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Moindres Carrés, Sentinelles et Moyennes Localisées
Optimales Soustractives

Résumé : Nous présentons, avec des notations unifiées, trois approches de 'estimation
linéaires de parametres : les moindres carrés, les sentinelles, et les moyennes localisées
soustractives optimales (SOLA). Il devient alors clair que les deux dernieres approches cor-
respondent exactement au méme probleme mathématique. On obtient ainsi une nouvelle
interprétation du sentinelle, de nouveaux outils de calcul pour les moyennes localisées, et on
précise leurs liens avec ’approche moindres carrés.

Mots-clé : estimation de parametres, probleme inverse, sentinelles, moyennes localisées,
moindres carrés
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1 Introduction

We consider the problem of estimating a parameter x from a date d in a linear model A:
knowing
d= Al’true +e&,

one wants an estimate of xy.,e together with an error estimate. In order to eliminate all
technical difficulties, we shall consider only the finite dimensional case where z is in IR™ and
din R™.

The oldest solution to this problem is the least-squares approach, where one searches for
the “optimal” parameter & which minimizes a least-squares misfit between d and Az. For
Gaussian noises, this approach produces also an error estimate on Z. However, when z is
made of the values of an unknown parameter function on a grid (we shall say in that case
that z is a “distributed parameter”), this error estimates can be so large that it becomes
useless when the size of the grid is small.

In 1967, Backus and Gilbert [1] [2] tried to solve simultaneously the estimation and un-
certainity problem specifically for the case of a distributed parameter: their idea was to
determine which “spatially localized average” cx of z could be determined from the data
with a reasonnable level of uncertainty (the vector ¢ is called the averaging kernel). Their
approach was very successful in earth sciences, and developped later by Pijpers and Thom-
son into a Substractive Optimally Localized Average (SOLA) method [7] [8]: given a target
averaging kernel ¢, a kernel c is searched, which achieves a compromize between ¢ being
close to ¢ and the uncertainty on ¢z being not too large. We refer to [4] for examples of
application of the SOLA approach to earth sciences.

Then in 1988, Lions [5] [6] introduced the notion of sentinels: his original idea was to
estimate only one component z; of the parameter vector z by performing a scalar product
of the data with a vector w which he called a sentinel. It became quickly apparent that
a sentinel w could be designed to estimate any linear combination éx of x, and not only
the combination z; = e;x, and that the sentinel estimate wd of éx coincided with its least
squares estimate ¢ [3].

We give in this paper an elementary and hopefully pedagogical presentation, with unified
notations, of the three above approaches: least squares, sentinels, SOLA. It becomes then
apparent that the last two approaches lead to the same mathematical problem, albeit the
motivations are quite different. This makes precise the link between the SOLA and Least
Squares estimates, shows that all the machinery developped for the computation of sentinels
(primal and dual formulations) can be used to solve one SOLA problem, and brings a new
interpretation to the sentinels in term of resolving power of the data.
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4 Guy Chavent

2 The linear inverse problem
Let us suppose that we have recorded data d = (d;...d,,) € IR™ generated by a linear model
from an unknown parameter z = (21...xz,) € R™:

d= Axtrue +e€ (1)

where A is a known m X n rectangular matrix, ¢ € IR™ is the vector of parameters which
have generated the data, and where ¢ = (¢;...€,,) is the vector of measurement errors.

In order to evaluate quantitatively how well a vector Ax fits to the data d, one needs to
choose a norm on the data space IR™: for any vector y € IR™ we set

Iyllz-+ =<9, E™'y >R, (2)

where <, > denotes the usual scalar product in JR™, and where E is a given symmetric
positive definite matrix. The choice of E will depend on wether we have or not statistical
information on the error vector € = (e;...e):

the probabilistic framework corresponds to the case where the error vector ¢ is made of
zero-mean random variables with known covariance matrix. The natural norm in the
data space corresponds then to

E = error covariance matrix £{ec'}, (3)

where £ denotes the expectation of a random variable.
In the case where the error ¢ is Gaussian, the norm || ||g-1 on the data space has a
nice probabilistic interpretation: for any vector y € IR™ one has

em2lvli — probability density function of ¢ : (4)

the smallest the norm of y, the likeliest y ! if moreover the errors ¢; are Gaussian and
independant with covariance o2 > 0, then

E = diag (03,...,02) (5)
and, if all errors have the same covariance o2 > 0:
E =0T (6)
the deterministic framework has to be used when no information on the statistical pro-
perties of the errors is available. In that case one can simply choose
E=1I (7)

or better, chosse a matrix E such that the norm of the misfit d — Az measures the
relative error on the observations, for example

E = diag (max{dZ,0}) (8)

where ¢ > 0 is a threshold level to be chosen.

INRIA
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In the sequel, we shall suppose that E is given by (3) (in the probabilistic case) or by (7) or
(8) (in the deterministic case) and satisfies

E symetric positive definite. (9)
We shall also restrict ourselves, for the sake of simplicity, to the case where
A is injective, iem > n = Rank A (10)

This covers in the applications many overdetermined (m > n) linear inverse problems, and
implies that the inverse problem has, at least theoretically, a unique solution. However, the
n non-zero singular values of A will often have very different order of magnitudes, so that
the numerical determination of = will tend to be unstable, and produce z’s with unrealistic
large norms.

The classical cure to this problem is regularization, where one searches for an x which realizes
a compromize between explaining the data and having a small norm. This will be made
precise in the next paragraph where we define the regularized least-squares setting of the
inverse problem. Although a probabilistic interpretation of regularization is possible if an
a-priori probability law with known covariance matrix is available in the parameter space,
we shall not pursue further along this line, as such covariance matrix is rarely known. So
we shall use for the regularization the norm

|lz|%-1 =< R™'z,2 >gn (11)

with
R™! = n x x symmetric positive definite. (12)
The matrix R~ will be chosen from deterministic considerations:

e R~! = if one wants to control the energy of z,

e R~! = matrix associated to first or second derivatives if one wants to control the
smoothness of z.

Of course, if some statistical information is available on x, one can also choose for R the
covariance matrix of the a-priori uncertainty of z.

3 The regularized least-squares (RLS) approach

As we just explained, one searches in the this approach for the parameter & which realizes a
compromise between the output AZ being close to data d (in the norm chosen on the data
space) and the norm of # (as chosen on the parameter space):

Definition 3.1 The regularized least-squares (RLS) formulation of the linear inverse pro-
blem is:
Find & € IR"™ which minimizes J(z) over IR" (13)

RR n~° 3332



6 Guy Chavent

with 1
a., .
T@) = Slld = Asllf + Sl (14

where a is the regularization parameter, chosen such that
a>0 (15)

The coefficient « sets the compromise between the two competing parts of the objective
function: a small o will tend to generate a good fit but a large parameter norm, a long «
will ensure a small parameter norm, but produce a poor fit !

We shall denote by
Hy=ATE A (16)

the Hessian of the unregularized objective function J given by (14) with « set to zero. Under
hypothesis (9) (10), Hy is positive definite, but it can be extremely illconditioned - and it
actually is in many applications.

Then we shall denote by
H=ATE'A+aR '=Hy+aR! (17)

the Hessian of the regularized objective function, which of course, as a > 0, is also positive
definite.

Hence the function J is strictly convex, and goes to +o0c when the norm of z tends to infinity.
This ensures the existence and uniqueness of Z:

Proposition 3.1 the RLS formulation (13) (14) has a unique solution &, given by the
normal equation:
Hi=ATE"'d (18)

A classical result of regularization theory is that, when o — 0, the regularized solution &
converges to the solution %y of the unregularized problem (minimization of J given by (14)
where one has set « to zero). But letting a go to zero is numerically unfeasible, as the
conditioning of H tends to that of Hy, which is often extremely poor, so that the numerical
resolution of (18) becomes more and more difficult.

So in this paper we shall consider that one has chosen one o > 0 - the difficulty being now
of course to choose this a ! There is a huge literrature on this problem, which we do not
intend to cover systematically, but we shall give some clues on the subject during the course
of the paper.

We turn now to the problem of the stability of the RLS solution to the inverse problem.

INRIA
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In the deterministic case, where nothing is known about the statistical properties of the
error vector ¢, there is not much to say beyond (18): a perturbation éd on the data induces
a perturbation 6z of the optimal estimate given by:

Héz = ATE 14d, (19)
and the classical results of linear algebra on the conditioning of a matrix can be used.

But in the probabilistic case where E is the covariance matrix of the observation error,
we can, given a time parameter 4, consider the data d given by (1) as a vector of random
variables. Then the optimal estimate % given by (18) becomes itself a vector of random
variables. Its expected value is given by:

g('ﬁ) = E{H_IATE_I(AmtTue + 5)}
E(#)= H 'HoTyrue + HTATEE(e)
g(:i.) = H_IHOwtrue = (I - OCH_IR_I)IIJ-”.UE

which shows that the regularization introduces a bias in the least square estimate %, which
is not really surprising as Z results of a compromise !

The covariance of Z can also easily be calculated:

Cov {2} = E{H 'ATE leeTE 'AH '}
HYATE1E{eeT}E~1AH !

which, as £(ee?) = E, reduces to

Cov {3} = H 1ATE-1AH-!
= H'H,H .

Proposition 3.2 In the probabilistic case, the RLS estimate & of Tymye Satisfies:
S{;i"} = HilHOwtrue = (I bt aHilRil)thue (20)
Cov{t}=H 'HH '=(I-aH 'R)H! (21)

where Hy and H = Hy+aR™' one the Hessians of the unregqularized and regularized objective
functions.

So when the regularization parameter is small, the covariance matrix of & is close to
Hy' = (ATE-'A)"'. As Hy is usually poorly conditioned, Hy ' will have large elements
on its diagonal, so that the variance of the individual Z;’s will be very large.

When o — +o0, the covariance matrix behaves like R~'HyR~!/a? and hence tends to

zero. This shows that the regularization has the desired effect of reducing the covariance of
Z - but at the same time drives its mean value from x4, towards zero (see (20)) | However,
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in many applications, especially those when zzs...x, represents the value of an unknown
function at the node of a grid, it is impossible to find a regularization level a which pro-
duces both a satisfying fit to the data, and a pactically usable uncertainity level on each
of the Z;: either « is taken small enough to produce a reasonnable fit to the data, but the
uncertainity of each #; is huge, or « is increased enough for the uncertainity on the Z;’s to
become reasonnable, but then the fir to the data is awful. This happens in particular when
the unknown function has been discretized on a grid with a number of node larger than the
number of significantly non-zero eigenvalues of Hy.

This leads to the idea that, if one cannot estimate in a statistically meaningful way the point
values x; of the unknown function, there may exist certain linear functions of ...z, which
can be retrieved with a good level of confidence: given a vector é = (é1...¢,), the covariance
of the linear function ¢7% is

Cov {¢T2} = T Cov {#}c

Cov{¢'2} =c"H 'HoH 'c (22)

This point of view will be developped in the next two paragraph, where we will explain how
to compute é7'# (section 3 on sentinels) and choose ¢ and a (section 4 on optimally localized
average methods).

4 The sentinel approach

The sentinels were originaly introduced by Lions as vectors w in the data space IR™ such
that w” Az has derivatives equal to zero with respect to the “non interesting components”
of z, and a derivative equal to 1 with respect to one “interesting component” of x. Such
a w provides a “sentinel” for the monitoring of the “interesting component”: each time
a data vector d is recorded, the simple scalar product w”d is computed; variations in the
successive values of w”d reflect the variations of the “interesting component” of z, and allow
its monitoring.
It appeared rapidly that the sentinel approach was not limited to the monitoring of one
component of z, but could be used to monitor any linear combination of the z;’s for example
¢Tx, where

¢ € R™ is a given monitoring vector (23)
(the monitoring of, say, 1 is then obtained by chosing é = (1, 0...0)).
A natural way to monitor ¢72 would be to choose for sentinel a vector w such that w”d is

the scalar product of ¢ with the best practically available estimate of x, ie with the solution
Z of the RLS formulation (13) (14) !

Definition 4.1 Given a monitoring vector ¢ € IR", the sentinel for the monitoring of ¢ x
is a vector w € R™, one has
wld = éTs, (24)

where T is the RLS estimate of section 2.

INRIA
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As we have seen in proposition 3.2, the RLS formulation (13) (14) has a unique solution,
given by (18), so that:
¢'s=eH TATETd.

Hence the sentinel w is given by the transposed of the coefficient of d:
w=FE"'AH'é. (25)

Determination of w by (25) corresponds to the so-called “primal resolution” of the sentinel
problem: one first determines r = H~1¢ by solving the n x n equation

(ATE'A+aR Y)yr=¢, (26)
then the sentinel w € IR™ is given by
w=E"'Ar. (27)

It is also possible to write an equation which gives directly w € IR™, this is the so-called
“dual resolution” of the sentinel problem: multiplying first (25) by ARAT we obtain, as
ATE-'A=H - aR™ %

ARATw = ARé — aAH ¢,

and, using again (25) to replace AH ¢ by Ew:
ARATw = ARé — aEw.
Reordering the terms, we obtain
(ARAT + aFE)w = AR¢ (28)

which is the sought equation for w.

As R and E are positive definite and a > 0, equations (26) (27) as well as equation (28)
detrmine uniquely the sentinel vector w.

Noticing that (26) and (28) are the normal equations of quadratical minimization problem,
we can summarize the above results as follows:

Proposition 4.1 Given any monitoring vector ¢ € IR", the sentinel problem (24) admits a
unique solution w € IR™, given either by:

o the solution of the “primal sentinel control problem”:

{ find r € IR™ which minimizes (29)
AT = < &7 >me +§ 7[5
(or equivalently: solve the normal equation (26)) followed by

w=E""Ar, (30)

RR n~° 3332



10 Guy Chavent

o the solution of the “dual sentinel control problem”:

{ findw € R™ which minimizes

R 31
Lje — ATwll% + & w3 (D)

(or equivalently: solve the normal equation (28)).
The residual ¢ — ATw of the dual problem and the solution r of the primal problem are
related by:

¢— ATw=aR™r (32)

The theory of regularization, which we already mentioned after proposition 3.1, shows that,
when a — 0, the solution w of (31) converges to the solution wq of

¢ = ATw, (33)

which has the smallest || ||z norm. Remember that AT is not in general injective, so (33)
alone does not determine wg uniquely. This wy is called the Minimum || || g -Norm Solution
of (33), but, despite its name, the norm ||wo||z can be very large when the matrix ATE~1 4
is poorly conditioned, which is a typical situation.

Proposition 4.2 For a given monitoring vector ¢ € IR™, the norm ||w||: of the sentinel
decreases from ||wo||g (where wo is the Minimum || ||z Norm solution of (33)) to zero when
the regularization parameter o increases from zero to infinity. Hence o can be used to control
the norm ||w||g of the sentinel.

In the probabilistic case, we can calculate the expected value of w'd = ¢T%. If we start

from w?'d we find
E{wld} = E{w” (AZtrue +€)} = W AZprye- (34)

But one could also start from éT#:

£{eTzy =eTe{s)

=e¢TH  Hozprye = 7' (I — aH 'RV ) Z4rye (35)

As wTd = ¢T'%, the right-hand sides of (34) and (35) shoould be the same, which is the cases
as we see from (25) that ATw = HyH !¢ !
The covariance (it is in fact a variance as the quantity under consideration is a scalar) is
then given by
Cov {wTd} =&{(wTd—wT Azypye)?}
= &{wTeeTw}

=wl&{eeT}w (36)
= T Bw = Ju}
or:
Cov {eT8} = E{eT(5 — £{3})(3 — £(2)T¢)
= ¢t Cov #e (37)

= ¢TH-'HyH ¢

Once again, the right-hand sides of (36) and (37) should be - and are - the same, as one
checks easily using (25).

INRIA
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Proposition 4.3 in the probabilistic case, the sentinel estimate wTd of T xipye satisfies
E{wrd} = wT Azprye = T H  HoTprue = ¢ (I — aH ' RN T4rye (38)
Cov {wld} = ||w|% =" H'HH ¢ =¢"(I —aH'R™V)H ¢ (39)

So given a “target” monitoring vector ¢, we see (last equality in (38)) that the sentinel
estimate wTd gives only a biased estimation of ¢T x4, but gives (first equality in (38)) an
unbiased estimation of ¢z, where we have set

c=ATw (40)

More over, the variance of this estimate (first equality in (39)) is nothing but the covariance
weighted norm ||w||% of the sentinel vector, which as we have seen in proposition 4.1 cam
be controlled by the level a of regularization.

We shall see in the next paragraph that the above machinery is very close, and in most cases
coincides with that introduced for the search of localized averaging kernels by Backus and
Gilbert and their followers.

5 Localized averaging kernels

This approach was introduced by Backus and Gilbert for the estimation of spatially distribu-
ted parameters in the presence of noise in the observations. So we are in this section in the
probabilistic case of section 1. Backus and Gilbert’s idea was to find a linear combination
wTd of the data, where w € IR"™ is a vector of inversion coefficients to be determined, such
that w”'d gives a statistically sound estimation of some localized average ¢’ x4, around a
given spatial location. In Backus and Gilbert terminology, ¢ € IR™ is called an averaging
kernel.

So, given a spatial location around which one want to estimate the unknown parameter
Zirue, the inversion coefficient vector w € IR™ and the averaging kernel é € IR™ have to be
chosen along the following lines:

wTd is an estimate of ¢” Typye, i€ : (41)
E{wTd} = T zrye
Cov {w’d} is a small enough so that (42)
wTd is not dominated by noise
the averaging kernel c is localized
around a given spatial location, (43)

with less possible (especially negative) side-
-lobes, and with a total mass Y., ¢; close to one.

Conditions (42) and (43) are only qualitative, so we can expect more than one way of
constructing localized averaging kernels. But all should have in common that they satisfy the

RR n~° 3332



12 Guy Chavent

quantitative condition (41). From the definition (3.1) of d we see that E{wTd} = wT Azypye
so that (41) rewrites
wTA-Ttrue = cthrue

which, as we do not know Z;.4¢, can be satisfied in all instances only if
c=ATw. (44)

The condition is necessary and sufficient to ensure that (41) holds, and we shall suppose
from now on that it is satisfied. Then:

Cov {wTd} = E{(wld—wl Aztrue) (W d — wT ATyrye)’'}
= &{(wTeeTw}
=wl&{ecT}w

Cov {wTd} = |w|%.

(45)

Hence satisfying (42) amounts to control the covariance weighted norm ||w||% of the inver-
sion coefficient vector w.

Before we indicate how to satisfy, both (42) and (43), notice that they correspond to ad-
versely competing objectives: their physical intuition told Backus and Gilbert that a high
noise level on the estimator of ¢’ 24, was the price to pay for ¢’ to achieve a high spatial
resolution. So conditions (42) and (43) express that one has to chose a compromise between
noise level and spatial resolution of the estimator.

Rather than describing the original solution to (41) (42) (43) proposed by Backus and Gil-
bert, we shall present a variant introduced by Oldenberg and generalized by Pijpers and
Thompson, the Substractive Optimally Localized Average (SOLA) approach, which is now
in wide use.

In this approach, one choses first a target averaging kernel ¢, localized at the spatial loca-
tion to be investigated, with "7 | & = 1, and, unless one is a masochist, with no sidelobes.
The spatial resolution of ¢ is first guessed, but it will be later adjusted by a trial and error
process as we shall see below. Then the inversion coefficient vector w is chosen in such a
way that |w||% is not too large (which, because of (45), will ensure that (42) is satisfied)
and that some norm of ¢ — ATw is not too large (which, because of (44) will ensure that
(43) is satisfied):

Definition 5.1 Given a target averaging kernel é € IR™, the Substractive Optimally Locali-
zed Average (SOLA) approach defines an inversion coefficient vector w € R™ as the solution

to
findw € R™ which minimizes

. 46
Lle — ATwll3 + 2w, (46)

and an averaging kernel c € IR™ by
c=ATw, (47)

where R is a positive definite matrix on the parameter space, which defines the norm used
to measure the distance of ¢ to ¢, E is the covariance matrix of the noise on data, o > 0 is
a coefficient used to set the compromise between spatial resolution and estimation error.

INRIA
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In the practice of SOLA, the optimization problem (46) is solved for various values of & > 0
and of the width (spatial resolution) of ¢, until a ¢ = ATw with as little as possible side lobes
and with ) 7", ¢; close enough to 1, and a w with acceptable |w|| g are obtained. Then the
simple computation of w” d gives an estimate of ¢” x4, with standard deviation ||w||z, and
the shape of ¢ visualizes the spatial resolution achieved at the error level ||w| g-

It is remarkable that, although the SOLA approach was developped completely indepen-
dantly of the RLS approach and the sentinel approach (and much earlier than this latter),
there are very strong ties between these approaches:

Proposition 5.1 Let & be the solution of the RLS problem (13) (14), and w and c be
the inversion coefficients and averaging kernels constructed by the SOLA kernel-tayloring

approach (46) (47) from a given target kernel é.
Then:

e w coincides with the sentinel associated to the monitoring vector ¢, as the SOLA
optimization problem (46) coincides with the sentinel dual problem (31),

o the vector w € IR™ of the SOLA approach can be equivalently determined by (46) or
by the sentinel primal problem (29) (30), whose unknown is r € IR", which may be an
advantage as n < m,

o the SOLA estimate w”d coincides with target average ¢'& of the RLS solution &.

This results from the interpretation of the SOLA approach in term of sentinels. Notice
that the regularization term ||z||%-, used in the RLS approach and the kernel misfit term
lé — ATw]||% used in the SOLS approach correspond to inverse matrices R~ and R.
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