-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Metatheoretic Results for a Modal Lambda Calculus

Pierre Leleu

» To cite this version:

Pierre Leleu. Metatheoretic Results for a Modal Lambda Calculus. RR-3361, INRIA. 1998. inria-

00073328
HAL Id: inria-00073328
https://hal.inria.fr /inria-00073328
Submitted on 24 May 2006
HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50451475?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00073328
https://hal.archives-ouvertes.fr

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

M etatheoretic results for a modal lambda calculus

Pierre Leleu

N° 3361
Février 1998

THEME 2

apport
derecherche

% I N R I A

SOPHIA ANTIPOLIS

Metatheoretic results for a modal lambda calculus

Pierre Leleu

Théme 2 — Génie logiciel
et calcul symbolique
Projet Croap

Rapport de recherche n® 3361 — Février 1998 — 38 pages

Abstract: This paper presents the proofs of the strong normalization, subject reduction, and
Church-Rosser theorems for a presentation of the intuitionistic modal lambda calculus S4. It is
adapted from Healfdene Goguen’s thesis, where these properties are shown for the simply-typed
lambda calculus and for UTT. Following this method, we introduce the notion of typed operational
semantics for our system. We define a notion of typed substitution for our system, which has
context stacks instead of usual contexts. This latter peculiarity leads to the main difficulties and
consequently to the main original features in our proofs. Since the original proof was extended to
an inductive setting, we expect our proof could also be extended to a calculus with higher order
abstract syntax and induction.

Key-words: MODAL LOGIC, LOGICAL FRAMEWORK, TYPE THEORY, STRONG NOR-
MALIZATION, CONFLUENCE

Unité de recherche INRIA Sophia Antipolis

2004, route des Lucioles, B.P. 93, 06902 Sophia Antipolis Cedex (France)
Téléphone : 04 92 38 77 77 - International : +33 4 92 38 77 77 — Fax : 04 92 38 77 65 - International : +33 4 92 38 77 65

Résultats métathéoriques pour un lambda calcul modal

Résumé : Nous présentons dans ce travail les preuves des théorémes de forte normalisation,
conservation des types et Church-Rosser pour une présentation du calcul modal intuitionniste
IS4. Nos démonstrations s’inspirent de la thése de Healfdene Goguen, dans laquelle les mémes
propriétés sont établies pour le lambda calcul simplement typé et UTT. A la suite de H. Goguen,
nous définissons les notions de sémantique opérationnelle typée et de substitution typée pour
notre systéme. Ce dernier met en jeu des piles de contextes au lieu des contextes usuels. Cette
particularité est & 'origine des principales difficultés et par conséquent des principales nouveautés
introduites dans les preuves. Comme la méthode originale a été étendue avec succés aux types
inductifs (UTT), nous espérons pouvoir étendre notre travail 4 un calcul ot la modalité permet de
mélanger la syntaxe abstraite d’ordre supérieur avec ’induction.

Mots-clés : LOGIQUE MODALE, THEORIE TYPEE, FORTE NORMALISATION, CON-
FLUENCE

Metatheoretic results for a modal lambda calculus 3

1 Introduction

We present here proofs of metatheoretic results for modal A-calculus IS4 (see for example [Che90]
for a classification of modal logics), in the presentation by Frank Pfenning and Hao-Chi Wong
[PW95]. We have chosen this variant because the terms generated by the syntax are simpler than
those of [BAP96], [PW95] or [DP96], since we have no ‘let’ construction.

The proof follows Healfdene Goguen’s method [Gog94, Gog95|, called ‘Typed Operational Se-
mantics’. It appeared to be surprisingly difficult to apply the method to the modal case, because
the type system we chose uses context stacks. In particular, we had to extend the notion of typed
substitution, which is central to the method, in a non-trivial way.

As a result, we get proofs of the strong normalization, subject reduction, and Church-Rosser
theorems for our modal calculus IS4. These results are already well known. They can be proved
fairly easily by interpreting modal A-terms into simply-typed A-terms. However, we cannot expect
to extend this interpretation method to a stronger calculus, since it relies on the existence of a
corresponding non modal A-calculus.

The adaptation of H. Goguen’s method to the modal setting proved to be challenging. Yet it
is promising : since H. Goguen already extended his proof to an inductive setting (namely UTT),
we expect we could also extend this proof to a type system where modality helps mixing higher
order abstract syntax and induction (cf. [DPS97]).

The structure of the paper follows the plan outlined by Healfdene Goguen in his method. We
first introduce the type system for our calculus, then give the reduction rules and the Typed
Operational Semantics (TOS). The next section presents metatheoretical results for the TOS. At
this point we prove that if a term has a reduction in the TOS then it verifies the subject reduction,
strong normalization and Church-Rosser properties. Then a soundness result, namely that if a term
is well-typed then it reduces to a normal form in the TOS, enables us to transfer these properties
onto the original type system. Finally, we give two annexes: the first one presents a variant of
our system with syntax-driven typing rules, the second one is a technical development of a tricky
sub-part of the proof.

2 The type system

We present here F. Pfenning and H-C. Wong’s system of modal lambda-calculus IS4 [PW95]. Then,
we recall briefly its basic properties.

The sets of terms and contexts are generated by the usual syntax, with an additional definition
for context stacks, as follows:

Types A u=c|A—-A"|DOA

Terms t o=z | A ALY @) Tt |t
Contexts I u=.|T,z:t

Context stacks A u=.|A;T

RR n° 3361

4 Pierre Leleu

We use ¢ for type constants. Instead of being declared in simple contexts, variables are declared
in context stacks, i.e. ordered lists of contexts.

Notations A walid context (resp. context stack) is a context (resp. context stack) where all
the variables are distinct. We call domain of a context I' (resp. a stack A), denoted by dom(T")
(resp. dom(A)), the set of the variables declared in this context (resp. stack). The notation A, T,
where A is a stack .;Ty;---;T, and ' is a context, is the stack .;Ty;---;T,,T. Similarly, the
notation A, A’, where A is the stack .;T'1;---; T, and A’ is the stack .;I"};---; I, denotes the
stack .;Tq;--+; T, ;- -+ T .. The notation A; A’, where A is the stack .;T'y;---; T, and A’ is the
stack .;T'7;---; I, denotes the stack ;Tq;---;Tp; T+ T

Examples

x:4;.);(52:C;u:D)=(;2:4;52:C;u:D)
x

?

(.
(;2:A9:B),(52:Ciu:D)=(5z2:A;y:B,z:C;u: D)
(sz:4;.),(52:C;u:D)=(52:4;2:C;u:D)
(.

?

o (sx:A;),(552:C)=(2:4;;2:0)
Note Instead of requiring a context stack to be valid in the Var and Pop rules below, in [PW95]
it is assumed by default that any variable can only be declared at most once in a context stack.

The T operator introduces an object of type A, while the | operator marks the elimination of

a term of type JA. The last context T',, of a stack A = .;T'y;---;T, is called the local context of

A. The idea is to begin a new segment of context each time we encounter a 7 operator during

type-checking (rule 7). A context can only be popped (i.e. added to the current stack) when
type-checking a sub-term of type O (rule Pop).

We have one typing judgment : “A + M : A”, which is taken to mean that the canonical form

of M is an element of type A in context stack A. In short, we say that “M has type A in stack
A”. The complete system is the following one:

rz:AeTl .
(Var) m A,F valid
) Ax:A-M:B (4)AI—M:A—>B AFN:A
AF)z:AM : A—B bp AF(MN):B
A FM:A AFM:OA4 AFM:OA .
Oxrmwroa Warwa PP xrra.oz ST

INRIA

Metatheoretic results for a modal lambda calculus 5

Because of the (Pop) rule, this system is not syntax-driven, i.e. given a judgment A - M : A
we cannot guess which typing rule was the last one applied. Indeed if A - M : OB and if A is
made of at least two contexts, the last rule applied can be (Pop) as well as the structural rule
corresponding to the form of M. In Annex A, we introduce a variant of our system with an extra
operator which marks applications of rule Pop. This system is syntax-driven but the reduction
rules become more complicated.

Note It is easy to see that, because of their structure, terms of the form ((1 M) N) and | Az :
A.M are not well-typed in any valid stack. Indeed, if ((T M) N) were well-typed in a stack A, T M
could only have a type of the form JA but at the same time T M must have a type of the form
B — C since it is on the left side of an application. This is a contradiction. A similar argument
works for | Az : A.M.

2.1 Basic properties

The typing rules enjoy the usual property that if M is well-typed and N is a subterm of M then
N is well-typed too.

Lemma 2.1 If M is well-typed and N is o subterm of M (N C M) then N is well-typed.

Proof By induction on the proof of N C M.
O

The structure of a context stack is more complex than the structure of a simple context. The
following lemmas express the basic stack manipulations that preserve well-typedness. Namely, if
A;T'F M : A, then M is still well-typed in a context stack where we have permuted declarations
in a context, tranformed some semicolons into commas, removed unnecessary variables, etc. These
lemmas are all easily proved by induction on the structure of the proof of the hypothesis.

Lemma 2.2 (Swapping)

Two variables of any context in a stack can be swapped arbitrarily:
5Dy Te:B T, y:C,T;---;D, FM: A
3Dy -y C Tz : B,T",---; D, FM: A

(Swap)

Lemma 2.3 (Thinning)
A fresh variable can be added anywhere in a stack:

wDy;--sDj--- ;D EM A
sDq;--;(Diyx:B);--;D, F M A

(Thin) for1<i<n, z¢dom(;Dy; ;D)

RR n° 3361

6 Pierre Leleu

Lemma 2.4 (Modal weakening)
A “fresh” context (i.e. a contert whose domain only contains fresh variables) can be added
anywhere in a stack, except behind the local context:

3Dy 5 Dig Digys-- ;D M2 A
5D1;+- 3Dy Dy Diga- -5 Dn - Mt A7
The declaration of a variable which does not appear as a fresh variable in the term to type is

somewhat superfluous. The following lemma tells us that we are allowed to remove it from the
stack, whatever its location in the stack:

(Weak) Dy;---5Di3D; Dy -+ 5Dy, walid (1 <4< n)

Lemma 2.5 (Strengthening)
The following rule is admissible:

oDy T, :BIV;---:D, FM: A

(Strengthening) "D T.T. . D.FM.A x ¢ FV(M)
Lemma 2.6 (Fusion)
Two successive contexts of a stack can be merged:
Dy 3D Doy 3D M2 A .
(Fus) =2 + for1<i<mn

5D1;- -5 (DiyDig1);- ;D M A

In particular if A;T;. - M : A then A;T' - M : A. On the contrary, ;2 : A F x : A but
sz A;.Hx: Ain general (actually ;o : A;. F 2 : A iff A is of the form OB).

Note that, in general, splitting a context of a stack into two separate contexts does not preserve
typing. For example, it is true that .; f : ¢ — Oc,z : ¢;. F (f z) : Oc. However we do not have
sfre—=0cz:¢.F(f z): e

2.2 Substitution

We denote the substitution of N for the free variable in M by M[N/x]. It is defined as usual to
avoid the capture of free variables. The rules for the modal operators are as expected:

o (I M)[P/z] =1 (M[P/z])
o (1 M)[P/z] =1 (M[P/z])

Lemma 2.7 (Admissibility of Subst)
The following rule is admissible:
3Dy T2 BT D, FM: A Dy;---sTEN:B
4Dy TNy Dy B M[N/z] 0 A

(Subst)

Proof By induction on the derivation of the first premise.
ad

INRIA

Metatheoretic results for a modal lambda calculus 7

2.3 Inversion lemmas

We end this section by giving the inversion lemmas for our typing rules. The inversion lemmas tell

us how to type the immediate subterms of a well-typed term. Because of the non-determinism of

the typing system, we cannot always find with certainty which typing rule was the last one applied.
First, we give a definition for truncated context stacks.

Definition 2.8 For a context stack A with n + 1 contexts, we define the context stacks A* and
the contexts 6'A (i € IN, 0 <i < n) as follows: A° is the stack A itself and if A = U;T then
AL =T gnd §* =T, so that:

A= (A% 6A) = (A% 6T A 8°A) = ... = (67A; -8 A 60A)
Lemma 2.9 (Inversion lemmas) (also called Generation lemmas):
1. Abz:04=z:A€cA.

2. ATrax: A& AZDOA =>x: AeT.

3 (AF X :AM : A— B)= (A,z: AF M : B), where the variable x has possibly be
renamed so that A, x : A is valid.

4. (AT M:04)= (A;.F M: A)
5 (AF|N:A)= (A+ N:0OA)
6. (AF(M N):B)= (GneNA"FM:A—B&A"F N: 4)

Proof By induction on the derivation of the hypothesis. We use the basic lemmas of Section
2.1 to simplify the result in the fourth and fifth cases.
O

Note In spite of the non determinism of the typing system, nearly all the inversion rules are
written as if the typing system was deterministic. Only the application rule is affected, and not
too badly: if B is not of the form OC, the rule yielding A+ (M N) : B is (App) and n is equal to
0 in the sixth inversion rule. Otherwise, rule (App) is eventually reached after a certain number of
applications of the (Pop) rule.

3 Untyped reduction

After describing the syntax of the system, we turn to its semantics. We begin our study by
introducing the untyped reduction rules.

Definition 3.1 (Untyped reduction) We introduce the following one-step reduction relations:

RR n° 3361

8 Pierre Leleu

(8) (A\z:A.M N) 3 M|N/x]

() \ze:AMz) n M ifz g FV(M)
(Bo) ITM po M

(mo) UM no M

Note The (8p) and (ng) rules correspond to the elimination of the following patterns in the
derivation tree:

A FM:A A FM:OA
AR M:0A A;.FLM:A
AF|TM:A AFT] M:0OA

Notice that if A;. - M : A then A+ M : A (by Lemma 2.6).

The rules (8n) and (o) are named after the rules (8) and (). Indeed, just as the abstraction
and the application are the constructor and the destructor of the arrow, T and | are the constructor
and the destructor of 0.

Definition 3.2 (Compatible Closure) Let R be a relation on terms. Then the compatible clo-
sure of R, notation M — g N, is the least relation satisfying the following rules:

MRN M —gr N
(B) yro v O e A S AN
M —gP N<—grP
(App1) (M N) =g (P N) (Appr) (M N)—pg (M P)
M —r N M —gr N
W rsan O TSt v

Let the untyped relation M — N be the compatible closure of the reduction relations defined
above. The reflexive and transitive closure (resp. reflexive, symmetrical and transitive closure)
will be denoted by —, (resp. by =).

Definition 3.3 (Normal form) A term is normal iff it has no reduction for —.

Lemma 3.4 (Forms of normal terms)
The normal forms can be characterized by induction:

e Variables are normal,

e \x: A.M is normal if M is normal and not of the form (N x) with x ¢ FV(N),
e (M N) is normal if M and N are normal and M is not of the form Az : A.P,

o T M is normal if M is normal and not of the form | N,

e | M is normal if M is normal and not of the form T N.

INRIA

Metatheoretic results for a modal lambda calculus 9

Note As usual, if M is normal then all its subterms are normal too (obvious since reduction is
compatible with all the operations).

Definition 3.5 (Strongly normalizing) A term is strongly normalizing if all the reduction se-
quences starting from that term terminate.

Definition 3.6 (Diamond property) We say that a term satisfies the diamond property if
whenever M —, N and M —, P then there exists a term Q such that N —, Q and P —, Q.

M
/\
N P

Lemma 3.7 (Substitution and reduction)
1. M —, M'= M[N/x] —. M'[N/x].
2. N —, N'= M[N/z] —, M[N'/x].
3. (M — M" and N —, N') = M[N/z] —, M'[N'/z].

Proof The first two cases are proved by induction on M. The third one follows from the

previous two results.
O

Now we define a typed judgment A - M = N : A, which means that M and N are equal objects
of type A in stack A. More formally, this means that the canonical forms of M and N exist and
that these canonical forms are equal terms of type A.

Definition 3.8 (Equality) The judgment A+ M = N : A is defined as follows:

AFM:A AFM=N:A4
(Refl) Xrar=21 4 (Sym) SrN =27 a
(Trans) AFM=N:A AFN=P:4
rans AFM=P:A
3) Ax: AFM:B AFN:A (n) A+M:A— B
AF(\:AM N) = M[N/z] : B WAF - AMa)=M : A—B

RR n° 3361

10 Pierre Leleu

Ax:A-rM=N:B

(Ba\) X3 A = w AN - A B
(BqA)Al-MZP:A—>B AFN=Q:A
©app AF(MN) = (PQ):B
A;.FM:A A;.FM:OA
(Babo) Xriiar=ar:4 (Bamo) A5 37 =37 . 04
AFM=N:0A4 A FM=N:A
(Eql) (Eq 1)

AFIM=|N:A AFIM=1N:0A

AFM=N:0OA4 :
(EqPop) ATFM=N.0O4 A;T wvalid

As expected, this equality expresses conversion between two well-typed terms.

Lemma 3.9 ArM=N:Aiff ArM:A, AFN:Aand M =N)

Proof
(=) By induction on the derivation of “A+ M = N : A”.
(<) By induction on the derivation of “M = N”, using inversion lemmas on “A + M : A” and
“AFN: A
O

4 Typed operational semantics

Following Healfdene Goguen ([Gog94]), we define a typed operational semantics based on standard
reduction (or left-most reduction). Like him, we will not only give a reduction path from any term
M to a normal form but we will also require that all the subterms of M have a normal form as
well. Our operational system has the same form as H. Goguen’s with additional rules for modal
operators.

4.1 Weak head normal forms

Before introducing the system we need some preliminary definitions in order to state properly the
side-conditions of some inference rules. These definitions are quite similar to the ones found in
[Gog94]. We have used the similarities between application and |, and between abstraction and 1
to extend the definitions to our modal setting.

Definition 4.1 (Redex) We call redex either a 3-redez or o Bn-redez.

Definition 4.2 (Base term) A term is a base term if it is a variable or if it is an application
(M N) and M is a base term or if it is a term of the form | M and M is a base term.

INRIA

Metatheoretic results for a modal lambda calculus 11

Definition 4.3 (Weak head normal) We say that a term is weak head normal (whn) or in
weak head normal form if it is not a redex and if it is of the form (M N) or | M then M is whn.

So a term in weak head normal form is either a variable or an abstraction or a term of the form
1T M or an application (M N) where M is whn and not an abstraction, or a term | M where M
is whn and not of the form T M’.

Note A base term is always weak head normal.

The notion of weak head normal terms will be used later in the side-conditions of the typed oper-
ational semantics (see Section 4). The following results will be useful when proving metatheoretical
results about the typed operational semantics.

Lemma 4.4

e If M is normal then M is weak head normal.
e If (M N) is weak head normal and M and N are normal then (M N) is normal.
o If | M is weak head normal and M is normal then | M is normal.

e If M is weak head normal and M —pp. N then N is weak head normal.

Proof Straightforward.
ad

Note The proposition “If M is weak head normal and M —, N then N is weak head normal”,
which was true in the simply-typed A-calculus, is false here. For example, T (Az : Az | M) is
weak head normal and reduces to M even if M is not weak head normal. Nevertheless, if we refine
the hypotheses, we get similar results:

Lemma 4.5

e If (M N) is well-typed, (M N) —. R and (M N) is weak head normal, then R is weak head
normal.

o If | M is well-typed, | M —, R and | M is weak head normal, then R is weak head normal.

Proof By induction on M.
ad

RR n° 3361

12

Pierre Leleu

4.2 The inference rules

Now we come to the actual inference rules of the typed operational semantics. They are
strongly inspired by the original system [Gog94]. The main changes are the new rules for the
modal operators, which are inspired by the analogies between | and the application and between

T and A.

A+ M —,5 N : A means that M has canonical form N which is a canonical term of type A

in stack A.

A+ M —,n N : A means that M weak head reduces to N of type A in stack A.

Normal forms:

rz:Ael

A; T vali
AiThz =,z A valid

(SVar)

Ax:AFM —,; P: B

ifP=(Qz) = z€ FV(Q)

f (M N) is whn

(54) AFdx:AM —,sdx: AP:A— B

(S)A,LU:AI—M—>nf(Px):B AFP—,;Q:A— B
K AFXe:AM —>,;Q : A>B

(SApp)AI_M_}"fP:A_)B AFN —,;Q: A .

AF(MN)—.;(PQ): B

AFM —,y N:OA

AL o N4 M is whn

(S1)

Ao FM -, N: A
AFTM —,ftT N:OA

(S1) if N#| P
AFM —,; N:0OA

AT vali
ATF M =, N 04 1 valid

(SPop)

A+M—,, N:A AFN —,s P: A
AFM —,;P: A

(SW)

(s)A;.I—M—>nle:A
") XFTM —n; N:DA

INRIA

Metatheoretic results for a modal lambda calculus 13

Weak head reduction:

AFM:AM —,; M':A— B AFN—,; N : A

w
(W8) AF(Ax:AM N)—yn M[N/z] : B
A+rM—,,P:A— B AFN—)an':A
WA
(WApp) AF (M N) —=uwr (PN):B
AR M —,y M': OA AFM —,, N:0OA
W
(Who) AFITM —pn M: A (Wl)AI—lM—mth:A
AFM =,y N:OA
(W Pop) —Twh A;T valid

A THEM -, N:DOA

5 Metatheoretical results for the typed operational semantics

Now we study metatheoretical results for the Typed Operational Semantics (TOS). We first intro-
duce the notion of typed substitutions between two stacks. It stems from H. Goguen’s definition
but it is modified to take modality into account. Then we present basic results about the TOS
(stack manipulations, inversion lemmas). Finally, we prove that the reductions in the TOS cor-
respond to actual untyped reductions (adequacy of reduction), and we show Subject Reduction,
Strong Normalization and the diamond property for all the terms that have an —, ¢ reduction in
the TOS. These latter results are interesting in themselves if our aim is to study the TOS but above
all, they are intermediate results in our proof of the Subject Reduction, Strong Normalization and
Church-Rosser properties for the untyped reduction.

5.1 Typed substitutions

Definition 5.1 (Pre-substitution) A pre-substitution for a finite set of variables S is a function
from S to terms.

Definition 5.2 (Pre-renaming) A pre-renaming 6 for a finite set of variables S is a pre-substi-
tution for S such that for each x in S, (6 x) is a variable.

Notations Suppose A and ® are context stacks, D; and T' are contexts, ¢ is a pre-substitution
for dom(A), ¢ is a pre-substitution for dom(®), and p is a pre-substitution for dom(T). Then:

e We write (§ M) for the result of simultaneously substituting the values for the variables in
the domain of A: B
((5 M) =def M[(é $1),"'7((5 xn)/xl,---,xn]

o We write §[z := M] for the extended pre-substitution for dom(A, z : A) such that:
— (b[z :==M]y) = (6 y) if y € dom(A)

RR n° 3361

14 Pierre Leleu

— (blzr:=M)z)=M

e We write §; p for the extended pre-substitution for dom(A;T") such that:
—(Gpx)=(6x)ifzeA
—(Gpx)=(px)ifz el

e The composition of § and ¢, 60 ¢, is (60 ¢ z) = (8(¢ x)).

e If A’ is a stack such that A’ C A (i.e. all the declarations of A’ appear in A), then §|A’ is
the pre-substitution for dom(A') such that Vo € dom(A’), (§|A" z) = (¢ z).

Defining a proper notion of typed substitution for our modal system is not obvious because we
manipulate context stacks instead of contexts. A first attempt, too restrictive, would be to define
a substitution p from ® to A as a pre-substitution for dom(®) such that for each z : A € §'®, we
have A® I (p z) : A (Besides, it would implicitly mean that A is necessarily a stack with more
contexts than ®). The following definition is more flexible:

Definition 5.3 (Substitution) A substitution p from ® to A, where A and ® are context stacks,

is a pre-substitution for dom(@) such that there exists a mon decreasing function f such that for
each x : A € §'® we have AT - (p 2) : A.

Definition 5.4 (Renaming) A renaming é from ® to A is a substitution from ® to A such that
(6 x) =y, where y € dom(A), for each z: A € ®.

Definition 5.5 (Compatible context stacks) A context stack A is said to be compatible with a
context stack ®, if for each context §*® there exists a context 7 A such that 87 A has all declarations
of 8'®, and the function i — j is a non decreasing function f s.t. f(0) = 0.

Examples

e ;Dy;--+5(D;,Diy1);--+; D, is compatible with .; Dy;---; D, (fln—i—=1)=f(n—1) =
n—1)

i Dus oo 5 D ; Diy1; <o+ 5 Dn
} N L Vf
i Dy oo (Di, Diy1) ;oo 5 Dn

e ;Dq;--+;(Dyyx : B);--+; Dy is compatible with .; Dy;---; D, (f(k) =k,Vke {1,...,n})

; D1 oo D; ; i Dn
} } ¥
; DU -5 Djx:B ; Dn

INRIA

Metatheoretic results for a modal lambda calculus 15

e ;Dy;--;D;;D; Digq;-- -3 Dy, is compatible with .; Dq;---; D, (fn—i—1)=mn—1—
1,fln—i)=n—i+1).

. 3 Dl -5 Dy ;Digrs5 --- 5 Da
/ s ¥
i D15 -~ 5 Di 5 D ;Diya; -+ 5 Do

Notations

e If A is compatible with ® then we write weak4 for the pre-substitution (weak§ x) = x for

dom/(®).
Examples:
5D15+5(Di, Dig1); 3 Dn .
— weak’p h, for i € [1..n]
D1;3(Di,x:B);; Dy .
- weak_,’Difm_’ﬁ)n = B)iiDn gor i € [1..m)
D13+ DisD;Digasee5Dn .
— weak.;Dl;___;Dn for i € [1..n]
_ A
weakA;_

o ida =4e5 weaky
Lemma 5.6 If A is a contest stack compatible with ®, then weaks is a renaming from ® to A.

Proof By definition of renamings.
ad

Lemma 5.7 Suppose 6 is a substitution from ® to A™ (for n > 0) and p is a substitution from
5T to A. Then 6; p is a substitution from ®;T to A.

Proof By definition of substitutions and é; p.
O

In particular 6;weakﬁ?' is a substitution from ®;. to A;. that we shall use in several places in
our proofs. Note that for any = € ® we have (§; weak’ z) = (6 z).

Lemma 5.8 For pre-renamings and pre-substitutions, we have:
e §0(gfr = N)) = (50 6)[z == (8 V)]
e (559 M) = (53 M)).
e 60 (pr15¢2) = (60¢1);(60¢2).

RR n° 3361

16 Pierre Leleu

e (p | M)=|(p M) and (p 1 M)=1(p M).

e Let 6 be a pre-renaming from ® to A, and let us assume that x ¢ dom(®), y ¢ dom(A) and
y is not free in M, then (6 Az : A.M) = y: A.(6[x :=y] M).

Moreover, for renamings and substitutions, we have:

o If ¢ is a substitution from ® to A and 6 is a substitution from A to © then 6o ¢ is a
substitution from ® to ©.

o If ¢ is a substitution from ® to A and f the corresponding non decreasing function, 5|®° is
a substitution from ® to AT,

o If é is a substitution from ®;T;®" to A then §|®;d' is a substitution from ®; P’ to A.

e If 6 is a renaming from ®;T to A then 6 is of the form 61;62, where 81 is a renaming from
® to A™ (n € IN) and 62 is a renaming from ;T to A.

Proof Straightforward.
O

5.2 Basic lemmas

Now, we state basic results about the typed operational semantics.

Lemma 5.9 (Free variables) The following rule is valid for reductions — 5 and —pn:
IfAFM— N: A then FV(M) C dom(A) and FV(N) C dom(A).

Lemma 5.10 (Contexts) If AF M —,y N: A or A+ M —,n N : B then A is o valid context
stack.

Proof By induction on derivations.
O

Lemma 5.11 (Substitution preserves typing) B
IfAFM: A andé is a renaming from A to ®, then + (6 M) : A.

Proof By induction on derivations of A - M : A.
O

Lemma 5.12 (Renaming) The following rule is valid for reductions —n; and —yn:
If 6 is a renaming from ® to A and if @+ M — N : A then AF (6§ M) — (6 N): A.

Proof By induction on derivations. The new difficult cases are rules (S 1), (SPop) and
(W Pop):

Q. FM -,y N: A

* (ST)<I>I—TM—>nfTN:DA

if M #| P

INRIA

Metatheoretic results for a modal lambda calculus 17

Let ¢ be 6;weak?. ¢ is a renaming from (®;.) to (A;.). Thus by induction hypothesis,

A F (¢ M)—,;(p N): A
By applying (S 1), we find that
AF (@ 1M)—ns (¢ TN):OA
Since (¢ T M)=(6 1 M)and (¢ T N)=(6 T N), wehave proved that A+ (6 1

M)—,; (& 1N):04

AFM —,y N:DOA

© 5Po) pr 3= N o4

A;T valid

Let 6 be a renaming from ®;T" to A. ¢ is of the form 6;; 62 where 6; is a renaming from &
to A™(n € IN) and 63 is a renaming from .;T" to A. Since the free variables of M belong to
dom(®), one has (6 M) = (6y M). Thus

A" (6§ M) —,; (6 N):OA
and after n successive applications of the (SPop) rule :
Ak (8 M)—n; (6 N):OA

e The case (W Pop) is similar to the case (SPop).

ad

Thanks to our flexible definition of renaming, the renaming lemma can be seen as a genera-
lization of several lemmas that deal with the preservation of —,; and —,,, judgments by usual
manipulations of stacks:

Corollary 5.13 (Thinning) The following rule is valid for reductions —,5 and —yp:

-;Dl;"';Di"';D'n'_M_)N:A

(Thinning) x & dom(.;Dq;---;D,) (1 <i<n)

Proof Apply Lemma 5.12 with § = Weak:;Dl;___;Di___;Dn
O

Corollary 5.14 (Fusion) The following rule is valid for reductions —n5 and —yp:

RR n° 3361

18 Pierre Leleu

D15 Di; Dig1; -5 Dn E M — N A
D13 (DiyDig); ;D M — N : A
Proof Apply Lemma 5.12 with § = Weak:;giz:::j([)[Z:bDHl);m;D"-
O

(Fusion) forl1<i<n

Corollary 5.15 (Weakening) The following rule is valid for reductions —ny and —n:

5D1;--3Di3Dig;- ;D F M —- N: A
5Dy;--35D33D;Digqy-- -3 D F M — N A
Proof Apply Lemma 5.12 with § = Weak:gijzg:gfl’fl:[)f"
O

(Weakening) forl<i<mn

Lemma 5.16 (Strengthening) The following rule is valid for reductions —ny and — -

Dy;--:Tx:CT;---;D,-M —=N:A
3Dy 0,T--; D, FM > N: A

Proof By induction on derivations.
O

(Strengthening) i x ¢ FV (M)

The following results analyse how a judgment A - M —,; P : A can be obtained, according
to the form of term M. As before, the inversion lemmas are affected by the non-determinism
introduced by rule (Pop).

Lemma 5.17 (Inversion lemmas for —,y)
1. Abg =, :OA=>0: A€ Al
2. ATtz —py2: A& AZ0OA =>2: Ael.

3 AFXNAM -,y Q: A—> B=(A,z:AF M —,; P: Buwith either P = (R x) with z ¢
FV(R), AFR—,; 8 : A B& Q=S, or Q=\z: AP).

4. AF(M N)—,; R:B & (M N) is whn = 3IP,QR=(P Q) & In€ IN.A"F M —,; P
A—-B& A"+ N —,;Q: Awheren=0if B#UOB'.

5. AF(M N) =, P: A& (M N)isnot whn=AF (M N)—u,, M': A& A+ M —,;
P:A.

6. AF|M —,;R: A& | Miswhn=3INR=|N&AFM—,; N:0OA
7. AF| M —,; R: A& | Misnot whn=AF M—,, M A& A+ M —,; R: A
8. AFITM —p,; Q:0OA= A;.F M —,; P: Awith either Q=T P & P#| P, or P=| Q.

Proof By induction on derivations.
ad

INRIA

Metatheoretic results for a modal lambda calculus 19

We also have inversion lemmas for judgment — .
Lemma 5.18 (Inversion lemmas for —,,;)

1. AF(MN)=u, Q:B=3IneIN.A"+ N —,; N': A with either M =)z : AP, Q =
P[N/z], A"+ Xz : AP —,; M':A—B, or A"+ M —,, P: A— B & Q= (P N).

2.AF| M —,n N: A= either M=1P, N=P, A;.,.v P—,;P': A or N=| P, AF
M —,n P:0OA.

Proof By induction on derivations.
O

Lemma 5.19 (Uniqueness of normal forms) The following result is valid for reductions — ¢
and —yp: if A M —-P:Aand AFM — Q:B then P=Q and A= B.

Proof By induction on the proof of the first hypothesis, using the inversion lemmas on the
second hypothesis.
O

Lemma 5.20 (Completeness)
o IfAFM —pf N:Athen AFM=N:A.
e IfAFM—, , N:Athen AFM=N:A.
Proof By induction on derivations.
O
5.3 Typed operational system and untyped reduction

In this section we establish the links between the typed operational semantics and the untyped
reduction. First, we prove that the judgment A+ M —, P : A actually computes a reduct of M
which is normal. Similarly, the —; judgment corresponds to 3 and (g reductions.

Lemma 5.21 (Adequacy for reduction)

o IfAFM —,; P: Athen M —, P and P is normal, and furthermore there is an N such

that M =B N S g * P.
e fAFM —,, P: A thenM‘—wlgD P.

Proof By induction on derivations.
O

Lemma 5.22 If A+ M —,5 N : A and M is normal then M = N.

Proof By adequacy for reduction M —, N. Furthermore M has no reduction. Thus M = N.
ad

RR n° 3361

20 Pierre Leleu

In the rest of the section, we prove important properties about judgment —, ¢, namely that if
AFM —,¢ P: A then M is strongly normalizing, and that if A M —,; P: Aand M — N
then AFN —,; P: A

Unlike H. Goguen, we do not use an intermediate predicate (the logical meaning of which was
unclear to us) but directly prove the properties. Also we do not need to define the stack in which
a subterm of a well-typed term is itself typable (this would not have been as easy as in the simply
typed A-calculus).

We need some preliminary lemmas. The first two are necessary because of (n) and (7o) reduc-
tions.

Lemma 5.23 (Subject reduction for n) If A F Az : A(M z) -,y P: A — B andz ¢
FV (M) then AF M —,; P: A— B.

This lemma is proved in Healfdene Goguen’s thesis ([Gog94]) using inversion lemmas. We only
give here the proof of its modal counterpart:

Lemma 5.24 (Subject reduction for ng) If A+ M —,; P: A then AF M —,; P: A.

Proof Using the inversion lemmas, we obtain A;. F| M —,¢ N : B (where B = OA) with
either P =7 N (and N not of the form | X) or N =| P. We now proceed by induction on the
length of the proof of A;. | M —,; N : B. By applying the inversion lemmas once again, we
have two cases :

¢ (S])AFM —,; N':0OB where | M is whn and N =| N'.
— If N =] P then P = N’ and the lemma is proved.
— Otherwise N is of the form | N, which is not permitted.

A HlM -y R:B A;.FR—,f N:B
A;.F| M =,y N:B

We apply the inversion lemmas to the first premise:

o (SW)

- W I A.F M —,. M" : B, where M =1 M’ and P = M'. Thus the second
premise of (SW) gives us that A;. F M' —,; N : B. Depending on whether P =7 N
or N=| P, (S 1) or (Snp) leads us to the result.

- (W |)AF M —,, Q : OB where | Q@ = R. In that case, the second premise of
(SW) becomes A;. | @ —,y N : B and by induction hypothesis A - Q —,; P : A.
Applying (SW), we finally obtain that A+ M —, ¢ P: A.

O
Now, we prove the important results of this section, using the technical developments of Annex
B in the proofs.

INRIA

Metatheoretic results for a modal lambda calculus 21

Lemma 5.25 (Strong Normalization for —,)

o IfAFM —,; P: A then M 1is strongly normalizing.

o fAFM —,n N: A and N is strongly normalizing then M is strongly normalizing.
Proof By induction on the length of the derivations of the —,; and —; judgments.

e (S Var) (S Pop) (SW) (W Pop) Easy.

Axz:AFM —,; P: B
AFA:AM -, de:AP:A— B
We consider a sequence of reductions starting from Az : A.M.

. (S))

ifP=(Qz) = 2€FV(Q)

— As long as there is no n-reduction of the top abstraction, we always reduce under it:

e AM <, x: AM

where M —, M'. By induction hypothesis M is strongly normalizing and we cannot
obtain an infinite sequence of reductions this way.

— Otherwise, we have a sequence of reductions with an eta-reduction at some point:
Ax: AM —, Ar: A (M) = My" —, My"

This means that we also have M —, (M;' z). Since M is strongly normalizing by
induction hypothesis, so is M;’ and we cannot build any infinite sequence of reductions
this way either.

e (Sn) Similar to the previous case.

A+FM —,; P:A— B AFN —,;Q: A
SA i i if (M N) is wh
(SApp) AF(MN) = (PQ): B if () is whn
We know that (M N) is well-typed and weak head normal. By Lemma 4.5, if (M N) —, R
then R is still a weak head normal term (M’ N') with M —, M’ and N —, N'. By induction

hypothesis M and N are strongly normalizing. Thus (M N) is strongly normalizing.

e (S |) Like above, using Lemma 4.5 and induction hypothesis to prove the result.
(S 1) and (Snp) Like (SA) and (Sn).

(Wﬁ)AI—)\x:A.M—me’:AHB AFN—, s N': A
[]
AF(Az:AM N)—yu, M[N/z] : B
We assume that M[N/x] is strongly normalizing and we examine the possible sequences of
reductions starting from (Az : A M N):

RR n° 3361

22 Pierre Leleu

—If(M:AM N)—,(Az:AM N'), where M —, M’ and N —, N’', we cannot have
an infinite sequence of reductions because Az : A.M and N are strongly normalizing by
induction hypothesis.

— Otherwise, (A\x : AM N) —, (Ax: AM' N') — M'[N'/z] —, R. We notice that
M'[N'/x] is strongly normalizing since it is obtained by reducing M[N/z], which is
strongly normalizing. Thus we cannot have an infinite sequence of reductions this way
either.

e (Wfn) Similar to the previous case (W 3).

A+M—-,,P:A— B AFN -, N : A

AF(M N)—,, (PN):B
We assume that (P N) is strongly normalizing. Thus P and N are strongly normalizing and
by induction hypothesis M enjoys this property too. Like above we examine the possible
sequences of reductions starting from (M N):

o (W App)

—If (M N) —, (M' N'), we cannot have an infinite sequence because M and N are
strongly normalizing.

— Otherwise, the left argument of the application is weak head reduced at some point :
(M N)—, (M'"N") =, (M" N') =, R

In this case we use the results of Annex B, Lemma 9.10 tells us that (P N) —, (M" N').
Thus (M" N') is strongly normalizing and we cannot have any infinite sequence.

e (W |) Similar to the previous case (W App).
O
Lemma 5.26 (Subject Reduction for —,y)

o fAFM —,; P:Aand M —, N then AF N —,; P: A.

e IfAFM —y N: A, AF N -,y P: Aand (N =, N = AF N —,5 P: A) then
(M —. M'=>AFM —,; P:A)

Proof By induction on the length of the derivations of the —,; and —,, judgments.

e (S Var), (S Pop), (SW) and (W Pop) are straightforward.

Ax:AFM —,s P: B
AFX:AM =, dx:AP:A— B
Like in the proof of the previous lemma we examine the possible sequences of reductions.

e (S)) ifP=(Qz) = z€FV(Q)

INRIA

Metatheoretic results for a modal lambda calculus 23

—If Az : AM —, \x : AM' with M —, M' then by induction hypothesis A,z : A -
M —,; P:B. ThusAFAz: AM —,; Az : AP:A— B

— Otherwise we have Az : A M —, Az : A(M;' z) —, My <, M;" with an 7-
reduction at some point. Then M —, (M;" x) and by induction hypothesis A,z :
AF (M,") —,; P: B. Since z ¢ FV(M;'), we also have z ¢ FV(M;") and we can
apply rule (S)), which gives A F Az : A.(M;" z) —,; Az : A.P: A — B. Finally by
Lemma 5.23 (Subject reduction for n), A+ M;" —,; Az : A.P: A— B.

e (Sn) Similar to the previous case (S)).

AFM —,; P:A—B AFN—,;Q: A, .
A f(M N h
o (SApp) AF (I N) = (PQ): B if () is whn
We know that (M N) is well-typed and weak head normal. By Lemma 4.5, if (M N) <, R
then R is still a weak head normal application (M’ N') with M —, M’ and N —, N'.
By induction hypothesis A - M’ —,; P: A —- Band A+ N' —,; Q : A. By (SApp),
AF (M' Ny = (P Q): B.

e (S |) Like (SApp), using Lemma 4.5, induction hypothesis and (S |) to prove the result.
e (S 1) and (Sng) Like (SA) and (Sn).
.(WB)AI—)\Q::A.MﬁnfM’:AﬁB AFN—, ;N : A

AF Az :AM N)—yu, M[N/z] : B

We assume that A - M[N/z] —,5 R : B and that (M[N/z] —,. P' = A+ P' -,y R: B).
We examine the possible sequences of reductions starting from (Az : A.M N)

—If (Az : AM N) <, (Az : AM' N'), where M —, M’ and N —, N', then by
induction hypothesis, A+ Az : AM' —,; P": A— Band AFN' —,; Q" : A. Thus
by (WgB), AF (Ax: AM' N') =y, M'[N'/z] : B. Now, since M[N/x] —, M'[N'/x],
we have A+ M'[N'/x] -,y R: B. By SW),AFr(Ax: AM'N') -, R: B

— Otherwise, (Az : AM N) —, (A : AM' N') — M'[N'/z] =, T. In that case,
MI|N/z] =T and AFT —,5 R: B.

e (Wfn) Similar to the previous case (W 3).
A+M —-,wP:A— B AFN —,; N": A
AF(M N)—,, (PN):B

We assume that A+ (P N) =,y R: B and that (P N) —, P'= AF P —,; R: B. We
examine the possible sequences of reductions starting from (M N):

o (W App)

— If (M N) —, (M' N'") without any weak head reduction step then M —, M’ without
any weak head reduction step. Once again, we use the results of Annex B. By Lemma
9.10, there is a term @ such that M' —,, Q and P —, Q. By Lemma 9.6, all the
elements of M have a derivation —, ;. By Lemma 9.9 and induction hypothesis, it is also

RR n° 3361

24 Pierre Leleu

true for M'. Thus, by Lemma 9.11, A+ M' —,, Q : A — B. Now, since (P N) <,
(@ N'), we have A+ (Q N') —,5 R: B. By (W App) and induction hypothesis for N,
we have A+ (M’ N') -, (Q N') : B. Finally by (SW), A+ (M' N') -,y R: B.

— Otherwise, the left argument of the application is weak head reduced at some point :
(M N)—, (M'"N') =y, (M"N')—=,T

By Lemma 9.10, P —, M". Thus we have (P N) —, (M" N') —, T, which implies
by hypothesis A+T —,; R: B.

e (W |) Similar to the previous case (W App).
O

Corollary 5.27 (Diamond Property for —,;) If AFr M —,; Q: A, M —, N and M —, P
then N —, Q and P —, Q.

The following property will be useful when showing the Soundness lemma 6.8.

Proposition 5.28 (Admissibility of S7')
The following rule is admissible:

Ax:AFM —,;(Pz):B x & FV(P)

!
(5m) AFixe:AM —,, P : A>B

Proof We assume that A,z : A+ M —,; (P z): B. By Lemma Adequacy for Reduction, (P)
is normal. Thus P is normal as well. We can show by an easy induction that for any normal term
Q well-typed of type A in the stack ®, we have ® - Q —,5 Q : A. Thus A-P —,y P: B. By
applying (S), we find that A+ Xz : AM —,; P : A— B.

O

6 Soundness

We have shown in the previous section the links between the typed operational semantics and the
untyped reduction. Now it is time to clarify the links between the typing rules and the typed
operational semantics. We will prove a result of strong normalization, namely that for any well-
typed term M of type A in stack A, there is a normal form P such that AF M —,; P: A. The
proof will be carried out quite classically, “4 la Tait”. Finally, the results of last section will enable
us to deduce the classic properties of subject reduction, strong normalization and Church-Rosser
for our system.

Definition 6.1 (Semantic Object) A semantic object for A and A is a term M such that
AFM —y,5 P: A for some term P.

INRIA

Metatheoretic results for a modal lambda calculus 25

Definition 6.2 (Interpretation of types) Let A be a context stack. The interpretation of a
type A in A, denoted by [A]a, is given by induction on the structure of the type A:

e [c]a is the set of semantic objects for A and c.

e [A — B]a is the set of semantic objects M for A and A — B such that, for any context T
such that A,T is valid, and any N € [A]ar we know that (M N) € [B]lar.

e [OA]a is the set of semantic objects M for A and OA such that, for any stack A" such that
A, A" is valid, we know that (| M) € [A]a,a-.

In his thesis, Healfdene Goguen uses renamings to define [A — B]a. Namely, [A — B]a was
the set of semantic objects M for A and A — B such that, for any renaming ¢ from A’ to A and
any N € [A]as, (6 M) N) € [B]ar- Here we are implicitly using weakenings instead of renamings.
Actually what we want is to be able to extend the contexts with fresh variables, this is precisely
what weakenings do.

Lemma 6.3 (Weakening for [A]a)
1. If M € [A]a and if T is a context such that A,T is valid then M € [A]ar.

2. If M € [DA]a and if A’ is a stack such that A; A" is valid then M € [DA]a;ar- In particular
if T is a context such that A;T is valid then M € [DA]a;r.

Proof

1. By case analysis on the structure of type A. We consider the case A = OB. If a context T’
is such that A,T is valid then let A’ be a stack such that A,T", A’ is valid. A,T", A’ is of
the form A, A" with A” = T',A’. By definition of [OB]a, | M € [B]a,r,a’ and thus by
definition of |[|:|B]]A7p M € HDB]]A,F-

2. Let A" a stack such that (A, A’), A" is valid. (A, A"), A" = A, (A’,; A"). Thus by definition
of |[|:|A]]A, l M e ﬂ:A]]A,A’,A” and by definition of HDA]]A7A'7 M € HDA]]A,A’- If T is a context
such that A;T is valid, we note that A;T = A, (.;.;T). Thus M € [OA]a;r-

O

Roughly speaking, the interpretation of a context stack ® in A is the set of the substitutions
that replace variables z : A declared in ® by terms belonging to [A]Ja. The exact definition is a
bit more complex because we deal with context stacks, instead of contexts:

Definition 6.4 (Interpretation of context stacks) The interpretation of a context stack ® in
A, [®]a, is the set of substitutions from ® to A defined by induction on the structure of ®:

o []a =des {weak®}.

RR n° 3361

26 Pierre Leleu

o ﬂ.;.]]A =def {weakf\‘}
[ﬂ.;r,%:A]]A =def {p[.fb = M] |p€|[,1-‘]]A&MEI[A]]A}
o H‘I),P]]A =def {(5,p| dne IN .6 € [@]]A" &pe [[,I“]]A}

As a consequence of the last item, [®;.Ja;, = {6;p | In € N .6 € [®](a;)» and p € [;.]a,.} =
{6; weak | 6 € [®](a;)n}-
The difficulty of the definition lies in the expression of [®; I'Ja. The simpler choice [®;T]a =4y
{6;p| 6 € [®]ar & p € [-;T]a} would not have been flexible enough to meet our needs.

Example Let us assume that ® = (;2: A;y: B)and A =(;f: B — A,z : B;.;u: B), then
the substitution é from ® to A defined by é(z) = (f 2) and é(y) = u belongs to [®]a if u € [B]a
and (f 2) € [A].;f:B—4,2B-

Lemma 6.5 If p € [®]a and if " is a context such that A,T" is valid then p € [®]ar.

Proof By induction on the proof of p € [®]a using Lemma 6.3.
O

Definition 6.6 (Saturated set) A set S of semantic objects for A and A is a saturated set for
A and A if:

(S1) If M is a base term and o semantic object for A and A, then M € S.
(S2) f NeS and AF M —,, N: A then M € S.

Lemma 6.7 ([A]a is a saturated set)
[A]a is a saturated set for any valid stack A and type A.

Proof By induction on the structure of A. We consider the cases A = B — C and A = OB.
e A=B—-C

(S1) Let M be a base term and a semantic object for A and B — C, I a context such that
A,T is valid and N an element of [B]a,r- We have to prove that M € [B — C]a, i.e.
(M N) € [C]a,r. Actually we will show that (M N) is a base term and a semantic
object for A,T" and C and applying the induction hypothesis will give us the result.

— (M N) is a base term because M is a base term.

— Thanks to the definition of a semantic object and Thinning lemma (5.13), IP.A, T F
M —,; P: B — C. Because N € [B]ar, we also have 3Q.A, T+ N —,; Q : B.
Since any base term is also weak head normal, we have IR.A,T'F (M N) —,¢ R :
C.

INRIA

Metatheoretic results for a modal lambda calculus 27

(S2) Let us assume that N € [B — C]a and that AF M —,, N : B — C. We want to
prove that M € [B — C]a. Let T be a context such that A,T" is valid and P € [B]ar,
we will prove that (M P) € [C]a,r- Thanks to Thinning lemma (5.13), we have A, T"
M —un N : B — C. Since P € [B]a,r we also know that 3Q.A,T'F P —,; Q : B.
Applying the rule (W App) we find that A,T - (M P) —,, (N P) : C. Finally,
(N P) € [C]a,r and by induction hypothesis (M P) € [C]a,r-

e A=0B

(S1) Let M be a base term and a semantic object for A and OB, and A’ a stack such that
A, A is valid. | M is also a base term and AN.A, A’ +| M — ;| N : B (by definition
of a semantic object, rules (S Pop) and (S |)). By inductive hypothesis | M € [B]a,ar.
Therefore M € [UB]a,a.

(S2) Let us assume that N € [OB]a and that A - M —,, N : OB. We want to prove
that M € [OB]a. Let A’ be a stack such that A, A’ is valid. After applying rules
(W Pop) and (W |), we obtain A,A’ +| M —,,] N : B. By inductive hypothesis
| M € [B]a,ar and therefore M € [OB]a.

O

Now we prove the key lemma of this section: soundness of the typed operational semantics for
our calculus.

Lemma 6.8 (Soundness) If®+ M : A and p € [®]a then (p M) € [A]a.
Proof By induction on derivations of A - M : A. We show here some cases.

e (\) We have ® F Az : AM : A — B by rule \. Let p € [®]a, we have to prove that
(p Ax : A.M) € [A — B]a. By inductive hypothesis, we know that (o’ M) € [B]a: for any
p e [@,:L’ : A]]Al.

We first need to show that there exists a @ such that A+ (p Az : AM) -,y Q : A — B.
Let y be fresh in A. Then p € [®]a,y:a , and y € [A]a,y:a by Lemma 6.7 and (S1),
so plz := y] € [®,2 : A]a,y:a by definition of [®,2 : A]a 4. Therefore we know that
(plz :=y] M) € [B]a,y:a which implies that A,y : AF (p[z :=y] M) —,5 P : B for some
P. Hence if P = (P' y) with y ¢ FV(P') then A+ (p Az : AM) —,; P': A— B by (S7'),
and otherwise A - (p Az : A M) =(p Ay : A M[y/z]) —=ns Ay : A.P: A— B by (SA). Let
Q@ be the normal form in either case.

Then we need to show that (Az : A.M N) € [B]a,r for any context I" such that A,T" is valid
and any N belonging to [A]a,r. We can show by reasoning like above that p[z := N] € [®, 2 :
A]a,r- This means that (p[z := N] M) € [B]ar- So AT F (plx := N] M) —,5 R : B for
some R. Furthermore we know that A,T' F (p Az : A M) —,5 Q : A — B by Thinning
lemma, and also A,T' N —,; N’ : A for some N’ by definition of semantic objects,
so AT F ((pAx: AM) N) = (\z : A(p[z:=2] M) N) —un (plz:=2] M)[N/z] =

RR n° 3361

28

Pierre Leleu

= N] M) : B by (Wp) for any z fresh in A,T". Hence ((p Az : A.M) N) € [B]a,r by

plz :== N]
2). So (p Az : A.M) € [A — B]a by definition.

(p
(S
(!

) straightforward.

e (1) We have ® -1 M : OA by rule (7). Suppose p € [®]a, we have to prove that (p 1 M) €

O

[OA]a. We first need to show that there exists a @ such that AF (5 T M) —,r Q : OA.
By induction hypothesis, we know that there exists a P such that A;.F (o' M) —,; P : A,
for any p' € [®;.]a,.. Hence if P #| N, then A+ (p/ T M) —,s7 P:0A by rule (S 1), and
otherwise P =| N and A (p/ T M) —,; N : OA by rule (Sng). Let Q be the normal form
in either case. We take p' = p;weak%’-.

We then need to show that (p |1 M) € [A]a,ar for any stack A’ such that A, A’ is
valid. By induction hypothesis, we know that (o’ M) € [A]a A/ for any p' € [®;.]a A
So by definition of semantic objects, we know that A, A’ (o' M) —,; M’ : A for some
M. "So A,A' b (77 11 M) =11 (7 M) —un (7 M) : A by rule (WAg). So, by (S2),
(@ 11 M)=7p(M) € [A]a,ar. To conclude, we take p' = p;weak’>". So (5 1 M) € [OA]a
by definition.

(Pop) Let us assume that p belongs to [®;T]a. We write p as p1; p2, where p; € [®]a» and

p2 € [;T]a. Since FV(M) C dom(®) we have (M) = p1(M). By induction hypothesis
p1(M) € [OA]a» and therefore p(M) € [DA]a.

Since the identity substitution from A to A belongs to [A]a, we are able to link typing judgments
with —, judgments.

Lemma 6.9 If A is a context stack then ida € [A]a.

Proof Straightforward, by induction on the structure of A.

O

Corollary 6.10 If AF M : A then there is a term P such that AF M —,; P: A.

Proof By Soundness, Lemma 6.9 and the definition of [A]a.

O

Lemma 6.11 (Soundness for AF M =N:A) If A+ M = N : A then there is a P such that
AFM —pf P:Aand AFN —,5 P: A

Proof By induction on derivations that AF M =N : A.

O

INRIA

Metatheoretic results for a modal lambda calculus 29

Hence the three expected results of Strong Normalization, Subject Reduction and Church-Rosser:
Corollary 6.12 (Strong Normalization) If A+ M : A then M is strongly normalizing.
Corollary 6.13 (Subject Reduction) If A+ M : A and M — N then A+ N : A.

Corollary 6.14 (Church-Rosser) If A+ M = N : A then there is a P such that M —, P and
N —, P.

7 Conclusion

We have presented in this paper the proofs of Strong Normalization, Subject Reduction, and
Church-Rosser theorems for a modal A-calculus S4 [PW95]. The proof followed the ‘Typed Oper-
ational Semantics’ method introduced by Healfdene Goguen [Gog94, Gog95] for the simply-typed
A-calculus. We have succeeded in adapting his method although our typing rules are not syntax-
driven and we had to deal with context stacks instead of simple contexts. In the course of the
proof, we have extracted an interesting notion of typed substitution for our modal system. More-
over some definitions we have used are different, maybe clearer and more general than the original
ones. For instance in the definitions of the interpretations of types, we have used weakenings
instead of renamings.

It has been shown recently how modality IS4 can be used to built a simple type system which
allows primitive recursion on terms of a higher order abstract syntax ([DPS97]). Using the deve-
lopments presented in this paper (in particular the definitions and lemmas of Section 6), we have
been able to propose a variant of this type system, with simpler reduction rules and a much shorter
proof ([Lel97]). We hope that the results presented there will serve as a basis for the proofs for an
extension of the type system to a richer calculus, including polymorphic and dependent types.

Acknowledgements I gratefully acknowledge discussions with Healfdene Goguen and André
Hirschowitz. I am endebted to my advisor, Joélle Despeyroux for her numerous suggestions on
drafts of this work. Thanks are also due to Paul Taylor for his TeX macros for drawing category-
theoretic diagrams.

References

[BdP96] Gavin Bierman and Valeria de Paiva. Intuitionistic necessity revisited. In Technical
Report CSRP-96-10, School of Computer Science, University of Birmingham, 1996.

[Che90] Brian F. Chellas. Modal logic : an introduction. Cambridge University Press, 1990.

[DP96] Rowan Davies and Frank Pfenning. A modal analysis of staged computation. In Jr.
Guy Steele, editor, Proceedings of the 23rd Annual Symposium on Principles of Pro-
gramming Languages, pages 258270, St. Petersburg Beach, Florida, January 1996. ACM
Press.

RR n° 3361

30

Pierre Leleu

[DPS97] Joélle Despeyroux, Frank Pfenning, and Carsten Schiirmann. Primitive Recursion for

[Gog94]

[Gog95]

[Lel97]

[PW95]

Higher-Order Abstract Syntax. In J.R. Hindley and P. de Groote, editors, Int. Conf. on
Typed lambda calculi and applications - TLCA ’97, pages 147-163, Nancy, France, April
1997. Springer-Verlag LNCS 1210.

Healfdene Goguen. A Typed Operational Semantics for Type Theory. PhD thesis, Uni-
versity of Edinburgh, August 1994.

Healfdene Goguen. Typed operational semantics. In Proceedings of the International
Conference on Typed Lambda Calculi and Applications, volume 902 of Lecture Notes in
Computer Science, pages 186—200. Springer—Verlag, 1995.

Pierre Leleu. A Modal Lambda Calculus with Iteration and Case Constructs. Technical
Report RR-3322, INRIA, France, 1997.

Frank Pfenning and Hao-Chi Wong. On a modal A-calculus for S4. In S. Brookes and
M. Main, editors, Proceedings of the Eleventh Conference on Mathematical Foundations
of Programming Sematics, New Orleans, Louisiana, March 1995. To appear in Electronic
Notes in Theoretical Computer Science, Volume 1, Elsevier.

8 Annex A: variant with Pop rules

In Section 2, the typing rules are not syntax-driven because of rule (Pop) which keeps the term
unchanged. In this annex we present a variant of our system where we add to our syntax an

operato

r ‘Pop’ which marks the application of rule (Pop).

8.1 The type system

The sets of types, terms and contexts are generated by the same syntaxes as before, with an
additional definition for Pop terms, as follows:

Types A u=c|A—-A"|DOA

Terms t =z |dx: At | (@t | 1¢]| lt]| Pop(t)
Contexts I u=.|T,z:t

Context stacks A u=.|A;T

The complete type system is the following one, where only the (Pop) rule has been modified:

:A€eT
(Var) A.Z.T.i/l A,F valid
) Ax:A+FM:B (App)AI_M:A_)B AFN:A

AFdx:AM : A—>B AF(M N):B

INRIA

Metatheoretic results for a modal lambda calculus 31

A FM:A A+ M:0OA A+ M:OA

Oxrrea Warmwa P 5rrpopan .o &7

Note Terms of the form ((T M) N), | Ax : AM, Pop(Az : A.M) or (Pop(M) N) are not
well-typed in this system.

8.1.1 Lemmas

We do not need here the modal weakening lemmas of Section 2.1 (without the Pop terms), as the
type system is now trivially syntax-driven, i.e. there is only one applicable rule at each stage of
the construction of a proof. Nevertheless, we can prove the following modal weakening lemmas.

Lemma 8.1 (Weakening)
5D1;- 5 Di; Diga;--;Dp E M 1 A
Weak
(Weak) 3Dy, ;D5 D;Dipy;- ;D F POP(M,n— (i +1)): A

for1<i<n

where D is such that .; Dy;---;Ds; D; Dyyy;- - -5 Dy, is valid and POP(M, k) is defined by induction
on M:

e POP(z,n)==x

Pop(POP(M,n—1)) ifn>1
Pop(Pop(M)) ifn=20

POP(Pop(M),n) = {

e POP(1 M,n) =1 POP(M,n +1)

e POP(| M,n) =] POP(M,n)

« POP((MN),n) = (POP(M,n) POP(N,n))
e POP(\x : AM,n) =Mz : A.LPOP(M,n)

Note Other terms built from M with an extra Pop could verify the Modal Weakening rule. They
are not given by this algorithm.

For instance, if ;2 : OOA;T | Pop(z) : OA, then POP(| Pop(z),0) =| Pop(Pop(z)) and
sz O0A;®;T | Pop(Pop(x)) : OA. But we also have .;z : OOA; ®;T + Pop(| Pop(x)) : OA
and .;z : OOA; ®;T + Pop(Pop(] z)) : OA.

Lemma 8.2 (Strengthening)

3Dy Do :BT;---;D, FM: A
Dy T - Dy EM A

(Strengthening)

RR n° 3361

32 Pierre Leleu

The fusion lemma is more complicated than before. It uses the U N POP function which appears
also later in the reduction rules.

Lemma 8.3 (Fusion)

D133 Dis Dig1; -5 Dn Mt A
5Dy (DsyDiy1);- -3 D FUNPOP(M,n— (i +1)): A

(Fusion) for1<i<n

where UNPOP(M,n) (n € IN) is defined by induction on M :
e UNPOP(z,n) ==

Pop(UNPOP(M,n—1)) ifn>1
M ifn=20

UNPOP(Pop(M),n) = {

UNPOP(1 M,n) =1 UNPOP(M,n + 1)

(
UNPOP(| M,n) =| UNPOP(M,n)
(
(Az

UNPOP((MN),n) = (UNPOP(M,n) UNPOP(N,n))
UNPOP

:AM,n)=Mx: AUNPOP(M,n)

8.1.2 Substitution

Substitution is defined like in Section 2.2 with the following additional rule:
(Pop(M))[N/z] = Pop(M[N/x])
8.1.3 Inversion lemmas

The inversion (generation) lemmas are obvious:

1. (ATFz:A)=z:A€T.

N

AFXz:AM : A5 B)= (Az:A+M:B)

AFIN:A) = (A+N:0A)

(

- (

.(AFTM:O0A)= (A;.FM:A)

- (

. (AF(MN):B)= (AFM:A—B&AFN:A)
- (

AT F Pop(M) : 0OA) = (AF M :0OA)

Proof By induction on the derivation of the hypothesis.
O

INRIA

Metatheoretic results for a modal lambda calculus 33

8.1.4 Equality

The rules are the same as before, except for rules (EqPop), (EqBn) and (Egnn), that we give here.

AFM=N:0A
A;T F Pop(M) = Pop(N) : OA

(EqPop') A;T valid

A;.FM:A
A;Ty;---3T, | Pop®(1 M) =UNPOP(Pop™(M),0): A

(EqBn) A;Ty;--+; T, valid

A M:OA
A;Ty;-- 3T, BT Pop®(l M) =UNPOP(Pop™(M),0): OA

(Eqng) A;Ty;---; T, valid

8.2 A typed operational system
The definitions for normal forms and weak head reduction are the same as before, except for the
(Pop), (Smo) and (W Bn) rules. The side condition in (S 1) is also different.

Normal forms:

z:Ael .
(SVar) ATroon oA A;T valid

Az:AFM —,s P: B
AFXz:AM —p; M AP:A— B

(SN ifP=(Qz) = z€ FV(Q)

(S)A,x:AI—M—>nf(P$):B AFP—,;Q:A— B
" AFAe:AM —,;Q : A>B

A+rM —,;P:A— B AFN—=,;Q: A
A i i if (M N) is wh
(SApp) AL (M N)—n; (PQ) B if () is whn

AFM —,f N:OA
AF|M —, ;| N: A

(S1]) if | M is whn

A FM —,p N: A
AFTM —,;TN:OA

(51 if N # Pop"(| P)

, Ay M —,p Pop™(| N): A
(5np)
A M —,; UNPOP(Pop™(N),0) : OA

RR n° 3361

34 Pierre Leleu

AFM —,y N:OA
A;T F Pop(M) —,5 Pop(N) : DA

(SPop) A;T valid

AFM—,, N:A AFN —,; P: A
AFM —nf P: A

(SW)

Weak head reduction:

AFXM:AM —, s M':A—> B AFN -, N : A

(W) AF (A2 : AM N) =, M[N/a] : B

(wapp) 22N qZhFP@AJ\T)) iwh (?]ijv 7 e
Who) Kt T, Fl Poj;(';]\% - Jz\JiJ’v}%P(Popn(Mm) T At alld
¥) R0 3 A
(W Pop') AFM =y, N:OA A;T valid

A;TF Pop(M) — 4, Pop(N) : OA
8.3 Metatheory
UNPOP now appears in the (3) and (n3) reduction rules.

Definition 8.4 (Untyped reduction)

(8) (\z:AM N) B M[N/a]

n) e:AMzxz) n M if x ¢ FV(M

(Bp) | Pop™(1 M) By UNPOP(Pop™(M),0)
(ng) 1 Pop™(l M) ng UNPOP(Pop™(M),0)

The following definition is the same as before, except for the 1, | and Pop items, which remain
fairly simple.

Lemma 8.5 (Forms of normal terms)
The normal forms can be characterized by induction:

e Variables are normal,

e \x: A.M is normal if M is normal and not of the form (N x) with x ¢ FV(N),

INRIA

Metatheoretic results for a modal lambda calculus 35

e (M N) is normal if M and N are normal and M is not of the form Az : A.P,
e | M is normal if M is normal, and not of the form Pop™(| M) (n € IN).
e | M is normal if M is normal, and not of the form Pop™(1 M) (n € IN).

e Pop(M) is normal iff M is normal.

A partial attempt to prove the subject reduction, Church-Rosser and strong normalization prop-
erties has shown that this seems feasible with some changes. For instance we could adopt a simpler
definition of substitutions and the inversion lemmas would be straightforward. Nevertheless, since
the reduction rules are more complex, other results would be more difficult to prove (for instance
the subject reduction property).

9 Annex B: technical development

The results proved in this annex are rather technical. The key result (Lemma 9.10) is a lemma
of confluence between weak head reduction and arbitrary reduction. It is used in the proofs of
Lemmas 5.25 and 5.26.

Definition 9.1 (weak head reducible)
We call weak head reducible (whr) terms the terms that are not weak head normal.

Lemma 9.2 The weak head reducible terms (whr) are of the form:
whr =(Ax : AP N) | |1 M| (whr N)| | whr.

Definition 9.3 (elements) We recursively define the function ‘elem’ which maps a term whr to
a list of terms (its ‘elements’) by the following rules:

o elem(Ax: A.P N)=(N,Az: A.P)
e clem(|T M)=TM
e clem(whr N) = (N, elem(whr))

(

e clem(| whr) = elem(whr)

We also define the function ‘head’ which maps a whr term to a term:

Definition 9.4 (head)
If M is whr and elem(M) = (M, ..., M), we define head(M) := Mj,.

To summarize, the possible forms of weak head reducible terms are the following ones:

RR n° 3361

36 Pierre Leleu

.Nl .Nl
2N 2N
/Nk\ O1 /Nk\ O1
! Ok app Ok
| VRN
1 A A N
| |
M P

where O1, ..., are subtrees, all the operators N1, ..., N are either app (i.e. application) or |
(in which case the corresponding subtree O, is empty).

For the first term, the ‘elem’ function returns the list (1, - .., Ok, I M) and the ‘head’ function
returns T M. For the second term, the ‘elem’ function returns the list (O1,..., Ok, N, Az : A.P)
and the ‘head’ function returns Ax : A.P.

We call structure of a whr term the list (Ni,...,N%, 1) (or (Vi,...,Ni,app)). A whr term is
entirely defined by its structure and the list of its elements.

Lemma 9.5
(AF M —yup P:B) = (M is whr)

Proof Easy. By induction on the proof of the hypothesis.
a

Lemma 9.6

(A"M—nuhPB)?(

VN € elem(M),
In € IN,N' and C such that A" N —,; N': C.

Proof Easy. By induction on the proof of the hypothesis.
O

The following lemma allows us to solve some difficulties associated with truncated stacks. It
says that if a term is well-typed in a stack A™ of type A and has a —,5 evaluation in another
stack A™ of type B then it has the same —,; evaluation in A™ and A = B.

Lemma 9.7 If A"+ M: A (n € IN) then
e if A"+ M —,; P:B(meIN)then A"+ M —,;P: A
e if AP+ M —,, N:C (peIN) then A"+ M —,, N: A

Proof By induction on the proofs of the hypotheses “A™ = M —,; P : B” and “AP - M —,
N : C”, using the inversion lemmas on the typing hypothesis. We show here two significant cases:

INRIA

Metatheoretic results for a modal lambda calculus 37

e (SVar) A™ F z —,f x : B because x : B belongs to the local context of A™. By the inversion
lemmas, it is clear that A = B. If the typing judgment A™ - z : A comes from rule (Pop),
then n < m and A is of the form OC. Thus by rule (SPop), A™ k z —,; x : A. Otherwise,
if the typing judgment A™ F z : A comes from rule (Var) then n = m.

A"+M =, P:C—B AMEN =,y Q:C | .
SA f(M N h

* (S4pp) A" F (M N) —n; (PQ):B if (M N) is whn
By hypothesis, we have A™ F (M N) : A. The inversion lemmas tell us that A™t* - M :
D — A and A™* F N : D, where k = 0 if A is not of the form OE. By induction
hypothesis, A"** - M —,; P: D — A and A™* - N —,; Q : D. Thus, by (SApp),
A" (M N) =5 (P Q) : A. If A is of the form OE, we apply (SPop) and we are done.

O
Definition 9.8 For M a whr term such that each N belonging to elem(M) is strongly normalizing,
we define (M) as p(M) = Z v(N), where v(N) is the mazimum number of reduction steps
NEelem(M)

starting from N.

Lemma 9.9 IfAF M : A, M whr and M —, N (without weak head reduction steps) then N is
whr, has the same structure as M and its elements are obtained from those of M by reductions.
Moreover if all the elements of M are strongly normalizing, then u(M) and u(N) are defined and

u(N) < u(M).
Proof By induction on the proof of “M whr”. We show here two interesting cases:
o If M =1 M;, we necessarily have N =|T N; with M; —, N;.

o If M = (P, Q) with P, whr, we have N = (P| Q') where P, —, P| and Q —. Q'. By
induction hypothesis, P/ is whr, its structure is the same as the one of P; and its elements
are obtained from those of P, by reductions. Thus N is whr, has the same structure as M
and its elements are obtained from those of M by reductions.

Moreover if all the elements of M are strongly normalizing, all the elements of P; are also
strongly normalizing and by induction hypothesis u(P]) < p(P1). Thus p(M) = u(Py) +
v(Q) < u(P) +v(Q) = p(N).

O

Lemma 9.10 IfAF M : A, M —,, N, M —, P (without weak head reduction steps) then there
is a term @ such that P — ., Q and N —, Q.

Proof By induction on the proof of “M —,,, N”.

For instance, if M =] M; with M; whr, then N =| N; where M; —,, N; and P =| P, where
M; —, P;. By induction hypothesis, there is a term @); such that P, —,, Q1 and N7 —, Q1.
We take Q :=] Q1.

O

RR n° 3361

38 Pierre Leleu

Lemma 9.11 IfAF-M: A, M —,, N and for each element My, of M, A™ & My —,¢ Py : By,
then A M —,, N : A.

Proof By induction on the proof of “M <, N”.

For instance, if M =| M;, then N =| N; where M; <, N;. Then by induction hypothesis,
A+ My —yup Ny : OA and we apply rule (W |).

If M =|T My, then N = M;. By hypothesis AF M : A and A™ VT M; —,5 P: B. By Lemma
9.7, AFT My —ny P : OA. We apply rule (W3n) and we are done.

O

INRIA

/<

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - B.P. 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Lorraine : Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - B.P. 101 - 54602 Villers les Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot St Martin (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 Le Chesnay Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, B.P. 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399

