-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Proposal for a Natural Language Processing Syntactic
Backbone

Pierre Boullier

» To cite this version:

Pierre Boullier. Proposal for a Natural Language Processing Syntactic Backbone. [Research Report]
RR-3342, INRIA. 1998. inria-00073347

HAL Id: inria-00073347
https://hal.inria.fr /inria-00073347
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50451456?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00073347
https://hal.archives-ouvertes.fr

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Proposal for a Natural Language Processing Syntactic
Backbone

Pierre Boullier

N° 3342
Janvier 1998

THEME 3

apport
derecherche

VAV 1 IN IN I A

ROCQUENCOURT

Proposal for a Natural Language Processing Syntactic Backbone

Pierre Boullier*

Theme 3 — Interaction homme-machine,
images, données, connaissances
Projet Atoll

Rapport de recherche n° 3342 — Janvier 1998 — 41 pages

Abstract: The purpose of this paper is to present a grammatical formalism that extends context-free grammars
and aims at being a convincing challenger as a syntactic base for various tasks, especially in natural language
processing. These grammars are powerful, they strictly include mildly context-sensitive languages, while staying
computationally tractable, since sentences are parsed in polynomial time. Moreover, this formalism allows a
form of modularity which may lead to the design of libraries of reusable generic grammatical components. And,
last, it can act as a syntactic backbone upon which decorations from other domains (say feature structures) can
be grafted.

Key-words: grammar formalisms, context-sensitive parsing, shared forests, complexity of parsing, modular-
ity.

(Résumé : tsup)

* E-mail: Pierre.BoullierQinria.fr

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
Téléphone : 01 39 63 55 11 - International : +33 1 39 63 55 11
Teélécopie : (33) 01 39 63 53 30 - International ;: +33 1 39 63 53 30

Proposition d’un support syntaxique pour le traitement des langues
naturelles

Résumé : Cet article présente un formalisme grammatical, plus général que les grammaires non contextuelles,
suffisamment convaincant pour servir de base & différentes taches, particulierement en traitement de la langue.
Ces grammaires sont puissantes, elles incluent strictement les langages modérément contextuels, tout en restant
utilisables en pratique; leurs phrases sont analysées en temps polynomial. De plus ce formalisme permet une
forme de modularité qui peut conduire & la conception de librairies de composants grammaticaux génériques
réutilisables. Finalement, il peut étre utilisé comme structure syntaxique supportant des décorations & valeur
d’en d’autres domaines (par exemple les structures de trait).

Mots-clé : formalismes grammaticaux, analyse syntaxique contextuelle, foréts partagées, complexité de
I’analyse, modularité.

Proposition for a NLP Syntactic Backbone 3

1 Introduction

The great number of syntactic formalisms upon which natural language processing is based may be interpreted
in two ways: on one hand it shows that this research field is very active and on the other hand it shows that,
manifestly, there is no consensus for a single formalism and that the one with the right properties is still to be
discovered. What properties should have such an ideal formalism ? Of course, this formalism must allow the
description of the difficult features which have been identified so far in various natural languages while staying
computationally tractable. We know that context-free grammars (CFGs) cannot play this role due to their lack
of expressiveness. On the other hand, context sensitive grammars are too greedy in computer time.

A negative point which must be noted with usual grammars is their lack of modularity. To be modular, a
formalism must possess both some formal properties and some structure preserving properties. Let’s take an
example to illustrate this point. Assume we have two context-free grammars (CFGs) Gy = (N1, T, P1, S1) and
G2 = (N2, Ty, P2, S2) which respectively define the languages L; and Lo. We can assume that Ny N Ny = (. If
we try to build a CFG G = (N, T, P, S) which defines the language L = L; ULy, we can have N = Ny UN,U{S},
T=T1UTrand P=PUP,U{S — 51,5 — S2}. Here we can say that CFGs are modular w.r.t. the union
operation since CFGs have the formal property to be closed under union and moreover this union is described
by a method (here the additional rules S — S; and S — S,) which preserves the structure of its components
(parse trees of G; and G3). Conversely, CFGs are not modular w.r.t. intersection or complementation since we
know that CFLs are not closed under intersection or complementation. If now we consider regular languages, we
know that they possess the formal property of being closed under intersection and complementation; however
we cannot say that they are modular w.r.t. these properties, since the structure is not preserved in any sense.
For example, take a regular CFG G, defining the language L, we know that it is possible to construct a regular
CFG whose language is L, but its parse trees are not related with the parse trees of G.

Of course it would be of considerable benefit for a formalism to be modular w.r.t. intersection and comple-
mentation. The modularity w.r.t. intersection could allow one to directly define a language with the properties
P, and P,, assuming that we have two grammars GG; and G4 describing P; and P», without changing neither G
nor G2. Modularity w.r.t. complementation or difference could allow for example to describe on the one hand a
general rule and, on the other hand, the exceptions to this general rule and then to mix the two specifications.

Such modular properties, could even allow us to design libraries of grammars describing such and such
linguistic feature, in order to help a grammar writer who could pickup modules from this library at will in order
to construct its own description.

The purpose of this paper, which is based upon the work of Groenink (see [Groenink 97]), is to present
a simple modular (in the above sense) grammatical formalism, which is parsed in polynomial time and which
allows to describe, at a pure syntactic level, many linguistic phenomena. Moreover, this formalism can be
considered itself as a syntactic backbone upon which decorations taken from other domains (Herbrand, feature
structures, ...) can be added.

2 Conventions & Notations

If E is an enumerable ordered set, E = {ey, e, ...} the corresponding sequence ey, es,... of elements in E can
be denoted by a vector notation E and the selection of vector components (i.e. indexing) E[1], E[2],... denote
respectively the elements eq, ea, In some cases E can be mapped to nonnegative integers, E = {eg,e1,... },
in this case E[O] denotes ep. If E is finite, its cardinality is denoted by Ig or . The vector notation may also
be used to convey the idea of sequences (tuples).

3 Positive Range Concatenation Grammar

Definition 1 A positive range concatenation grammar (PRCG) is a 5-tuple G = (N,T,V,P,S) where N is
afinite set of nonterminal symbols, T and V are finite, disjoint sets of terminal symbols and variable symbols
respectively, S € N is the start symbol, and P is a finite set of clauses

Yo = P1...Pm
where m > 0 and each of ¥o,v1,...¥m is a predicate

Aloq, ..., ap)

RR n° 3342

4 P. Boullier

where p > 1 is its arity, A € N and each of o; € (TUV)*, 1< i < p, is an argument.

PRCGs can be considered as a variant of Literal Movement Grammars (LMGs) of Groenink (see [Groenink
97))L.

We shall see that the language defined by such a grammar does not depend either upon the order of the
predicates ¥1%s . . . ¥, occurring in the right-hand-side (RHS) of a clause nor upon duplicate predicates (multiple
occurrence). Therefore the RHS of clauses must be considered as sets rather than sequences.

The scope of variables is local to a clause and as such we will assume that the clauses in P are all different
after any variable renaming or permutation of its RHS predicates.

A predicate whose nonterminal part is A is called an A-predicate. If the left-hand side (LHS) of a clause is
an A-predicate, we have an A-clause. The set of all A-clauses in P is denoted by Pj4.

For a given nonterminal A, this definition assigns a fixed arity to all A-predicates. The arity of the S-
predicates (associated with the start symbol) is one.

The arity of a clause is the arity of its LHS predicate.

The arity h > 1 of a PRCG is the maximum arity of its clauses, in such a case we have an h-PRCG.

Since P, clauses and arguments may respectively be seen as sequences of clauses, predicates and strings (over
(T U V)*), they can be denoted by vector notations. 13[1], 1<i<lpisaclause. A clause ¥y — P192...0n
can be denoted by ¥ where lI_;[O] denotes the LHS predicate vy, and each of 'f'[z], 1 < i < m denotes a RHS
predicate ;. A predicate A(aq,...,ap) can be denoted by A(d) and each @[i],1 <i < pis an argument.

Fae (TuV), Ve ={X | a = uXvAX € V} is the set of its variables. If ¥ = A(a1,...,qp), is a
predicate, V¥ denotes the set Vo1~ and if & = 99 — 1h1ths...%m is a clause, V¥ is the set V¥o¥1-¥m of
variables occurring in 0.

Let G = (N,T,V,P,S) be a PRCG. The CFG G' = (N,0,P',S) is a (CF) skeleton of G iff there is a
mapping between P and P’ such that for each clause Ag(dy) — A1(ai)... An(dy,) € P there is a production
Ay — A} ... Al, € P'in which A} ... Al is a permutation of 4; ... A,,. Of course, the CF skeletons associated
with one PRCG are weakly equivalent, their languages being such that £(G') C {e}. In the sequel we will
assume that the PRCGs are such that their CF skeletons are reduced®. Under that assumption, if P’ # (), the
language of any CF skeleton is not empty and contains only the empty string.

3.1 Ranges

The notion of ranges defined in this section is fundamental in PRCGs theory since their associated derivations
and languages will be based upon ranges. A range is merely a couple (4,) of non negative integers denoted by
(i..7). A range is used to formalize the occurrence of a substring in a string or a couple of states in a Finite
State Automaton (FSA).

For a given string w = ajas ...a, € T*, the set of its ranges is defined by R,, = {{i..j) |0<i<j<n}. A
range (i..j) in R,, designates the triple (wi, w2, ws) such that w = wywows with wy = a1 ... a5, w2 = aiy1 ... a4
and w3 = @41 . ..an. We will use several equivalent denotations for (string) ranges: an explicit dotted notation
as wy @ wo ® w3 Or (i..5), or (i..j) when w is understood. The three substrings wq, we and w3 associated with
(i..7) are respectively denoted by w(®# w{*3) and w'-™. A range where i = j is called an empty range. The
range (j — 1..5) can be denoted by (j). Therefore we have, w99 = ¢, w'?) = a; and w(®™ = w.

If §is a vector of ranges p[1] = p1, ..., pli] = pi, -, pIp] = pp where 1 < i < p, p; € Ry, by definition w?
denotes the sequence (vector) of strings w?*, ..., wfi, ..., w’».

For a given FSA A = (Q,T, qo, 6, F'), the set of its ranges is defined as R4 = {(i..j) | i,j € QATz € T*,j €
6*(i,x)} where §* is the extension from terminal symbols to strings of the transition function é.

We can remark that a string w = aqas . .. ay, is a trivial case of deterministic FSA where @ = {i| 0 <i < n},
T ={a|w=wiaws}, go = 0, F = {n} and the deterministic transition function § is only defined between
consecutive states by 6(i — 1,a;) = 4,0 < i < n.

This generalization from strings to FSAs can be very useful in NLP since regular languages can express
different phenomena like ill-formed, incomplete or ambiguous (multi tagged /multi part of speech or word lattice)
inputs. However, in the sequel, we will assume that the input is a string, but it must be clear that (most of)
our results also hold with FSAs.

1See Section 11 for more details.
2A CFG is reduced if all its symbols are useful, i.e. are accessible from the start symbol and produce terminal strings.

INRIA

Proposition for a NLP Syntactic Backbone d

3.2 Bindings

Variables are bound to ranges by the following mechanism of variable substitution.

Letw = ay ...a, be astringin T*, the p’s are ranges in R,, and the X’s are variables in V. Any couple (X, p)
is called a variable binding for X denoted by X/p. The range p is the range instantiation of X and the string w?
is the string instantiation of X. Two variable bindings X;/p; and X;/p; are consistent iff X; = X; = p; = p;.
A set 0 = {X1/p1,...,Xn/pn} of variable bindings is a variable substitution iff its elements are consistent.

This notion of binding is extended below from variables to terminals, strings, predicates and clauses.

A couple (g, p) is an empty binding denoted &/p iff p = (j..j), for some j.

A couple (a, p) with a € T' is a terminal binding denoted a/p iff p = (j) and a = a;.

More generally, a couple (a,p) with o € (TUV)* and p € R, for some w in T* is a string binding
iff 0 = 2o X121 .. . Xpap... Xpzp with VE,0 < k < p: 2y € T* and Vk,1 < k < p: X} € V, and
there is a variable substitution ¢ = {Yi/m,...,Y,/7,} such that w? = zow’ z1... WPz ... WPz, with
Xi/p1,.. s Xi/pky-- ., Xp/pp € 0. Such a string binding is denoted by a/,p or simply a/p when o is un-
derstood or of no importance. The string w” is called the (string) instantiation of « by p. A string « € (TUV)*
is instantiable iff there is a string w € T™*, a range p € R,, and a variable substitution o s.t. a/,p.

It is not difficult to see that any string o = 20 X121 ... Xpzk ... Xpzp is instantiable, except when there are
two different indices ¢ and j s.t. ¢ < j, X; = X; and ;2541 ... 2j—1 # €. Therefore, in the sequel, without loss
of generality, we disallow duplicate variables in individual strings (predicate arguments).

The couple (&, §), where & = a,...,q, is a vector of strings and § = py,...,p, is a vector of ranges is
a string vector binding iff there is a variable substitution o such that Vk,1 < k < p, we have ay/,pr. A
string vector binding is denoted @/, f or simply a/ p. In such a case, we say that & is instantiable. The string
instantiation of & by p'is the vector of strings wf = wPr, .. wPr.

A vector of instantiable strings is not always instantiable. For example, consider the two arguments (a X, bX).
They are not instantiable since for any w = a5 ... a, and any variable binding X/(i..j),, we should have a; = a
and a; = b, which is impossible. However, we can design an algorithm which checks whether a string vector is
instantiable.

If &/, is a string vector binding and if A(&) is a predicate, A(&)/,f denotes a predicate binding and we
say that the couple A(p) is a (range) instantiation of A(@). In this case, the predicate A(@) is instantiable.

Last, consider a clause U = Ao(ap) — Ar(ad) ... An(dny) and a vector of range vectors a= 00,015+« Prms
the couple (\I_;,ﬁ) is a clause binding iff there is a variable substitution ¢ such that Vk,0 < k < m, we have
A(ad3)/sPk- A clause binding is denoted by \II/UQ or more s1mp1y ‘II/Q Of course we say that Ag(py) —
A1(f1) ... Am(pm) is a (range) instantiation of ¥ by € and that ¥ is instantiable.

In the sequel we will only consider instantiable clauses.

3.3 Derivations, Derivation Trees & Shared Forests
3.3.1 The CF Case
Let G = (N,T, P,S) be a CFG, derive is a binary relation on (T'U N)*, denoted by v defined by

I AFQIC?FIQPQ

where T’y and T’y are elements of (TU N)* and A — « is a production in P.
Let d = (Tp,Ty,...,T}) be a sequence of strings in (T'U N)* such that Vi,1 <i<1:T;_ = T';, dis called a

derivation of length [, T'y is the head and T'; is the word. A derivation can also be denoted by (T 20> T :;>).

Each couple (T';—_1,T;) is a derivation step. A I'-derivation is a derivation whose head is I. A T';-derivation
whose word is I'z is a I'y /T's-derivation. The elements of a I'-derivation are called I'-phrases. Any S-phrase
is a sentential form. A sentence is a sentential form in 7. A derivation whose word is a sequence in 7™ is a
terminal or closed derivation.

If we consider the derivation as a rewriting process, at each step, the choice of the nonterminal to be
derived does not depend of its neighbors (the derivation process is context-free). We can talk of leftmost (resp.
rightmost) derivations when at each step the leftmost (resp. rightmost) nonterminal is substituted. Of course
many other derivation strategies may be thought of. All theses strategies can be captured in a single canonical
tree structure which abstracts all possible orders and called derivation tree (or parse tree). For any given
A-derivation, we can associate a single derivation tree whose root is labeled A. Conversely, if we consider a

RR n° 3342

6 P. Boullier

derivation tree, there may have several associated derivations which depend upon the way the tree is walked
(for example a top-down left-to-right walk leads to a leftmost derivation).

Remark that from a derivation step (I',T"), it is not always possible to determine which nonterminal occur-
rence in T" has been derived (consider the derivation step 4 A ? A with A — ¢ € P). However, if the occurrence

is known, the production used can be determined. This will not be the case with PRCGs (see below).
If we consider a S/z-derivation say d = (S :;> I'h AT % x), the nonterminal occurrence of A in I';y AT

is responsible for the generation of the portion x5 of x, independently of I'; and I's which are respectively
responsible for the production of z; and z3 if we assume that £ = z1z2235. In a S/z-derivation, we denote by
AP where the range p = x1 ® 22 ® x3, the fact that (some occurrence of) A is responsible for the generation of
x2. Therefore, to each S/z-derivation d, we can associate a new sequence in (T'U (N x R;))* denoted by (d) in
which each occurrence of a nonterminal A is replaced by some A”: (d) = (5*** :;> (T'1) A%rez20@s(g) :;> T1T2%3)

where (I'1) and (I's) are strings produced from I'; and I's in which each nonterminal occurrence is associated
with its corresponding range.

Let’s denote D, the set of all S/z-derivations for a given £ = a1 ...a, € T* and a CFG G = (N,T, P, S),
and (D,) = {(d) | d € D, } the corresponding set. We construct a new CFG G, = (N x R,, T, P,, S***) whose
production set is defined by

P, = {AF = oAl ... Abrym | Ay — yoAr ... Anym € PA

(5°7% 2 (D1) A5 (Ta), (T1)yo AT ... Al ym(Ts) = @) € (Da)}

This CFG is called a shared forest. This is the structure which is constructed, implicitly or explicitly, by
any general CF parsing algorithm.
This shared forest has some nice properties among which we can note

o This shared forest is the intersection of a CFG (the grammar G) and a FSA (the trivial FSA defined in
Section 3.1 whose language is {z}). It can be built in cubic time in n and its size is also cubic if P is in
binary form.

o € L(Q) = {z} = L(G,).

e (D,) is in fact the set of all S***/z-derivations in G,. Moreover, G, may be viewed as a polynomial size
representation of the (unbounded) set of derivation trees in G for z.

In fact, shared forests seem to be the right structure when we consider the output of a CF parser, both at
a formal or at a practical level.
Below, we generalize this notion of shared forests to PRCGs.

3.3.2 The PRCG Case

Definition 2 For a given PRCG G = (N, T,V,P,S), and a string w in T*, we define on strings of instantiated
predicates® a binary relation named derive, denoted = by
;W

Ty Ao(po) T2 > Ty Ai(p1) ... Am(pm) T2

where Ty and Ty are sequences of instantiated predicates, U = Ao(ap) — Ar(al)...An(am) is a clause
in P, O = (o, Pl,---,pm) is such that $/,Q is a clause binding for some variable binding o and Aq(y) —
A1(p1) .- A (pm) 1is the range instantiation of U by (.

Let d = (T'y,T'1,...,I) be a sequence of strings of instantiated predicates such that Vi, 1 <4 <1:T;_; G:> T;
W

for some w € T*, d is called a derivation of length I, Ty is the head and T is the word. Each couple (T';—1,T;)
is a derivation step. A I'-derivation is a derivation whose head is I'. A I';-derivation whose word is I's is a
Ty /Ta-derivation. The elements of a I-derivation are called I'-phrases. Any S(ewe)-phrase is a sentential form.
A derivation whose word is the empty sequence ¢ is a terminal or closed derivation. A S(ewe)/e-derivation is
complete. A string w € T™* is a sentence of G iff there is a (complete) S(ewe)/e-derivation. Remark that in
PRCGs a sentence is not a particular sentential form.

3The ranges are elements of Ry.

INRIA

Proposition for a NLP Syntactic Backbone 7

Definition 3 The string language of a PRCG G = (N,T,V, P, S) is the set of its sentences

LG) = {w]|S(eows) = ¢}
G,w

As in the CF case, if we consider the derivation as a rewriting process, at each step, the choice of the
(instantiated) predicate to be derived does not depend of its neighbors (the derivation process is context-free).
We can talk of leftmost (resp. rightmost) derivations when at each step the leftmost (resp. rightmost) predicate
is substituted. Of course many other derivation strategies may be thought of. All these strategies can be
captured in a single canonical tree structure which abstracts all possible orders and which is called derivation
tree (or parse tree). For any given A(p)-derivation, we can associate a single derivation tree whose root is labeled
A(p). Conversely, if we consider a derivation tree, there may have several associated derivations which depend
upon the way the tree is walked (for example a top-down left-to-right walk leads to a leftmost derivation).

Remark that from a derivation step (I',I"), it is not always possible to determine which predicate occurrence
in T' has been derived. Moreover, even if the occurrence is known, the clause T used cannot be determined in
the general case. This is due to the fact that Ag(py) — A1(F1) - - - Am(pm) may be the instantiation of different
clauses ¥y, U, ... by the clause bindings 1171/6, lI-;Q/ﬁ, ... where (3 = (P0, 1, ---,pm)- But, of course, each
of these interpretations is a valid one.

Consider the set D,, of all S(ewe)/e-derivations for a given w = a1...a, € T* and a k-PRCG G =
(N,T,V,P,S). We define a CFG G,, = (N x RE 0, P,,, 5***) whose production set is

P, = {AR — AP A | S B2 Ty Ag(pp)Ts = T A1(G1) ... Am(pm) Ts = € € Dy}
G2w G2w G,w

This CFG is called the shared forest for w w.r.t. G.

Note that, opposite to the CF case, if D,, is not empty, the language of a shared forest is not {w} but is {€}.

We shall see in Section 13 how this shared forest can be constructed by our parsing algorithm in polynomial
time.

Moreover, this shared forest of polynomial size, may be viewed as an exact packed representation of all the
(unbounded number of) derivation (parse) trees in G for some w: the set of parse trees for (G,w) and the set
of parse trees of its shared forest G,, are identical?.

Definition 4 A PRCG is ambiguous if there is at least one sentence for which there is more than one derivation
tree.

3.3.3 Generalization to other cases

Lang generalizes the notion of shared forest from CFG to other families of formalisms. Quoted from [Lang 94]
[the purpose is,] given a family ® of grammatical formalisms, to derive the construction of dynamic programming
parsers for ® from a constructive proof that the family ® is closed under intersection with regular sets. More
precisely, given a ®-grammar G and a finite state automaton A, if we can construct from them a new ®-grammar
F for the intersection L(G) N L(A), we define this new grammar F to be the shared forest for all parses of the
sentences in the intersection. Afterwards, he successfully applies this vision to TAG parsing, and he claims
that this approach extends nicely to such formalisms as ... Linear Indezed Grammars In [Boullier 95],
we construct a LIGed forest which is exactly a shared forest & la Lang (it is merely the shared forest of the
CF backbone of the initial LIG, decorated with its stack schemas). But doing so (in time O(n?)), we are far
from getting a LIG parser or even a recognizer. The LIG constraints still have to be checked. In [Boullier 96]
we propose a LIG parser whose output is a CFG (built in time O(n%)), whose language is the set of valid LIG
derivations from which each derivation can be extracted in linear time. As a caricature, if we apply Lang’s
vision to RCG, their parsing is for free: let S; be the start symbol of a RCG G, w = a; ...a, be an input
string and the output of a RCG parser for w is the RCG whose set of clauses is the set of clauses of G; to which
the two clauses Sa(w) — € and S(X) — S1(X) S2(X) have been added.

Though the fact that the input and the output of a parser are expressed in the same formalism seems to
be a conceptual appealing feature, we part from this approach and propose for shared forests a much more
practical vision. What we really want as an output for a parser is a packed structure from which individual
derivation (parse) tree can easily be extracted. To be more precise, by packed, we mean a structure whose size is
polynomial in the length of the input string, even when the number of individual derivation trees is unbounded.
By easily extracted, we mean a linear time extraction in the size of the extracted tree.

40f course we assume that A(p) and 7 denote identical couples.

RR n° 3342

8 P. Boullier

In that sense, the Linear Derivation Grammars of [Boullier 96] are shared forests for LIGs.
Of course, polynomial size CFGs are ideal candidates for being shared forests. This is the case of RCGs, as
we already have seen in the previous section.

3.4 Positive Range Concatenation Languages (PRCLs)

In Definition 3 we have defined the string language £ of a PRCG which covers the usual meaning of language
defined by a grammar. Here we will define another type of language associated with nonterminals of a PRCG,
namely the range language denoted by A.

For a given w € T*, the elements of a range language are range vectors § € R} and the elements of a string
language are string vectors w”, 5 € R’ . Between any range language A and the corresponding string language
L we have the following property:

ViER: feEA = wPel

Definition 5 Let G = (N, T,V,P,S) be a PRCG.

o The range language of a nonterminal A for some w € T* is

A4, w) = (5| FE R, NAP) 2 €}

o The (string) language of a nonterminal A for some w € T* is
£(4,w) = {w? | € A(4,0)}
o The range language of a nonterminal A is
A(A4) = Uyer-A(4,w)
o The (string) language of a nonterminal A is
L(A) = Uner-L(A,w) = {w” | f € A(4)}
o The range language defined by G is

A(G) = {owe | S(ewe) G:EU e}

o The (string) language® defined by G is
£(G) = {w | swe € A(G)}

We must note that, with these definitions, the language of a grammar is not the language of its start symbol,
we have

c A
L£(G) < £(5)

since A(S) = {w; e wy e w3 | S(wy @ wy ® w3) =N e} and L(S) = {wa | w1 e wy e w3 € A(S)}.

G,wlwgwg

50f course, this is equivalent with Definition 3.

INRIA

Proposition for a NLP Syntactic Backbone 9

Example 1 Consider the PRCG with the following set of clauses

c: S(XcY) - A(X,Y)
co: Alg,e) - €

c3: A(Xa,Ya) — A(X,Y)
cg: AXDYD) — A(X,Y)
¢ AXe,Ye) — AX)Y)

We check that the string w = abcab is a sentence

S(eabcabe) G%u A(eab e cab, abc e abe)
& Afsasbeab,abeeaeb)
(%U A(e o abcab, abc o eab)
c%u 5

The clause used at each derivation step is stacked over the corresponding derived symbol.
One can easily see that at each step the ranges p1 and pa of the predicate A are such that w’' = wP* so the
language 1is

L= {zcx |z € {a,b,c}*}
which is not CF.

Example 2 Another way to define the language of the Example 1 is with the following PRCG:

S(XcY) — L(X)EqX,)Y)
L(e) - €

L(Xa) — L(X)

L(Xb) — L(X)

L(Xe) — LX)

where the equality predicate Eq is defined by the two clauses

Eq(Xt,Yt) — Eq(X,Y)
Eq(g,¢) — €

where the first clause is a schema over all terminals t € T'.
We see that Eq acts as a generic predicate which can be used in any grammar when we need to check the
equality of two strings. See Section 12 for a generalization of this grammar definition process.

Example 3 The power of this formalism is shown by the next grammar whose sentences do not express a
“constant growth property”

S(XY) — S(X)EqX,Y)
L={a"|p>0}

4 (Negative) Range Concatenation Grammars

In this section we define the general notion of range concatenation grammar (RCG), which is an extension
of PRCGs in which the predicates occurring in RHS of clauses may be “negative” (denoted by an overlined
nonterminal symbol) with the intuitive meaning of negation or complementation. The term negative range
concatenation grammar (NRCG) will be used to enforce the presence of negative predicate.

Definition 6 A range concatenation grammar (RCG) G = (N,T,V,P,S) is a PRCG except that predicate
symbols in RHS of clauses are in the set N UN where N = {A| A€ N}.

RR n° 3342

10 P. Boullier

Therefore we may talk of positive or negative nonterminals (predicates), N U N is the set of extended
nonterminals (predicates).

Let G = (N,T,V,P,S) be a RCG. The PRCG Gt = (N, T,V, P*,S) associated with G is such that there is
a mapping from P to P* s.t. the negative nonterminals in a clause (if any) are transformed into their positive
counterpart (PT = {Ao(ap) — Ai(ai)... Am(amm) | Ao(ap) — e1(@1)...em(am) € PANVi,1<i<m: ife; €
N then A; = e; V ife; € N then A; = &)})%. As usual we will assume that the CF skeleton of the PRCG
associated with a given RCG is reduced.

In order to define the language of such a grammar, we first extend the derive relation.

The relation derive holds between strings whose elements are instantiated extended predicates.

For a given string w € T*, let Dy be the set of couples (T'1 Ag(po) T'2,T1 A1(p1) - - - A (Fim) T2) where T'g
and T’y are sequences of instantiated extended predicates and such that there is an Ag-clause T = Ag(ap) —
Ai(ay) ... Am(a7y) € P and a binding ¥ /0 with g; = ([i],0 < i < m.

The (extended) derive relation, also denoted =, is defined as the smallest set which verifies the equation
W

= = DyU{(Ts Ao(g) T2, 11 T2) | (Ao(60),€) # 5 }

G,w 2w

Intuitively, negative instantiated predicates such as Ag(py) disappear within derivations, when gy is not in
the range language of Ag.

Of course, this definition is the Definition 2 when we only consider instantiated positive predicates. However,
some inconsistency may occur if we want to keep the view that a negative predicate represents the complement

of its positive counterpart. A derive relation in which we have both A(p) c?+> e and A(p) € is inconsistent
w ;W

)

(otherwise consistent).
Example 4 Consider the RCG G which contains the two clauses

S(a) —

S(X) %(X)

We have Dy = {(T'1S(p1)T'2,T1I2) | p1 € Ry AwPt = a} U {(T15(p2)T'2,T15(p2)T2) | p2 € Ry}, for some
w € T*, where Ty and T's are strings in (N x RE)*. Therefore, if ps # p1 we have (T1S(p3)T2,T102) €=
;W

This shows that the relation = is inconsistent since if p3 # p1, we have both S(ps) £ ¢ and S(p3) = €.

Gw G,w G,w

In the sequel we will proscribe inconsistent derive relations. If the CF skeleton of a RCG is such that
Ax I'1 AT, (a nonterminal is defined in term of its own complement), we can easily see that the derive
relations (for all w € T*) are consistent. Under this assumption, for a derive relation, a nonterminal A and a
vector of ranges p we have either A(p) G:E) e or A(p) G;Z €.

Remark that, the structure (derivation trees) of negative components is empty. This property is not in

contradiction with our purpose to use negative predicates to describe the exceptions of a general rule. Assume
that a property P is defined by a general rule (the predicate R) with some exceptions to that rule (described by

E). The clause P(@) — R(d) E(d&) describes such a specification. It is clear that the structure of the elements
of E (which therefore are not in P) has no interest. Conversely, the structure of the elements of P (which are
in R and not in E), is the structure of the elements of R.

Definition 7 Let G = (N,T,V,P,S) be a RCG.

e The range language of a nonterminal A for some w € T* is

AA,w) = {7| Fe Ry NAP) 5 ¢}

e The range language of a negative nonterminal A for some w € T* is

A w) = {F| Fe RY A7 E AA,w)} = (7| 7€ REAAG) = <)

60f course we have j = A.
INRIA

Proposition for a NLP Syntactic Backbone

The (string) language of a nonterminal A for some w € T* is

L(A,w) = {w” | 7€ A(A,w)}

The (string) language of a negative nonterminal A for some w € T* is
LA w) = {w | § € A, w)}

The range language of an extended nonterminal e € N U N is

A(e) = Uwer-Ale, w)

The (string) language of an extended nonterminal e € N U N is

L(e) = Uuer-L(e,w) = {w” | p € Ale)}

The range language defined by G is

A(G) = {owe | S(swe) Gé%u e}

The (string) language defined by G is
L(G) = {w | ewe € A(G)}
Borrowed from [Groenink 97], we define the following.

Definition 8 Let G = (N,T,V,P,S) be « RCG and let ¥ € P be one of its clause:
T = Ag(dy) — Ar(a@l) ... Am(ain)

e ¥ is non-combinatorial if each of the dj[k],1 < j < m consists of a single variable.

o T is bottom-up linear if no variable appears more than once in oy.

o U s top-down linear if no variable appears more than once in ai, ..., a;,.

o T is bottom-up non-erasing if each variable occurring in an ai, ..., 0, also occurs in ag.
o U is top-down non-erasing if each variable occurring in agp, also appears in o3, . .., dq,.

e U is linear (resp. non-erasing) if it is both bottom-up and top-down linear (resp. non-erasing).
These definitions extend from clause to set of clauses.
Property 1 For any RCG, there is an equivalent non-combinatorial RCG.

Proof: Let G = (N,T,V,P,S) be a combinatorial RCG and G' = (N',T,V', P!, S") the non-combinatorial
RCG construct in the following way. We assume that each time a new nonterminal or a new variable
appears in some clause, it is added to the set N’ or V.

We assume that W is a variable not in V which is bound, throughout G’ to the range ewe for some

we T,
P’ is initialized with S"(W) — S(W,W).
For each clause ¢ = Ag(a},...,al) — Ai(al,...,al) .. A (al,,...,alm) in P
e If ¢ is non-combinatorial, Ag(W,ad,...,al) = A;(W,ad,...,al) ... An(W,al,,...,alm) is added
to P'.

e If ¢ is combinatorial, we add three new clauses to P’

RR n° 3342

12 P. Boullier

1. AW, X4,...,Xl) = e(W, X},..., Xl W,...,W) where the arity of ¢ (c is a nonterminal for
G') isl4+lg+lh+... +1,.

2. (W, X¢,..., X, vixizl, .. .y Xxbhzl YIXLZL .. Yim XIm 7l) s (XY,
L XE X X X X)) A (WX XY A (WX X
where the arity of ¢/ is lg + 11 + ... + I, and the arity of each A;,1 <i<mis 1+ ;.

11 lo 1 51 1 Im
3. (0, a0, O Oy, O D E

It is not difficult to see that G and G' are equivalent.

Note that G' is not top-down linear.

Property 2 For any non-combinatorial bottom-up erasing RCG G, there is an equivalent non-combinatorial
bottom-up non-erasing RCG G'.

We will only show how we can force a single variable say Y> in the RHS of a bottom-up erasing clause to
appear in the LHS of this clause. This method easily generalizes to any number of such variables. Assume we
have in G a clause Ag(cp) — ... Ai(d;) ... with Yo & V9 and Y € V¥. We construct a new clause where the
predicate Ay has two more arguments, the first one and the second one, which are both bound to the range ewe:
Ag(W, Y1YsY3,00) — ... Ai(d) - ... In fact the additional number of arguments for that clause is the number
of erased variables from the RHS plus one. Of course, the arity of each predicate must be consistent throughout
G’ (use the variable W, as much as necessary). At last we only have to add the clause S'(W) — S(W,..., W),
with the right new arity for S.

Note that G’ is not top-down linear and top-down erasing.

Property 3 For any non-combinatorial bottom-up non-erasing top-down erasing RCG G, there is an equivalent
non-combinatorial non-erasing RCG G'.

Each clause Ag(dp) — ¥ in G with a variable Y s.t. Y € V% and Y € V¥ is changed to the new clause in
G’ Ao(ap) — ¥ Any(Y) where Any is a predicate defined by

Any(aX) — Any(X)
Any(e) — €

where the first clause is a schema over all terminals a € T'.

Therefore, in the sequel, we may assume at will that any RCG at hand is non-combinatorial and non-erasing.

However, these equivalence properties do not hold for linearity (i.e. in the general case, there is no linear
grammar equivalent to a non-linear one). In other words, non-linearity brings some formal power to the
formalism. In particular, we shall see in Section 12 that RCGs are closed by intersection is due to its non-
linearity.

We can show that if a non-combinatorial, non-erasing top-down linear RCG is reduced and e-free, then this
grammar is (bottom-up) linear. This is due to the fact that under those assumptions, the ranges are not empty
and non-overlapping. Therefore, a useful Ag-clause cannot have two occurrences of the same variable in two
arguments of the LHS predicate Ay.

Note that the clauses

AX,X) — B(X)
A(X,)Y) — B(X) EqX,Y)
and
A(X) (X) C(X)

are not equivalent.

INRIA

Proposition for a NLP Syntactic Backbone

5 Simple (Positive) Range Concatenation Grammars

Definition 9 We say that a RCG is simple (sRCG) if it is linear, non-erasing and non-combinatorial’ .

In other words, the arguments in the RHS of any clause are different variables and all these variables (and

no others)
In this

must occur exactly one time in the LHS arguments.
section we shall see some algorithms and properties of simple PRCGs (sPRCGs). We emphasize this

particular form of RCG both for its simplicity and because there is a great variety of usual syntactic formalisms
(see Sections 7, 8, 9 and 10) which can be transformed into an equivalent sSPRCG.

Definition 10 We say that an A-clause T s productive (for some RCG G) iff there is for some w € T* and

for some range vector p € R, a terminal derivation headed at A(p) whose first step uses an instantiation of T.
We say that a nonterminal A is productive iff there is a productive A-clause.

Let G = (N,T,V, P, S) be a RCG. We assume that G is in non-combinatorial form. The following algorithm
computes an array named Pr in examining at turn each clause in P which is supposed to have the form
U = Ap(ap) — Ai(al) ... Ap(am)-

1. Initially, Pr[¥] is set to false for all ¥ € P.

2. level

3. level

=0.If¥ = Ao(ap) — € then set Pr[lI_;] to true.

:= level+1. If for each A;,1 < j < m there is an Aj-clause say c such that Pr[c] is true, then set

Pr[¥] to true.

4. Step

3) is iterated until stability.

This algorithm terminates since we monotonically iterate over finite sets.

Property

4 If G is a sPRCG, T is productive iff Pr[\I_;] is set to true by the previous algorithm.

Proof: Assume that Pr[¥] = true. We are going to show by induction on the level associated with Pr[¥] that

there is a terminal derivation Ao (go) Géi ¢ if ¥ is an Ag-clause.
w

)

basis. If this assignment has been set at level 0, there is a terminal derivation of length 1, using the clause

binding ¥/, for some fy (G is instantiable).

Induction step. Assume that all clauses associated with alevel 0,1,...,l—1 are productive and consider

a clause ¥ = Ag(dpy) — A1(di) ... Am(@m) associated with level I (if any) such that Pr(¥) = true.
We know (see step 3), that there are m Aj-clauses ¥y,..., ¥, s.t. Pr[¥;] = true,Vj,1 < j <m
and whose associated level is less than [. Therefore, by the induction hypothesis, there are m

strings w; and m terminal A;(p})-derivations, using the derive relation = . In order to construct
;Wi

a derivation whose first step uses an instantiation of the clause ¥ and whose further sub-derivations
are made from the m terminal A;(j;)-derivations, we have to construct a single input string say
w, since in a derivation all the ranges must be elements of a single R,,. We assume that the kth
argument of the j*" predicate in the RHS of ¥ (i.e. aj[k]) is the variable X}. The new string
w is the concatenation from left to right of the arguments ap of the LHS predicate Ao in which
each variable, say Y, is substituted by the substring w;-)j K] of w; if Y =X Jk and terminal symbols
are left as such given w = 2z...2,, where each z; is the participation of djp [¢] in w. Therefore,

Vi1 <j <mVk1<k<lg : Jw,w st w=ww? Mws and if (j,k) # (5, k) the substrings
w? [%] and w"; (K] are non-overlapping in w. Assume that w; = z1y1y2yszs and that the range
p;lk] is z1 ® y1y2y3 @ x3. Any subrange p = x1y1 ® y2 ® ysxz of pj[k] is changed into the range
w1y1 ¢ Y2 ® yzws of R,,. In particular, the ranges such as gj;[k] are changed into w; e w;-’j (K] o ws. Let
p0 = (ez1 @ e Bl Bl @2 @ Zl s L 'zla-o') be a range vector, it is not difficult to
see that we have ag/po. Hence, there is a terminal derivation whose first step uses an instantiation

of the clause ¥ which is therefore productive.

"Note that our definition for simplicity is stronger than the one of [Groenink 97].

RR n° 3342

14 P. Boullier

We show by induction on the length of terminal derivations that the converse also holds. The basic step is
true since derivations of length 1 are processed at step 2 of the algorithm. Assume that our property holds
for terminal derivation of length [—1 and we consider a terminal derivation of length [whose first step
is characterized by the binding ¥ /€. There are m independent terminal derivations headed at A;(2[j])
whose first step used the clause say 1171- and whose length is less than {. Therefore we have Pr[\I;j] = true
by the induction hypothesis and Pr[lI_}] = true by step 3) of our algorithm.

Remark that our algorithm gives only a necessary condition for a clause to be productive if the grammar at
hand is not top-down linear. The reason is that it cannot check the fact that the string instantiation of different
arguments are identical, when these arguments are identical variables.

Example 5 Consider the not top-down linear PRCG whose clauses are:

S(X) — A(X)B(X)
Ala) — ¢
B(b) — £

our algorithm will set Pr[S(X) — A(X) B(X)] to true though its language is empty.
Property 5 The emptiness problem is solvable for any sPRCG.

We only have to look at the value of Pr[lI_}] for some S-clause ¥.

In Sections 8, 9 and 10 we will show that a variety of usual syntactic formalisms can be transformed into
an equivalent SPRCG. The previous property also shows that the emptiness problem is solvable for all these
formalisms:

Property 6 The emptiness problem is solvable for LIGs, TAGs, HGs, CCFGs and LCFRS.

Definition 11 We say that a clause is accessible (otherwise, it is inaccessible) if, for some w € T*, it is is
used in a S(ewe)-derivation.

Recall that we only consider RCGs which are instantiable and whose CF skeleton is reduced. If moreover
we consider the non-combinatorial linear version, each clause in this grammar is accessible. If the grammar is
not top-down linear, the checking that different RHS arguments with identical variables match identical ranges
cannot be performed.

Definition 12 We say that a clause is useful (otherwise, it is useless) if it used in a S(ewe)/c-derivation for
some w € T™.

Definition 13 A RCG is reduced if all its clauses are useful.

If the grammar is simple, we can remove all its useless clauses by a variant of the classical algorithm for
CFGs.
If this algorithm is applied to a non linear RCG, we get an equivalent RCG which may be not reduced.

5.1 e-freeness

Definition 14 A clause ¥ = Ay(dy) — A1(dl) ... Am(aiy) is an e-clause if one argument of a clause d;k],0 <
i <m,1 <k <lg is the empty string.

Definition 15 We say that a RCG G = (N,T,V, P, S) is e-free if either

1. P has no e-clauses, or

2. There is exactly one e-clause S(¢) — € and S or S do not appear in the RHS of any clause in P.

INRIA

Proposition for a NLP Syntactic Backbone

Our purpose is, as in the CF case, to transform RCGs into an equivalent e-free form.

In this section we will use a particular type of substitution, in which variables are substituted by the
empty string. The set of all these variables is called an e-substitution. Let v be an e-substitution, a =
woX1wi ... wp—1 Xpw, be astring in (VUT')*. The e-instantiation of a by v is the string o' = woYiwy ... wp_1Y,w,
where Vj,1 < j<pwehaveY; =¢eif X; € vorY; = X; if X; ¢ v. This notion of e-instantiation extends
from strings to vector of strings. To designate the components of a vector of strings & whose e-instantiation by
some v is g, we introduce the notion of characteristic vector. It is a vector of booleans (in {0,1}*) denoted by
7 whose size is the size of @ and whose value 7[k] is 0 iff the e-instantiation of @[k] by v is €. By convention,
the vectors 0 and T designate sequences of 0’s or 1’s of appropriate length. For a given couple (&,v), there is a
single characteristic vector 7.

In a dual manner, consider both a vector of strings @ and a boolean vector 7’ of the same size. If there is a
set of variables v such that the characteristic vector of & by v is 7, we say that v is an e-substitution and 7'is a
characteristic vector of @&. This notion extends to sequence of vector of strings and sequence of boolean vectors
when there are ai,...,dp, ¢1,...,1, and a set of variables v which is an e-substitution for each couple (aj, ;).

For each RCG G = (N,T,V,P,S), the following algorithm computes a set called Empty whose elements
are couples of nonterminals and boolean vectors (A,7) where the size of 7' is the arity of A. The idea is to
gather, for each nonterminal A, from all its A-clauses its characteristic vectors which are compatible with the
characteristic vectors of its RHS. In other words, if (Ag,7) € Empty, this means that there is in P an Ay-
clause Ag(ap) — Ai(ai)...An(dm) and there exists an e-substitution v such that the characteristic vectors
of dp,ai,...,a;, by v are respectively 43,41, ...,%m, and of course (A1,41),...,(Am,tm) are also elements of
Empty.

Algorithm 1 Empty construction.
Let ¥ = Ag(ap) — Ai(ai)... Aj(a) ... Ay (an,) be the positive clause associated to any clause in P.

1. Initially Empty = 0.

2. If the RHS of U is empty, we construct the boolean vector i such that T[k] = 0 <= ap[k] = ¢ and we
add (Ag,75) to Empty.

3. For each e-substitution v such that the characteristic vectors of each aj,1 < j < m by v is ¢; and
(4;,75) € Empty, we add (Ag,1%5) to Empty where 1 is the characteristic vector of cpy by v.

4. Step 3) is repeated until stability.

Remark that Empty may contain some (A4, () elements.

Let 4 be a vector, and 7" be a boolean vector of equal length. The instantiation of @ by 7'is the vector of the
same length denoted @’ where the components of @ which correspond to a null component in 7 have been changed
in ¢ (fj] = 0 = @'[j] = ¢,i]j] = 1 = @'[j] = @[j]). We call e-restriction of i by 7 the vector denoted by (i@)y
where all components of @ which correspond to a null component in 7 have been erased. More formally, we have
ligy, = {7 | 2lj] = 1}| and for each k,1 < k < (g, : (i)r [k] =idfj] <= dj]=1Ak=[{h]|ilh)=1Ah < j}|

Now, consider a clause ¥ = Ag(dp) — Ai(ai).. Aj(dj)...Am(oin), a vector of boolean vectors I =
%0,%,---,%,---,%m Whose sizes are respectively the arltles of Ag,A1,...,4;,..., Ay, and an e-substitution v
for each (cj,7),0 < j < m. The clause A?((ao) 3) — AT((@1)5) ... A% ((@m).z) where the A;-j 'S are new
nonterminals, is called the e-restriction of] by I and is denoted by (117) 7~ Of course, a negative nonterminal
occurrence in ¥ produced its negative counterpart in (\I_;) - For example if the j*0 predicate of T is A_j(a';-), the

4t predicate of () is A”((aj),J)

Algorithm 2 Conversion to an e-free grammar.
Input. A simple RCG G = (N,T,V,P,S).
Output. An equivalent e-free RCG G' = (N', T,V U{X},P',5").
Method. 1. Construct Empty by the previous algorithm. Initially we have P' = {S'(X) — ST(X)}.
2. If U = Ag(dy) — Ai(ar).. CAj(dG) ... Ap(ay) is in P, add to P' all the e-restrictions (\I_;)f where
I= U3 U15---505,---,tm and the boolean vectors i;,0 < j < m are such that (A;,7;) € Empty and

there is an e-substitution v such that the characteristic vectors of each /5,0 < j < m by v is ;. By
RR n° 3342

16 P. Boullier

convention we have Aj’;((d})z;) =¢ if ij = 0. Be sure not to add AOO((oZ{))a) — ¢. Note that in the
general case it should be possible to add to P' a “clause” whose LHS is an empty string while its RHS
is not empty. The restrictions on the input RCG (i.e. non-combinatorial and bottom-up non-erasing)
are only set to prohibit such a case.

3. If (S,0) € Empty, add to P' the clause S'(e) — «.

Remark that if a clause in P does not fulfill the conditions of step 2), this clause is not productive and
nothing is added to P’.

In the proof we must show that both G’ is an e-free grammar and is equivalent to G. The first part results
from the property that in step 2), we have Vk : ay[k] = € = 45[k] = 0 which means that if the k" argument
of Ay(ap) is the empty string, all the 43’s have a 0 in the k** position and therefore the constructed clauses are
e-free.

The equivalence between G and G' can be shown as follows.

The case € € L(G) <= ¢ € L(G') is evident. If w # eAw € L(G), there exists a derivation d = S(ewe) G§> E.

The idea is to mimic d by a derivation d’' in G’ which is built from right to left in the following way. Consider
any derivation step in d

Ty Ao(po) T2 > Ty A1(p1) ... Am(pm) T2

the corresponding step in d' is
ML AT(A) T = T AR(a)a) - A% (i) T

such that (Ao, 40) € Empty and the empty ranges of gy correspond to the null components of 75 (of course,
by hypothesis, we have V5,1 < j < m : (4,,7;) € Empty and the empty ranges of g; correspond to the null
components of ¢;). It is not difficult to see that if /() is the clause binding used in d, then (@)f/(ﬁ)f is the
clause binding used in d' where I= %0,%,-- -, m, except when the ¢;’s are all null vectors. In such a case, the
derivation parts in d associated with a null characteristic vector merely disappear in d'.

The converse to get a d from a d’ also holds. We will assume, without lost of generality that from any clause
(II_;) 7in P’ we know both lI_}, the initial clause in P and f, the sequence of characteristic vectors. Therefore, for
each binding () i/ () 7 in d' we know the corresponding clause binding] / 0 in d. However, there is a double

difficulty here: the null components of the characteristic vectors give empty ranges in ﬁ, and for each, we
have to find one among the n + 1 possible ((0)y,-- ., {n)w) and second, we may have to invent some derivation
parts in d, which do not exist in d', and which correspond to null characteristic vectors. If we examine d',
from left to right, assume that the clause binding used at one step is (‘I_})f/(ﬁ)f, where I = 13,43, ...,1m,
T = Ag(dy) — A1 () ... Am(ci,), and that in d the empty ranges corresponding to the null components of the
LHS characteristic vector 79 are known. From d’', we also know the (non empty) ranges of the variables which
correspond to unit values in the ¢}’s, therefore, since G is simple, the variable binding is known and therefore
the clause binding ¥ /€ is also known. If an instantiated predicate A™({5)7) (which is the range instantiation of
A%({d)7)) has disappeared in d', this means that 7’ = 0 and that all the components of 7 are empty ranges. By
the previous statement, we know that these empty ranges are exactly known. Therefore, we have to graft in d
a terminal derivation part headed at A(p). By taking into account the informations in Empty and G, we are
capable to construct such a derivation involving only empty ranges.

Example 6 The following non e-free grammar

S(XY) — A(X,Y)

A(a,e) — ¢

A(e,b) — ¢

produced the set Empty = {(4,10),(4,01),(S,1)} and is transformed by our algorithm into

§'(x) - SYX)

SUX) — AN(X)

SUY) — A%(Y)

A%@) — ¢

AOl(b) o ¢

INRIA

Proposition for a NLP Syntactic Backbone

Example 7 The following non e-free grammar

AX,Y,Z)

A(}/l;ZI;Xl) B(Z23X27Y'2)
£

3

3

8
U A

produced the set Empty = {(B,100),(A4,110),(4,101),(4,111),(4,011),(S,1)} and is transformed by our
algorithm into

S'(X) - SY(X)

SYXY Z) - A(X)Y,Z)

S1XY) — AN(X)Y)

SYXZ) - ANY(X, Z)

S\ (Y Z) — ALY, Z)
Alll(XbYl,Z1Z2) - Alll(YhZth) BlOO(Zz)
Alll(be'l,Zz) — A101(Y1,X1) BlOO(Z
AIOI(X1,21Z2) — AOH(Zl,Xl) BIOO(ZQ)
AOH(Yl,21Z2) — AllO(Y1 Zl) BIOO(ZQ)
AllO(a) — €

A (¢ q) - €

BlOO(e) — €

6 2-var Form
A RCG is in k-var form if there is at most &k variable occurrences in any given argument.
Property 7 For each RCG, there is an equivalent RCG in 2-var form.

We know that we may assume that the initial RCG is in non-combinatorial form (see Property 1).

Assume that the clause A(@) — ¥ is not in 2-var form, because, for some j, the argument a = @&[j] is not.
We simply split « in substrings a = «; ... - . -y, each ap being in 2-var form and we produce a sequence of
clauses using new predicates A, ... A; of increasing arities as follows. Underlined strings denotes new variables.

A, .. oq,..) - As(...,0q,00...0q,...)
Ah(...,ﬂ,...,%ah+1...Oq,...) g Ah+1(...,ﬂ,...,%,ah+1...al,...)
Ao, o1, 00) - A(..,a1,.. 1,0, 0)
Al(...,al,...,aj,...,al,...) 4

This transformation is performed while there is an argument which is not in 2-var form.

In some cases the transformation into a 2-var form can be performed without increasing the arity of the
grammar.

This is always the case when the arity of the initial grammar is one, there is a transformation (very similar
to the transformation in Chomsky normal form for CFGs) which construct an equivalent 1-RCG in 2-var form.
But when the arity is greater than one, the pairing of variables in different arguments may or may not be
favorable. In the first example below, there is a transformation which preserves the initial arity

Example 8
AXYZ UVW) — B(X,W)C(Z,V)D(Y,U)
=
AXYZ,UVW) — B(X,W)B(YZ,UV)
B'(YZ,UV) - C(Z,V)D(Y,U)

But this is not always the case. It is not possible to transform the following clause in 4-var form into a set
of equivalent clauses in 2-var form without increasing the number of arguments.

RR n° 3342

18 P. Boullier

Example 9

AXYZT,UVWS) — B(X,V)C(Y,S) D(Z,U) E(T,W)
=
777

7 CFGs & sPRCGs
Property 8 For any CFG, there is an equivalent 1-sPRCG

Let A — woBiw; ...Byw, be a production in some CFG (N, T, P,S) where w; € T* and B; € N and
Awo Xjwy ... Xpw,) — B1(Xy) ... By(X,) a corresponding clause where the X;’s are p different variables. By
construction, the arities of its predicates are one and moreover this clause is in simple form. If we apply this
transformation to all the productions of any CFG, due to the bijection between P and the set of clauses clauses,
it is not difficult to see that we get an equivalent 1-PRCG in simple form.

The converse is equally true. Note however that the order of the RHS predicates in a clause is free, but
when we built a CF production from a simple clause whose arity is 1, the order of the RHS nonterminals (if
any) in the production is given by the order of the variables in the LHS arguments of the clause.

Therefore, the languages defined by the class of simple PRCGs with a single argument are the context-free
languages:

Property 9
CFL = 1-sPRCL

This equivalence does not hold when we consider 1-PRCGs which are strictly more powerful than 1-sPRCGs.

This property comes from the fact that RCGs are closed under intersection (see Section 12). For example,
this closure property may allow to describe the language £ = {a™b"c™ | n > 0} by a 1-PRCG as being the
intersection of £1 = {a™d"c* | n,k > 0} and Ly = {a*b"c" | n, k > 0}

where £, is defined by

S1(XY) - A(X) By(Y)
Ay (e) — €

A1 (aXb) g A1 (X)

B (e) — €

Bi(cX) — Bi(X)

where L5 is defined by

S2(XY) — Ay(X) By(Y)
As(e) - &

A2 (aX) g AQ(X)

Bsy(e) - €

BQ (bXC) — BQ (X)

and £ is defined by
S(X) — Si1(X) S2(X)

The same language £ = {a"b"c" | n > 0} can also be defined by the following combinatorial 1-PRCG

S(XYZ) — A(XY)B(YZ)
A(aXb) — A(X)

A(e) — €

B(bXc) — B(X)

B(e) - €

INRIA

Proposition for a NLP Syntactic Backbone

8 LIGs, TAGs, HGs & sPRCGs

In [Vijay-Shanker and Weir 94a] Vijay-Shanker and Weir have shown that linear indexed grammars, tree ad-
joining grammars and head grammars are equivalent formalisms®, though they appear to be quite different. In
this section we will show that each of this formalism can be transformed into an equivalent 2-sPRCG.

We will not discuss here the relevance of these formalisms to describe linguistic phenomena. Many references
can be found in [Vijay-Shanker and Weir 94a]

8.1 Linear Indexed Grammars & sPRCGs

Indexed grammars are syntactic formalisms which are extensions of CFGs in which a stack of symbols is

associated with each nonterminal. These grammars express both a CF rewriting system and the way these

stacks evolve within derivations. In a linear indexed grammar (LIG), which is a restricted form of indexed

grammar, there is a single distinguished stack associated with a RHS nonterminal which is related with the

stack associated with the LHS nonterminal, all other stacks are independent and of bounded size. Of course,

this distinguished stack may change between the LHS and the RHS, some symbols may be pushed or popped.
Following [Vijay-Shanker and Weir 94b]

Definition 16 A LIG, L is denoted by (Vn,Vr, Vi, P, S) where:
o Vi is a non-empty finite set of nonterminal symbols;
e Vi is a finite set of terminal symbols, Viy and Vi are disjoint;
e V is a finite set of stack symbols (I stands for indices);
e Py is a finite set of productions;
e S € Vy is the start symbol.

A string of stack symbols is an element of V;*. In this section, we adopt the convention that o denotes
members of V;* and a denotes elements of V. In fact, in a LIG production, the structure associated with a
nonterminal can be either a stack or a stack schema. A stack schema denoted by (..a) matches all the stacks
whose prefix (bottom) part is left unspecified and whose suffix (top) part is @. In a LIG production, we call
primary constituent the pair denoted A(..a), consisting of a nonterminal A, and a stack schema (..a) and
secondary constituent the pair denoted A(«a), consisting of a nonterminal A, and a string of stack symbols a.
If & = ¢, we have an empty secondary constituent denoted by A().

Without any loss of generality, we assume that productions in P, have the following forms

A() -
A(..a) — Ty B(.d)Ty

where A,B€ Vy,aa' € ViU{e},x € V}f and ' T2 € VU {D() | D € Vn}.

We call object the pair denoted by A(«) where A is a nonterminal and («) a stack of symbols. If a = ¢,
we have an empty object denoted by A(). Let Vo be the set of objects Vo = {A(a) | A€ VN Aa € V}}. We
define on (Vo U V)* the binary relation derive denoted 2 (the relation symbol is sometimes overlined by a

production in Pr) by:

A(..a)HI‘éB(..a') Iy
L
A T, 2T}

J4

In the first above element we say that the object B(aa') is the distinguished child of A(aa), and if 1Ty =
D(), D() is the secondary object. For a derivation the reflexive transitive closure of the distinguished child
relation is the distinguished descendent relation. Let I'y,...,T;,Tiy1,. ..,y be strings in (Vo U Vr)* such that
Vi,1<i<l: T} 2 T4, then the sequence of strings (T'y,..., T, Tiy1,...,Ty) is called a derivation.

I} A(aa) T Iy Ty B(aa') T2 T

I AQ T

The sequence of objects Aq(a1)...Ai(a;)Air1(@it1) - Ap(ap) is called a spine if, there is a derivation in
which each object A;y1(aiy1) is the distinguished child of A;(a;).
The language defined by a LIG L is the set:

8In fact, this equivalence also holds with a fourth formalism, the combinatory categorial grammars.

RR n° 3342

20 P. Boullier

c(L)z{w|5()%>w/\wev;}

As in the CF case we can talk of rightmost (resp. leftmost) derivations when the rightmost (resp. leftmost)
object is derived at each step.

Associated with a LIG L = (Vn, Vr, V1, Pr, S), we define a bunch of binary relations which are borrowed
from [Boullier 95]

{(4,B) | A(..) » 1 B(.)Ts € P}

T

% = {(A,B)| A(..) » T1B(.a)Ty € P}

% = {(A,B)| A(.a) - T1B(.)Ts € P}

= = {(A1,4,) | 410 SL& Iy Ap() Ty and Ap() is a distinguished descendent of A ()}

The 1-level relations simply indicate, for each production, which operation can be apply to the stack asso-
ciated with the LHS nonterminal to get the stack associated with its distinguished child; = indicates equality,
% the pushing of a, and % the popping of a.

If we look at the evolution of a stack along a spine Aj(ay) ... A;(i)Air1(@it1) .- . Ap(ap), between any two
objects, one of the following equalities holds: a; = @41, @ja = @jy1, OF @; = Qjp1a.

The = relation select pairs of nonterminals (A;, A) along spines s.t. j < k, oj = ap and VI,j <1 < k:
ar = aja’,a € Vi

If the relations i— and —i>— are defined as

a a a
- = = U =>
+ 1 +1
-~ = |J ==
+ 1+
a€Vr
we can easily see that the following identity holds
Property 10
= = =U < U==U <=
+ 1 + 14+ + +

In [Boullier 95] we can found an algorithm® which computes the = g_— and —f— relations as the composition

of = % and % in O(|Vx|?) time. Of course, the maximum size of these relations is O(|Vy|?).
1

Property 11 For any LIG, there is an equivalent 2-sPRCG in 2-var form.

Let L = (Vn,Vr, V7, Pr, S) be a LIG. We are going to construct an equivalent 2-sPRCG G = (N, T,V, P,(S))
in 2-var form.

e The set of nonterminal symbols is N = {(4) | A€ V} U{(A,B), | A,B € Vy Ap € R}, where R is the
set of relations = <+>, % In fact we will only use valid nonterminals (A, B), for which the relation p holds

between A and B. The arity of the nonterminals in (A) form (resp. (A4, B), form) is one (resp. two).
e The terminal symbols of G are the terminal symbols of L: T' = V¢
e The variables will be taken among V = {W, X,Y, Z}.

e The set P is construct from Pr, and the relations = <+>- and % Remember that in a LIG production like

A(..a) = T B(..a') Ty, the string I'; T’y may designate either a terminal string or a secondary constituent.
The notations used below will depend of these two cases:

9Though in the referred paper, these relations are defined on constituents, the algorithm also applies to nonterminals.

INRIA

Proposition for a NLP Syntactic Backbone

1. BT Ty € T*, we have 3 =Ty, 72 =T, (I'y) = (T'2) = ¢ (the empty predicate string).
2. IfT'1 T = D(), we have

,h:{ X ity =D() m_{Y if 2 = D() ,(Fl):{ (D)(X) if Ty = D()

e T =¢ e fTy=¢ e if Ty = ¢

and
o= { 0 g0

P = {{A)=@)—-e|A) —-zePr}uU (1)

{(A)(XzY) — (A,B)f(X,Y) | B() >z € Pr}U (2)

{(4,C)=(n,72) = (I'1) (T2) | A(.) = T1C(.)T2 € Pr} U 3)

{(4,);(V)= (4,0) (X,Y)}U (4)

{(4, C>j(%W, Z72) — (T1+) <B,C)i(W7Z) (T2) | A(..) = T1B(.)I2 € P} U (5)

{(4,0)_(XW, 2Y) = (4, B) (X, Y) (B,C)_(W, 2)} U (6)

{(4, c><+>(ylw, Zy) — (Ty) <§9,c>;(w, Z) (T2) | A(.) » T1B(..a)T3 € P} U (7)

({4, C)e (71572) = (T){T2) | A(--a)+—> IC()T2 € P}y (8)

{(4, C);(W%,WZ) — (T1) (A,B):(W, Z) (T2) | B(..a) > T1C(..)T2 € Pr} (9)

By construction, G is a 2-sPRCG in 2-var form.
Now, we are going to show that £(L) = L(G).

Proof: To show this result we use a particular kind of derivations called linear derivations (see [Boullier 96]),
denoted :z and which indicates at each step which object is going to be derived. Informally a secondary

)

object (if any) and its descendents are derived before its corresponding primary object, whether it lays to
its left or to its right.

In this proof we will consider several types of linear derivations.

e The closed derivations such as A() = = w.

e The balanced derivations such as A() # wy B() ws where B() is a distinguished descendent of A().
In such a case we know that, by deﬁnltlon the relation = holds between A and B. Moreover, among

the balanced derivation we distinguish the push-pop derivations in which the relation <+> also holds
between A and B.
e The pop-a derivations such as A(a) léz wy B() ws where B() is a distinguished descendent of A(a)

and such A % B.

The equivalence between our two languages will be proved by induction on the lengths of derivations. Our
induction hypothesis are denoted by (H;) (and their inverse by H;) with

: If there is a closed derivation A() é’z w in L then w is in the (string) language of (A) (i.e. w € L((A))).

-~

H,: If there is a balanced derivation A() = w; B() ws then the vector of strings (wy,ws) is in the (string)
(A

) LT
language of (A, B)_ (i.e. (w1, w3) € L((4, B)_)).

RR n° 3342

+ 1

22

P. Boullier

H3:

H4:

If there is a push-pop derivation A() lé_z w1 B() ws then the vector of strings (w1, ws) is in the (string)

language of (4, B)__ (i.e. (w1, w3) G’E((A,B)¢)).

+ +
If there is a pop-a derivation A(a) f+i wy B() ws then the vector of strings (w;,ws) is in the (string)

language of (4, B). (ie. (wy,ws) € £((4, B),.)).
+ +

Proof of the H;’s. The proof of this part is performed by induction on the length of derivations in L.

basis. We first check that the H;’s are true for derivations of minimum length in L. This minimum length

is one, except for push-pop derivations (hypothesis H3) for which it is two.
Hy: Let A() l:z w be a closed derivation of length one. Such a derivation exists iff there is in Pr, a

productio’n of the form A() — w. If it is the case, we know by (1) that the clause (A)(w) — € is
in P and that therefore we have w € L((A)).

H: Let A() = w B() ws be a balanced derivation of length 1. Such a derivation exists iff there is

in Py, a production of the form A(..) — wy B(..) ws. If it is the case, we know by (3) that the
clause (A, B)_ (w1, ws3) — € is in P and that therefore we have (wy,ws) € L((4,B)_).
+ +
Hs: Let A() = w} B(a) w} = wi wy C() w§ wj be a push-pop derivation of length 2. Such
a derivation exists iff there are in Py, two derivations of the form A(..) — w)] B(..a) w} and
B(..a) — wi C(.) wy. If it is the case, we know by (7) and (8) that there are in P two
clauses (4,C)__(wy W,Z ws) — (B,C’);(W, Z) and (B,C);(w’l',w’g’) — ¢. This second clause
+

+ +
shows that (w,w§) € L({B,C).) and the first one shows that if (z,y) is in £L({B,C).), then

<
+
(wi z,y wy) is in L((4,C)_). Therefore we have (w] wi, w3 w3) € L({(4,C)_,).
+ +
Hy: Let d = A(a) = w B() ws be a pop derivation of length 1. Such a derivation exists iff there is

—
+

in Py, a production of the form A(..a) — w; B(..) ws. If it is the case, we know by (8) that the
clause (A4, B);(wl,w3) — ¢ isin P and that therefore we have (wq,ws) € E((A,B);).
+ +

Induction step. We assume that for all closed, balanced, push-pop and pop-a derivations in L of length

1,2, ... and ! the H;’s hold. We will prove that they also hold for all derivations of length [+ 1. Of
course, all derivations of length [4+ 1 have at least an inside step.

Hy: Let d = A() % w be a closed derivation of length [+ 1. Since [+ 1 > 2, there is a last

step which is not the first one and therefore we have d = A() lé_z w1 B()ws = wiwws with

)

wiwaws = w. This shows that first d; = A() l:+z w1 B()ws is a balanced derivation and second

the production B() — ws is in Pr. Therefore the conditions of (2) are fulfilled and the clause
¥ = (A)(XwyY) — (A,B)_(X,Y) is in P. Moreover, the length of d; is less or equal to I, then
+
H, holds for dy and (wy,ws) € £L((4, B)_). Combining with ¥ we get w = wiwsw; € L({A)).
+
Hj: Let d = A() = 'y B(a) T3 % w1 C() ws be a push-pop derivation of length [+ 1. The first

step of d indicates that the production A(..) —» I'y B(..a) I's is in Pj,. Therefore the conditions

of (7) are fulfilled and the clause ¥ = (4,C)_ (W, Zy;) — (I'1) (B,C);(W, Z) ([3) is in
+ +

P. Moreover d may be decomposed in two parts d; and d» with d; = A() l:z 'y B(a) T3 l:*z

w} B(a) w} and d2 = B(a) % wi C() wY assuming that wy = wjwy and ws = wjw}. Since the

length of ds is less or equal to [, by Hy we know that the property p; : (w{,w}) € L({B, C);)
"

INRIA

Proposition for a NLP Syntactic Backbone

holds. From d;, we can deduce that there are two closed derivations I'y l:*z w} and T3 l:"z wh

))

whose lengths are less or equal than [and which fulfill H;!°. Therefore we have ps : w] € £L((T1))

and p3 : wy € L({T'3)). Properties p1, p and p3 together with clause T show that we have
(wiwy, wiws) = (w1, ws) € L({4,C)=-).

H: Let d = A() :> wy C() ws be a balanced derivation of length [+ 1. Since I + 1 > 2, there is a

first step Wthh is not the last one, but two cases can occur at this first step
1. A symbol, say a is pushed on the primary stack. Hence we have d = A() = Ty A'(a) T lé_z
wy C() ws. We know that somewhere in d there is a component wj B() w where B() is a
distinguished descendent of A() and such that we have A -<_E— B. Once again two cases can
occur

(a) wy B() wy = wy; C() ws. Here, d is a push-pop derivation. Therefore the conditions of
(4) are fulfilled and the clause ¥ = (A, C):(X, Y)—(4,0)_ (X,Y)is in P. This clause

+
indicates that (z,y) € L({(4,B)_) = (z,y) € L((4,B)-). Since we have seen that
+

Hj is true for push-pop derivatiorJlrs of length [+ 1, Hy is therefore also true for balanced
derivations of length [4+ 1 which are also push-pop derivations.

(b) wi B() wy # w1 C() ws. Here d may be considered as the composition of a push-pop
derivation say d; = A() = Ty A(a) T3 l;i w} B() wj followed by a balanced derivation

say do = B() lé_z wy C() w§ with w1 = wjw{ and ws = wjw}. Since conditions (6)

are fulfilled, the clause ¥ = (A,C)_(XW,ZY) — (4,B) (X,Y) (B, C’) (W, Z) is
construct. This clause indicates that+if (w,2) € L((B, C)) and if (z,y) € £((AB))
then (zw, zy) € L((A, C)). Moreover, each of d; and d» has a length less or equal than l
and hence Hs and H, apply. This shows that (wjwi, wiw}) = (w1, w3) € L({4,C)2).

+

2. No symbol is pushed (and the primary stack stays empty). Hence we have d = A() =

Iy B()Ts l:*z wi B() w} :+> wy C() ws. The derivation d may be decomposed in two parts

dy = A() = It B() T3 = = % w) B() wh and ds = B() l;i w C() wf with wy = wjw{

and w3 = wjwj. The first step of d; shows that the production A() — T'y B() T's €
Py, and dy shows that B = C. Therefore conditions (5) are fulfilled and the clause ¥ =

(A, C) (MW, Zys3) — (F1)+(B, C)_(W, Z) ('3} is constructed. This clause indicates that if
x € E((I‘l)), y € L({T3)) and (w,;) € L'((B,C):), then (zw,2y) € L’((A,C):). Moreover
we have I'y :> wy, T's :> w} and the length of d2 is less or equal to I, therefore H, and H,
apply. This shows that (wlwl,wg’wg) (w1, ws) € L({A,C)2).

"

Hy: Let d = A(a) lé—z w} B(a) wj = wi T C() I's wj l:*z wiwy C() wiwj be a pop derivation

)))

of length I + 1. This derivation may be decomposed in d; = A(a) lé_z w; B(a) wh and dp =

)

B(a) = Iy CO)Ts Z$L w) C() w§. The derivation d; shows that there is a balanced derivation

dy = A() zé_z w} B() w} where a, the bottom symbol in the stacks of the spine, has been

3

erased. The derivation d» shows that we have B(..a) — I'1 C() I's € Pr. Moreover da contains
two closed derivations Ty léL wj and T3 l:*l>: wh. The conditions (9) are fulfilled and the clause

= (4, C’);(W'}q,'ng) — (1) (4,B)_(W,Z) (T'3) is constructed. This clause indicates that
+

+

101f I € T*, we assume that L({I')) = {I'}.

RR n° 3342

24 P. Boullier

if x € L((T1)), y € L((T'3)) and (w,2) € L({A,B)_), then (wz,yz) € L((A, C);_). Moreover
+
A
each of T’y :> wy, T's :> wy and d; has a length less or equal to [and hence H; and H» apply.

This shows that (wlwl,wg'wg) (w1,ws) € [,((A,C);).
+

Proof of the H;’s. The proof of this part is performed by induction on the length of derivations in G. In
this proof, the clause ¥ used in some derivation step may overlined the derive symbol (i.e. we may have

2) and all the ranges p are elements of R,, for some w € T*.
W

basis. We first check that the H;’s are true for derivations of minimum length in G. This minimum length
is one for any kind of nonterminal, except for the (A, B) < 8 (hypothesis H3) for which it is two.
+

Hi: Consider a terminal (A)-derivation of length one in G' (A)(p) > € where w? = wy. Such a

l@u

. If it is the case, we know
— we is in Pr. Therefore, Hq

derivation exists iff there is in P a clause of the form (A)(ws)
by (1) that this clause has been produced iff the production A(
holds since we have the closed derivation A() :> wa.

~—

H,: Consider a terminal (A, B) -derivation of length one in G (4, B) (p1,p3) :> € where w** = w,
and w”® = wz. Such a derlvatlon exists iff there is in P a clause of the form (A B) (w1, w3) —

e. If it is the case, we know by (3) that this clause has been produced iff the production
A(.) - wy B(..) ws is in Pr. Therefore, Hy holds since we have the balanced derivation

Hj3: We include in this basis step the (A,B)Y—derivations of length two in G since this is the

minimum length of these kinds of derivations. Consider the derivation d = (4, B) __(p}, p3) 2

7 Gw
7, _
(B.C): (p1.0) B < where ¥, = (4, B)__(w} W, Zu}) — (B.C) ¢
+ ' + +
(W, Z), ¥, = (B,C) (W, wf) — &, wt = w, ws = wl, wr = w, and w’> = wh. The

.
+
derivation d exists iff the clauses ¥; and U, exist. If it is the case, they have been produced

respectively in (7) and (8), this mean that the productions A(..) — w; B(..a) ws and B(..a) —
wy C(..) w§ are in Pr. Therefore, Hs holds since we have the push-pop derivation A() =

w} B(a) w} :> wi wy C() w§ wi.
H,: Consider a termmal (4, B) -derivation of length one in G (A4, B) (p1,p3) = € where w** = w;
G,w

and w”® = ws. Such a derivation exists iff there is in P a clause of the form (A ,B);(wl,wro») — €.

4
If it is the case, we know by (8) that this clause has been produced iff the production A(..a) —
wy B(..) wsisin Pr. Therefore, Hy holds since we have the pop-a derivation A(a) = w1 B() ws.

Induction step. We assume that for all derivations in G of length 1, 2, ..., [the H;’s hold, we will prove
that they also hold for all derivations of length I + 1. Of course, all derivations of length [+ 1 have
at least an inside step.

Y

H,: First we consider a terminal {A)-derivation d = (A4)(p) (4, B) (p1,p2) §> e in G of length

Q

W

[+ 1, where U = (A)(WwsZ) — (A, B)_(W, Z), w; = wP*, w3 = wP? and wywows = w”. If
+

such a derivation exists, the clause ¥; has been produced in (2). This means that we have both
A i B and B() — we € Pp. If we consider the suffix of d of length I (A, B) (p1,p2) > e,

,’U)

INRIA

Proposition for a NLP Syntactic Backbone

RR n° 3342

: Last, we consider a terminal (A, C)i—derivation d=(4,C)

this derivation shows that (wi,w3) € L({A,B)_), and by the induction hypothesis we know
+
that there is in L a balanced derivation A() lé—z w1 B() ws which gives the closed derivation

B()—
A() IZE w1 B() w3 (%iwz w1 W2 W3.

: We consider a terminal (4, C)_,_-derivation d = (4,C)_,_(p1, p2) £ ¢ of length [+ 1 where

+ + Gw
wPl = w; and wP? = ws. .
The first step of such a derivation uses ¥ = (4, C)__ (W, Zy2) — (I1) (B,C)

+

duced in (7), therefore we have d = (4,C) __({3[0]) X (T)(G[1]) (B, C)« (G[2]) (T5)(G[3]) > &

M G,2w :_- G,w

(WJ Z) <F2) pro-

~ +Ye

where G[0] = (p1, p2). Let w1 and w3 be respectively the strings w} and wj. Since the
lengths of the subderivations in d starting at (I'1)(Q[1]) and (T's)(£2[3]) are less or equal than I,
we know by H; that there are two closed derivations in L, T'; l:*z w) and Ty I$L wh. Moreover,

)

the length of the subderivation of d starting at (B, C)« (€[2]) is also less or equal to I. Therefore,

<
T
if we assume that (w},w¥) € L((B, C);), we know by Hy that there is in L a pop-a derivation
+

B(a) & w! C() w!. At last, the clause ¥ is produced iff A(..) — I'y B(..a) Ts € P. We can the-
1L

refore exibit a push-pop derivation in L A() = Ty B(a) Ty f*i wi B(a) w} l;z wi wy C() wf wi
where wi w{ = w; and wf w} = ws.
+

: Now we consider a terminal (A, C') _-derivation d = (4, C)_(p1, p3) Gg> ... => eoflength [+1
;W

¥ ¥ Gw
where w?* = w;, w** = w; and ¥ is the clause produced in (3), (4), (5) or (6). We will not repeat
the arguments concerning the fact that the induction hypothesis apply on the subderivations of
d headed on each element of the instantiation of the RHS of ¥ by some Q with Q[O] = (p1,p3),
since they are identical to the ones used in proving Hs.

Case (3). We have A(..) - T7 C(..) T3 € P, Iy l:*z wy and I'g l:*z ws. Therefore, we can
exhibit a balanced derivation A() = L C()Ts l:*z wy C() ws.

Case (4). Here we simply indicate that a push-pop derivation is a particular case of balanced
derivation and that our hypothesis extends from push-pop to balanced.

Case (5). We have A(..) - Ty B(..) I3 € P, I l:*1>: wy, T3 f*i wg and B() £ w' () wl.

~

Z 3
' 1 X
> Wi B() wy =

Therefore, we can exhibit the balanced derivation A() = Iy B() Iy ;

3
!/ 1 4 !/ ! 1 __ n J
wi wy C() wf wh where wi w} = wy and w§ w} = ws.

Case (6). We have A() l% w} B() w§ and B() l% wy C() wy. Therefore, we get the balanced

. . * +
derivation A() = Ty B() Ty = w} B() wj = wi w{ C() w§ w} where wi w{ = w; and
b b b
wy wh = ws.

g
i(pl,pg) G:i) G:E} e of length I +1
Lot +

where w?! = wy, wP* = w3 and ¥ is the clause produced in (8) or (9).

Case (8). We have A(..a) - T1 C(.) T3 € P, Ty l:*z wy and T's l:*z ws. Therefore, we can
exhibit the pop-a derivation A(a) = I C() I l:*z wy C() ws.

Case (9). We have B(.a) - Iy C(.)Ts € P;, Ty ?L w!, T's ?2 wl and A() fii w, B() w}.

Of course from this last derivation, we can produce another derivation where each stack
on the spine headed at A() is prefixed by any string of symbols, and in particular by the

26 P. Boullier

single symbol a, giving A(a) = lL wi B(a) wi. Therefore, we get the derivation A(a) lé_z

wi B(a) w} = wi Ty C() T's wy :> wi C() w§ wy where wi wi = wy and w§ wi = ws.

Example 10 We illustrate our transformation with o LIG L = ({S,T},{a,b,c},{a,b,c}, Pr,S) where Py,
contains the following productions:

S(.) = S(a)a S()—S(bb S()—S(c)e S()—T(.)
T(.a)—»aT(.) T(L)—-bT(.) T(.c)—ecT(.) T)—c

It is easy to see that the language L(L) is {zcx | z € {a,b,c}"}.
We note that in L the key part is played by the middle ¢, introduced by the production T'() — ¢
The computation of the relations gives:

= = (57)
I R (C)):
T (A1)
e (X)
j? - {(SaT)}
g_' = {' = f_’ = {(TaT)a(SaT)}
The production set P of the PRCG G associated with L is:
(S(XT) = (ST)XY))
(s, >(£) - € (3)
(STZ(XY) = (ST),(X.Y) (4)
(S.T) (W,Za) — (S,T).(W,2) 7)
(8,T)(W,26) = (5,T),(W,2) @
(S.T) , (W,Ze) — (S,T).(W,2) 7
(5.7):Wa,2) = (ST)_(W.2))
(S,T)g(Wb,Z) — (S,T):(W,Z) (9)
(5.T):(We.2) — (S.T).(W.2))

The (i)’s refer to the numbers used to label the various form of clauses produced during the proof of Pro-
perty 11.

We know, by Example 3, that 2-PRCGs in 2-var form which are not in simple form are much more powerful
than LIGs.

8.2 Tree Adjoining Grammars & sPRCGs

Let L =(Vn,Vr,Z,A,S) be a Tree Adjoining Grammar (TAG).
Vn and Vr are finite disjoint sets of nonterminal and terminal symbols, 7 is the finite set of initial trees and
A is the finite set of auxiliary trees.
Initial trees are such that their root is labeled by the start symbol .S, inside nodes are labeled by nonterminals
and each leaf is labeled by an element of V& = Vir U {e}.
INRIA

Proposition for a NLP Syntactic Backbone

Auxiliary trees are such that their root is labeled by a nonterminal, say A, inside nodes are labeled by
nonterminals, and each leaf is labeled by an element of V7, except for one leaf which is labeled by a nonterminal
whose name is the root name (i.e. A). This particular leaf is called the foot. Such a tree is called an auxiliary
A-tree. The path from root to foot is called its spine. We call terminal tree a non-trivial tree where every leaf
is labeled by an element of V7. The string whose components are the symbols labeling the leaves of a tree and
gathered by a left to right walk is called its yield.

A node whose label is B is an A-node iff there is an auxiliary B-tree. For a given tree, the set of its inside
nodes are partitionned in two: the 4-nodes and the others.

The adjunct operation is defined on trees. It takes as operands a terminal tree and an auxiliary tree and
gives as result a terminal tree. Let 7 be a terminal tree, n be an inside A-node labeled by the nonterminal A
and 7; an auxiliary A-tree. The adjunct operation is (operationally) defined as follows.

First note that the nonterminal A labels the node n, the root and the foot of 7. Excise the subtree 7’ of 7
occurring in n, replace it with a copy of 71, and graft the excised subtree 7 to the foot of this copy of 7.

The (string) language of a TAG is the set of the yields of terminal trees which are built by the adjunct
operation from the initial trees.

We add the following two conditions which do not change the power of TAGs:

1. The start symbol only occurs as root of initial trees;

2. No adjunction can occur at the root or at the foot of an auxiliary tree.
Property 12 For any TAG, there is an equivalent 2-sPRCG.

The corresponding PRCG G = (N,T,V, P, S) is such that: T = Vr and their start symbols are identicals.
Its nonterminals IV, except for S, are the labels of the roots of the auxiliary trees. Its predicates are all binaries,
except the start symbol § which is unary.

Let 7 be a tree (initial or auxiliary), I the set of its inside 4-nodes, and |I;| its cardinal. Let V. the set of
2|I.| variables X;, Y;, 1 < i < |I.|. We assign to each internal A-node a couple of variables X; and Y;. X is
supposed to be a left decoration and Y; a right decoration. The root and the foot (if any) have no decoration.
Each terminal leaf a € Vi has a single decoration which is itself.

If we consider the process of gathering decorations in a tree by a top-down left-to-right walk, we collect
the left variable X; when passing an 4-node top-down and the right variable Y;, when passing this 4-node
bottom-up. Therefore, for every tree 7, we collect a string d, € (TU{X; |1 <i < ||} U{Y; |1 <i<|L|D*
For an auxiliary tree 7, this string d, can be splitten in two parts d* and d2 s.t. d, = dLd? where d! is the part
gathered before the foot of 7 and d2 is the part gathered after the foot.

To each initial or auxiliary tree in L, we associate a clause in P which is constructed in the following way.

The LHS of a clause associated with an initial tree 7 is the predicate S(d;).

The LHS of a clause associated with an auxiliary A-tree 7 is the predicate A(dL,d?).

The RHS of a clause associated with a tree 7 (initial or auxiliary) is a sequence of || predicates p1 ... p; ...pj1, |,
all differents, with p; = A4;(X;,Y;) where A; is the label of the i*? A-node in 7'1.

For each auxiliary A-tree we add the clause A(e,e) — ¢ (if not already there). The idea behind such clauses
is to allow each predicate to be productive since we have assumed that adjunction is not mandatory in TAGs.

If we forget about the A(e,e) — ¢ clauses, there is a bijection between the trees in L and the clauses in
G, that is also the case for their respective derivations. The proof of their equivalence is made easier by this
property and is omitted here.

Example 11 The TAG with T = {S(A(¢))} and A = {A(a, A(b, A, c))} defined the string language {a™b"c™ |
n > 0}. The set of clauses of its corresponding 2-sPRCG is :

5(X11) - A(Xy,1)
A(aX1b,cY)) — A(X1, V)
A(e,e) — €

11n fact, the order of the predicates in the RHS is irrelevant.

RR n° 3342

28 P. Boullier

8.3 Head Grammars & sPRCGs

For completion reasons, we add this section which is mainly extracted from [Groenink 96], using our conventions.

Head Grammars (HG) were introduced in [Pollard 84] and can be viewed as a generalization of CFGs in
which a wrapping operation is used in addition to concatenation. The nonterminals of a HG derive couples of
terminal strings (v,w) denoted v T w. We restrict our attention to a weakly equivalent form of HGs, in which
productions are bilinear.

Definition 17 A (bilinear) head grammar is a 4-tuple L = (N, T, Py, S), as in a CFG, except that its produc-
tions have two forms

A — w; Tws (terminal form,)
A — f(B1,Bs) (nonterminal form)

where A, By,Bs € N, wy,ws € T* and the yield function f is one of the function symbols wrap, concat, or
concats.

On HGs, we define a derive relation :L> by

e if A — wy 7 ws is a production then A :L> wy T ws;

e if A — f(By,B>) is a production, By % v1 T v9 and By % wy T we, then A =L> f(v1 T v, w1 T we) where

wrap(vi T va, w1 T we) wivr T v2w2
concaty (v1 T va, w1 Twa) = w1 T vowiws
COHC&tQ(’Ul T V2, W1 T 11)2) = V102w T w9

and the language generated by L is L(L) = {vw | S ELL> v T w}.

We can easily check that in applying the following translation from Py into clauses

A — w Tws = A(wi,ws) — €

A — wrap(B,,By) = AWX,YZ) — B (X,Y) Bx(W,2)
A — concaty(B1,B2) = AX,YWZ) — Bi(X,Y)By(W,2Z2)
A — concaty(B1,B2) = AXYW,Z) — Bi(X,Y)By(W,2Z2)

and adding the clause S'(XY) — S(X,Y), where S’ is a new nonterminal (it is the start symbol of G), we
get a 2-sPRCG.

Property 13 For any HG, there is an equivalent 2-sPRCG.

A proof of this property can easily be based upon the bijection (if we forget about the S'(XY) — S(X,Y)
clause) between the productions of the HG and the clauses of the corresponding 2-sPRCG.

Example 12 The HG L = ({5,T, AC, B},{a,b,c}, Pr, S) where

PL=A{
S — eTe,
S — wrap(B,T),
B — bte,
T — wrap(S,AC),
AC — aflc
}

generates the language L(L) = {a™b"c™ | n > 0}.
By the previous transformation we get the equivalent set of clauses

P={
S'(XY) - S(X,Y),
S(e,e) — g,
S(WX,YZ) — B(X,Y) T(W,Z),
B(b,¢) — g,
T(WX,YZ) — S(X,Y) AC(W,Z),
AC(a,c) - €

INRIA

Proposition for a NLP Syntactic Backbone

9 Coupled Context-Free Grammars & sPRCGs

Coupled context-free grammars (CCFGs) are a generalization of CFGs (see for example [Hotz and Pitsch
94]). In this formalism, nonterminals are simultaneously substituted if they correspond to a (correctly nested)
system of parentheses. If we look at the generative capacity of CCFGs, we obtain an infinite hierarchy of
languages, characterized by an integer number, its rank (the rank of a CCFG, is the number of elements
rewritten simultaneously), whose first of rank 1 are the CFLs and the second of rank 2 are the languages
generated by TAGs, LIGs or HGs.

CCFGs are defined over extended semi-Dyck sets which are a generalization of semi-Dyck sets. Elements of
these sets can be regarded as sequences of parentheses which are correctly nested.

K = {(ki,....k],...,k™) | i,j,m; € N} is a set of tuple of parentheses if it is finite and if it satisfies
k] # k" for i # 1 or j # m. The set of parentheses is comp(K) = {k; | (k1,..., ki,..., kr) € K}.

The sets K[r] = {(k},....k],...,k"") | m; = r} contain the tuple of parentheses of length 7. We assume
that K[0] = {e}.

Let K be a set of tuples of parentheses and T be an arbitrary set where TN K = T N comp(K) = 0. The
extended semi-Dyck set over K and T, ED(K,T) is defined inductively by:

1. T* CEDK,T)

2. K[1] C ED(K,T)

3. u1,...,ur € ED(K,T),(k1,...,kr41) € K[r + 1] = kyug ... krurkr41 € ED(K,T)

4. u,v € ED(K,T) = wv € ED(K,T)

5. ED(K,T) is the smallest set fulfilling conditions 1) to 4).

A parentheses rewriting system over ED(K,T) is a finite, non empty set P of productions of the form
{(k1,..., k) = (a1, 00) | (k1,.. . k) EKANq...ar, € ED(K,T)}

Definition 18 A CCFG is an ordered 4-tuple (IC,T, P, S) where K is a parentheses set and P is a parentheses
rewriting system over ED(K,T) and S € K[1].

The term coupled expresses that, at each step, some CF rewritings must be performed in parallel and are
controlled by K. Therefore I may be seen as a set of coupled nonterminals.
Let G, = (K, T, P,.,S) be a CCFG, we define on (comp(K) UT)* the derive relation denoted = ®=T

holds for @, ¥ € (comp(K) U T)*, iff there exist u1,ur41 € V*, us,...,u, € ED(K,T) and (kl,.c..,kT)c—>
(a1,---,a,) € P, such that

¢ = U1k1U2k2 . uTkTuT_H
U = wuioiue@s...UpQplpyl
The language defined by G, is
L(G,) = {w|S§>w/\w€T*}

For any CCFG G. = (K, T, P., S), we define the rank of G as rank(G) = max {r | (k1,...,k.) € K}.
Property 14 For any CCFG of rank h, there is an equivalent h-sPRCG.

For any CCFG G. = (K,T,P.,S), we construct a PRCG G = (K,T,V,P,S) in the following way. Let
(k1,--., k) — (a1,-..,a,) be a production in P, where (ki,...,k.) € K and a;...a, € ED(K,T) such that
o = wok'wi .. k¥ w, , o = wik'Tiwl . kPtsiwl and ap = wik'Terwl .. kPiterwr where s; = p; and
Sk =2 1<jer P2 < k<

We successively defined the LHS and the RHS of the corresponding clause

The LHS part. The nonterminal part of the LHS is (kq,...,k,) and its arguments are merely a rewriting of
the RHS of the production where each occurrence of a parenthesis element is replaced by a brand new
variable. More formally, let replace each occurrence of a comp(K) element in all a;’s (e.g. the k!’s) by
a variable X; and therefore transforming each a; into (a;) such that () = wyXiwi ... Xpwp,, ...,

(o) = wiXipswh .. Xpgswl,, ..., (o) = wi X145, 0] ... Xp, 45wy . The LHS of the corresponding

clause in P is therefore: (ky,...,k.)({a1),---,{a;)). Remark that the length r of the parentheses becomes

the arity of the nonterminal (ki,..., k).

RR n° 3342

30 P. Boullier

The RHS part. The RHS of the clause is constructed from the «;’s and only depends upon the paren-
theses and their positions in the RHS of the initial production. Consider the string of parentheses
k=k'.. kS kSt kS kSr—1Ftl kS constructed from aj ...a;, where all the elements of T (the
w’s) have been erased. Of course, we still have kK € ED(K,T). This sequence of parentheses, k£, may (mul-
tiply) be seen as a string uokiuy . .. wi—1kit; . . . KUy, where u; € ED(K,T) and (ki,...,kn) € Kim].
To each parenthesis k; we associate its position p; = |uokiug ...ui—1| + 1 in k. We define a set D =
{(kl,...,kj,...,km)(Yl,...,YJ-,...,Ym) | mzuoklul...kjuj...kmum ANuj € ED(]C,T)/\(kl,...,km) €
Klm] AY; = X, }'2. If, as usual, we look at this set as a vector D, the RHS of the constructed clause is
D.

Proof: By construction, each clause in P is in simple form and its arity is at most h. The bijections between
the productions in P, and the clauses in P and between the derivations in G, and G allow to easily show
this result.

|

Example 13 The CCFG G, = ({(S), (L, R)},{a,b,c}, P.,(S)) where the productions in P, are
5) - (LR)
(L,R) — (aLb,cR)
(L,R) — (s¢)

defines the language L(G.) = {a™b"c™ | n > 0}.
The associated PRCG is G = ({(S), (L, R)},{a,b,c},{X1, X2}, P, (S)) where the clauses in P are

(S)(X1X>) - (L, R)(X1,X>)
(L R)(G,le CX2) - (L,R)(Xl,Xz)
(L, R)(¢¢) -

10 Linear Context-Free Rewriting Systems & sPRCGs

Linear context-free rewriting systems (LCFRS) have been introduced in [Weir 88] and are a generalization of
HGs since they allow nonterminals to derive tuples (and not only couples) of terminal strings and instead of the
wrapping and concatenation operator, they allow any operator which is linear and non-erasing. A production
in a LCFRS has the form

A = f(Bi,...,Bp)

where f is a function over tuples of terminal strings defined by

fl@y,...,x0,) = t

where the z;; = #;[j]’s are variables and the #]k]’s are terms (by the concatenation operation) over terminals
and variables of the LHS. The linearity (both top-down and bottom-up), the non-erasingness (both top-down and
bottom-up) and the fact that the &;[j]’s are variables (non-combinatorial) are exactly, in the RCG terminology,
a simple clause

A) — Bi(@1)...Bm(27)
therefore, we trivially have

Property 15 LCFRS and simple PRCGs are equivalent.

12The RHS of a production in a CCFG is called its drain.

INRIA

Proposition for a NLP Syntactic Backbone

11 Literal Movement Grammars & PRCGs

As already mentioned, PRCGs are a variant of literal movement grammars (LMGs) see [Groenink 97]. The
string version of generic LMGs may be seen either as a mini-prolog acting on a flat domain or as PRCGs where
variables are not bound to ranges but to strings. As such, LMGs are not specialized to parsing, in the sense
that some predicate arguments may be instantiated in strings which are not substrings of its sentences. At
the contrary, in RCGs, the string instantiation of an argument w?, for some range p € R, is by definition
a substring of the input w. Therefore, generic LMGs could better be considered as a string manipulation
formalism. In [Groenink 97] it is shown that the language defined by arbitrary LMG is the set of recursively
enumerable languages. Therefore, to get a computationally tractable formalism, Groenink defined a subclass
called simple LMGs in which clauses are non-combinatorial, bottom-up non-erasing and bottom-up linear. In
fact the idea behind the restrictions from generic LMGs to simple LMGs are set to only handle substrings
of the input in instantiated clauses. Within these restrictions, it can be shown that two occurrences of the
same variable (in RHS of a clause), designate identical substrings occurring at the same index of the input.
This exactly covers the notion of range. In order to implement LMG recognizers, Groenink defined a variant
of simple LMGs called index LMGs which handles indexes (in the source text) instead of strings. He has
shown that simple LMGs and index LMGs are weakly equivalent and that they exactly cover the class PTIME
of languages recognizable in deterministic polynomial time. It is not very difficult to show that we have the
following inclusions
simple LMG C PRCG C index LMG = simple LMG

This shows that formally PRCGs exactly cover the class PTIME.

In fact PRCG formalism combines both the advantages of simple LMGs and index LMGs. Moreover, the
fact that RCG clauses are not forced to be non-combinatorial, bottom-up non-erasing or bottom-up linear, may
add some flexibility in grammar design. However it does not seem that this increased flexibility, even when we
consider negative predicates, had any formal power. The argument being that recognition is still performed in
polynomial time for (general) RCGs.

There is a strict subclass of simple LMGs which is of interest, namely the parallel multiple context-free
grammars (PMCFGs, [Kaji et al. 92]) which themselves strictly extend LCFRS in allowing only rules which
are non-combinatorial, top-down non-erasing and top-down linear.

Therefore, we get the following hierarchy, w.r.t. their formal power

LCFRS Cc PMCFG <C simple LMG = PRCG <C LMG

12 Closure Properties and Modularity

RCGs possess many interesting closure properties, some are classical (let’s quote union, concatenation, Kleene-
closure, ...), some are less classical (k-copy, *-copy, -..) and the two last (intersection and complementation)
are the basis for our argumentation in favor of the modularity of this formalism.

Property 16 RCLs are closed under k-copy and *-copy.

The k-copy language of £ for a given k is the set {w* | w € £}. Let G; = (N,T,V, P, S1) be a RCG, the
k-copy language of £(G) is defined by the RCG Gy, = (N U{Sk, Eq}, T,V U{Xy,..., X}, PU{¥},S;) where
the start symbol Sy is a new nonterminal, Eq is the equality predicate defined in Example 2 and

-

v Sk(Xle) — Eq(Xl,XQ)...Eq(Xl,Xk) Sl(Xl)

For the %-copy language (Ur>0L(G%)), we add to P the following set of clauses:

S(e) - €

S(X) - S(X)

S(XYZ) — EqX,Y)Si(X)K(X,Z)
K(X,e) — €

K(X,YZ) — EqX,Y)K(X,Z)

where K is a new nonterminal.

Property 17 RCLs are closed under scrambled-copy.

RR n° 3342

32 P. Boullier

The scrambled-copy language of £ is the set £ = {w | w = wyws Aw; € L Awy € T(wy)}, where TI(w,) are
the set of permutations of w;. Assume that £ is described by the RCG G = (N,T,V,P,S), L is defined by a
RCG whose start symbol is S and the following clauses are added to P

S(W1W2) - S(Wl) Scrmbl(Wl, Wl,W2)

Sermbl(To X, W1, Ws) — Term(Ty) A(Ty, W1, Wa) Sermbl(X, Wy, Ws)
Sermbl(e, Wy, W) - €

A(To, Ty W1, ToWs) — Eq(Ty,T1) Eq(To,T>) A(To, W1, W2)

ATy, TiW1, ToWs) — Eq(To,T1) Eq(To,T>) A(To, T1 W1, W2)
A(To, ThWy, Ty W) — Eq(To,T1) Eq(To,T>) A(To, W, To W)
A(To, Ty W1, To Ws) - Eq(Ty,T1) Eq(To,T>) A(To, W1, W2)
A(To,e,¢) - €

where we assume that the predicate T'erm checks if its argument is a terminal symbol. The first clause
checks that the prefix wy of the input string w = wyws is in Ly and that its suffix ws is a scrambling of wy. The
idea behind the scrambling test is simply to check that the numbers of occurrences of each terminal symbol are
equal in w; and ws.

However, it is not clear how this closure property can be related to (long-distance) scrambling since we need
to have some model (the string w1) to be able to check for a permutation (the string ws).

Property 18 RCLs are closed under intersection.

Let Gy = (N1, T1, V1, P1, S1) and Go = (Na, T, Va, P, S3) be two RCGs respectively defining the languages
Ly and Ly. Since we may rename nonterminals at will without changing the generated language we assume
that Ny N Ny = 0. Let S be a new nonterminal not in N; U Ns.

We construct the grammar G = (N, T,V,P,S) where N = Ny UN,U{S}, T=T1 UT>, V=V UV U{X}
and P=P,UP, U{S(X) — S1(X) S2(X)}.

Trivially we have £(G) = L1 N Lo.

The fact that RCGs are closed under intersection and that such an intersection can be reached by a trivial
operation (i.e. add a new clause after perhaps some nonterminal renaming) opens some interesting perspective
in the ease and modular description of linguistic phenomena: it allows the direct definition of a conjunction of
structures. One view of a given structural (grammatical) phenomenon is expressed by a first grammar an other
view of the same phenomenon is given by a second grammar, the device which describes simultaneously the two
previous views is merely the intersection of these two grammars.

Property 19 The positive and negative range languages of nonterminals are complementary.
The proof that
1. If gy € A(A) = gy & A(A)
2. If pp & A(A) = pp € A(A)

directly results from the fact that derive relations are assumed to be consistent.
therefore, we have

Property 20 The RCLs are closed under complementation.

If G = (N,T,V,P,S) is a RCG, the grammar G' = (NU{S'},T,VU{X},PU{S'(X) —» S(X)},5") is a
RCG s.t. we have £(S") = £(S).

The reason why we are interested by this property is to model the paradigm “general rule with exceptions”.
The general rule is described by some predicate say R, the exceptions to this rule by an other predicate say E
the whole property P being described by R — E (i.e. RN E).

Within the RCG formalism, we simply have to add a clause of the form

P@ — R@) E(d)

We know that the complementary of a CFL is not CF. However when you give an erroneous input string
to a general CF parser, this parser will always detect an error. More generally, if we have a parser for a given
formalism which terminates on any input, this algorithm will recognize any erroneous input (i.e. string belonging

INRIA

Proposition for a NLP Syntactic Backbone

to the complementary), though the complementary language may not belong to the same class. But doing so, we
get a recognizer (not a parser) for the complementary language. However, within the vision “general rule with
exceptions”, the structure (parse tree) of the complementary (negative) parts of RCGs are of no importance
since if P is true (i.e. R is true and E is false), the structure of P is the structure of R (the general case).

We think that modularity!® w.r.t. the intersection and complementation operations brings a new insight
into the way syntactic backbones of NLs can be designed.

Example 14 Assume you want to write a grammar for a language which has the properties (structures described
by) P, or P> and Q)1 or Qs but Ry or Ry are excluded. In a classical grammatical formalism the fact that each
grammar for Py, ..., Ry is known does not bring any clue to solve our problem (if ever possible). Contrary,
within the RCG formalism, the grammar:

S(X) — PX) Q(X) RX)
PX) — P(X)
P(X) — PBP(X)
RX) — Qi(X)
QX)) — Q2AX)
R(X) — Ri(X)
R(X) — Ry(X)

trivially gives the solution.

13 A Parsing Algorithm for RCGs

In a first time we will only consider a recognizer for positive RCGs and second how this algorithm can be
generalized to also handle negative RCGs. Afterwards, our recognizer will be extended into a parser.

13.1 The positive RCG case

The recognizer is in Table 1. The function prdct must be called from the outside, for some input string w by
prdct(S, ewe).

(1) function clause (i,pp) return boolean

(2) if K[i,po] # unset then return KJi, po]

(3) let Pi]: Ao(cp) — Ar(ai) ... Am(ain)

(4) ret-val = Kli,pp] := false

(5) foreach (such that ([0] = 5 A P[i]/€ do

(6) ret-val := ret-val V prdct (A1, Q[1]) A ... A prdct (Am, Q[m])
(7 end foreach
(8) return Kli,py] := ret-val
(9) end function

(10) function prdct (A, p) return boolean
(11) ret-val := false

(12) foreach i such that P[i] € P4 do
(13) ret-val := ret-val V clause (i, p)
(14) end foreach

(15) return ret-val

(16) end function

Table 1: The Recognition Algorithm for PRCGs.

13Recall that to be modular we need both a closure and a structure preserving property.

RR n° 3342

34 P. Boullier

First remark that the function clause is memoized, its return value is kept in an auxiliary 2-dimensional
matrix K. The elements of K are initialized to unset. As usual, P designates the clauses of the PRCG at
hand.

We will show that this set of two recursive functions terminates on each finite input w of length n. In such
a case the number of different values for the arguments of clause or prdct is bounded (it is O(n?") if the arity
of the PRCG is h). Therefore, an infinite loop can only occur if the same function is called with the same
argument values. This case is avoided since first clause is memoized (see line (8)) and its body is executed only
once when the memoized value is unset (see lines (2) and (4)) and second this memoization extends to prdct
at a bounded extra cost (Maxaen|Pal). The interpretation of the three memoized values for a given couple of
arguments (%, py) is

unset. These arguments are considered for the first time, execute the body.

false. clause (i, pp) has already been called but here two cases can occur

1. This value has been set at line (4), the stack of recursive calls already contains the same call (the
PRCG is cyclic) and a reexecution must be avoided. Moreover, up to the current knowledge, the
value is false, meaning that, for the time being, no terminal derivation starting at A(py) and whose
first step uses the clause P[i] has been found.

2. This value has been over written at line (8), and the meaning is a total failure, no terminal derivation
starting at A(pg) and whose first step uses the clause]3[2] exists.

true. This value has been over written at line (8), and the meaning is a success: there is at least one terminal
derivation starting at A(pp) and whose first step uses the clause PJ[i].

A call to prdct (A, p) returns true iff there is at least one terminal derivation starting at A(g). A call to
clause (i, py) returns true iff there is at least one clause binding P[i]/€} such that 3[0] = gy and for which each
instantiated predicate Ax(€1[k]) of the RHS of the instantiated clause Aq([0]) — A1 (G[1]) ... A (Q[m]) is the
head of at least one terminal derivation.

13.2 The negative RCG case

In order to get a recognition algorithm which also works for negative RCGs, we simply modify the line (6) in
changing every call to prdct(Ay,Q[k]) by — prdct(Ag, Q[k]) when the corresponding predicate Ay(c}) in the
RHS of P[i] is negative.

13.3 The parser case

To turn this recognition algorithm into a parser, we simply add the statement

(6”) output(45° — A?[l] .. .Ag[m])

after line (6) which must be executed only if the call to prdet (Ay, 3[1]) A ... A prdct (A, [m]) succeeds.
If we are in the negative case, say Ay (d}), we know that the call to prdct(Ay, Q[k]) failed and its structure

is empty, so is the structure of its complement. Therefore Ax* must be considered as a leaf. Equivalently
pty, Y
Gi[k]

we can output an additional Ay
production output at line (6).

— ¢ production or even erase the negative nonterminals in the RHS of the

13.4 Complexity considerations

We first compute the maximum number of (’s at line (5) for a given couple of arguments (i, 53). The number
of ranges in the RHS is af = >, Arity(Ay) where Arity(Ay) is the arity of the nonterminal Aj. Since each
range is a couple of integers, line (6) is executed O(n??*). The function clause(i, pp) is executed (’)(nzaz) where
al is the arity of the LHS (al = Arity(Ay)). Therefore for a given clause PJ[i], the line (6) is executed O(n20+)
times where a; = al + a is the arity of P[i]. The maximum value of a; is h(l + 1) if we consider an h-RCG and
if [is the maximum number of predicates in RHS of clauses. The maximum time complexity of our parser is
therefore O(|P|n?"(+1)). This complexity is also the size complexity of the output shared forest.

INRIA

Proposition for a NLP Syntactic Backbone

Note that these complexities are linear in the size of the grammar. Such a result is of importance: let’s quote
from [Hotz and Pitsch 94] When analyzing natural languages one often has to deal with rather short sentences
while the underlying grammar is one of an enormous size. Therefore, the time complexity’s dependency on the
size of the grammar is important. Even for large ranks, here, the time complexity depends only linear on the
size of the grammar. In contrast to our algorithm, all parsing procedures for TAGs and Coupled-Context-Free
Grammars of rank 2, respectively, known so far depend at least quadratic on this size as their time complezity.

13.4.1 The non-combinatorial and bottom-up non-erasing case

However, this previous view is very pessimistic since we have assumed a complete independence between the
LHS and the RHS ranges. Assume that our RCG is non-combinatorial and bottom-up non-erasing, that is
arguments of the RHS are variables which occur in the LHS. Let v, be the number defined by

{0 if € T*
Yo = k41 ifa=20X1... Xpak

Vay, = D ;Vayli] and v = Max vy where ap denotes the arguments of the LHS predicates. Under that
conditions, the time and size complexity of our parser is O(|P|n?).
In establishing this complexity, we have assumed that

1. different variables carry unrelated ranges, and that

2. the two bounds of each range are also unrelated.

We shall see below that in some particular cases this pessimistic view can be enhanced, but in a first time, we
shall look at some practical improvements whose purpose is to decrease the number of time the loop at line (5)
of Table 1 is executed. The idea is to statically compute (at grammar compilation time) two functions First
and Last whose purpose is to record for each argument of every predicate the prefix and the suffix of the strings
which can be derived. These functions can be seen as a generalization of the LL conditions in deterministic CF
parsing, the length of these prefix and suffix can be increased at will. We will examine the length one case.

13.4.2 First & Last
We define the function First (resp. Last) in N x N — P(T'U {e}) by t € First(A, k) (resp. t € Last(A,k)) iff

S(ewe) GT_*Z; Ty A(piy-e s Plye -5 pp) Ta G%U € where pp = (i..j)w € Ruw A (i # jANaiy1 =t (resp. aj =t) Vi =

JAt=c¢).

Algorithm 3 We assume that G is non-combinatorial and non-erasing. Its clauses are denoted by ¥ = Ao(ap)
Ai(ah) ... Aj(d)) ... Ap(am).
We compute the 2-dimensional array First (resp. Last).

1. We assume that the set Empty (see Algorithm 1) has been computed.

2. VA,k : First[A, k] =0 (resp. Last[A, k] =0).

3. if aplk] = ad’ (resp. aplk] = d'a), a € T, add a to First[A, k] (resp. to Last[A,k]).
4

ifaglk] = X1 X XY (resp. aplk] = 'YXy ... X, ... X,) and for each Xp,1 < h < q there is an
argument in the RHS say aj[l] such that o[l] = Xy, (Aj,7) € Empty and ¢;[l) = 0 then

(a) If Y = a, we add a to First[A,k] (resp. to Last[A,k]).

(b)) If Y € V, and if Y is the say I argument of A;,j > 0, we unioned First[A, k] (resp. Last[A,k])
with First[A;,1] (resp. Last[A;,1])*.

5. Step 3) is iterated until stability.
6. For each (A,7) € Empty and 7k] =0, we add € to First[A, k] (resp. to Last[A,k]).

M1f @ is erasing and Y is a variable which does not occur in the RHS of ¥, we set First[A,k] (resp. Last[A,k]) to T. Such a
conservative approach may also be considered at places where clauses are combinatorial.

RR n° 3342

36 P. Boullier

Property 21 First(A, k) C First[A, k]

Note that if First[A, k] = 0 or Last[A, k] = (), this means that the A-predicates are useless.

Assume that the arrays First and Last have been (statically) computed, then we can activate the body
of the loop at step (5) of the algorithm in Table 1 only when each range p in Q verifies the First and Last
constraints: assume p = [j][k] = (h..i)w, then we must have aj 1 € First[A;, k] and a; € Last[A;j, k].

Another statically computed property which may decrease the complexity of our parsing algorithm implies
predicates whose multiple arguments have related sizes.

13.4.3 Compare

The idea here is to statically know whether the sizes of at least two arguments of a given predicate always verify
some length constraints. Here, for simplicity reasons, we shall only look at an equality length relation. Assume
that we know that the two arguments of the predicate A are always of equal length, we can therefore constraint
the ranges say p; and p» computed for A at step 5) of the algorithm in Table 1 to be of equal sizes'®. Doing
so, the number of free bounds decreases from four to three. Of course, this improvement is independent of the
First and Last ones.

We define a Compare function whose domain is (N x N?) and codomain is {=,#}. The idea is to perform
a static evaluation on the grammar in order to keep track of the comparison of the sizes between couples of
arguments for every predicate.

Algorithm 4 Compare construction.
For simplicity reasons, we will assume that the grammar at hand is non-combinatorial.
This algorithm computes the 3-dimensional array Compare.

1. Initially VA,i,j : Compare[A,i, j] is set to =.

2. Let U = Ag(dp) — Ay (ai). .. A;(df) ... Ap(dy,) be the positive clause associated to any clause in P. Let
o = apli] and " = aylj],i # j, the two arguments of Ay we wish to compare. If the numbers of terminal
symbols in o' and o" are different, then set Compare[Ay,i,j] to #. If equal, we

e first suppress in ' and o the variables which have multiple occurrences (recall that this variables
can only be bound to empty ranges) ;

e second, variables which occur in both strings are also erased (they are always bound to the same
range).

If the lengths of these resulting strings, say oy and az, are different, then set Compare[Ay, i, j] to #. If
equal, we look for a bijection between the variables of a; and the variables of as such that for each couple
U < V, where U is a variable of a1 and V is a variable of a2, we have Compare[Ay,r,s] set to = and
U,V € {ak[r],ar[s]}. If such a bijection does not exist, we set Compare[Ay,i,j] to #.

3. Step 2) is repeated until stability.

Obviously if for a given predicate we know, by a static computation, that the sizes of its arguments are
equal, this may decrease the time complexity of the parsing algorithm.

For example, by a static computation, it is not difficult to see that the two arguments of the equality
predicate Eq defined in Example 2 are (always) of equal size. Therefore, for each equality check, in any given
recursive call to Eq, there is only a single free value, say the upper bound u; of the first range argument. The
lower bounds [; and l> do not change and the upper bound of the second argument is Iy + h; — I;. This shows
that each complete string equality is performed in time linear with the common size of its two arguments by
the Eq predicate.

Therefore the bindings for X and Y, assuming that the binding of X¢Y is known and that the sizes of X
and Y must be equal, is unique (moreover, if the size of the input range is not an odd number, the function
can immediately return false). If we combine this property to the fact that in this example the lower and upper
bounds of the ranges of the predicates S and L are constrained (S is called a single time with the range ewe,
for each call of L, the lower bound of the argument is always 1, and for each call of R, the lower bound of the
argument is always 5% + 1. Therefore we get a linear time parser for £(G) = {wew | w € {a, b, c}*}.

15The size of a range (i..j)w is j — .

INRIA

Proposition for a NLP Syntactic Backbone

Of course, due to the modularity, it is possible to conceive a library of predefined languages that any
grammar designer can reuse in its own language definition. Moreover, some of these grammars may have their
own specialized recognition function. It is clearly the case for the equality predicate which can be simply and
efficiently implemented as a simple string comparison.

We have seen, in previous sections, that some grammar types may be transformed into an equivalent sSPRCG
form. In the next section, we compare the complexities of the best known parsing techniques for these grammars
and the complexity of their sSPRCG counterpart.

Recall that sSPRCGs are non-combinatorial and bottom-up non-erasing and therefore our parsing algorithm
complexity is O(|P|n”) (see Section 13.4.1 for a definition of v).

13.4.4 The CFG case

If we assume a CFG in binary form, we have seen that it can be transformed into a 1-sPRCG (predicates are
all unaries) where the length of each argument is at most 2. Therefore we have v = 3 and we get the classical
cubic time for CFG’s parsing. However, this cubic time is a worst case and there are particular cases where this
time can decrease.

In particular, if the language is regular and is defined by a right-linear or left-linear) grammar, (each
production is of the form A — B or A — x, where A,B € N and x € T, our parsing algorithm is linear,
though the general formula gives a quadratic time (v = 2). The reason is the following. Due to the particular
forms of right-linear productions, the corresponding clauses have at most one variable. Moreover, the upper
bound of the single range argument is always n and hence the corresponding complexity decreases from quadratic
to linear.

One can wonder whether the classical linear parse time for the LL or LR subclasses of CFGs can also be
reached. This seems to be difficult with the proposed algorithm since variable bindings are performed a priori
(top-down).

13.4.5 The LIG, TAG, HG cases

If we assume a binary branching LIG, we have seen in Section 8.1 that the most complicated case happens in
form (6) of Property 11 when we apply the “wrapping” conditions exemplified by the clause:

AXZ,TY) — B(X,)Y)C(Z1T)
If we consider a bilinear HG, we have seen in Section 8.3 that the associated clauses have the form

AWX,YZ) — Bi(X,Y) By(W,2Z2)
AX,YWZ) — Bi(X,Y) By(W,Z2)
AXYW,Z) — Bi(X,Y) Bo(W, Z)

In Section 8.2, we have not assumed that TAGs have some binary branching form. However, we know
that there is a binary branching normal form for TAGs (see [Vijay-Shanker and Weir 94a]) and moreover the
maximum number of inside .4-node in each tree can be less or equal than two. Under such conditions, the forms
of the associated clauses are exactly those produced for the above HG; we get the first one when the inside
nodes are on the spine, the second and the third when a node lays respectively to the right or to the left of the
spine.

This shows that, starting from a LIG, a HG or a TAG, the value of the constant v in the equivalent 2-sPRCG
is 6. Therefore parsing is performed by our algorithm in time O(|P|n%) which is the best time complexity of
their initial counterpart grammar.

We can remark that, for example, the transformation of a LIG into an equivalent RCG allows to understand
the reason why the analysis time is in O(n®). In particular, if the conditions to apply the transformation (6)
are not fulfilled for some LIG L, the parsing time for L is less than O(n®). It reaches at most O(n®) since any
string -;-y2 contains at most one variable. Also note that supplementary conditions may also decrease the LIG
parsing time, even when the conditions (6) apply (assume that the size of the ranges bound to variables X and
Y or W and Z are always equal).

13.4.6 The Coupled Context-Free Grammar case

We have seen in Section 9 that for any CCFG of rank h, there is an equivalent A-sPRCG. For each CCFG there
is a binary form (the generalized Chomsky normal form) for which the worst case time complexity is O(|P|n3")

RR n° 3342

38 P. Boullier

(see [Hotz and Pitsch 94]). Starting from this normal form, we get clauses where the number of arguments is
at most h and the number of variables in each LHS argument is at most 2. Therefore the value of v is less or
equal to 3h and the worst time complexity of the equivalent h-sPRCG is also O(|P|n3").

Definition 19 A non-combinatorial h-RCG G = (N, T,V, P, S) in 2-var form is i-limited for some 1 <i < h,
if for all clauses Ao, ...,ap) = ¥ in P, we have

i1V =2,1<j<p} <i

This means that ¢ is the maximum number of arguments for a given predicate which have exactly two
variables.

Property 22 Let G = (N, T,V,P,S) be an i-limited non-combinatorial h-RCG in 2-var form. Our recognition
algorithm solves the word problem for any w € T*, n = |w|, in time O(|P|n2"+1).

This results from the fact that each argument which has exactly two variables induces a cubic time and there
are at most i such arguments which therefore induce a O(|P|n??) time. The h — i other arguments have exactly
one variable, each such argument induces a quadratic time, so the 1-var arguments induce a O(|P|n*("=%) time.
Finally since O(|P|n)O(|P|n**=9) = O(|P|n?"*%) and since the recognition time is linear with the size of the
grammar, we get our result.

Moreover, in [Hotz and Pitsch 94], it is shown that for any Coupled-Context-Free grammar G of rank h > 2,
there exists an equivalent 2-limited G’ of rank h in generalized Chomsky normal form. It is trivial to see that
the RCG equivalent with G’ is a 2-limited h-sPRCG in 2-var form which therefore has, as its original CCFG, a
worst case time complexity of O(|P|n2h*2).

13.4.7 The linear context-free rewriting systems case

In Section 10 we have seen that sSPRCGs may be viewed as another writing of LCFRS. Therefore we have a
proof that LCFRS can be parsed in polynomial time.

13.4.8 Beyond LCFRS
The Example 3, reprinted below

S(XY) — S8(X)Eq¢X,Y)
S(a) - €

whose language is {a®” | p > 0} shows that the formal power of RCGs exceeds the power of LCFRS (mildly
context-sensitive formalisms) since its sentences do not express a constant growth property. In fact, its parse
trees are all the complete binary trees. Remark that the added formal power is due to the non-linearity (the
variables X occurs more than once in the RHS of the first clause). We can also note that this added power does
not necessarily have to be paid by some increase in parsing time complexity.

If we look at this grammar, it is not difficult to see that our parsing algorithm performs O(p) calls of the
function clause on the first clause and each call is performed in time O(2?) if 2¢ is the size of the input range.
Since we know that the Eq predicate is executed in linear time with the common size of its two arguments, we
get a linear parse time for this grammar since), O(2') = O(27) = O(n).

Example 15 It is possible to generalize the language {a™b"c™ | n >= 0} to the language {a7 ...a} | Vn,k >
0Aa; € T} where the number of substrings af* of length n is undefined and a given substring may occur several
times. This language is defined by the following PRCG:

S(XY) — A(X)B(X,Y)

B(X,YZ) — EqLen(X,Y)A(Y) B(X,Z)
B(X,¢) — €

A(X) — Ay(X)

Ai(aiX) - AlX)

Ai(e) - €

where the predefined predicate EqLen is true iff its two arguments denote ranges of equal size and the three
last clauses are schema over terminals a; € T. It is not difficult to see that each cutting in X,Y of the source
range in the first clause is processed in time linear with n. Therefore this grammar is parsed in quadratic time
with n.

INRIA

Proposition for a NLP Syntactic Backbone

Let’s take a last example which shows the power of RCG and its computational tractability.

Example 16 Let’s call prime string a string whose length is a prime number. The set of all prime strings is a
language which can be defined, for some vocabulary T, by the following RCG clauses:

1: S(X) — Prime(X)
2: Prime(X) — NotPrime(X)
3: NotPrime() - €
4: NotPrime(X;: XY Z) — Len(2,X;) EqLen(X1X>,Y)
XYlegZ(Y,Y, X1 XoY Z) Mul(Y, Z)
5: XYleqZ(X,e,Z) - €
6: XYleqZ(X,Y1Y>,Z17Z5) — Len(1,Y3) EqLen(X,Z>) XYleqZ(X,Y1,Z1)
7T: Mul(X,e) - €
8: Mul(X,YiYs) — EgqLen(X,Y:) Mul(X,Y;)

We choose to define prime strings as the complementary of non prime strings (see clause #2). Clause #3
indicates that 0 is not a prime number. A strictly positive integer number n is not a prime number iff there
are two integers x and k, 1 < z,k <mn s.t. n = kx. More precisely, we know that a tighten upper bound for x
and k is the square root of n (i.e. 2 < k,x < \/n). Since 1, 2 and 3 are prime numbers, a number n > 4 is not
a prime number iff we have the following conditions: there are three numbers x, y and z s.t. x +y + z = n,
2<z, 2=y, 2> <n and z is a multiple of x (3k > 0 : z = kx). Assume that the predefined predicate
Len(p, X) is true iff the length of the range X is the integer p, the clause #4 may be read as: if the input
range of length n may be decomposed into four consecutive ranges X1, Xo, Y and Z such that | X;| + | Xa| > 2
(since | X1| = 2 by Len(2,X1)), | X1| + |X2| = |Y]| (by EqLen(X1X>,Y)), (|X1]| + |X2|)? < n (checked by the
predicate XYleqZ) and Z is a multiple of | X1| + | X2| (checked by Mul) then n is not a prime number. The
idea behind the clauses #5 and #6, defining the predicate XYleqZ(X,Y, Z) is the following. XYleqZ(X,e,Z)
is always true (clause #5) since | X|*0 < |Z|. Clause #6 simply indicates that if X, Y and Z are such that
Y| =|Y1| + 1, |Z| = |Z1]| + | X| and | X| = |Y1| < |Z1] then we have | X|*|Y| < |Z|. Clauses #7 and #8 define
the predicate Mul(X,Y) which is true iff the length of Y is a multiple of the length of X. We know that 0 is a
multiple of | X| (clause #7) and if |Y| = |Y1| + |X| and if |Y1| is a multiple of | X|, then |Y| is also a multiple
of | X| (clause #8).

We can first remark that this definition is very modular and in particular the predicates Mul, XYleqZ and
Prime itself do not depend on any particular terminal symbol and as such may be part of a library of modules.
Of course, for a particular (main) grammar the set T of terminal symbols must be defined.

Now, let’s have a look at its time complexity. We shall assume that each predefined predicate Len or
EqLen takes a unit time. If we consider the Mul clauses, we can easily see that a test to know whether two
ranges | X| and |Y| are such that |Y| is a multiple of | X| necessitates exactly |Y'|/|X| + 1 calls and then takes
O(|Y|/|X]) time. Analogously we can see that the test for the predicate XYleqZ(X,Y,Z) takes O(|Y|) when
it succeeds or O(|Z|/|Y|) when it fails. Now, let us consider clause #4. Here, we can consider that the only
unknown is the upper bound of Xy since the lower bound of Xy is 0, the upper bound of Z is n, | X1| = 2,
Y| = |X1| + | X2| and |Z] = n — (| X1] + | Xo| + |[Y|). Let X = X1 X5, therefore, the size of X takes at most
n/2 different values. The complexity due to the execution of the predicate XYleqZ is the addition of two terms,
one when its execution succeeds and the other when its execution fails. We know that the execution succeeds

if | X| < \/n or fails otherwise. Therefore the ezecution time for the predicate XYleqZ is TY oz + Z:f\/ﬁ

whose limit is O(n) + O(nlogn) ~ O(nlogn). The execution time for the predicate Mul is E:gn/m whose
limit is O(nlogn)'®. Therefore, time complexity for the language of prime strings is O(nlogn).

njx

14 Conclusion

In this paper we present a syntactic formalism which is an extension of CFGs and whose formal power allows to
express numerous phenomena occurring in natural language processing, while staying computationally tractable.
The associated parsers work in time polynomial with the size of the input string and in time linear with the size
of the grammar. In a given grammar, only complicated (many arguments, many variables) clauses can produce
higher parsing times whereas simpler clauses induce lower times.

161n fact, if we assume that the RHS predicates are executed from left to right, the upper bound of the ¥ for the predicate Mul
is 4/n instead of n/2 since Mul is only executed when XYleqZ succeeds. However, this consideration does not improve over the
O(nlogn) limit.

RR n° 3342

40 P. Boullier

In fact, PRCGs exactly cover the class PTIME of languages recognizable in deterministic polynomial time
and as such they are strictly more powerful than TAGs or LCFRS. We have shown that many grammatical
formalisms (CFG, LIG, TAG, HG, CCFG, LCFRS, ...) may be directly translated into a weakly equivalent
PRCG form. Note that this formal power does not induce any overcost since the complexity of their PRCG
counterpart is exactly their best known complexity. For example we get a linear time for regular CFG, a cubic
time for CFG and an O(n%) parse time for LIG, TAG or HG. Moreover, it may bring some new insight into
these formalisms and may for example help to understand why the complexity of a LIG recognizer is O(n®).

In this paper, we have introduced some predefined predicates as Eq, EqLen or Len whose usage, when
appropriate, may decrease the parsing time in avoiding internal loops within the recognition procedure. A
prototype version of the recognizer in Table 1 has been implemented and it has for example allowed to check that
the practical recognition time for the prime strings language of Example 16 is the theoretical time O(nlogn)'7.
The Compare array of § 13.4.3 may be thought of as an attempt to automatically extract the EqLen predefined
predicate from a grammar.

Though the worst case upper bound is not improved by the usage, within the parser, of the statically
computed structures First and Last, we are convinced that practical parse times will be greatly enhanced by
this technique. Moreover, our parsing algorithm seems to be well suited to allow parallel implementations.

For a given input string, the exponential or even unbounded set of derivation trees which are the output of
our parser, can be represented into a packed structure, the shared forest, which is a CFG of polynomial size
and from which each individual derivation tree can be extracted in linear time with its own size.

These RCGs may themselves be considered as a syntactic backbone upon which other formalisms as Her-
brand’s domain or feature structures can be grafted in the very same way as these formalisms decorate CFGs.

At last, we have seen that RCGs are closed under intersection and complementation in a way which preserves
the structure of their individual components. These properties indicate that RCGs are modular and allow to
imagine libraries of generic linguistic modules in which any language designer can pick up at will when he wants
to define such and such phenomenon.

All these properties seems to advocate that RCGs are perhaps the right level of syntactic context-sensitivity
needed in NLP. Moreover, this formalism may have applications in other domains. We here think of biology
and particularly about RNA pseudoknot problem and the multiple sequence alignment problem.

References

[Boullier 95] Pierre Boullier. 1995. Yet another O(n%) recognition algorithm for mildly context-sensitive
languages. In Proceedings of the fourth international workshop on parsing technologies (IWPT’95),
Prague and Karlovy Vary, Czech Republic, pages 34-47. See also Research Report No 2730 at
http://www.inria.fr/RRRT/RR-2730.html, INRIA-Rocquencourt, France, Nov. 1995, 22 pages.

[Boullier 96] Pierre Boullier. 1996. Another Facet of LIG Parsing In Proceedings of the 34th Annual Meeting
of the Association for Computational Linguistics (ACL96), University of California Santa Cruz, California,
USA, pages 87-94. See also Research Report No 2858 at http://www.inria.fr/RRRT/RR-2858.html, INRIA-
Rocquencourt, France, Apr. 1996, 22 pages.

[Groenink 96] Annius V. Groenink. 1996. Mild Context-Sensitivity and Tuple-based Generalizations of Context-
Free Grammar. In Report CS-R9634, CWI Amsterdam, The Nederlands, Sep. 1996, 22 pages.

[Groenink 97] Annius Victor Groenink. 1997. Surface without Structure Word order and tractability in natural
language analysis. PhD thesis, Utrecht University, The Nederlands, Nov. 1977, 250 pages.

[Hotz and Pitsch 94] Giinter Hotz, Gisela Pitsch. 1994. Fast Uniform Analysis of Coupled-Context-Free lan-
guages. In Proc. 21th Internat. Colloquium on Automata, Languages and Programming, Lecture Notes in
Computer Science 820 (Springer, Berlin 1994), pages 412-423.

[Kaji et al. 92] Y. Kaji, R. Nakanishi, H. Seki, T. Kasami 1992. The Universal Recognition Problems for
Parallel Multiple Context-Free Grammars and for Their Subclasses. In IEICE, E75-D(4), pages 499-508.

[Lang 94] Bernard Lang. 1994. Recognition can be harder than parsing. In Computational Intelligence, Vol.
10, No. 4, pages 486-494.

7During this test, performed on an old 40Mhz Sun SS10, it takes one second to check that a string of 19489 a’s is a sentence
(i.e. that 19489 is a prime number).

INRIA

Proposition for a NLP Syntactic Backbone

[Pollard 84] Carl J. Pollard. 1984. Generalized Phrase Structure Grammars, Head Grammars and Natural
Language. PhD thesis, Stanford University.

[Vijay-Shanker and Weir 94a] K. Vijay-Shanker, David J. Weir. 1994. The equivalence of four extensions of
context-free grammars. In Math. Systems Theory, Vol. 27. pages 511-546

[Vijay-Shanker and Weir 94b] K. Vijay-Shanker, David J. Weir. 1994. Parsing some constrained grammar
formalisms. In ACL Computational Linguistics, Vol. 19, No. 4, pages 591-636.

[Weir 88] David J. Weir. 1988. Characterizing Mildly Context-Sensitive Grammar Formalisms. PhD thesis,
University of Pennsylvania, Philadelphia, PA.

RR n° 3342

/<

Unit e de recherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unit e de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unit e de recherche INRIA Rhone-Alpes, 655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN
Unit e de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unit e de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
http://www.inria.fr
ISSN 0249-6399

