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Abstract: Over the last five years, new “voxel-based” approaches have allowed important leaps in multimodal
image registration, notably due to the increasing use of information-theoretic similarity measures. Their wide
success has led to the progressive abandon of measures using standard image statistics (mean and variance).
Until now, such measures have essentially been based on heuristics. In this paper, we address the determination
of a new measure based on standard statistics from a theoretical point of view. We show that it naturally leads
to a known concept of probability theory, the correlation ratio. In our derivation, we take as the hypothesis the
functional dependence between the image intensities. This means that one image is considered as a model of the
other. Although such a hypothesis is not validate in every circumstance, it enables us to incorporate implicitely
an a priori smoothness model. We also demonstrate preliminary results of multimodal rigid registration involving
Magnetic Resonance (MR), Computed Tomography (CT), and Positron Emission Tomography (PET) images.

These results suggest that the correlation ratio provides a good trade-off between accuracy and robustness.
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Recalage d’images multimodales par maximisation
du rapport de corrélation

Résumé : Au cours des cinq derniéres années, de nouvelles approches “orientées voxel” ont permis d’importantes
avancées en recalage d’images multimodales, notamment grace & I’émergence de mesures héritées de la théorie
de 'information. Leur large succés a conduit & ’abandon progressif des mesures faisant appel & des statistiques
standard (moyenne et variance). Jusqu’a présent, ces derniéres ont été essentiellement basées sur des heuris-
tiques. En nous placant dans un cadre théorique, nous proposons ici de déterminer une nouvelle mesure de
similarité “stantard”. Nous sommes naturellement amenés & un concept classique de la théorie des probabilités,
le rapport de corrélation. L’obtention du critére fait appel & une hypothése de dépendance fonctionnelle entre
les intensités des images. Cela signifie que 'une des images est considérée comme un modéle de "autre. Bien
qu’une telle hypothése ne soit pas vérifiée en toute circonstance, elle nous permet d’incorporer implicitement
un modéle de continuité a priori. Pour finir, nous présentons nos premiers résultats de recalage avec des images
par résonance magnétique, scannographie et tomographie par émission de positon. Ces résultats suggérent que

le rapport de corrélation est un bon compromis entre la précision et la robustesse.

Mots-clés : recalage, images médicales, images multimodales, mesures de similarité, géométrie des variables

aléatoires, rapport de corrélation.
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1 Introduction

1.1 Overview

Registration is a basic task in image processing. Given two images representing the same or even analogous
objects, it consists in geometrically transforming one image (the floating image) to the other (the reference
image) so that voxels representing the same physical structure may be superimposed. In the field of medical
imaging, registration is useful for the study of diseases, diagnosis, evaluation of treatment efficacy, and even
computer-assisted surgery.

Most of the existing registration techniques address the ideal case where the images are similar in intensity
up to an unknown geometrical transformation. Some of them take into account elastic deformations of the
tissues [19, 18]. However, in many cases, we are faced with highly dissimilar images that makes the above

methods inefficient in practice. We can identify four different sources of dissimilarity in medical images:

o The representation of information. The intensity set that represents a tissue depends on the imaging
modality. For example, bones may appear with low intensities in MR! T1 weighted images while they

correspond to high intensity values in CT? images.

e The non-redundancy of information. Images of different modalities provide complementary information.
For example, anatomical information is available in MR, images, while functional information is available

in PET?® or SPECT* images.

o The measurement noise: the non-reproducible part of the imaging process. It implies distortions of the
signal and is not necessarily additive, Gaussian, or stationary. For example, bias is frequent in MR images
due to the magnetic field inhomogeneities. Ultrasound (US) images are known to be corrupted with

speckle, a highly tissue-dependent, noise.

e Occlusion. This is a classical situation which can occur due to the growth of a tumor, the diffusion of a

contrast agent, or simply when parts of the tissues are masked.

For the last five years, some evidence has been shown that similarity measure-based approaches should
provide satisfactory results when the images present considerable dissimilarities. Their general principle consists
of quantifying the quality of a registration with respect to the statistical “similarity” of the images’ overlapping
voxels. It involves the design of a similarity measure that is assumed to be maximal when the images are correctly
aligned. These approaches are thus often implemented using an optimization scheme. Other implementations
use a dynamical process [10].

Many similarity measures have been proposed in the literature (see [9, 4, 21, 3] for reviews). Considering the
elementary problem of matching two identical images, the first idea was to use a least squares criterion. Simple

correlation measures were proposed in order to extend this method to situations where the image intensities are

1 Magnetic Resonance.

2Computed Tomography.

3Positron Emission Tomography.

4Single Photon-Emission Computed Tomography.

RR n° 3378



6 Roche, Malandain, Ayache &9 Pennec

no longer identical, but linearly correlated. These similarity measures have been used extensively, notably in
medical imaging. However, they make a strong assumption regarding the relationship that exists between the
images. They generally do a good job only in monomodal problems.

More recently, other measures have been devised to achieve registration when the images present important
dissimilarities, which is typically the case of multimodal images. The Woods criterion [26, 25] provided a
powerful algorithm for matching PET images with MR images, although it needs some manual segmentation to
work efficiently. A recently proposed adaptation using robust estimators [12] proved that the approach could

lead to fully automatic registration of SPECT and MR images.

1.2 Mutual information

Mutual information [24, 23, 8, 17, 11] is today probably the most popular similarity measure for multimodal
registration. It has been successfully applied to several modality combinations including MR, CT, PET, and
SPECT. Given two images X and Y, one may define their joint probability density function (joint pdf), P(i,7),
by simple normalization of their 2D-histogram (other approaches are possible, see appendix A). Let P, (i) and
P,(j) denote the corresponding marginal probability density functions (pdf’s). Mutual information between X
and Y is given by [2]: g
. P(i,j
I(X,Y) = Z]: P(i, 5) log, PORG)

The mutual information measure can be considered very general since it makes very few assumptions re-
garding the relationship that exists between the image intensities (see [22] for an excellent discussion). It does
not assume linear correlation, nor even functional correlation, but only statistical dependence.

Nevertheless, one of its pitfalls is to treat intensity values in a purely qualitative way, without considering any
notion of proximity in the intensity space. In a real image, one tissue is never represented by a single intensity
value but rather by a certain interval. Thus, nearby intensities convey a lot of spatial information, which it
might be risky to be forgiving about. Figure 1 presents a synthetic situation in which mutual information is
not well-adapted.

In some cases, one can reasonably make additional hypotheses about the relationship that exists between the
images; then mutual information is under-constrained. Practically, one often observes its tendency to handle
many local maxima. In this paper, we investigate the case where a functional correlation can be assumed.
However, minimal assumptions are made regarding the nature of the function. The similarity measure we
propose is inherited from probability theory and is known as the correlation ratio. We will show that, in addition
to a relative generality, the correlation ratio takes into account proximity in the intensity space, resulting in
robustness at relatively low resolution and, thus, attractive computing time.

After introducing our formalism in section 2, the theoretical concept of correlation ratio is then presented
in section 3. We describe the registration algorithm in section 4. Section 5 draws a theoretical comparison
with the Woods criterion, mutual information and the weighted neighbor likelihood, while section 6 proposes a
discussion in the form of two synthetic registration examples. Preliminary results involving MR, CT, and PET

images are shown and discussed in section 7.

INRIA
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Figure 1: “Grey stripe” registration experiment. (A), binary image (40 by 30 pizels). (B), gradation image of the stripe

(30 by 30 pizels): the intensity is uniform in a given column but each column has a different intensity. Mutual information
I(A, Br) and the correlation ratio (later ezplained) have been computed for various horizontal translations of B using
bilinear interpolation for non-integer translations. Plots: Left, mutual information vs. horizontal translation. Right, the
correlation ratio. By convention, the null translation corresponds to the case where the stripes completely overlap. Notice
that for any integer translation, I(A, Br) is equal to 1, its upper bound (provided that Br totally falls into the region
delimited by A). For non-integer translations, smaller values are observed due to interpolation. Mutual information does
not explain how to align the stripe in B with the stripe in A. (C), image obtained by randomly permuting the columns of

B. Mutual information behaves in the same way as for (B) while the correlation ratio now takes non-meaningful values.

RR n° 3378



8 Roche, Malandain, Ayache &9 Pennec

2 Images as random variables

As statistical concepts provide a convenient framework for the computation of similarity, we “artificially” consider
the images as random variables (see appendix A). This corresponds to interpreting an image histogram as a
probability density function (pdf). Moreover, we also consider the 2D-histogram of an image pair as a joint
pdf. In the context of similarity measure-based methods, most authors generally interpret images as the results
of a random experience. We insist that our point of view is slightly different. This means that when randomly
selecting one voxel in an image X (each of them having the same probability), the probability of getting an

intensity 4 is simply proportional to the number of voxels, IV;, in X having the intensity 4:
P(i)=—. (1)

This formalism is not compulsory. It seems paradoxical to consider data as random variables. But it is
a convenient interpretation given that probabilistic concepts turn out to be powerful for designing similarity
measures. One may also notice that this “artificial” randomness must not be confused with the stochastic nature
of the noise that corrupts the images.

For convenience, we will suppose in this section that we deal with 3D images. The presented method
can easily be adapted to 2D images. In order to define the joint pdf of an image pair, let us consider two
images (X,Y’) and a spatial transformation T that maps the grid of Y, €, to the grid of X, Q,. Both Q. and
2y are finite tridimensional sets of voxels. X and Y take their intensity values in a finite set A which can be

assumed to be the same for the two images. Typically, A = {0,1,2,...,255}.
X Q. — A, Yy : Q,— A

Applying the transformation T to image Y, we define a new mapping from the transformed positions of Y

to A:

Yr ot T(Q,) — A,

w — Y[T7'w)].

We should be able to find the intensities that a given point of T(Q,) simultaneously takes in X and Yr.
As we want to deal with continuous spatial transformations, points of {2, generally do not transform to points
of Q.. Thus, for a given transformation 7', interpolation is needed in order to define the joint pdf of the images.

In this work, we estimate the intensity in X using trilinear interpolation and rounding towards the nearest
integer in order to get values in A5. Points of T'(€,) that don’t have eight neighbors in 2, are rejected. Let
T(Qy)* denote the subset of accepted points and X denote the interpolation of X. We define the image pair as

the following random couple:

Zr: T()" — A2
w e (X'(w), Y [T‘l(w)]).

50ther, most accurate methods like spline or sinc interpolation are too time consuming; still it is probably possible to improve

trilinear interpolation while keeping an acceptable complexity.

INRIA
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Then we define the joint pdf of X and Y7 like we did for a single image eq (1):

- _ Card {z|Zr(x) = (i,7)}
Pr(i,j) = CardTT(Qy)*

(2)

The marginal pdf’s of the images X and Yr are entirely determined by the joint pdf Pr(i,j). However, they
are not equal a priori to those we would have gotten by considering single images. Due to interpolation, they

depend on the transformation 7" :

Pyr(i) = ZPT(z',j>, Pyr(j) = ZPT(z',;d.

3 Random variables geometry

In section 2, we have defined the joint pdf of two images. We now study a method for evaluating some kind of
dependence between two random variables when their joint pdf is known. For this purpose, the geometry of L2
random variables presents two advantages. First, the norm on L? naturally imposes a constraint of proximity
in the sample space unlike information-theoretic measures. This is consistent with the assumption that the
images are smooth. Second, there exists a simple method for quantifying the functional dependence between
two random variables. We are aware that the notion of functional dependence is more restrictive than the
general notion of statistical dependence.

This section summarizes the fundamental concepts of random variables geometry. More details will be found

in [16].

3.1 L? space
L2 is defined as the space of square integrable real variables®, that is the variables which verify:
E(X?) = / X?dPr < +o0,
Q

where E denotes the expectation operator. One shows that L? is a Hilbert space with respect to the dot product

(X,Y) = E(XY). Thus, the corresponding norm is the second-order moment of a variable:
[X1l2 = vV E(X?). 3)

The L? norm is closely related to the classical notions of expectation, variance and standard deviation.

Equation (3) can be rewritten:

|X — E(X)|l2 = V/Var(X) = StdDev(X).

Due to its Hilbertian structure, L? has interesting geometric properties. One can define a notion of orthogonality
between two variables:

X LY < EXY)=0.

1In fact, L2 is the quotient space of square integrable variables with respect to the “almost everywhere” equivalence relationship.

This distinction has no importance here.

RR n° 3378



10 Roche, Malandain, Ayache &9 Pennec

The meaning of orthogonality in L? relates with the notion of independence, but in a less restrictive way.
Recall that two variables X and Y are said to be independent if their joint pdf is equal to the product of their
marginal pdf’s, that is P(x,y) = P(z)P(y). One easily shows that E(XY) = E(X)E(Y) for two such variables.
Thus:

X and Y independent — X — E(X) L Y —E(Y).

However, the converse is false. Orthogonality in L? is a weaker constraint than independence. It may be seen
as a notion of independence on the average.
In a general way, the angle o between two variables X and Y is defined thanks to a basic property of dot
products:
(X,Y) = [|X][l2[[Yl2 cos a. (4)

3.2 Expectation

L? contains the one-dimensional space A of deterministic variables, i.e. variables which are constant on the

state space 2. Given a variable X, its expectation is:

B(X) =/Ra:p(w)da:=(X,1>.

Therefore, E(X) is nothing but the orthogonal projection of X onto A. In the sense of the L? norm, it is the

constant variable which best approximates X (classical notion of mean).

E(X) = arg min [|X — C|3.

X

0 [ A
E(X)

Figure 2: Geometric interpretation of expectation. E(X) is the orthogonal projection of X onto the constant direction A.

3.3 Correlation coefficient
A quick method to evaluate (approximately) the degree of dependence between two variables is to compute

their correlation coefficient. Given two variables X and Y, it is defined as:

_ Cow(X,Y)? [E(XY) - B(X)E(Y))?
S Var(X)Var(Y) — [E(X?) - E(X)?2][E(Y?) - E(Y)?]

p(X,Y)
From a geometric point of view, we write it:

(X —E(X),Y — E(Y))?
KXY = X BORIV - BB

INRIA
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Using eq (4), the correlation coefficient between X and Y can be interpreted in a geometric way. Let «

denote the angle between X — E(X) and Y — E(Y'). We have:

p(X,Y) = cos® a.

Figure 3:  Geometric interpretation of the correlation coefficient. We have: p(X,Y) = cos’a. The constant (or

deterministic) direction is denoted by A.

We see that p(X,Y) is larger as the angle « is small. It reaches 1 if X — E(X) and Y — E(Y) are colinear.
This is to say that the correlation coefficient measures the linear dependence between two variables. As we
want to take into account general functions between X and Y, possibly non-linear and non-invertible, this is

not a good measure of functional dependence.

3.4 Conditional expectation

Evaluating the functional dependence between two variables comes down to an interpolation problem with no
constraints. Suppose we want to estimate a variable Y with another variable X. A natural approach would be:
(1) find the function ¢*(X) that best fits Y among all possible functions of X; (2) quantify the quality of the
estimate ¢*(X) with respect to Y. The notion of conditional expectation provides a straightforward method
for such an evaluation, without having to test every possible function of X.

If X and Y are not independent, knowing an event X = x should provide some new information about Y.

Any event X = z induces a conditional pdf for Y, that is

def p(7,9)

Then, the corresponding a posteriori expectation of Y is:

6*(z) = B(V|X = 2) = / yp(ylz) dy.

To any possible realization of X corresponds an a posteriori expectation of Y. Thus, one defines a function

of X, which is the conditional expectation of Y in terms of X:

E(Y|X) = ¢*(X).

RR n° 3378



12 Roche, Malandain, Ayache &9 Pennec

Notice that E(Y|X) is also a random variable. Tt is easy to verify that it is an unbiased estimate (see appendix
C), i.e.,
EEY|X)=E({Y).

The conditional expectation’s major interest is that it is the optimal approximator in the sense of the L?
norm. We show in appendix B that E(Y|X) is the measurable function of X that has the smallest distance
toY :

¢ = argmin Y — 6(X)||.
Minimal constraints are imposed on the functions ¢. The only requirement is that they be measurable,

which is a much more general property than continuity.

3.5 Total variance theorem

Let us now give a geometric interpretation of the conditional expectation. We consider the sub-space L, of

every possible function ¢ of X (provided that it remains in L2):
L.=L’n{¢(X)| ¢:R— R}.

Notice that every constant variable is a (constant) function of X, so that:

ACL,.

Figure 4: Geometric interpretation of the conditional ezpectation. It is the orthogonal projection onto L.

As the conditional expectation E(Y|X) minimizes the distance between Y and L., E(Y|X) is the orthogonal
projection of Y onto L, (see figure 4). This is due to the Hilbertian structure of L2. This simple geometrical
property allows us to compute easily the distance between Y and L. Indeed, Y — E(Y|X) is orthogonal to any
vector of L, by definition of the orthogonal projection. Notably,

Y — E(Y|X) L E(Y|X)-E®Y).

Therefore, the triangle whose vertices are Y, E(Y), and E(Y|X) is right-angled in E(Y|X). Applying the

Pythagorean theorem, we retrieve a result known as the total variance theorem:
Var(Y) = |IY - E(Y)|3,

INRIA



Registration by Mazimization of the Correlation Ratio

— IB(1X) - BIEC RO + 1Y~ B X)JE
= IB01X) =B+ [ [ =6 @) plan) dod, ©)
= Var[E(VIX) + / ([ -6 @I plolo) ) pto) . ©)

Step (5) relies on the fact that E [E(Y|X)] = E(Y). Let us denote:
def « 2
Var(v1X =) [ 1y =6 @) plolo) .
Ex, the operator defined by V¢ : R —- R, Ex(¢) = / U(x) p(z) dx
R
Then, eq (6) can be rewritten in a more compact way:
Var(Y)=Var [EY|X)] + Ex [Var(Y|X = z)].

This may be seen as an energy conservation equation. The variance of Y is decomposed as a sum of two

“energy” terms:

e Var [E(Y|X)] is the variance of the conditional expectation E(Y|X). It measures the part of Y which is
predicted by X.

e Conversely, the term Ex [Var(Y|X = z)], which is called the conditional variance, represents the square

distance of Y to the space L,. It measures the part of Y which is functionally independent of X.

3.6 Correlation ratio

We now can design a measure of functional dependence between X and Y. Accounting for the interpretation
of the total variance theorem in terms of energy, it seems natural to compare the “explained” energy of Y with
its total energy. This leads to the definition of the correlation ratio between X and Y:

Var [E(Y|X)]

n(Y1X) = Var(Y)

The correlation ratio also has a simple geometric interpretation. Let 6 denote the angle between Y — E(Y)

and the space L,. By definition,  is also the angle between Y — E(Y') and E(Y|X) — E(Y) (see figure 4). We

have
Var [E(Y|X)]
Var(Y)

Ex [Var(Y|X = z)]
Var(Y)

cos’ 0 = , sin? § =

Then:
n(Y|X) = cos? 6.

Unlike the correlation coefficient which measures the linear dependence between two variables, the correlation
ratio measures the functional dependence. It takes on values between 0 and 1. A value near 1 indicates a high

functional dependence, while a value near 0 indicates a low functional dependence. The two extreme cases are:

1Y X)=1 < 3¢ Y =¢X),

nY|X)=0 <= E({|X)=constant = E(Y).

RR n° 3378



14 Roche, Malandain, Ayache &9 Pennec

By nature, the correlation ratio is asymmetric since the two variables fundamentally do not play the same

role in the functional relationship. Thus, in general :
n(Y|X) # n(X[Y).
Some additional properties of the correlation ratio are summarized below:
o (Y[X) = p[E(Y|X),Y]
o n(Y]X) > p(X,Y)

e 9(Y|X) = p(X,Y) if and only if E(Y|X) is linear” with respect to X, i.e. 3(a, 3) E(Y|X) = a+ X

4 Algorithm

4.1 Initialization
Given two images X and Y to be registered, one has to make two choices before starting the registration process:
1. Which one image should be the reference image or, conversely, which should be the floating image?

2. As correlation ratio is not symmetrical, should we compute (Y |X) or n(X|Y)? This requires the choice
of a template image that is used to estimate the other image in the sense of the conditional expectation

(see section 3).
Depending on the choices for image X, we have four different possibilities for computing the correlation ratio:

Image X | reference | floating
template | n(Yr|X) | n(Y|Xr)
estimated | n(X|Yr) | n(Xr|Y)

As the reference image is interpolated (see section 2), it should be the one with the lowest frequency band.
However, this choice turned out to have little importance in the experiments we made. In contrast, the choice
of the template image is crucial. It involves an ad-hoc hypothesis that one image is a good model of the other.

For simplicity, we assume in the following that X both denotes the reference image and the template image.

4.2 Computation of the correlation ratio

In order to compute n(Y7|X) for a given transformation T, in practice we use the equation:

1= () = 2O = 2,

Thus, having defined the joint pdf of X and Y7 (see section 2), we compute n(Y7|X) using the following formula:

1 .
L=n(YrlX) = = 3 o? Per(i),

"To be accurate, one should rather say affine instead of linear.

INRIA
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with:
UQZZ]' 7% Py(j) —m?, m:ijPy(j)’

o} = g X, 52 P(i§) —mi, mi = gy 2 P).
4.3 Maximization scheme

We want to find the transformation that maximizes n(Yr|X):
T = Yr|X).
argmax 7(Yr|X)

In the present work, we restricted the search space 7 to the set of 3D rigid transformations. Since the correlation
ratio is assumed to be maximal when the images are correctly aligned, the registration process is performed
via an optimization scheme. Our current implementation is similar to the MIRIT algorithm proposed in [8],
employing Powell’s multidimensional direction set method coupled with Brent’s line optimization [15]. Although
it has the advantage of requiring no gradient computation, Powell’s method is intended for convex criteria.
Therefore, the maximized criterion should hold no attraction basin except from the one corresponding to the
correct transformation. There is no evidence that correlation ratio verifies this property. Therefore, a robust
maximization scheme would probably work better. However, in the cases we treated, the correlation ratio

demonstrated low sensitivity to being trapped in local maxima.

4.4 Parameterization

As we deal with rigid transformations, the correlation ratio between X and Y depends on a six-dimensional

parameter u representing the transformation 7, :

J(w) =n(Yr,|X),  p=(t71),

where t is a translation vector and r a rotation vector [1]. Numerical instabilities corresponding to small
rotations are handled with a Taylor expansion [14].

In order to ignore image intensities which are not supposed to be pertinent for registration, intensity regions
of interest can be specified. Intensities which stand apart are not taken into account in the computation of the

joint pdf. It also allows a speed up in the calculation with a minimal loss in terms of information.

5 Theoretical comparison with other measures

5.1 Woods criterion

The criterion devised by Woods et al. [26] is a heuristic that was originally designed for PET-MR registration.
Isolating a given iso-intensity set in the MR image, their approach consists of measuring the corresponding set
intensity dispersion in the PET image. According to the formalism introduced in section 3, we can write the
Woods criterion as follows:

(7)

W(Y|X) = Ex <7V‘"(Y”)> :

E(Yz)
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where Y, is the conditional variable induced on Y by the event X = z. We use the notation W (Y| X) in order
to emphasize that the criterion is asymmetrical, such as the correlation ratio.

The dispersion measure /Var(Y;)/E(Y;) is a normalized standard deviation. It has the property of being
invariant to multiplicative changes in the PET image. The criterion is obtained by averaging the various
measured dispersions and is assumed to be minimal at the registration position. Considering eq (8), this turns
out to be a strategy analogous to ours. In fact, it turns out to be a strategy analogous to ours. Equation (7)

should be compared to the following characterization of correlation ratio:

1
Var(Y)

Though different, eq (7) and eq (8) express the same basic idea. Even so, we can identify two differences.

1—n(Y|X) = Ex [Var(Yz)]. (8)

First, the correlation ratio sums variances while the Woods criterion sums normalized standard deviations.
Second, normalization is achieved in the correlation ratio via a global division by Var(Y); in the Woods
criterion, every term of the sum is divided by a mean.

One can wonder whether the Woods criterion is equivalent to the correlation ratio. The following theorem

shows that this is not true.

Theorem 1 The Woods criterion and the Correlation Ratio are not equivalent in the sense that there exists no

invertible mapping f, such that,

V(X Y)eL? n(Y]X)=f[W(Y]X)].

Proof We give a counter-example. Let X and Y be independent L? variables with expectation 1 and variance 1.
Such variables exist. As X and Y are independent, n(Y|X) = 0. Moreover, it is easy to check out that W (Y|X) = 1. Let
now Z =Y +1. Z is independent from X and we have: E(Z) = 2, Var(Z) = 1. Thus, n(Z|X) =0 and W(Z|X) =1/2,

which completes the proof. [

A geometric interpretation of the Woods criterion can be given by noticing that the ratio in eq (7) corresponds

to a tangent (see figure 5):

Var(Yz)
W tan Gm,
W({|X) = Ex(tanf,).

5.2 Mutual information

We have seen that the correlation ratio is a measure which relates to the variance. Mutual information relates
with another measure of randomness: entropy. Figures 6 and 7 qualitatively demonstrate the difference between
entropy and variance. While entropy measures the average “surprise” provided by some random events, variance
evaluates their average dispersion around a mean value. Entropy implicitly introduces a notion of predictability;

variance implicitly introduces a notion of proximity.
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Yx
A

[Var(Yx)] Y2

W A
o 1 E(Yx)

Figure 5: Geometric interpretation of the Woods criterion. It is the average tangent between the conditional variables

Y. and the constant direction A.

0.012

0.008
w
0 0.006
a
0.004

0.002

. . . . . . . . I
0 50 100 150 200 250 0 50 100 150 200 250
intensity intensity

Figure 6: These two distributions have the same variance, but not the same entropy. Var = 35%. Left, Entropy = 7.17.
Right, Entropy = 3.05.
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Given two variables X and Y, their mutual information can be expressed as the difference between an

entropy term and a conditional entropy term [2, 6]:

I(X,Y)=H(Y)-Ex [HY|X =z)]. (9)

This relation is often interpreted by stating that I(X,Y) measures the uncertainty reduction on Y due to the

knowledge of X (and the other way round). Equation (9) is structurally analogous to the total variance theorem:
Var[EY|X)] =Var(Y)— Ex [Var(Y|X = z)].

In other words, the variance of the conditional expectation, Var [E(Y|X)], also measures some kind of
uncertainty reduction on Y due to the knowledge of X. But this measure is made in the sense of variance and
not entropy. Recall that the correlation ratio is a normalized version of Var [E(Y|X)] (see section 3). However,

an important difference between I(X,Y) and Var [E(Y|X)] is the symmetry property:

I(X,Y)=1(Y,X), while, in general, Var [E(Y|X)] # Var [E(X|Y)].

0.005 1 0.005 /\
0 L { L L L L {

0 50 100 150 200 250 0 50 100 150 200 250
intensity intensity

Figure 7: These two distributions have the same entropy, but not the same variance. H = 5.37. Left, Var = 102.
Right, Var = 68.012.
The following theorem shows that this analogy is more than structural in the case of Gaussian couples.

Theorem 2 Let (X,Y) be a pair of Gaussian continuous random variables. Then:

(i) The correlation ratio is symmetrical with respect to X and Y and is equal to the correlation coefficient:

n(X[Y) =nY|X) = p(X,Y).

(ii) Mutual information® and the correlation coefficient are related by a strictly increasing mapping:

I(X,Y) = —% [l = p(X,Y)].

8Here, we consider the continuous definition of mutual information which is equivalent to the discrete definition up to an infinite

“constant” (see [2, 6]).
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Proof Property () relies on a classical result: if (X,Y) is Gaussian, then E(Y|X) is linear with respect to X

[13, 16]. Let us now prove property (iz). The entropy of an n-variate Gaussian distribution, G, is given by [2]:
1 n
H(G) = 3 In[(2me)™ det 3],
where ¥ is the covariance matrix of G. Both X and Y are Gaussian since (X, Y) is a Gaussian pair. Using the identity
I(X,Y)=H(X)+ H(Y) - H(X,Y),
we can express the mutual information between X and Y:

I(X,Y

)

%m [(2re)Var(X)] + %m [(2re)Var(Y)] %m {(@re)?[Var(X)Var(Y) — Cov(X,Y)},
1 ! Var(X)Var(Y) — Cov(X,Y)?

2" Var(X)Var(Y) ’

which completes the proof. ]

This equivalence between mutual information and the correlation ratio in the Gaussian case has a purely
theoretical flavor for us since medical images are never Gaussian (see for example [5]). Practically, maximizing

the correlation ratio is not equivalent to maximizing mutual information.

5.3 Weighted neighbor likelihood

In [22], Viola already proposed performing registration by evaluating the degree of functional dependence
between two images. This approach is very analogous to that we have proposed in section 3. First, a weighted
neighbor approrimator is used to estimate the Y image in terms of the X image. Second, a similarity measure
is obtained by considering the estimation likelihood (under hypotheses we won’t discuss here). We successively

analyze these two steps.

5.3.1 Weighted neighbor approximator

We demonstrate the analogy of the weighted neighbor approximator with an estimation using the conditional
expectation. Given two images X and Y, the weighted neighbor approximator F* (to be compared with
¢* = E(Y|X)) depends on a parameter v according to:

Fi@) = Y W, Xw)Y(w), (10)

gu (v — ')

Y gv(@ = X ()’

where g, denotes a Gaussian pdf® with mean 0 and standard deviation v.

with W(z,z') =

9In Viola’s work, other types of density can be used. However, the Gaussian case can be generalized very easily.
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Theorem 3 Considering images X andY as discrete random variables (see appendiz A), F.f is the conditional
expectation of Y in terms of X + N, N being independent from (X,Y), and Gaussian with mean 0 and standard

deviation v.

Proof Let X,Y,N be three L? variables so that N is Gaussian and is independent of (X,Y). Let p(z,y) denote
the joint pdf of (X,Y) and g¢,(z) denote the pdf of N. As N is independent of (X,Y’), the pdf of X 4+ N, 5(z), is the

convolution of the marginal pdf of X, p(z), with g, (z):
p(z) =p*gv ().
Equivalently, the joint pdf p(z,y) of (X + N,Y) is defined by:
Bz, y) = p(,y) * 9v (2, 9),

where the convolution only concerns the z coordinate.
Let us rewrite F)(z). Applying our definition of images as random variables, we can formulate eq (10) in terms of

probabilities. Let Cq denote the cardinal of the state space 2. We have:
F(z) = Cq /W(m,X(w))Y(w) dPr,

= Cn//W(w,w')yp(w',y)dx'dy,

= CQ/(/W(w,m’)p(x',y)dm’> ydy.

Now,
e wle=a) _gfa-a)
o) = e To—a)p@) &~ Cafe) | ()
Thus,
/W(m,x')p(m',y) dz' = pg(ja,cz)/) = p(y|z).
And finally,

Fi(z) = / Ble)ydy = EQY|(X + N = ).

Therefore, we have F;; = E(Y| X + N), which completes the proof. []

We see that there exists a close relationship between the weighted neighbor approximator F and the
conditional expectation ¢*. In the case v = 0, Fj = ¢*. Thus, F} is a generalization of the conditional
expectation. The larger the parameter v is, the more it imposes a constraint of smoothness to Ff. If v = 0,
there is no constraint.

Although such a constraint of smoothness seems intuitively reasonable, this is actually achieved by corrupting
X with an additive Gaussian noise. Here, that sounds absurd because we have supposed that X is a discrete
random variable. From our discrete point of view, it is clear that F*(X) is the best estimate of Y (in the sense
of L?) only if v = 0.

Nevertheless, considering non-null v parameters might be relevant too. In fact, the addition of noise (v
parameter) is a way to define X as a continuous variable. This technique is known as the Parzen Window
method [7]. Instead of directly computing the pdf of X by simple normalization of the histogram, one may

smooth it in order to get a continuous pdf.
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5.3.2 Likelihood

The similarity measure L, (X,Y) derived by Viola is the log likelihood of the weighted neighbor approximator

(under some assumptions we won’t discuss here [22]). It is given by

Y)=-k) lz W(X (w), X (")) (Y (w) = Y (o))

where k is a constant that plays no role in the optimization.

Is there a connection between L,(X,Y) and the correlation ratio? We can rewrite L,(X,Y) according to

our formalism in terms of random variables (see appendix A):

L) = -ic [ [|[f [wea) -, y)dazdy] pla,y) dady,

—k//[//g”x;)x (y—v')pla ,y)dwdy} pla,y) dady,
—k//[/ p(;if))dy] p(z,y) dzdy,

[ [lv=Fi@)* pla,y) dady.

Let us consider the Gaussian variable N we have introduced in theorem 3. We have:

L(XY) = —k / / v — E(V| X + N = )] ple,y) dedy,

—kExin[Var(Y|X + N = z)].

The case v = 0 corresponds to
Ly(X,Y)=—-kEx [Var(Y| X = z)].

It turns out that, if v = 0, maximizing the weighted neighbor likelihood is equivalent to minimizing the
conditional variance Ex [Var(Y|X = x)], that is the numerator in eq (8). However, the correlation ratio involves
a division by Var(Y), which plays a critical role in registration problems since it depends on the size of
the images’ overlapping region. If Var(Y) is not taken into account, every transformation that completely
disconnects images corresponds to a global optimum of the criterion. Notice that for exactly the same reasons,

mutual information is preferred to conditional entropy.

6 Synthetic experiments

In this section, we propose to discuss the difference between the measures we talked about using two synthetic
experiments. This is not intended to draw comparisons in real medical applications, but only to give an intuitive
understanding. We use the following abbreviations: MI (Mutual Information), CR (Correlation Ratio), CC (the
correlation coefficient), and OW (Opposite of Woods criterion!?).

10Recall that the Woods criterion is assumed to be minimal at the registration position. This is why we consider its opposite

which has to be maximized like MI, CR, and CC.
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6.1 Experiment 1

We extracted a coronal slice from a 3-D brain MR stored with one byte per voxel (image X). We then artificially

constructed a second image (image Y1) using the following scheme:

For each voxel of coordinates (z,y),
If |X(m - 6:y) _X(m,y” <18 and ('r - 6) Z 0: Yl(ﬂ?,’y) = )((m - G,y)
Else, Y1 (wa y) = X(.’lﬁ, y)

Applying this distortion, 62% of the voxels do not have the same intensity in image X and image Y.
However, X and Y] intensities do not differ by more than 18 so that it is visually difficult to detect any
difference between them (see figure 8). We computed several similarity measures between X and Y; for various
horizontal translations of Y; ranging from —20 voxels to +20 voxels with a step of 0.1 (see figure 9). As
intuitively expected, CR, OW, and CC reach their maximum for the null translation. But MI has an absolute

maximum corresponding to a translation of +6 voxels and only a local maximum for the null translation.

Figure 8: Left, the reference image s a 2-D brain MR scan (image X ). Middle, the floating image is the same scan that
we have imperceptibly distorted (image Y1). Right, the transformed image Y1 corresponding to the absolute mazimum of

MI is superimposed with contours extracted from the image X : a registration error in the horizontal direction is visible.

MI CR ow CC

Figure 9: Plot of four similarity measures versus horizontal translation in experiment 1. From left to right, MI, CR,

OW, and CC.

Looking at the joint pdf’s represented in figure 10, one can explain this result. The left joint pdf corresponds

to a null translation of Y;. It is easy to guess a linear correlation between intensities. There are many outliers
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o

intensity (distorted MRI)
intensity (distorted + translated MRI)

250 250

100 150 100 150
intensity (original MRI) intensity (original MRI)

Figure 10:  Joint pdf of the original MR scan (image X ) and its artificially distorted version (image Y1). Left, no

translation. Right, a 6 vozel horizontal translation corresponding to the absolute mazimum of mutual information.

but they are all gathered in a small region of the intensity space. In the right pdf, which corresponds to a
translation of 6 voxels, there are less outliers but they cover a much larger region of the intensity space. MI
“prefers” this second situation because it does not favour intensity clusters. In contrast, the 6 voxels translation
is particularly discouraged by OW : it corresponds to a minimum. Indeed, in this situation, the conditional
expectations m; corresponding to low intensities in X are especially small with respect to their corresponding
standard deviations ;. As a consequence, the ratios o;/m; are large. This phenomenon does not occur with the
correlation ratio since no division by the m;’s is involved. Finally, we note that CC behaves like CR. Indeed, in
this case, the intensity correlation is approximately linear. However, these measures are generally not equivalent

as is demonstrated in the following experiment.

6.2 Experiment 2

Taking the same reference slice as in experiment 1, we applied a quadratic intensity transformation to create a

new image Y, (see figure 11):

For each voxel of coordinates (z,y),
Ya(z,y) == [X1(z,y)” + 3.2 X1(z,y) — 3538] /5
with Xl = X1 — 64.

In fact, this corresponds to constructing an orthogonal vector to X in the space Lx (see section 3). Y5 is
a non-linear, non-monotonic function of X. As in experiment 1, we studied the behavior of MI, CR, OW, and
NCC with respect to translations of Y5. We computed several similarity measures for translations of Y> ranging
from —5 voxels to +5 voxels with a step of 0.1 (see figure 12). MI, CR, and OW reach their maximum for the
correct null translation. But CC is now minimal which indicates that it cannot align the images. Moreover, the
attraction basin is very narrow for OW, which makes it difficult to maximize globally, and it is larger for CR
than for MI. One must also notice that MI handles local maxima corresponding to integer translations. This is

due to interpolation but this does not occur for CR, OW and CC.
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Figure 11: Left, image X. Right, image Yo obtained by applying a quadratic intensity transformation to X .

MI CR ow CC

Figure 12: Plot of four similarity measures versus horizontal translation in experiment 2. From left to right, MI, CR,

OW and CC.

7 Preliminary results

We now present three real registration experiments involving multimodal brain images of the same patient.

Images are:
e MR, T1 weighted (256 x 256 x 24 voxels of 1.25mm X 1.25mm X 4mm)
e MR, T2 weighted (256 x 256 x 24 voxels of 1.25mm X 1.25mm X 4 mm)
e CT (512 x 512 x 29 voxels of 0.65mm x 0.65mm x 4 mm)
e PET (128 x 128 x 15 voxels of 2.59mm x 2.59mm x 8 mm)

All images were stored with one byte per voxel. Geometrical distortions in MR images were not rectified.
The gold standard transformations between each modality were known thanks to a prospective, marker-based
registration method. However, the images we used all had traces of the markers removed.

We used the algorithm described in section 4 to perform registration between images. Experiments are

summarized in the following table.
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protocol reference and | floating and | accuracy | figures
template estimated tables

MR-T1 to MR-T2 | MR-T2 MR-T1 1 13, 14, 17,18

CT to MR-T1 MR-T1 CT 2 15, 19, 20

PET to MR-T1 MR-T1 PET 3 16, 21, 22

Notice that the distinction between the template and the estimated image only concerns CR and OW since
they are non-symmetrical measures. No preprocessing of the images was done. Notably, we used OW without

removing non-brain structures in the MR image as proposed in [26] for PET-MR registration.

7.1 Accuracy study

Subsampling of the floating image was tested at various resolutions. This was achieved by taking voxels at regular
intervals with lengths f,, f, and f, in the z, y and z direction, respectively. No filtering was applied. As the
images we used had few slices, we did not subsample with respect to the z direction. Notice that subsampling
implies a loss of information but, in counterparts, the CPU time required for registration is divided by fs.fy.f.
with respect to the maximal resolution. In all experiments, the transformation was initialized as the identity.

The registration errors were computed according to the marker-based transformations. Thus, we supposed
that these transformations were much more accurate than the ones found by our automatic registration. We
selected eight “typical” points in the floating image, that is points with coordinates

1+ B
3

14+ a;
3

1+

dZ7
3

dza dy7

where o; = {0,1}, 8; = {0,1}, @, = {0,1}, v; = 0,1, and d, dy, d, are the dimensions of the image. For each

of the so defined points P;, the error was computed as follows:

€; = H(Tg - T’r)(R)”

euclidean ?

where T, and T, denote respectively the genuine marker-based transformation and the one found by automatic
registration.
Results for each protocol are shown in tables 1, 2, and 3. In each case, we only retained the similarity

measures which gave sensible results, that is:
¢ MR-T1 to MR-T2 registration: MI, CR, OW, and CC
¢ CT to MR-T1 registration: MI and CR
e PET to MR-T1 registration: MI, CR, and OW

Some aberrant solutions are given. They typically correspond to the cases where the algorithm converged

towards a local but non-global maximum.
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Table 1:

Mazimum and mean errors for MR-T1 to MR-T2 registration based on positions of stereotazic markers.

Sub. factors | Measure | Max error (mm) | Mean error (mm)
(1,1,1) MI 2.89 1.58
CR 4.35 2.36
ow 13.63 9.45
CcC 6.49 3.79
(4,4,1) MI 19.00 10.99
CR 3.29 1.77
ow 5.46 2.92
CcC 5.33 3.17
(8,8,1) MI 21.32 17.98
CR 5.46 4.39
oW 12.70 7.81
CcC 15.16 8.95

Table 2: Mazimum and mean errors for CT to MR-T1 registration based on positions of stereotazic markers.

Sub. factors | Measure | Max error (mm) | Mean error (mm)

(1,1,1) MI 1.74 1.15

CR 2.04 1.21
(2,2,1) MI 7.21 4.25

CR 5.48 3.03
(4,4,1) MI 33.53 23.91

CR 5.53 3.09
(8,8,1) MI * *

CR 9.65 5.21

7.2 Robustness study

For each protocol, we studied the behavior of MI, CR, OW, and CC in the neighborhood of the genuine

transformation. One parameter was expanded while the five others were fixed. In each case, several resolutions

were tested with subsampling of the floating image. Results are shown in figures 13, 14 (MR-T1-to-MR-T2

registration), 15 (CT-to-MR-T1 registration) and 16 (PET-to-MR-T1 registration).

They qualitatively demonstrate that CR was less sensitive to subsampling than MI and OW. Subsampling

typically introduces local maxima so that the global maximum becomes difficult to track. Another effect is the

displacement of the global maximum. This was very perceptible for OW in every protocol, for CC in CT-to-T1
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Table 3: Mazimum and mean errors for PET to MR-T1 registration based on positions of stereotazic markers.

Sub. factors | Measure | Max error (mm) | Mean error (mm)
(1,1,1) MI 4.40 3.38
CR 3.86 2.95
ow 9.09 5.22
(2,2,1) MI 136.31 97.88
CR 4.96 3.33
oW 10.25 6.84

and PET-to-T1 registration, and for MI in PET-to-T1 registration. CR demonstrated good stability in all

experiments.

7.3 Synthesis

In these experiments, MI and CR demonstrated comparable accuracy levels at maximal resolution, for each
protocol. MI gave the best results for T1-to-T2 and CT-to-T1 registration but CR was better for PET-to-
T1 registration. OW demonstrated much weaker performances while CC was irrelevant, except for T1-to-T2
registration. Moreover, CR allowed good registration at relatively low resolutions in each protocol. In contrast,
subsampling drastically affected the performances of MI and OW. However, we are aware that the behavior of
every criterion may strongly rely on the interpolation method which is used. There is no doubt that this issue
can be improved with no (or little) additional computing time [8].

The case of PET images is particular because they are much more distorted than MR or CT. This might
explain why mutual information lacks robustness in PET-T1 registration. It is generally admitted that today
the Woods criterion is the best similarity measure for this specific problem. In some way, our results corroborate
this observation, suggesting that the taking into account of nearby intensities might be crucial for PET images.
Mutual information seems to be better adapted for high-resolution images. For example, a good strategy for
CT-MR registration could be to use the correlation ratio for a quick guessing of the correct transformation
(using subsampling), and then mutual information for probably more accurate alignment.

The discrepancies found experimentally between the correlation ratio and the Woods criterion are surpris-
ing since these two measures are formally based on similar considerations (see section 5). It seems that the
correlation ratio gives not only a theoretical justification to the Woods criterion but also perceptible practical
improvements. We also verified that CC was not equivalent to CR in practice. Therefore, generalizing the
notion of linear correlation is interesting.

Finally, our experiments tend to show that assuming a functional correlation between certain multimodal
images is not critical. Even if this implies an approximation (see e.g. [24] for a discussion in the CT-MR case),
the point is to know whether this is acceptable or not. A preprocessing step might enforce the validity of such

a hypothesis. In the case of CT-MR registration, van den Elsen et al. [20] have proposed a simple intensity
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mapping to the original CT image so that bone and air appear in the same intensity range as is the case in
MR images. Then, low intensities in MR (air and bone) may project to clustered intensities in CT. In PET-
MR registration, Woods et al. [26] remove beforehand non-brain structures from the MR image for analogous

reasons. Such treatments might improve the correlation ratio accuracy.
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Figure 13:
MR-T1 to MR-T2 registration experiment. Plots of MI, CR, OW, and CC vs. horizontal translation in the neighborhood

of the gold standard transformation (gold standard parameter t, = 2.9mm).
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Figure 14:
MR-T1 to MR-T2 registration experiment. Plots of MI, CR, OW, and CC vs. azial rotation in the neighborhood of the

gold standard transformation (gold standard parameter r, ~ —10.4°).
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(c) Subsampling of CT image by factors 12 x 12 x 1

CT to MR-T1 registration ezperiment. Plots of MI, CR, OW, and CC vs. horizontal translation in the neighborhood of

the gold standard transformation (gold standard parameter t, =~ 26.3mm).
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Figure 16:
PET to MR-T1 registration experiment. Plots of MI, CR, OW, and CC vs. horizontal translation in the neighborhood

of the gold standard transformation (gold standard parameter t, = 27.9mm).
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8 Conclusion

We have proposed to use the correlation ratio as a similarity measure for multimodal image registration. Its
derivation has been shown to be consistent if a functional dependence is assumed between the image intensities.
In other words, our method applies if one image can be considered as a good model of the other. As a
consequence, the images play different roles in the registration process. An ideal model image would be an
accurate, multi-channel segmentation of the tissues. However, the method demonstrated good performances
when choosing a real image as a model. This enables us to use it without any pre-processing step.

We have pointed out the difficulty of designing a similarity measure that copes with large dissimilarities
of images while taking into account the spatial information provided by similar-in-value intensities (which is a
smoothness prior). Thus, the correlation ratio may be seen as a compromise between these two requirements.
Furthermore, we have shown that the framework of L? random variables provides geometric interpretations of
some existing similarity measures.

The registration experiments we made with MR, CT, and PET images yielded encouraging results. The
correlation ratio gave performances that were comparable to mutual information in each case, and much better
than the Woods criterion and the correlation coefficient. Our results suggest that a measure based on standard
image statistics (means and variances) is not necessarily less accurate than an information-theoretic one. As
we dealt with different types of images, we believe that the correlation ratio might be useful in a wide class of
registration problems. One of its main interests is a great robustness at low resolutions, enabling considerable
reduction of computing time.

Further research is needed in order to better investigate issues such as interpolation and maximization. This
may improve the accuracy and robustness of the method. Future work must also consist of evaluating and

validating the method on a larger database.
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A Mathematical definition of random variables

We recall the main definitions and properties of random variables. The term measure will be used in its

mathematical sense, which must not be confused with the notion of similarity measure.
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A.1 Measurable space

Let © be a set. A tribe of Q is a family 7 of subsets of Q so that, Q € 7, and 7 is stable by differences and

countable unions. If provided with a tribe, € is said to be measurable and denoted (2, 7).

A.2 Measurable mapping
Now let (2,7) and (', 7') be two measurable spaces. A mapping f : (Q,7) — (Q',7") is measurable if:

(T CT.

A.3 Measure

A measure is any mapping u from a tribe 7 into R, that is not identically equal to 400 and which verifies the

following property: for all series (A, )nen € T such that V(p,q) A, NA, =0,

1 (UneNAn> = Z N(A’n>

neN

A measure, Pr, is called a probability if it is normalized (Pr(Q2) = 1). A measurable space (2,7 ) is called a

probability space when provided with a probability. It is denoted (92,7, Pr).

A.4 Random variable

These preliminary definitions allow us to define random variables. Given a probability space (Q2,7,Pr) (the
state space) and a measurable space (A,7’) (the sample space), a random variable is a measurable mapping
from 2 onto A.

In this work, we apply this definition to images in the following way. An image X is a mapping from a
finite grid of voxels 2 onto a finite alphabet of intensities \A. Typically, A = {0,1,2,...,255}. Choosing the
maximal tribe 7 and the uniform probability Pr on €2, and the maximal tribe 7' on A, X automatically verifies
the condition of measurability so that it can be considered as a random variable from Q onto .A. Notice that
according to this definition, images are discrete random variables. A continuous approach has been proposed

in [22], using Parzen density estimates.

A.5 Integration formula

Given a random variable X, its expectation is defined by:
¥oi A=A Elo(0)] = [ 6[X(@)dPr
Q

Let us now suppose that A = R. Then, the probability density function (pdf) of X is defined as the only
function p : R — Rt such that:

VB, borelian, Pr[X !(B)] = / X Yw)dPr = / p(z) dx.
Q B
One shows the following integration formula. Let ¢ : R — R be a measurable function. We have:

B0 = [ 01X aPr= [ o(z)plo) o
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B Optimal estimation in L2

We prove that the conditional expectation is the best estimate in the sense of the L? norm. Let X and Y be
two L? random variables with joint pdf p(z,y), and respective marginal pdf’s p(z) and p(y). Let H, be the

space of functions which are square integrable with respect to the density measure p(z):

Hm:{gb:]R—HR ‘/Rgb?(a:)p(x)dx <+oo}.

H, is an Hilbert space provided with the dot product:

(6,9) = /R 8(2) $(z) plz) d.

Notice that H, is isomorphic to the space L, we have introduced in section 3. We want to minimize on H,:

IO =Y =0l = | [ o= 9@ ple.y) dod. (12
J is clearly convex. Therefore, minimizing eq (12) is equivalent to cancelling the gradient of J, i.e. find ¢* such

that VJ (¢*) = 0. We express the directional derivative of J with respect to ¢:

dJ

S = -2 /R /R v — 6(z)] £() p(a, ) dady,

2 [ ([ stlorar) - o0 s0)p00)
2 <¢—/Ryp(ylw)dy,f>H :

@

Thus, the gradient of J is:

v =2 (0~ [stie)dy).
It is null if, and only if,

@) = [ yptole) dy = BYz).

C Unbiased estimation
Given two variables X and Y, an estimate ¢(X) of Y is unbiased if:
Elp(X)] = E(Y).
Let us prove that the conditional expectation is unbiased. By definition,
BYIX) = [ yplolo)dy.
Thus,

BIEVIX)] = [ ( / yp<y|x>dy) p(a) de,

= /R/Ryp(w,y)dydw,
E(Y).
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Figure 17: MR-T1 to MR-T2 registration by mazimization of CR (with (4 x 4 x 1) subsampling of the MR-T'1 image).
Left, MR-T2 image. Right, registered MR-T1 image with MR-T2 contours superimposed.
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Figure 18: Top, joint pdf of MR-T2 and MR-T1 brain images. Left, slight misalignment (CR~ 0.74). Right, aligned
case (CR= 0.88). Bottom, plots of the corresponding conditional expectation of MR-T1 in terms of MR-T2 (solid line),

surrounded by conditional variance plots (dot lines).
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Figure 19: CT to MR-T1 registration by mazimization of CR (with (4 x 4 x 1) subsampling of the CT image). Left,

registered CT image. Right, MR-T'1 images with CT contours superimposed.
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Figure 20: Top, joint pdf of MR-T1 and CT brain images. Left, large misalignment (CR~ 0.24). Right, aligned case

(CR= 0.84). Bottom, plots of the corresponding conditional expectation of CT in terms of MR-T1 (solid line), surrounded

by conditional variance plots (dot lines).
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Figure 21: PET to MR-T1 registration by mazimization of CR (no subsampling). Left, registered PET image with
MR-T1 contours superimposed. Right, MR-T1 image.
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Figure 22: Top, joint pdf of MR-T1 and PET brain images. Left, unaligned case (CR~ 0.48). Right, aligned case (CR~
0.76). Bottom, plots of the corresponding conditional expectation of PET in terms of MR-T1 (solid line), surrounded by

conditional variance plots (dot lines).
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