the points @, @, and of the path Cj.
Denote by ¢ the angle between the vector Q1@ and the tangent vector at the point Q;.

Denote by Y the point belonging to the arc AS whose tangent line is parallel to the
straight line passing through the points W, E** (see Figure 76). Denote by Y}, the projection
of the point Y on this line.

Now we prove the following auxiliary proposition:

Proposition H.12 For the absolute value of the angle & the following inequality holds:

6] < 7/2 .

Proof
Using the definition of the point ) we obtain the following formula:

ag—apa=7w/2—-1.
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So, ag — a4 is some decreasing function of ¢ for ¢ € [r/6,7/2). Hence, |Z§\, |ZZ)1| and
|6| are decreasing functions of ¢ for ¢ € [r/6,7/2) and

max [6] = [4]

veln/6,7/2) /o

So we consider ¢ = 7/6.

Figure 77

The angle AW Q,,, is equal to ) = 7/6 (see Figure 77). Hence, the angle WG(Q (and the
angle Q1GA) equals 7/2 — /6 = 7/3 (see Figure 77). Denote by Q1 the point belonging to
the arc Za) and which is symmetric to the point ()1 with respect to the straight line passing
through the points A, W. Denote by X the point of intersection of the tangent line at the
point @, and of the /siraight line passing through the points A, W (see Figure 77).

Thus, |ZZ)1| = |A@1|, the angle X Q1@ is equal to the angle XQ;G and it equals 7 — 6.

So, we must prove that the absolute value of the angle X élG is at least 7/2 (denote

this absolute value by <1XQ1G).
Suppose that B
AXQ1G < 72 . (103)
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Construct the arc symmetric to the arc AQl with respect to the straight line passing
through the points G, @1 (denote this arc by Q1A, see Figure 78). As <X Q:1G < 7/2 (it
follows from the supposition (103)), then the point A belongs to the straight line passing
through the points G, Q-

Figure 78

Now rotate the arc QlA around the point Ql anticlockwise till the moment when the
tangent line of the arc QlA at the point @); coincides with the tangent line of the arc AQ1
at the same point. Denote this arc by Q1 (see Figure 78).

On the arc @162 the curvature k(t) is an increasing function, on the arc élﬁn it is a
decreasing function (see the graphs of the curvature of the arcs AQy, @1 A, and AQ on
Figure 79). Hence, the angle ag — aa > ap —aa and the point ) cannot belong to the

straight line passing through the points G, Qpr (see Figure 78) — a contradiction.
So, the supposition (103) isn’t correct. Hence,

6] =7 — <9XQ1G < 7/2 .

The proposition is proved. m|

Now we prove Proposition H.11.

INRIA



Irregularity of optimal trajectories in a control problem for a car-like robot 141

() A

Y

Figure 79

Proof of Proposition H.11

The absolute value of the angle ¢ is at most 7/2 (see Proposition H.12). Hence, Y € le\S
(remind that we denote by Y the point belonging to the arc AS and whose tangent line is
parallel to the straight line passing through the points W, E** (see Figure 76)).

The maximal value of the curvature x(t) on the arc ARH (see Figure 73) equals v/37.
Hence, the maximal value of k(t) on the arc 61\5 is at most v/37.

Consider the tangent circle at the point Y of radius 1/v/37. Denote this circle by Cy, its
centre by Oy and by K the point belonging to Cy the tangent line at which is perpendicular
to the straight line passing through the points W, E** (k(t) < 0 on the arc Y K) and denote
by K,, the projection of the point K on this straight line.

The tangent vectors at the points K and S are collinear, the curvature at any point
of the arc Y'S is at most v/37 and the curvature at any point of the arc YK equals v/37.
Hence,

VE[<[YS],  |KpYpr| <|SprYor| - (104)
ButY € 61\5, SO
[SprYpr| < [Spr@pr] - (105)

Using inequalities (104) and (105), we obtain the desired inequality:
|SprQpr| > [SprYpr| > |KprYp,| = 1/V37 .

The proposition is proved. |
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I Appendix: The case when ¢ € [r/2,57/6] — proof of
Propositions 10.14 and 10.15

I.1 Proof of Proposition 10.14

Remind that it follows from Remark 10.4 that in this section we consider only paths Py
consisting from intervals whose lengths are smaller than /2.9267.

Hence, |AC| < v/37 and
|AB| < v/31/2 = \/37/4 . (106)

Using the definition of the points S; and Ss, we obtain
las, —aa| > |as, —ag,|=7.
If the point S belongs to the arc ZE, then
|AB| > |455] = V/]as, —aa] > V7,

this is a contradiction with (106). Hence, the point S» belongs to the arc BC.
The proposition is proved.

1.2 Proof of Proposition 10.15

w(6) A

=Y

Figure 80
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It follows from the definition of the point S; that the following equality holds:
lag, —aal=v—7/2.

But we can represent |ag, — a4| as a function of |ZB’1| (see Figure 80):
s, = aa] = [ 454 *

Hence,

451 = Vias, —aal= Vi —7/2. (107)
It follows from the definition of the point S that the following equality holds:

|(152—C¥A|:¢+ﬂ'/2‘

But, using the result of Proposition 10.14, we can also represent |as, — a4l as a function
of |AS5| (see Figure 80):

1 — — —
las, —aa| = §|AC|2 — (JAC| - |AS2])” .

Hence,
1 — — —
SIACP - ([AC| — |45, = ¢ + /2,

ie.
25o] = [AC] — | SIACP - 6+ 7/2). (108
It follows from the definition of the point P that the following equality holds:
|AP| = |ADE ™| ,
but L
age —aal = ;|ADE P=nr-v,
hence,

|AP| = /2(m — ) . (109)
It follows from (107) and (108) that |Z§’1| and |//1TS‘2| are increasing functions of 9. It
follows from (109) that |AP| is a decreasing function of ¢. Hence, if

min |AS,| > max |AP| (110)
YE[r/2,57/6] YE[r/2,57/6]
and . —
max |ASi|<  min |AP|, (111)
YE[r /2,57 /6] YE[r /2,57 /6]
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then - - -
|AS1| < |AP| < |ASs| for ¢ € [r/2,57/6],

so, the proposition is proved.
As |AS5| is an increasing function of ¥ on the interval [7/2, 57 /6], then

i AS,| = |AS
per L, g [ 4521 = 1452]

)

Y=n/2

i.e.

min  |AS,| = |AC| — /= |AC|]2 — T .

1
YE[n/2,57/6] 2
As |Z]\9| is a decreasing function of 9 on the interval [r/2, 57 /6], then
max |AP|= |ZTD|‘ 7

welm/2,5m/6] yn/2

ie. .

max AP| = .

YE[r /2,57 /6] | | \/_

Thus, to prove inequality (110) we must prove that

— 1 —
|AC|—,/§|AC|2—7r>\/7r, (112)

i.e.
—_— 1 —
|AC| - V7 > ,/§|AC|2 -,
i.e. 1
|AC|? + 7 — 2|AC|v/7 > 5ACI — ,
i.e.

(%|715|—\/2_7r)2 >0.

This is correct because \%|ZE| — /27 = 0 only for |25| = 2./, but it follows from
Remark 10.4 that in this section we consider only paths P, consisting of intervals whose
lengths are smaller than 1/2.926m < 24/7.

Thus, inequality (110) is proved. Hence,

|AP| < |ASy| for ¥ € [n/2,51/6).

Now we prove inequality (111). As |//L\S’1| is an increasing function of 9 on the interval
[7/2,57/6], then

max |1¢/1T91| = |A/791| )
Y€E[r/2,57 /6] $=57/6
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N max  |ASy| = /5716 —7/2 = \/7/3 .

Ye[n /2,57 /6]

As |Zl\3| is a decreasing function of 9 on the interval [r/2, 57 /6], then

min |AP|=|AP| ,

p€E[r /2,57 /6] $=57/6
i.e. —_—
min AP|=+/7/3.
YE[n /2,57 /6] 471 /
Thus - —
max |ASi|= min |AP|,
YE[n /2,57 /6] YE[n /2,57 /6]

i.e. inequality (111) is proved and, hence,
AP > |48 for ¥ € [x/2,57/6].
So, we obtain that
|AS1| < [AP| < |AS,| for ¢ € [7/2,57/6].

The proposition is proved. a

J Appendix: The case when ¢ € (57/6,7] — proof of
Proposition 10.17

Formulas (107) and (109) are valid also for ¢ € (57/6,7].
It follows from (107) and (109) that |AS| (|AP|) is an increasing function (a decreasing
function) of ¢. Hence if

min |AS;|> max |AP|,
Ye(5m/6,m] YE(57/6,m]

then . -
|ASi| > |AP| for ¢ € (57/6,7] ,

so, the proposition is proved.
As |AS1| is an increasing function of ¢ on the interval (57/6, 7], then

min  |AS;| = |AS,| ,
PE(57/6,m] Y=57/6

i.e.

min ]|Z§1| =+/7/3.

YE(5r/6,m
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As |AP| is a decreasing function of ¥ on the interval (57 /6, 7], then

max |AP| = |AP| ,

peE(5m/6,7] Y=57r/6
i.e. .
max |AP|=+/7/3.
Pe(57/6,x] | | /
Hence, . -
|AS1| > |AP| for ¢ € (57/6,7] .
The proposition is proved. |

K Appendix: The case when I' < ¢ < 2y/7 — the subcase
when the path P; belongs to the class II (proof of two

auxiliary propositions: namely, Propositions K.1 et
K.2.)

So, we consider the case when the path Cy has a lace on the interval [ts_1,ts—1 + 0]
Denote by j the tangent line at the point J and denote by j, the straight line passing
through the point J and which is perpendicular to the straight line j. Denote by V5 the
tangent vector at the point S. Denote by 1; the angle between the vectors Vs and V; and
denote by ¢ the angle between the vectors V; and V4 (see Figure 81).
Calculate now the minimal length of the piece JIA C Co such that for this length the
path Cy has a lace on the interval [ts_1,ts_1 + o).

Proposition K.1 We obtain the minimal value of @ such that the path Cy has a lace on the
interval (ts—1,ts—1 +0) (and we obtain the minimal value of the length of the corresponding
arc J/I71) ifv=m/6.
For ¢ = 7/6 the following statement holds: the path Cy has a lace on the interval
(tsfl, tsfl + 0) Zf
v >(2/3-0.0374)7 , (113)

i.e. if for the length of the corresponding arc JIA the following inequality holds:

|JTA| > /(4/3 =2 x 0.0374)7 . (114)

Proof

Remind that we denote by v the angle between the vector Vg++ and the vector —V4 (see
Figure 81) and that ¢ € (7/6, 7] (see Proposition 10.10).
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Figure 81
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The following equality holds:
las —ay| = |ag» —as|=T—P+ .

We obtain a lace if |ag — ay| > 1.46267 (see Lemma 10.2), i.e. if 7 — ¢ + ¢ > 1.46267.
Hence, to obtain the minimal value of ¢ giving a lace, we must consider the maximal value
of the expression m — 1. As ¢ € (7/6, 7], then we obtain the minimal value of ¢ giving a
lace if 1 = 7/6. So, the first statement of the proposition is proved.

Hence, we obtain

T —m/6+ ¢ > 1.46267 ,
i.e.
© > 1.46267 — 57/6 = (2/3 — 0.0374)7 .
So, inequality (113) is proved.
Prove now inequality (114). For |ag — | the following equality holds (see Figure 40):

laa —ay| = |JIA]?/2 .

|JTA| = V2Jas —as] = /2% (115)
(it follows from the definition of the angle ).
We have proved that the path Cy has a lace if ¢ > (2/3 — 0.0374)7. Hence, using (115),
we obtain the desired result: the path Cy has a lace if

|JIA| > \/(4/3 =2 x 0.0374)r .

Hence,

The proposition is proved. |
Proposition K.2 For the length of the arc JRS the following inequality holds:

|JRS| < V2r . (116)

Proof
For |az — ay| the following equality holds (see Figure 41):

log —ay| = |TRS?/2 .

TRS| = [lag —as = /20 .

So, |JRS| is some increasing function of ¢ and the maximal value of |JRS| corresponds
to the maximal value of ¢, i.e. to 7 (see Proposition 10.10), hence,

Hence,

|JRS| < V2r .

The proposition is proved. o
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L. Appendix: The case when ¢ < I' and 0 < I' — some aux-
iliary propositions and the proof of Propositions 10.22
and 10.24.

At first we prove some inequalities connecting aq and Ay, a1 and A_;.
Proposition L.1 We have the following inequalities:
o < MA,/2, (117)

a1 < MA_4/2 . (118)

Proof

As Ay >0, A_; > 0, then for ay <0 (for a—; < 0) inequality (117) (inequality (118))
holds. So, we must prove these inequalities respectively for a; > 0 and a—; > 0.

We prove inequality (117). Inequality (118) can be proved by analogy.

Consider a function h(t) = |O/ﬁ/ | — |OW]| for any point W belonging to the half-clothoid
(see Figure 82).

Rappelons qu’on désigne par A, la différence entre la longueur de lintervalle [t,, tg41]
et la somme des longueurs des cordes Xy, X4, —t,)/2> X(typ1—t4)/2Xtgq1 1-€-

—

Al = 2(|thX(tq+17tq)/2| - |thX(tq+1*tq)/2|) .

Remind that from Proposition 8.9 of [11] we know that the function h(t) is monotonously
increasing. Hence

—_—

|Xt‘1X(tq+1—tq)/2| - |Xt,1X(tq+1—tq)/2| > |th+179th+1_9/2| - |th+1*9th+1—9/2|) )

SO

—

Ay = 2(|thX(tq+1_tq)/2| - |thX(tq+1—tq)/2|) >

> 2(|th+1—9th+1_g/2| - |th+1_9th+170/2|) . (119)

From Proposition 7.3 of [11] we have the following inequality:
ay = |thXgr| < |th+179th+1—9/2| - |th+170X£;_1_9/2| ) (120)

where Xf;l_()/2 denotes the projection of the point X; g/, on the line /.

Consider a function f(t) = low|-jov]
oW |-|ow|

(see Figure 82). Set M = sup f(¥).

for any point W belonging to the half-clothoid

RR n® 3411



150 FElena Degtiariova-Kostova Viadimir Kostov

v A
w
o \4 ;z
Figure 82
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From (119), (120) we obtain

Xiyor—0Xtg01—0/2] = [ Xeysr—0 X7 1
%< |jt\ tg41 /2| |:+1 tgt1 9/2| :§Xf(g)<M/2,
! 2(|th+1—9th+179/2| - |X’5q+1—9th+1—9/2|)

i.e.
o < MA1/2 .

Thus, we obtain inequality (117).
The proposition is proved. O

Now we generalize the results obtained in Proposition L.1.

Proposition L.2 Construct o path 75j by modifying the graph k(t) on two intervals [t,_(;_1),
te—(j—1) + 0, [tgr; — O,tq1;]. Then for every j > 1 we have the following inequalities

a_; <MA_;/2 and a; < MA;/2. (121)

We can prove Proposition L.2 by analogy with the proof of Proposition L.1.

Proposition L.3 Construct a path ’5]- by modifying the graph k(t) on two intervals [t,_(;_1),
ts—(j—1) + 0, [tgr; — Ostqr;] (5 > 2). If there exists J > 2 such that

agtay<Y__y+E51,
then, for the corresponding path P, the following inequality holds:
] < [Pal -

Proof
It follows from the definition of A_;, A;, ¥_; and ¥; that

E_(J_1)+A(]+E‘]7]_:A_(J_1)+A_(J_2)+-..+A71 +Ag+ AL+ ... +FA 1 <

—

<X, X |-1. (122)

s—(J—2) tq+-]

We have
agtay <Y _(j_nyt+Xjoq1.

Hence,
a_jgtay< E_(J_1)+A0+EJ71 »
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and, using (122), we obtain the following inequality:

—_

oy +ay <|Xe, L, X, -1 (123)

As

—_

|th—(J—2)th+J| =0a_g + l + ay .,

then, using (123), we obtain

—

|th*(J*2)th+J| =0_y =+ l -+ ag < |Xt5_(J_2)th+J| y

i.e. _
[Ps| < |Pal -

The proposition is proved. |

Proof of Proposition 10.22

We prove the proposition by induction on j.
Consider j = 2. From Proposition L.2 we have

M M
oy < —A_9 and ay < —Aq.
2 2
It follows from Proposition 10.21 that if for some path P we have [Py| > |Pg|, then, the
following inequality holds:
agstay>Y 1+3¥=A_1+A;.

Thus, we obtain the following chain of inequalities:

M
A1+ A 1 <astas< 7(A72 +A2) R

and, hence,
2
A o+ Ay > M(A_l + Al) .

So, for j = 2 inequality (57) holds.
Suppose that inequality (57) holds for any j < I. Now we must prove that then it should
hold for j = I 4+ 1, i.e. that the following inequality holds:

2
Arny + Az > 7r(Ar + A1+ 2/M)" .

Really, it follows from Proposition 10.21 that if for some path P11 we have |P11| > P4,
then, the following inequality holds:

O_(1+1) T Q141 > Yo+,
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It follows from Proposition L.2 we have

M M
Q_(1+1) < 7A7(1+1) and arp < 7A1+1 .
Hence,
2 2
A_(141) + Arp1 > M(a_(”l) +ary1) > M(ZLI + ).

According to the inductive assumption, inequality (57) holds for any j < I, hence,

2 2 2 2 2
A_(r41) + Arp1 > M(E—I +37) > M(Afl + Aq) (1 + i + i (1 + M) +

2 22 2 2\ 2 2
+M(1+H) +"‘+M<1+H> >_M(A1+A1)<1+M

-1 -1
2 2 2 2
+<1+M> —<1+M)> _M(A71 +A1) <1+M> .
The proposition is proved. |

Proof of Proposition 10.24

We prove the estimation for ¥ . One can prove the estimation for ¥_ i by analogy.
From Proposition 8.2 of [11] for the length of an optimal path (denote it by l,,:) we have
the following estimation:

lopt < d + (6 +8V2)R+ (|&°] +|&"]) /2 .

where by d we denote the distance between the initial and final point of the optimal path.
Remind that we assume that the path P, is optimal and that |x°| = |kT| = 0. So, for
the length [p, of the path P; we have the following inequality:

Ip, —d < (6 +8V2)R . (124)

By definition ¥ = Ay +...+ Ag and A; = 2h ((tg4; — tg+j—1)/2). Denote by I; the

length of the arc of clothoid corresponding to A; and denote by d' the distance between the
initial point of the arc [; and the final point of the arc ;. Then

Sk=A14+.. .+ A <2(L+...+lk)—d . (125)

Now, using (124), we obtain the estimation of 2(I; + ...+ {x) — d’. Really, we obtain the
greatest possible value of the sum Iy + ...+ [ in the case when all the rest of the path P,
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would be a line segment parallel to the line connecting the initial and final points (because
Ip, is bounded). So from (124) we obtain

20y + ... +1lg)—d < (6 +8V2)R. (126)

Now we obtain from (125), (126) the desired estimation:

Yk < (6+8V2)R .

The proposition is proved. m|

M Appendix: The case when o0 < I' and 0§ < I' — the esti-
mation of the constant C (i.e. the proof of Lemma 10.28)

Estimate now the constant C. At first we compute the sum of the maximal possible distance
between the initial point of the arc /; and the final point of the arc Ix and the maximal
possible distance between the initial point of the arc [_x and the final point of the arc [_;.
Denote by E the point of the half-clothoid with tangent angle equal to 7/512.
From Proposition 10.25 we know that A_x + Ag,...,A_1 + Ay form a decreasing
sequence. Consider the first (+1)-terms of this sequence A_x+Axk,...,A_(k_g)+AKk_@
such that

A_(k—g41) + Ax_g41 > 205 = 4(|OE| — |OE|) and A_(x_ o)+ Ax_qg < 2Af .

Denote by distq, k¢ (by distx @k, by diSt_K,_(K_Q), by diSt_(K_Q)’_l, by dist_g, 1,
by dist; k) the maximal possible distance between the initial point of the arc Iy (of lx_g,
of I_ g, of I_(x_q), of I_k, of [1) and the final point of the arc I ¢ (of Ik, of I_(x_g), of
[_1, of I_1, of Ik respectively).

To estimate the constant C' we use the following method:

1) at first we estimate the sum of the maximal possible distance between the
initial point of the arc /; and the final point of the arc Ix_¢g and the maximal
possible distance between the initial point of the arc I_(x_¢) and the final point
of the arc l_1;

2) then we estimate the sum of the maximal possible distance between the
initial point of the arc lx_¢ and the final point of the arc [k and the maximal
possible distance between the initial point of the arc I_g and the final point of
the arc I_(x_q);

3) and then we add these sums.

The exactness of the estimation depends on the successful choice of the point E. For the
point E chosen outside a small half-neighbourhood of the point /512 (this half-neighbourhood
is defined by the condition ¢ € (7/512 — ¢, 7 /512) for small e > 0) the estimation is worse
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than for the point 7/512. We can improve the estimation varying the position of the point
E in the small interval (7/512 — e,7/512), but we can’t essentially improve the estimation.
So, we consider the point E with tangent angle equal to 7/512.
To prove Lemma 10.28 we prove three following lemmas.

Lemma M.1 The sum of the mazimal possible distance between the initial point of the arc
lk_g and the final point of the arc lx and the mazimal possible distance between the initial
point of the arc I_k and the final point of the arc I_(x_q) is smaller than 198R, i.e.

diSt_K’_(K_Q) +distg_g,x < 198R .

Lemma M.2 The sum of the mazimal possible distance between the initial point of the arc
li and the final point of the arc lx_g and the mazimal possible distance between the initial
point of the arc I_(x_q) and the final point of the arc 1y is smaller than 80R/V/2, i.e.

dist_(x—q),—1 + disty, kg < 80R/V?2 .

The proof of Lemma M.1 (Lemma M.2) is given in Subsection M.1 (Subsection M.2).

Lemma M.3 For the sum of the mazimal possible distance between the initial point of the
arc Iy and the final point of the arc lx and the mazimal possible distance between the initial
point of the arc l_x and the final point of the arc l_1 we have the following estimation:

dist g, 1 + dist; x < 254.6R .

Proof
Evidently,
dist_g,—1 +disty, x < dist_g,_(x_q) + dist_(x_qg),—1 +dist1, k@ + distk @,k -
Hence, from Lemma M.1 and Lemma M.2 we obtain:
dist_, 1 + dist;, x < 198R 4 80/v2R ~ (198 + 80/1.414)R ~
~ (198 + 56.576)R = 254.576 R < 254.6R .

The lemma is proved. |
Proof of Lemma 10.28

Recall that the distance between the points corresponding to ¢ = t, and ¢ = ;41 is no
smaller than 13,4R (see Subsection 10.3 — the choice of the intervals [ts,ts41], [t4, tg+1])-
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From Lemma M.3 we know that if the sum of the distance between t; and T and the
distance between 0 and 543 is no smaller than 254.6 R, then we can construct a suboptimal
path P such that |P| < |Pyl.

Hence, if the distance between the initial and the final points of the path P; is no
smaller than (13.4 + 254.6)R = 268R, then we can construct a suboptimal path P such that
|P| < |Padl.

In Proposition 5.3 of [13] we obtain the following result: the maximal possible distance
between two points of a half-clothoid is smaller than 3R/2. Recall that

0<N-N;<2

(see the beginning of Section 10). Here by N (N;) we denote the minimal number of
switching points of the path P (P;) necessary to construct a suboptimal path as in Section 10.
Hence,

d>268R+2x 3R/2=271R = 135.5\/7 .

The lemma, is proved. m|

M.1 Proof of Lemma M.1.

From formula (60) we have

A_(k—s) T Ak s < <g) -k +Xk), fors=1,...K -1 (127)

(because M < 3, see Corollary 8.8 of [13]).
From Proposition 10.24 we have

Y_k+3k < (124+16V2)R . (128)
Hence, from (127) and (128) we obtain

Q Q
3 3
A_(k_g)+Ark-q< (g) (E_x+Xk) < (g) (124 16V2)R .

Recall that AK,Q < Ag, AK—Qfl > Apg, A—(K—Q) < Ag and A—(K—Q—l) > Ag.
Compute the number @ such that

@)Q(mﬂeﬂ)RszAE, ie. (g)QsmﬁsiEﬂm-

For this purpose estimate Ag from below. From Proposition 8.12 of [13] we have the
following equality (see Figure 83):

H(E) H'(M) H'(6t)

D(E) D'(M) D'(6t)

=cosa(ft), 1/2<6<1.
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Figure 83
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Here by H(t) and D(t) we denote the lengths of the chord and of the arc respectively
(by H'(t), D'(t) we denote their derivatives). Then

Ap = 2(D(E) — H(E)) = 2D(E)(1 — H(E)/D(E)) = 2D(E)(1 — cosa(6t)) . (129)

We have ap = 7/512, hence, a(6t) > 7/1024, hence, cos a(ft) < cos(w/1024) and from
equality (129) we obtain the following inequality

Ag > 2D(E) (1 — cos(w/1024)) ,
where
D(E) = Jag = 2R\/ag/n = 2R/V/512 = R/(8V2) .
Hence

Ap > R(1 — cos(w/1024))/(4V/2) = 0.1767766953 x (1 — 0.9999952938) R =

= 0.1767766953 x 0.47062 x 107°R = 0.8319464836 x 107 R .

Now compute @ for which

(§>Q _ 0.8319464836 x 10~°R
(6 +8V2)R

5
We can rewrite this inequality as follows:

= 0.4805131631 x 1077 .

3 9 0.8319464836 x 1076
5) = 17.31370850

For () = 33 we obtain (3/5)%% = 0.4775196666 x 10~ 7 < 0.4805131631 x 10~ 7. Hence,

A_(k-33) + Ax 33 <2Ag .

Thus, the sum of the distance between the initial point of the arc Ix_¢ and the final
point of the arc lx and the distance between the initial point of the arc /[ x and the final
point of the arc I_(x_¢) is smaller than 2 x 33 x (2¢dmaz ), where by cdyqr we denote the
maximal length of the chord. From Proposition 5.3 of [13] we have ¢dma < 3R/2 .

So, for the sum of the distance between the initial point of the arc {x_¢g and the final
point of the arc [k and the distance between the initial point of the arc [_x and the final
point of the arc I_(x_g) we have the following estimation:

diSt_K’_(K_Q) +distk g,k <2x33x3R=198R .

The lemma, is proved. o
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M.2 Proof of Lemma M.2.
Recall that I_(x_q) + k- < 2g, hence,

dist_(x_q),—1 +dist,x—@ <

<[lca4+lao+.. .+l (kg +ie|+[h+l+... +lxk_gq1 +IE] . (130)

Recall that A; = 2h((tg+; — tgt+;—1)/2). From formula (127) we have (because M < 3,
see Corollary 8.8 of [13]):

3 S
A—(K—s)+AKS<(g> (E,K+EK)7 s=1,.... K -1,
i.e.
3 S
h(l_(K_s)/Q)—i-h(lK,S/Z) < (g) (E,K—FEK)/Z , s=1,.... K —1. (131)

Consider two pairs of consecutive intervals (I_(x_s_1), [_(x—s) and lg s, lx s 1). From
formulas (131) we obtain

M_-o/2) + a2 < (3) (4202,

WU (5e—ae1)/2) + (ka1 /2) < (g)SH (ke +5x)/2 = (g) y (g) (S_k +5x)/2.

We want to find an upper bound of the sum

h+le+.. il kg +ie]+[laa+lo+.. . +ilxk_gu +Ig] =
— 2 (h A (h(0/2)) + B (h/2) + .-+ B (s /2))] +

(2 (AN (I /2) + D (A(2/2) + -+ B (12 /2))]

Hence, we must consider the sum of the maximal possible values of h(l1/2),...,h(lg/2),
h(l_1/2), ey h(lE/Q), ie.

h(lk-s-1/2) _ 3 _
m_g, s=1,...,K -1 (132)

and

h(l_(k—o1)/2
O N (133)

Wl (k-5/2) 5’
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Apply now Lemma 8.10 of [13]. Recall that in this lemma we define the connection
between the functions h and h~! only for the tangent angle belonging to (0, a), where by
ax we denote the tangent angle at the point K (the point with the maximal chord length).
So, consider formulas (132) only for the (K — @ — 1) first terms of the sequence [y, ...,Ik
from I, to lx_q:

h(lk—g—s-1/2) 3 .
o9l 2 s=1,...,K—-Q -2,
Wik o ./2) 5 ¢
and consider formulas (133) only for the (K — @ — 1) first terms of the sequence I_1,...,I_x
from [_; to l,(K,Q):

- (x—g-e-1)/2) 3
=—, s=1,.... K—-Q—-2.
h(lf(Kfos)/z) 5

Using Lemma 8.10 of [13] we obtain two following inequalities (in our case k = 3/5):

h™t (Bh(lx-qg-s-1/2)) 1-3/5 159 159
1- =——, ie Ik gs1<——lk @5, (134
W (hl—q-s/2) 62 160 & e <qglie (134)

and

WG s n/?) | 1-3/5 _ 159
=t (R(l_(xk—q-s)/2)) 64 160

. 159
, le. l,(K,Qfsfl) < l—Gol,(K,Q,s) .

(135)
So, we obtain (using inequality (134))

159\ °
_O—s — ~-Q > =1,....,.K—Q -2,
lKQ <(160> 5% Q E] Q

and we obtain (using inequality (135))

159\ ° -
lf(Kfos)< (ﬁ) l,(K,Q) R s=1,.... K—@Q—-2.

Recall that lx_¢g + l_(K_Q) < 2lg. Hence,

159 °
lK—Q—s+l—(K—Q—s)<2(1_60> g, s=1,.... K —Q -2, (136)

Estimate now the sum [I; +lo+ ... +Ixk_gu1 + | +[-1+12+...+1_(k_g41) + 5]
Using formulas (136) we obtain

lh+l+...+ lk_qg+1+ g+l 14+l o+...+ l_(K_Q+1) +lg] =

INRIA



Irregularity of optimal trajectories in a control problem for a car-like robot 161

=l +la)+a+l2)+. o+ (Ixk—Q+1+ (k@) +2lE <

e[ () e (B9 1
160 E7\ 160 BT \160)FTE
160~ \ 160 T\ 160

159 159
<2lg ( + 160/( 160)) g x 160 = 320l

Recall that [z = 2D(E) = 2R/(8v/2) = R/(4v/2) . Hence

1 +1:+ o+ lk—g+ +ilpl+ i+l a+... +l_(K_Q+1) +1g] <

< 320R/(4V2) = 80R/V2 . (137)
Now, using inequalities (130) and (137) we have the following inequality:
dist,(K,Q),,l +dist,x—g < 80R/\/§ .

The lemma is proved. o
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