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Abstract: Distributed databases operating over wide-area networks such as the Internet, must deal
with the unpredictable nature of the performance of communication. The response times of accessing
remote sources can vary widely due to network congestion, link failure, and other problems. In such
an unpredictable environment, the traditional iterator-based query execution model performs poorly.
We have developed a class of methods, called query scrambling, for dealing explicitly with the prob-
lem of unpredictable response times. Query scrambling dynamically modifies query execution plans
on-the-fly in reaction to unexpected delays in data access. In this paper we focus on the dynamic
scheduling of query operators in the context of query scrambling. We explore various choices for
dynamic scheduling and examine, through a detailed simulation, the effects of these choices. Our
experimental environment considers pipelined and non-pipelined join processing in a client with mul-
tiple remote data sources and delayed or possibly bursty arrivals of data. Our performance results
show that scrambling rescheduling is effective in hiding the impact of delays on query response time
for a number of different delay scenarios.
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Ordonnancement dynamique d’opérateurs de requêtes pour
l’accès à des données au travers de réseaux grande échelle

Résumé : Les bases de données fonctionnant au dessus de réseaux grande échelle comme l’Internet
doivent prendre en compte la nature imprévisible des performances des communications. L’observation
des temps que mettent pour répondre les sources de données distantes révèle que ceux-ci varient lar-
gement notamment à cause des congestions du réseau ou encore en raison des pannes des supports
de communication. Dans un environnement où ces temps de réponse sont imprévisibles, les modèles
d’exécutions traditionnels situés au cœur des bases de données s’avèrent inefficaces. Nous avons dé-
veloppé une classe de méthodes, appelées « Query Scrambling » en anglais, permettant de contourner
les problèmes liés à l’impossible prévision des temps d’accès aux données. Ces méthodes modi-
fient dynamiquement le plan d’exécution d’une requête afin de réagir au vol aux retards non prévus
dans les temps d’accès. Dans cet article, nous nous intéressons à un sous-ensemble de ces méthodes,
celles uniquement liées à l’aspect ordonnancement dynamique des opérateurs. Nous détaillons les
conséquences de divers choix en matière de politique d’ordonnancement au travers de simulations
détaillées. L’environnement d’expérimentation prend en compte des jointures avec ou sans pipe-
line s’exécutant au sein d’un client accédant à de multiples sources de données différentes. Chaque
source peut subir des retards ainsi que des irrégularités de débit dans le flot des données échangées.
L’évaluation de performance montre que notre technique réussit à masquer certains retards subits,
réduisant ainsi l’impact de ces retards sur la durée d’exécution des requêtes.

Mots-clé : Évaluation de requêtes distribuées, Médiateurs, Modèle d’exécution fondé sur les itéra-
teurs, Analyse de performances, « Query Scrambling », Optimisation dynamique de requêtes.
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1 Introduction

The continued dramatic growth in global interconnectivity via the Internet has made around-the-
clock, on-demand access to widely-distributed data a common expectation for many computer users.
At present, such access is typically obtained through non-database facilities such as the World-Wide-
Web. Advances in distributed heterogeneous databases (e.g., [Kim95, SAD � 95, BE96, TRV96]) and
other non-traditional approaches (e.g., WebSQL [MMM96]), however, aim to make the Internet a
viable and important platform for distributed database technology.

The Internet environment presents many interesting problems for database systems. In addition to
the issues of data models, resource discovery, and heterogeneity addressed by the work in the areas
cited above, a major challenge that must be addressed for wide-area distributed information systems is
that of response-time unpredictability. Data access over wide-area networks involves a large number
of remote data sources, intermediate sites, and communications links, all of which are vulnerable
to congestion and failures. Such problems can introduce significant and unpredictable delays in the
access of information from remote sources.

Current distributed query processing technology performs poorly in the wide-area environment
because unexpected delays encountered during a query execution directly increase the query response
time. Query execution plans are typically generated statically, based on a set of assumptions about the
costs of performing various operations and the costs of obtaining data. The execution of a statically
optimized query plan is likely to be sub-optimal in the presence of unexpected response time problems
that arise during the query run-time. In the worst case, a query execution may be blocked for an
arbitrarily long time if needed data fail to arrive from remote data sources. The apparent randomness
of such delays in the wide-area environment makes planning for them during query optimization
nearly impossible.

To address the issue of unpredictable delays in the wide-area environment, we have developed a
dynamic approach to query execution, called query scrambling. Query scrambling reacts to unexpec-
ted delays by on-the-fly rescheduling the operations of a query during its execution. Query scrambling
attempts to hide delays encountered when obtaining data from remote sources by performing other
useful work, such as transferring other needed data or performing query operations, such as joins, that
would normally be scheduled for a later point in the execution. Query scrambling can be effective at
hiding significant amounts of delay; in the best case, it can hide all of the delay experienced during
a query execution. That is, a query can execute in the presence of certain delays with little or no
response time penalty observable to the user.

1.1 Coping With Bursty Arrival

In a previous paper [AFTU96], we identified three types of delay that can arise when requesting data
from remote sources:

Initial Delay There is an unexpected delay in the arrival of the first tuple from a particular remote
source. This type of delay typically appears when there is difficulty connecting to a remote
source, due to a failure or congestion at that source or along the path between the source and
the destination.

Slow Delivery Data is arriving at a regular rate, but this rate is much slower than the expected rate.
This problem can result, for example, from network congestion, resource contention at the
remote source, or because a different (slower) communication path is being used (e.g., due to a
network link failure).
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4 L. Amsaleg, M. Franklin & A. Tomasic

Bursty Arrival Data is arriving at an unpredictable rate, typically with bursts of data followed by
long periods of no arrivals. This problem can arise from fluctuating resource demands and the
lack of a global scheduling mechanism in the wide-area environment.

The algorithm presented in [AFTU96] focused on the problem of Initial Delay. As such, it was
assumed that once data started to arrive from a remote source, the remaining data from that source
would arrive in an uninterrupted fashion. This assumption facilitated the development and study of
an initial approach but limited the applicability of the resulting algorithm, as wide-area data access
seldom fails in such a well-behaved manner. In this article, we extend the scope of query scram-
bling by investigating approaches to dynamically rescheduling query operations in the presence of
the additional problem of bursty arrivals.

Bursty arrivals are more difficult to manage than initial delays for several reasons. First, the run-
time system must constantly monitor the arrival of data from remote sources and must be able to react
to delays that arise at any time. Such continuous monitoring of remote sources is not necessary in
the initial delay environment. Second, due to the unpredictable nature of bursty arrivals, care must
be taken to avoid initiating overly-expensive scrambling actions for short, transient delays, while
remaining reactive enough to initiate scrambling without undue hesitation in situations where there is
significant delay. Given the difficulty of predicting the future short-term behavior of remote access,
scrambling for a bursty environment must be implemented such that it can be initiated, halted, and
restarted in a lightweight manner.

1.2 A Reactive Approach

Query scrambling shares some common goals with other approaches to dynamic query processing.
In general, methods that attack poor run-time performance for queries fall into two broad categories:
proactive and reactive. Proactive methods (e.g., [ACPS96, CG94, SAL � 96]) attempt at compile-
time to predict the behavior of query execution and plan ahead for possible contingencies. These
approaches use a form of late binding in order to postpone making certain execution choices until the
state of the system can be assessed at run-time. Typically the binding is done immediately prior to
executing the compiled plan, and remains fixed for the entire execution.

Reactive methods (e.g., [TTC � 90, Ant93, ONK � 96]) monitor the behavior of the run-time system
during query execution. When a significant event is detected, the run-time system reacts to the event.
Query scrambling is a reactive approach — the query execution is changed on-the-fly in response to
run-time events. While other reactive approaches have been aimed towards adjusting to errors in query
optimizer estimates (e.g., selectivities, cardinalities, etc.), query scrambling is focused on adjusting
to the problems that arise due to the time-varying performance of loosely-coupled data sources in a
wide-area network. Related work is discussed in more detail in Section 7.

One basic technique used by query scrambling is to change the scheduling of operators in a query
plan if a delay is detected while accessing data from a remote site. Such rescheduling permits delays
from different remote sources to overlap with each other and to overlap with useful work performed
by the query processor. In order to implement this rescheduling, the run-time system must sometimes
introduce additional materializations of intermediate results and base data into the query execution
plan. For this and other reasons, query scrambling may increase the total cost of query execution in
terms of network contention, memory usage, and/or disk I/O.

INRIA
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1.3 Overview of the Article

Because operator rescheduling introduces both benefits and costs, it must be regulated in an effective
way. Thus, the key questions for implementing scrambling rescheduling are: 1) when should scram-
bling start; 2) what should be rescheduled; and 3) when should scrambling stop. We examine several
sets of policies to control scrambling rescheduling, and we describe the architecture of a run-time
scheduler that is capable of implementing these policies. We then use a detailed simulation of a run-
time system based on the iterator query processing model [Gra93] in order to examine the tradeoffs
of the various scrambling policies for both pipelined and non-pipelined execution.

In this article, we focus on query processing using a data-shipping or hybrid-shipping approach [FJK96],
where data is ultimately collected from remote sources and integrated at the query source. This ap-
proach models remote data access and is also typical of mediated database systems that integrate data
from distributed, heterogeneous sources, (e.g., [TRV96]). In this work, the remote sources are treated
as black boxes, regardless of whether they provide raw data or the answers to subqueries. Only the
query processing that is performed at the query source is subject to scrambling. Our results show
that scrambling, if done correctly, can produce dramatic response time savings under a wide range of
delay scenarios. It can in some cases, reduce the slowdown observed due to random delays by a factor
proportional to the number of bursty remote sources. It can also, in some cases completely hide the
delay from the user.

In summary, unpredictable behavior of remote sources during query execution is a problem that
database technology must address if it will ever be successful on the Internet. We have investigated
initial results for a new class of methods, query scrambling, that attempts to address this problem.
This article describes the following contributions:

1. An examination of the weaknesses of the iterator model in this environment,

2. An architecture, which extends the iterator model, of a scrambling rescheduling run-time sys-
tem,

3. Several policies for controlling the key implementation aspects of scrambling rescheduling,

4. Extensive simulation results that document the various performance trade-offs of the policies,
and

5. Evidence that scrambling rescheduling is effective for a broad class of workloads in a bursty
data arrival environment.

The article is organized as follows. Section 2 describes the basic trade-offs for query scrambling to
cope with bursty arrivals. Section 3 provides a detailed model and architecture of a run-time scheduler
for implementing scrambling rescheduling. Section 4 describes the policies which control reschedu-
ling. Section 5 describes the experimental framework and Section 6 describes the experimental results
for the non-pipelined and pipelined cases. Section 7 describes related work. Section 8 concludes the
article.

2 Query Scrambling Overview

In this section we first discuss the behavior of a traditional iterator based run-time system and its
behavior in the bursty environment. We then describe how scrambling can be applied to such a run-
time system in order cope with unexpected delays. Finally, we discuss the basic tradeoffs and design
decisions that arise in the development of a scrambling algorithm.
RR n3283
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2.1 Query Scrambling for Iterator-Based Execution Engines

Rather than relying on the operating system, most database systems provide their own execution en-
gine, which performs scheduling and memory management for the operators of compiled query plans.
The iterator model is one way to structure such an execution engine [Gra93]. In this model, each node
of the query tree is an iterator. Iterators support three different calls: open() to prepare an operator for
producing data; next() to produce a single tuple, and close() to perform final housekeeping. To start
the execution of a query, the DBMS initiates an open() call on the root operator of the query tree, and
this call iteratively propagates down the query tree.

A key attribute of the iterator approach is that the scheduling of the query operators is, in some
sense, compiled into the query tree itself. The scheduling of the operators in the tree is determined
by the way in which operators make open(),next(), and close() calls on their children operators. The
data flow among nodes in this model is demand-driven. A child node passes a tuple to its parent node
in response to a next() call from the parent. As such, iterator-based plans allow for a natural form of
pipelining. Each time an operator needs data, it calls its child operator(s) and waits until the requested
data is delivered. The producer-consumer relationship allows the operators to work as co-routines,
and avoids the need for storage of intermediate results, as long as the child operator produces tuples
at about the same rate or slower than they can be consumed by its parent operator. This scheduling
dependency can be avoided, however, if the child operator first materializes its result (e.g., as part
of open() processing) either in memory or to disk. After materialization, the child can then provide
tuples to the parent operator in the typical one-at-a-time fashion in response to next() requests. A
completely non-pipelined schedule can be constructed by introducing materialization between each
pair of operators in the tree.

This simple, static scheduling approach works well when the response times of operators and
data sources can be predicted with some accuracy. When processing queries with data from remote
sources, however, unpredictable delays in obtaining that data can arise. The effect of such unexpected
delays on a precompiled schedule can be severe. When a remote source blocks, all of its ancestors in
the query tree will also block. In addition to delaying the initiation of operators that are scheduled to
execute later in the plan, such blocking can also block other operators that are already executing. For
example, if a binary operator (e.g., a join) becomes blocked because one of its children blocks, then
it will stop requesting tuples from its other child, thereby inducing blocking on the subtree rooted
at that child as well. This blocking can propagate down the subtree to the leaves of the tree, unless
a materialization (which breaks the producer-consumer dependency) is encountered.1 With a static
schedule, progress on the query can, in some cases, grind to a halt even if only a single data source
becomes delayed.

In this article, query scrambling applies dynamic scheduling to query execution in order to avoid
the problems caused by unexpected delays. It depends on two basic techniques: rescheduling and
materialization. Simply stated, when a delay in obtaining data from a remote source is detected,
scrambling changes the scheduling of operators in the query tree in order to allow other portions
of the plan to execute. To perform this rescheduling, scrambling introduces any materializations
that are required to allow the re-scheduled operators to run. Materializations can be added to the
plan by placing a materialization operator between the re-scheduled operator and its parent.2 A
materialization operator is a unary operator, which when opened, obtains the entire input from its
child and places it in storage (typically disk, unless there is sufficient memory). The materialization

1Note that this blocking phenomenon arises even if operators are ones that support intra-operator parallelism such the
exchange operator of Volcano [CG94].

2This notion of a materialization operator is not related to the operator for path expressions described in [BMG93].
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Dynamic Query Operator Scheduling for Wide-Area Remote Access 7

operator provides tuples in response to next() requests from its parent operator when the parent is
eventually able to execute.

As stated in the introduction, there are three key policy questions for the implementation of a
scrambling run-time system: (1) when to start scrambling, (2) what to scramble, and (3) when to stop
scrambling. In the following three sections we describe the options and the basic tradeoffs that arise
for each of these.

2.2 Initiating Scrambling

A fundamental principle of our approach to Query Scrambling is that the normal scheduling of a
query execution should proceed unperturbed in the absence of unexpected delays. The assumption is
that the execution plan generated by the optimizer is in fact, an efficient plan, and that re-scheduling
and materialization can result in additional memory, disk I/O, and other costs. Thus, the original plan
should be tampered with only if an unexpected problem arises during the execution.

In order to determine when a delay has occurred, the system associates a timer with each operator
that directly accesses data from a remote site. This timer is started when the operator begins waiting
for a chunk (i.e., a page or packet) of data to arrive from the remote site, and is reset when the data
arrives. If the timer goes off before the data arrives, then the scrambling mechanism is informed that
a significant delay has occurred.

Given such a timer mechanism, the main policy question is to determine at which point there are
sufficient problems to warrant the initiation of re-scheduling. There is a knob that can be used to
fine-tune such a policy. The timeout-value is the value with which the timer is initialized when an
operator enters a waiting state. The length of this value determines how long the operator waits before
a timeout alarm is raised.

The timeout-value limits the degree of response time variance that will be tolerated for any remote
source. This knob allows the sensitivity of the scrambling policy to be adjusted across a range from
aggressive (i.e., low settings for the knob) to tolerant (i.e., high setting). The tradeoffs between these
two extremes are fairly straightforward: A tolerant policy runs the risk of allowing too much delay to
accumulate before reacting, while an aggressive policy can potentially waste resources in an effort to
solve non-existent (or minor) problems. The decisions covered in the next two sections, however, can
help limit the extent of the damage caused by an overly aggressive approach.

2.3 What to Scramble

Once scrambling has been initiated, the next decision to be made is the extent of the scrambling
action to be performed. As stated previously, scrambling involves the rescheduling of operations
in the execution plan. There are two types of policy decisions that must be made with respect to
the extent of scrambling: i) where in the tree to initiate scrambling; and ii) how many scrambling
operations should be initiated.

For the first question, we consider two options: i) early initiation of a non-leaf operator in the
plan; and ii) early retrieval of data from a remote source. The first case, initiating a non-leaf operator,
requires the scrambling system to artificially call open() on that operator. The open() has the usual
effect of initiating the sub-tree of the query rooted at that operator. It is relatively simple to execute
a non-pipelined operator out-of-turn (i.e., before its parent operator) because such an operator simply
writes its result to a temporary file (or to an allocated area in memory). On the other hand, resche-
duling pipelined operators is more difficult; it requires the introduction of a materialization operator
as a surrogate parent, in order to temporarily store the result of the operator. A surrogate parent is

RR n3283



8 L. Amsaleg, M. Franklin & A. Tomasic

also needed in the case of early retrieval of data from a remote source. In that case, a materialization
operator is inserted in the tree to pull tuples from the remote source and store them locally at the query
execution site.

The tradeoffs between these two choices are as follows: Starting a non-leaf operator allows the
entire subtree rooted at that operator to be initiated at the cost of at most, a single additional mate-
rialization. The downside of this approach is that sufficient memory must be allocated to allow the
subtree to execute. In contrast, early retrieval from a remote source requires very little memory (e.g.,
one or two pages, for staging tuples to disk), however, an additional materialization is required for
every remote source opened in this way.

The second decision that must be made is how many scrambling operations should be initiated.
The fundamental tradeoff here is as follows. The more operations that are initiated, the more remote
sources can be accessed in parallel, and hence, the greater the potential for overlapping the delays that
might arise from those remote sources.3 There are, however, significant dangers in starting too many
operators. First, if care is not taken, the data arriving from multiple sources can cause contention in
the network or at the query execution site. On the network, contention can result in the invocation of
congestion avoidance mechanisms, which can force sources to send data at a low rate. At the query
execution site, thrashing can arise if the speed of materializations to disk cannot keep up with the rate
at which the remote sources are delivering data. These problems can be mitigated, to some extent, if
the query execution site controls the arrival of data from remote sources. Such control can be achieved
using a page-at-a-time protocol (as opposed to a streaming protocol) between the query execution site
and the remote sources.

Another problem that can arise from initiating too many scrambling operations is the randomi-
zation of disk access. When multiple relations are placed on the disk of the query execution site,
access to those relations may interfere with other disk I/O performed by the query. For example, in
the case of a non-pipelined join, accessing the input relations from disk may interfere with the writing
of the join result to disk, thereby turning both processes into random rather than sequential I/O. Such
interference can slow disk access substantially. Note that this latter problem can arise regardless of
whether a streaming or page-at-a-time protocol is used to obtain data from remote sources.

2.4 Stopping Scrambling

The third key decision for scrambling is that of when to stop scrambled operations once they have
been initiated. There are two basic choices here. One option is to simply suspend all scrambled ope-
rations when the remote source that triggered scrambling resumes sending data. The other option is
to ignore the status of the blocked remote source, and continue scrambling. Perhaps the most intuitive
approach is to suspend scrambling and resume normal processing as soon as a blocked operator be-
comes unblocked. Since scrambling is a reaction to an unanticipated event, it makes sense to resume
the original plan as soon as possible. In addition, scrambling has the potential to add costs to the
execution of the query, so returning to the original schedule can help avoid such costs.

In cases where a remote source temporarily experiences delays but then performs smoothly, the
approach of returning to the original plan is likely to work well. In other cases, however, going back
too soon can carry its own costs. Recall that some scrambled operators (e.g., those higher in the
query tree) may consume considerable amounts of memory. If the suspension of scrambling causes
the scrambled operators to be swapped out then it is possible to encounter a thrashing condition if
the remote source repeatedly delays and resumes. On the other hand, not swapping the scrambled

3In general, if � remote sources are subject to significant, independent delays, then by accessing those sources in
parallel, scrambling has the potential to improve performance (over not scrambling) by as much as � times.

INRIA



Dynamic Query Operator Scheduling for Wide-Area Remote Access 9

operators out could result in a significant waste of memory and could hurt performance. Thus, for
very unreliable remote sources, it could be beneficial to continue scrambling, even if the remote source
resumes. A useful option in this case might be to materialize the delayed source in the background
while continuing to complete the scrambling operations. Materializing an operator that was started
normally, however, would require additional mechanism beyond what has been described above.

2.5 Discussion

The above sections described the main decisions that must be addressed when designing a query
scrambling policy for the bursty environment. These decisions and their possible settings are sum-
marized in Table 1. The settings allow the scrambling policy to be adjusted between tolerant and
aggressive approaches towards dealing with delays. In general, tolerant policies favor sticking to the
original query plan wherever possible, while aggressive policies are more willing to commit resources
in order to hide potential delay. As stated above, it is possible to implement scrambling in a way that
can reduce the potential for problems. For example, using a page-at-a-time protocol rather than a
streaming one for obtaining data from remote sources can reduce the potential for network and local
disk congestion.

Decision Values
(tolerant) (aggressive)

Start timer-value high low
Which Operators remote source non-leaf
How Many Operators few many
Stop suspend ignore

Table 1: Summary of Scrambling Options

In this article, query execution tree shape is fixed during execution, i.e. join ordering is not chan-
ged, and the physical network topology is also fixed. Both of these assumptions impact the perfor-
mance of scrambling.

Consider the impact of tree shape on scrambling. If the first (left-most) remote source, say A, in
the query execution order, has a long delay, then scrambling will perform very well. The rest of the
query will execute during the time that A is delayed, effectively overlapping the delay of A with all
other delays and work. However, suppose the last remote source, say Z, is delayed. Scrambling will
be ineffective, since there is no work after Z and thus no work to scramble. In general, delays which
appear early in query execution order have much more impact than delays which appear late.4

Consider the impact of physical network topology. If a network delay affects only a single remote
source, scrambling will perform as if the delay was due to the remote source itself. However, if a
network delay affects all remote sources equally (e.g. a delay in the network link between the client
and the local Internet router of the client), scrambling will be ineffective, because all remote sources
are equally delayed and thus no work can be overlapped.

4Thus, a query optimizer for a run-time system that supports scrambling may favor query execution plans where
historically unreliable remote sources appear early in the plan.

RR n3283
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3 Architecture

In this section we describe the architecture of a scrambling run-time system. We first extend the
iterator model with a scheduler. We then describe how materialization operators are inserted into the
query tree.

3.1 The Query Scrambling Engine

We extend an iterator run-time system such that each operator has an independent internal process
state. A scheduler dictates the state of each operator. Operators can be suspended, resumed, or
terminated just like operating system threads. An operator can be in five possible states. Among these
five states, six transitions are possible. Operator states and transitions are showed in Figure 1.

Closed

Not Started Stalled

SuspendedActive

1 opened
2 timed-out

6 closed 4 reactivated

3 resumed

5 suspended

Figure 1: State Diagram for Query Operators

These states are:

� Not Started. State of an operator before being opened.

� Active. State of the operators that can be scheduled for execution. The actual order in which
Active operators are scheduled is identical to the one that would normally be produced by the
iterator model under traditional scheduling.

� Suspended. State of an operator explicitly suspended by the query scrambling scheduler.

� Stalled. State of an operator stalled due to the unavailability of the requested data.

� Closed. State of an operator once it has produced all its possible results.

The query scrambling scheduler moves one or more operators from one state to another via a
transition in response to an external event. Three possible external events are defined:

� Time-Out. When the timer embedded in an operator goes-off, the operator informs the schedu-
ler of the time-out. In turn, the scheduler then knows this operator can not be run.

� Resume. When pending data eventually arrive at the query execution site the scheduler deter-
mines the operator for which the data is intended. The scheduler then knows this operator can
potentially be run again.

� End of Stream. An operator that produced all its possible results tells the scheduler it has
reached the end of stream. Such an operator goes out of the scope of scrambling.

INRIA
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The reactions of the query scrambling scheduler to the occurrence of these events can be easily
expressed in terms of transitions between states for the operators concerned by the events. The tran-
sitions between the states are:

1. opened. Every time an operator opens, the scheduler moves this operator from Not Started to
Active.

2. timed-out. The scheduler moves an operator from Active to Stalled when the operator times-
out (first external event). The scheduler also forces the ancestors of the stalled operator to go
through this transition as well, indicating that a whole branch of the query tree is blocked and
can not run.

3. resumed. When the pending data eventually arrives (second external event) the scheduler moves
the corresponding operator, as well as its ancestors, from Stalled to Suspended indicating that
they can potentially be run again.

4. reactivated. The scheduler moves an operator from Suspended to Active when it decides to
reactivate it. Every time an operator is moved through the transitions timed-out or resumed,
the query scrambling scheduler checks to see if one (or more) suspended operations need to be
re-activated. For example, if no operators are Active because they are all timed-out, then the
scheduler will try to reactivate the scrambling of Suspended operators.

5. suspended. The scheduler moves Active operators to the Suspended state when it decides to
temporarily suspend their execution. This happens, for example, when the regulation mecha-
nism of query scrambling decides to halt all materializations because the problem that triggered
scrambling is resolved. Later, suspended materializations can be reactivated, for example in
response to the time-out of one active operator.

6. closed. When an operator completes (end of stream, third external event), it closes and the
scheduler moves it to the Closed state.

3.2 Modifying the Query Tree

After it has chosen an operator to reschedule, the query scrambling scheduler analyses the query
tree to determine if it has to introduce a materialization operator as a surrogate parent to allow this
operator to run. If not, then the scheduler simply starts a thread that opens the operator. In contrast, if
a surrogate parent is required, then the scheduler creates a new materialization operator and inserts it
between the rescheduled operator and its parent. Patching a query tree is fairly simple with iterators,
since they interact through well defined, implementation independent, interfaces. As such, neither the
parent nor the child operator needs to be aware of the patch.

Once the surrogate parent is placed in the tree, the scheduler opens it. After calling open() on
its child, the materialization operator continuously calls next() and materializes the received tuples to
disk. The child operator is closed when it produces its last tuple. At this point the materialization is
complete.

Eventually, the original parent of the rescheduled operator will be scheduled to execute. Due to
the patching of the query tree, when it calls open() on its child, it actually re-opens the materialization
operator. In response to next() calls, the materialization operator returns the tuples that it previously
materialized. If the materialization was complete then its child operator need never be called. On
the other hand, if the materialization was incomplete, then once its supply of materialized tuples is
RR n3283
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exhausted, it simply passes any subsequent next() calls to its child, and passes each tuple obtained in
this manner back to its parent.

4 Policies

We now present the scheduling and rescheduling policies that we study in the subsequent sections.
Two of these policies are static while the two others are reactive. The static policies do not change
the scheduling of operators even when delays are encountered (in fact, they are not aware that a
delay has occurred). In contrast, the reactive policies change the original schedule once a delay is
experienced. The two reactive policies differ by the operators that they are allowed to reschedule.
Because of the memory problems that can arise when rescheduling subtrees, we focus on policies
that have very manageable memory requirements. In particular, one policy only materializes relations
obtained directly from remote sources and the other policy is able to in addition, reschedule a single
join operator at a time. The four policies are:

Normal Iterator Execution (ITR). The first policy, which we use as a baseline, is a static, iterator-
based execution as described in Section 2.1.

Materialize Always (MA). MA is also a static policy, but differs from ITR in that it it immedia-
tely initiates the materialization of all data sources at query startup time. When the query starts its
execution, this policy inserts in the query tree materialization operators for all relations that are to
be obtained from the remote sources. Once those operators have been inserted in the tree, the policy
spawns threads to open them. Materializations continuously pull-over remote data and write this data
on the local disk. In parallel to those materializations, the query continues its execution. When an
operator (a join for example) needs data from a relation that is currently materialized, this join stops
this particular materialization (others remain active), consumes the local data and requests the rest of
this relation (if any) from the remote server. Of course, since MA is a static policy, it made aware
of any delays that may be encountered during a query execution, but rather, the effected operators
simply block. MA is used to show the impact of parallel fetching from remote sources in the absence
of a reactive policy.

Reactive Materialize (RM). The simplest of the two reactive policies we study is RM. In the
absence of delay, RM behaves identically to the static ITR policy. As soon as the query experiences a
delay, it switches to a mode similar to MA, that is, all data sources are opened and their data materiali-
zed in parallel. Any delay experienced by on-going materializations do not trigger any special action.
When the data source that caused this opening resumes, on-going materializations are suspended and
the query returns to standard execution. If another delay is experienced, the suspended materializa-
tions are resumed, and they continue to bring data in parallel. The choice of suspending rescheduled
operators was made because materializations consume little memory.

Reactive Materialize and Join (RMJ). This policy has the same basic behavior as RM, except
that it also is able to reschedule the execution of single join at a time. As a result, this policy assumes
that there is enough memory available to support the execution of this join. Because there is only
enough memory for a single rescheduled join to execute, such a join is not initiated until both of
its input relations have been fully materialized to the local disk; in this way it is known that the
rescheduled join will not be blocked by any delayed data. Joins are elected for execution on a first-
come first-served basis. Materialization of joins can run concurrently with on-going materializations
of base relations. As in the previous policy, all on-going materializations (i.e., of base relations and/or
joins) are suspended if delayed data begins to arrive. We chose to study RMJ because it allows
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Parameter Value Description

NumSites 9 number of sites
Mips 30 CPU speed (

�����
instr/sec)

NumDisks 1 number of disks per site
DskPageSize 4096 size of a disk page (bytes)
RequestSize 40 size of a data request (bytes)
TransferSize 8192 size of a data transfer (bytes)
Compare 4 instr. to apply a predicate
HashInst 25 instr. to hash a tuple
Move 2 instr. to copy 4 bytes
Memory 2048 memory size (in disk pages)
NetBw 0.1, 5, 20 network bandwidth (Mbits/sec)
MsgInst 20000 instructions to send or receive a message
PerSizeMI 3 instructions per byte sent
DiskInst 5000 instructions to read a page from disk

Table 2: Simulation Parameters and Main Settings

for potentially more work to be done by scrambling rescheduling, but it also has very manageable
memory requirements.

5 Experimental Framework

In this section we first describe the simulation environment used to evaluate several different policies
for scrambling queries. We then present the workload used to perform these experiments.

5.1 Simulation Environment

To study the performance of scrambling rescheduling, we implemented the scrambling architecture
of Section 3 and the policies described in Section 4 on top an existing simulator that models a hetero-
geneous, peer-to-peer database system such as SHORE [CDF � 94]. The simulator we used provides
a detailed model of query processing costs in such a system. Here, we briefly describe the simula-
tor, focusing on the aspects that are pertinent to our experiments. More detailed descriptions of the
simulator can be found in [FJK96, DFJ � 96].

Table 2 shows the main parameters for configuring the simulator, and the settings used for this
study. Every site has a CPU whose speed is specified by the Mips parameter, NumDisks disks, and
a main-memory buffer pool of size Memory. For the current study, the simulator was configured to
model a client-server system consisting of a single client and eight servers. Each site, except the
query execution site, stores one base relation. In all the experiments described in this paper, the
servers were not performing any other work then servicing pages upon request, that is, the load on
servers is minimum.

The CPU at each site is modeled as a FIFO queue and the simulator charges for all the functions
performed by query operators like hashing, comparing, and moving tuples in memory, as well as for
system costs such as disk I/O processing and network protocol overhead as described below.

Disks are modeled using a detailed characterization and settings adapted from the ZetaSim mo-
del [Bro92]. The disk model includes costs for random and sequential physical accesses and also
charges for software operations implementing I/Os. The unit of disk I/O for the database is pages of
size DskPageSize. The disks prefetch pages when reads are performed. In the current version of the
RR n3283
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simulator, 4 pages are obtained for each read access request made to the disk. In addition to the disk
costs, there is always a charge of DiskInst instructions for each disk access. In our experiments, disks
were seen to deliver data at an average rate of approximately 10 Mbits/sec with sequential I/Os, and
a rate of approximately 3 Mbits/sec with random I/Os.

In this study, the disk at the query execution site (i.e., client) is used only to temporarily store
intermediate results and base relations that are materialized during a query execution. The actual base
relations are stored on disk at the servers (one relation per server, in this case). Although servers
are configured with memory, the workload used in the experiments here is performed such that the
server memory is not useful (i.e., there is no caching across queries and relations are accessed once
per query) . Thus, in the experiments that follow, base relations are always read (sequentially) from
the servers’ disks for each query execution.

The network is modeled simply as a FIFO queue with a bandwidth dictated by the NetBw parame-
ter; All processing sites share this single communication link. Three different bandwidth settings are
used in the experiments that follow: slow (0.1 Mbit/sec), medium (5 Mbit/sec), and fast (20 Mbit/sec)
in order to study cases where the system is network-bound, roughly balanced, and disk-bound at the
query site respectively. The details of a particular technology (Ethernet, ATM) are not modeled. The
cost of sending messages, however, is modeled as follows: the simulator charges for the time-on-
the-wire (depending on the message size and the network bandwidth) as well as CPU instructions for
networking protocol operations which consist of a fixed cost per message (MsgInst) and a per-byte
cost based on the size of the message (PerSizeMI). The CPU costs for messages are paid both at the
sender and the receiver.

The query execution model uses a synchronous (i.e., non-streaming) approach to remote data
access. That is, when an operator running at the query site needs data from a remote source, it sends
a request (of RequestSize bytes) to that source and waits for the reply (of course, other operators can
run during this period). A source responds with with a block of TransferSize bytes of data. After the
operator has consumed this data, it issues another request to the source.

Finally, we modeled a bursty environment by adding to each remote server a small piece of soft-
ware. Every time a message is about to be sent by a site, the software checks to see if the message
must be delayed. The duration of the delay as well as the moment when the delay is effectively enfor-
ced are fully configurable, and can range from a fixed duration enforced every time a given number of
messages have been exchanged to a random duration and a random occurrence of delays using several
probability distributions.

For all the experiments, we have set the value of the timer that actives the scheduler as a multiple
of the expected round-trip time for requesting and obtaining a data page from an unloaded source
in an unloaded network. In our experiments (except where noted) the timer is set to ten times the
duration of this round-trip.

5.2 Workload

The workload used for all the experiments described in Section 6 consists of two versions of the
query tree shown in Figure 2. The basic query is an 8-way join structured as a balanced bushy tree.
As stated in Section 5.1, each base relation (A through H) is stored on a separate remote site, and scans
of the base relations are executed at the remote servers. All other operators, i.e., joins (represented by
circles in the figure), are executed at the query execution site. In the experiments we focus our study
on hash-based joins.

The tuples of all base relations are 100 bytes each. As shown in Figure 2, there are two parameters
for setting the (possibly different) cardinalities of the base relations. These parameters are indicated
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Figure 2: Query Tree Used for the Experiments

by the letters n and m in the figure. These same parameters are also used to set the cardinalities of the
intermediate results produced by the various joins.

The two versions of the tree that are used in the study are called uniform and non-uniform; they
differ in the settings of the cardinality parameters. For the uniform tree, n and m are set to be equal
so that all base relations have the same size and all joins return a result that is the size of a single base
relation. In this case, we set n=m=10,000, so that all base relations and join results consist of 1MB
(250 disk pages) each. With this setting, all hash joins can be performed without partitioning.

For the non-uniform tree, m is set to be an order of magnitude greater than n (n=10,000 and
m=100,000). In this case we have base relations and intermediate results of either 1MB (250 pages)
or 10MB (2,500 pages). The order of magnitude difference between n and m has two major conse-
quences in our study. First, the hash join of relations C and D requires partitioning in this case,
because neither of the relations can fit in memory. Second, the query execution makes better use of
pipelining here than in the uniform query tree, as the right-hand sides of many of the joins are large.
Recall that given sufficient memory, right-deep hash joins can be executed in a pipelined fashion, the-
reby avoiding materialization of the right-hand input (i.e., the probe relation). Thus, although many
of the right-hand sides are relatively large in this query, they do not need to be staged to and from disk
when the query executes normally.

These particular queries were chosen for the following reasons. First, an 8-way join query is
complex enough to provide sufficient latitude for the scrambling policies and it allows us to investigate
the differences and similarities among them. Second, the use of a bushy tree, which is more general
than a left- or right-deep tree (i.e., it contains both left- and right-deep components), allows us to
investigate scrambling behavior for both left- and right-deep plans. In addition, a bushy tree provides
additional options for scrambling beyond those that arise with the more restrictive plans. Finally, we
study both the uniform and non-uniform cases in order to compare scrambling in a situation where
changes to the execution schedule are likely to have small effects on performance (i.e., the uniform
case) and in a situation where it could conceivably have a large, negative impact on performance (i.e.,
the non-uniform case). Thus, these two queries, plus the ability to vary key system parameters such
as the network speed, provide sufficient flexibility to allow us to cover a large area of the performance
space for dynamic scheduling.

We also describe (in Section 6.2.4) a set of experiments designed to study the potential impact of
scrambling rescheduling on an application environment. In this section we use in a simplified version
of a query of the TPC-D benchmark.
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6 Experiments and Results

In this section we present experiments that analyze the trade-offs raised by scrambling rescheduling.
We first investigate the impact of parallel materializations in the absence of delays. We then introduce
delays in the execution of the queries to explore the potential benefits of overlapping delays with other
work for various delays and network bandwidths.

6.1 Parallel Materializations and Network Speed

As stated in the introduction, the key technique that Query Scrambling rescheduling uses is the intro-
duction of parallelism into the execution of a query in response to unexpected delays. Such parallelism
is intended to hide delays by overlapping them with other useful work performed while waiting for
missing data to arrive. Before investigating the performance of scrambling rescheduling policies in
the presence of delays, however, we first examine the impact of parallelism in the absence of delays.
By doing so, we are able to isolate the potential benefits and consequences of such parallelism on the
normal execution of queries.

Figure 3 shows the response times of the Uniform query executed with the ITR and MA policies
as the network bandwidth (NetBw) is increased from 2 Mbits/sec to 20 Mbits/sec.5 As expected, the
response time for both policies improves dramatically as the bandwidth is increased up to a point and
then levels out. With very slow networks, the cost of query execution is dominated by the network
costs and the policies have similar performance. As the network speed is increased (up to 5 Mbits/sec),
the performance of the policies begins to diverge and ITR shows better performance than MA.

The performance of ITR is quite simple to explain. The main components of performance in this
system are the local (i.e. query site) processing and I/O, the remote (server) processing and I/O, and
the network. With the ITR policy, very little of this work is overlapped. At low bandwidths, the
portion of the response time that is due to network time-on-the wire costs is significant (e.g., 75% of
the total at 2Mbit/sec). As the network speed is increased, the portion of the response time that is due
to time-on-the-wire decreases and has smaller impact on the overall performance of ITR. Thus, as can
be seen in Figure 3, improving the bandwidth for ITR beyond a certain point provides increasingly
smaller gains.

5Results for bandwidths lower than 2 Mbits/sec are not shown here. The response-time in this range is nearly totally
dependent on the network speed, and thus, it increases proportionally with the slowdown of the network.
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In contrast to ITR, MA has a high degree of parallelism, so the explanation behind its performance
here is slightly more subtle. At low bandwidths, the network can become a bottleneck when data are
requested from multiple sources in parallel. When the network is the bottleneck, the performance of
MA is almost completely dependent on it.6 As the network bandwidth is increased, it no longer is the
bottleneck, but the local disk (at the query site) soon becomes a bottleneck. Recall that MA obtains
its high degree of parallelism by materializing data on the local disk. This materialization costs disk
writes when the data is brought in, as well as disk reads when the data is eventually accessed by query
processing.

Once the disk bottleneck is reached by MA, it actually has worse performance than ITR. This is
because the ITR policy does no local I/O for the Uniform query. With a fast network, its performance
is dictated by the local query processing and the (relatively fast) sequential I/Os done at the remote
servers. The same general performance behavior, with larger response times, is observed for the two
policies when using the Non-Uniform query.

The important lesson here is that materializing base relations in parallel with the query execution
does not improve performance in the absence of delays. For slower networks, the performance of ITR
and MA were roughly equivalent, and for faster networks, MA actually performed worse than ITR.

6.2 Rescheduling With Delays

We examined the performance of ITR and MA in the absence of delays across a range of network
speeds, in order to gain an understanding of the performance tradeoffs of parallel materialization.
In this section, we examine ITR and MA policies as well as two reactive ones (RM and RMJ) in the
presence of various delays for slow (0.1 Mbits/sec), medium (5 Mbits/sec) and fast (20 Mbits/sec) net-
work speeds. The slow network setting is intended to model speeds that are on the order of what could
be obtained at a decently connected site with today’s Internet technology. As shown in the previous
section, with a slow network, little care needs to be taken when using the local resources at the query
execution site, as they contributed at most a small portion to the total response time. The medium
network speed was chosen so that the system would be roughly balanced between network bandwidth
and local disk rates (under mixed random/sequential access) and the fast network is used to examine
the performance of the policies when the local resources are the crucial factor in performance.

In the following, we examine the performance of the policies under different delay scenarios (e.g.,
bursty and initial delay) for the two query trees presented in Section 5.2. We first present the results
for the Uniform query and then for the Non-Uniform one.

6.2.1 Uniform Query Tree: Bursty Environment

We first examine the performance of the policies when all of the base relations are subject to random
delays throughout the entire execution of a query. Delay is applied in the following way: Each remote
source flips a weighted coin before sending a page of tuples to the query execution site. The outcome
of the coin toss determines if the source should transmit the page normally, or if it should stall for a
specified period before sending its page.7 In all experiments, the timer used by the reactive policies to
detect problems with a remote source is set to 10 times the expected round-trip delay time for a data
request between the query site and a source (thus, the timer is different for each NetBw setting). In

6Once all data has been downloaded by MA, there is a relatively small amount of additional work that must be perfor-
med at the query site in order to complete the query. The cost of this work is not impacted by the network bottleneck.

7In those cases where random delays are used we ran each experiment 12 times and then averaged the results to get
the final results presented here.
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this experiment, the delay period (for each random delay) is set to three times the value of this timer.
Because of the fixed value for the delay and timer, it is known that the query processor will timeout
on a source each time that source delays. In this case, the timeout will be detected one-third of the
way through the delay.

In the remainder of the performance section, all graphs show the percentage slowdown of the
query (compared to the non-delayed case) as the probability of delay for each page transmission
is increased along the x-axis. Figure 4 shows the slowdown for Uniform query under the various
policies, using the slow network (0.1 Mbits/sec).8 In this case, the duration of the delay is 10.52 sec
(the is timer set to 3.5 seconds, here). Slowdown is computed by subtracting the normal response
time for the query (in this case, 678.4 seconds) in the absence of delays, from the observed response
time in the delayed case, and dividing by the normal response time.

As can be seen in the figure, the slowdown for all policies shown increases linearly with the delay
probability, but there are dramatic differences in the slopes of the lines. The ITR policy is the most
sensitive to delay here. Since ITR accesses the base relations sequentially it incurs the full cost of
every delay on every source. In this experiment, at 10% delay probability the query runs 3.1 times
slower than when there are no delays. At 25% delay probability (not shown) the query runs 7.75 times
slower.

This result is to be expected. The static, sequential scheduler is unable to overlap any delays, so
query execution time is increased by the sum of the delays experienced by all of the remote sources. At
10% delay probability, there are 200 delays of 10.52 seconds each, so the total delay is 2104 seconds,
compared to a normal query execution time of only 678.4 seconds. In this case, the slowdown for
the standard query execution at 10% delay probability is ���������	��
����������
	������������
�������� . At 25%
delay probability, there are 500 delays of 10.52 seconds each, so the total delay is 5260 seconds. The
corresponding slowdown is ������������
�����������
	� ����������
!�"�	�#��� .

Turning to the non-sequential policies, it can be seen that they too incur a linear slowdown as
the delay probability is increased. The slopes of the increases, however, are much lower than for the

8Although we measured slowdowns for delay probabilities as high as 90%, we only show probabilities upto 25%, here,
as lines remain linear beyond this point.
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sequential policy. By requesting data from multiple sources, the three policies can tolerate delays of
a subset of those sources by overlapping them with other work.

The best policy for coping with delay in this experiment is MA. This policy is the most aggressive
one, since it immediately initiates parallel materializations and continuously materializes data regard-
less of the potential delays. At 25% delay probability, MA executes in 905.45 seconds, that is, it is
slowed by a factor of 33% with respect to the execution time of the query with no delays. Since the
total delay in this case is 5260 seconds, this policy is able to hide 4354 seconds of delay by over-
lapping it with other useful work (e.g., the retrieval of other base relations) and other delays. Thus,
while in the no-delay case with the slow network, MA and ITR displayed similar performance, in the
presence of multiple delays (as may arise in a bursty environment), MA has a tremendous advantage
over ITR.

The two reactive policies, RM and RMJ are also very beneficial here, but their performance is
slightly worse than MA. The performance difference arises because the reactive policies must wait
until the timer expires before resuming materializations when the left-most (i.e., non-scrambled) data
source experiences a new delay. In contrast, MA does not rely on any timer mechanism. The perfor-
mance difference seen in the figure, thus, is the sum of all the timer waits encountered by the reactive
policies. In this scenario, with bursty delays on all relations, even a low probability of delay results in
significant burstiness, so an aggressive policy will work well here.

Figure 5 shows the performance of the policies when the fast network speed (20 Mbits/sec) is
used.9 Here, even with a very fast network, the policies that hide delays using parallel materializations
do well, and the more aggressive MA policy performs best here. This result is in contrast to the no
delay case (Figure 3) where the performance of MA was worse than ITR for faster networks. The
reason for this difference is that in this experiment, the large amount of delay overwhelms the cost of
local processing, so even though MA performs much local I/O here, that I/O is more than paid for by
the overlapping of delays.

6.2.2 Uniform Query Tree: Initial Delay

One lesson from preceding experiments is that if multiple sources are likely to have multiple delays,
even the most simple forms of parallelism offer a good opportunity to hide delays and that an aggres-
sive policy can do well. In this section, we examine the potential negative impact of scrambling too
aggressively by investigating a case where there is much less delay than in the previous cases. To
accomplish this, we vary the length of a single, initial delay on the left-most relation of the query tree
(i.e., relation A). As stated in Section 1, under the initial delay model, sources experience a single
delay before transmitting their first tuple, but perform reliably after that. The x-axis on the graphs
shows the magnitude of this initial delay as a percentage of the time required to execute the query
in the absence of any delay. The y-axis shows, as before, the percent slowdown compared to normal
execution.

Figure 6 shows the performance of the policies for the slow network. In this case, the execution
time of the ITR policy is 678.4 seconds, and is completely dominated by the network cost. The result
of this imbalance is that the use of local resources at the query processing site is effectively free, so
all scrambling policies can hide virtually all of the delay up to 80%, after which they run out of work
to perform and the slowdown increases linearly with the delay.

Figure 7 shows the performance of the policies with the balanced network. With this setting, the
query execution time with no delays is 23.7 seconds and the overhead of materializations can have a
somewhat larger impact. In this figure, all three parallel policies are able to hide most of the delay up

9The results for the balanced network are similar, so are not shown here.

RR n3283



20 L. Amsaleg, M. Franklin & A. Tomasic

0

0.2

0.4

0.6

0.8

1.0

1.2

0 20 40 60 80 100 120

S
lo

w
do

w
n 

(r
el

at
iv

e 
to

  6
78

.4
 s

ec
)

Delay % (relative to 678.4 sec)

ITR
RMJ
RM
MA

Figure 6: Slowdown, Initial Delay on A

Net: 0.1 Mbps, Delay % of 678.4 sec, Uniform Tree

0

0.2

0.4

0.6

0.8

1.0

1.2

0 20 40 60 80 100 120

S
lo

w
do

w
n 

(r
el

at
iv

e 
to

 2
3.

7 
se

c)

Delay % (relative to 23.7 sec)

ITR
RMJ
RM
MA

Figure 7: Slowdown, Initial Delay on A

Net: 5 Mbps, Delay % of 23.7 sec, Uniform Tree

to 70%, after which they increase linearly with the delay. Beyond 70%, RMJ, the reactive policy that
can instigate join processing in addition to materializing base relations has a slight advantage over
the other parallel policies because it performs some additional work (i.e., joins) whereas the other
policies block after all base relations have been materialized if the tuples of A are still missing. As
such, once the tuples of A have been received, the work that must be done by RMJ to complete the
query is small and the query finishes relatively quickly. Although it is not shown in the graph, with
higher delays (e.g., beyond 130%) RMJ eventually performs all the join processing it can without A
(i.e. C � D, and E � F � G � H) at which point its response time curve becomes parallel to the
others.

If a slow network makes local disk I/O virtually free, then a faster network makes local I/O rela-
tively more expensive. Figure 8 shows the performance of the polices when the fast network is used.
In this case, MA, the most aggressive policy, performs relatively poorly. MA always materializes all
base relations concurrently with the normal query execution, so in the presence of short delays, MA,
which is a static policy, commits to reading most of its data from the local disk using random I/O (3
Mbit/sec). In contrast, ITR is able to access its data over the high speed network in this case. (It is im-
portant to note, however, that even though the network bandwidth is 20 Mbits/sec here, ITR accesses
remote sources one-at-a-time, and so is limited by the speed at which a remote source can provide
data, i.e., 10 Mbits/sec.)

The net effect is that in this case, the extra cost of the random, local I/O that MA performs in
order to materialize and read base relations outweighs the benefit gained by hiding delay. Therefore,
MA performs worse than ITR up until a delay of about 45%. RM and RMJ avoid the problems of
MA, because both are able to stop the materialization of base relations when the delay of A is over.
Because of this, the reactive policies are able to read their materialized data sequentially and thus,
unlike MA, can obtain materialized data at the same speed (i.e., 10 Mbits/sec) that ITR can obtain data
from the network. As a result, the reactive policies, unlike the static ones, are able to effectively hide
delay by materializing base relations and then reading that materialized data for no penalty (compared
to ITR) after the delay is over. As the delay is increased, the penalty that MA pays is erased, and at
a delay of 95% and beyond, it performs similarly to RM. Finally, it should be noted that as seen in
the balanced network case (Figure 7) RMJ performs slightly better than RM and MA at higher delays
because it is able to overlap somewhat more delay by executing joins.
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6.2.3 Non Uniform Query Tree

In this section, we briefly describe the performance of the policies with the non-uniform query tree as
described in Section 5.2. This tree contains a mix of large and small relations, as well as high- and
low- selectivity joins, and allows us to examine the performance of the policies in a situation where
changes to the execution plan chosen by the optimizer could conceivably have a large, negative impact
on performance. Recall that one impact of the non-uniform query is that one of its joins requires the
hash join algorithm to use partitioning. We first investigate the performance of the policies in the
bursty environment and then in the case of a single initial delay.

For the bursty delay cases, the results for the non-uniform query show the same behavior as was
seen for the uniform query. That is, for all three network speeds, the parallel policies dramatically
improve the performance of the query when it experiences many delays. Such a result is to be expec-
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ted, since using local resources to support overlapping delay is virtually free compared to the amount
of experienced delays. For the balanced and fast networks (not shown) the results are essentially the
same as those for the Uniform query in Section 6.2.1. For the slow network (Figure 9), the results
are also very similar to the Uniform case, except that with the mixed relation sizes of this tree, the
parallel policies are slightly less effective in hiding delay than with the Uniform query tree.

Figure 10 shows the performance of the policies in the initial delay case for the fast network. As
was seen for the uniform query (Figure 8). The performance here also quite similar to what was seen
for the uniform query except for one aspect: At 125% delay, RMJ initiates the partitioning of the
materialized base relation in order to perform the join of C and D. Between 125% and 175%, there-
fore, its curve is flat because this corresponds to the time required to partition the two relations before
doing the join. This work is entirely beneficial to the query and does not incur any additional ove-
rhead because these two relations have to be partitioned anyway, either by the policy or by the query
once the delay is over. Beyond 175%, RMJ has performed all the possible work and its performance
increases linearly with the delay.

6.2.4 Impact of Rescheduling

In this section we describe a set of experiments to study the potential impact of scrambling resche-
duling for a more application-oriented query than the uniform and non-uniform cases shown so far.
The experiments use a simplification of the query Q2 of the TPC-D benchmark [Tra95]. We chose
this query because it is relatively simple, yet processes a five-way join. The cardinalities of the rela-
tions involved in this query are as follows: PART: 200,00 tuples of 164 bytes, SUPPLIER (S): 10,000
tuples of 197 bytes, PARTSUPP (PS): 800,000 tuples of 219 bytes, NATION (N): 25 tuples of 185
bytes and REGION (R) 5 tuples of 181 bytes.

The query is:

SELECT S_ACCTBAL, S_NAME, N_NAME, P_PARTKEY,
P_MFGR, S_ADDRESS, S_PHONE, S_COMMENT

FROM PART, SUPPLIER, PARTSUPP, NATION, REGION
WHERE P_PARTKEY = PS_PARTKEY
AND S_SUPPKEY = PS_SUPPKEY
AND P_SIZE = 15
AND P_TYPE LIKE ‘BRASS’
AND S_NATIONKEY = N_NATIONKEY
AND N_REGIONKEY = R_REGIONKEY
AND R_NAME = ‘EUROPE’

In this experiment, each base relation resides on a separate data source. Selects are performed at
the data sources and the query execution site receives only the selected tuples. Figure 11 shows the
query tree run at the query source site and the resulting cardinalities of the input relations and joins.

We ran this query under various conditions of delays and network speed (network speed of 0.1, 5,
and 100 Mbit/s). Here, we illustrate only the cases where initial delays are applied to the query. We
delay one source per experiment and reschedule the query using the RM policy. The response times
of the query in the absence of delays are: 724.8 seconds with a 0.1Mbit/s network, 28.02 seconds for
5Mbit/s and 17.3 seconds for 100Mbit/s. Three delay values were tried: 50%, 90%, and 150% of the
execution time of the query in the non-delayed case. This totals to 45 experiments, plus 9 experiments
with no delay. For each experiment, both the scrambling and non-scrambling versions were executed,
and the relative performance improvement calculated. Several broad statements can be made about
the behavior of scrambling for this query.
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Delay No Scrambling Scrambling %
no delay 28.02

on R 53.24 38.00 28.62
on N 53.24 38.17 28.29
on S 53.24 41.60 21.86
on P 53.24 41.66 21.74

on PS 53.24 53.23 0.01

Table 3: Response Times (sec), 5 Mbits/s, 90% initial delay (25.22 sec)

% Improvement Total
0.00 3

0.01 to 10.00 6
10.01 to 20.00 11
20.01 to 30.00 10
30.01 to 40.00 12

� 40.00 3

Table 4: Histogram of Observed Improvements (RM Policy)

In all experiments, scrambling either improved performance significantly, or had negligible (under
0.01%) effect. The maximum performance improvement was 46.36% for an initial delay on the R
relation of 90% the time required for the non-delayed query with a network speed of 0.1 Mbit/s using
the MA policy. When the delayed relation is PS, the scrambling performance improvement is less
than 0.03% for all policies. Since PS is the last relation to be processed, all other work has been
performed and scrambling cannot overlap unfinished work with the delays in PS. Generally, as would
be expected, performance improvement declines as the delay appears in relations later in the plan.
Also, generally, performance improvement declines as the network speed increases. Table 3 shows
a typical experimental result. We see that the performance improvement is above 20% for delays
on all relations except for the delay of PS, as noted above. This is typical for scrambling in the
initial delay environment. The general performance improvement is indicated by the delay on R, and
performance declines (slightly) as the delay appears later into the tree, until a sharp drop at the delay
of the last relation. Finally, we also categorized all 45 experiments for the RM policy by the size of
improvement. This classification is given in Table 4.
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6.2.5 Discussion

The experiments of this section showed that simple reactive polices such as RM and RMJ are fairly
robust, even when some of the relations and intermediate results are scaled up by an order of magni-
tude. The main reason for this robustness is that these policies constantly monitor the execution of
delays and enforce parallelism only when delays are experienced. As such, they are able to hide the
delays with useful work without incurring a high additional cost. Even when base relations are big, as
is the case for the non-uniform query tree, these policies bring a substantial improvement. One reason
that materializing large relations does not hurt performance for these policies is that they suspend
the rescheduled operations when delays are short so that extra work is not performed in the absence
of delays. The overhead of materializations becomes significant only if most or all of the relations
can be materialized and this can only happen when the delay is large. For the same reason, the joins
materialized by RMJ do not typically hurt performance.

Another case that we studied (but do not present here) is for Cartesian products and joins whose
results are significantly larger than the sum of their inputs. In such a case it conceivable that mate-
rializing such a result could hurt performance, but we did not see dramatic differences in our studies
(for the reasons outlined above). Furthermore, query optimizers typically try to avoid such costly
operations, making the occurrence of these cases less likely. Interestingly, it is fairly easy to protect
query scrambling against such pathological cases. For example, we extended the policies to materia-
lize only joins having a small ratio between the size of their result and the size of their input. This
policy was able to avoid problems in the few cases where they arose.

7 Related Work

As stated in the introduction, techniques that try to adapt a query to a changing environment broadly
fall in the proactive and reactive categories.

In the proactive category, the techniques gather as much information as possible to predict the
state of the run-time system during query execution and use this information to construct the best
query execution plan. Volcano [CG94, Gra93] introduces at optimization time choose-plan operators
in the query tree that enable the selection of a particular query execution plan at runtime once enough
information has been gathered. HERMES [ACPS96] records the costs of remote accesses into an
history used to better estimate the costs of future accesses. Mariposa [SAL � 96] builds query plans
after having negotiated a price-performance trade-off with data providers. All these approaches ulti-
mately decide at query start-up time the execution plan of a query, which however remains fixed for
the whole duration of the query execution.

In contrast to the proactive category, techniques in reactive category monitor the progress of que-
ries and modify query execution after execution has started. (Note that techniques in the proactive and
reactive categories are generally complementary.) Monitoring determines if execution should deviate
from the plan for some unforeseen reason. Reasons include inaccurate estimates for intermediate
result sizes and direct considerations of problems with response times from remote sources are not
accounted for.

[BRJ89] proposes a reactive technique in which the execution of a distributed query proceeds
through three phases: (i) a monitoring phase observing the progress of the execution of the query; (ii)
a decision making phase during which a new strategy for executing the query is computed; and (iii) a
corrective phase in which the current execution is aborted and a new execution is initiated. A similar
approach is used in Rdb/VMS [Ant93].
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Both InterViso [TTC � 90] and MOOD [ONK � 96] are heterogeneous distributed databases that
perform query optimization while the query is executing. Heterogeneous distributed database divide
a query into a collection of subqueries and a composition query. There is one subquery for each
remote source and a composition query than combines the results of the subqueries. These systems
use a reactive technique that interleaves the execution of subqueries with the execution of the com-
position query by monitoring the arrival of the answer to subqueries and dynamically executing the
composition query.

A technique similar in spirit to scrambling rescheduling is used to improve the access time to
tertiary storage in [SS96]. This work divides queries into parts that can be executed independently
in arbitrary order. The order in which the parts are executed is dynamically chosen depending on the
data each part needs to fetch, the state of the disk cache and the state of the the tertiary memory (i.e.,
the platter currently loaded). The scheduler’s objective is to maximize the overall system throughput.

As stated in Section 1, the work described here builds on our initial definition of Query Scram-
bling [AFTU96]. Additional experimental results are also available in reference [AFT96, pages 11–
21].

8 Conclusions

Query scrambling is a reactive technique for coping with unpredictable delays for wide-area remote
data access. Query scrambling, in its most general sense, monitors query execution and reacts to
delays by on-the-fly rescheduling query operators and possibly synthesizing new operators to run.
This article, we focused on the tradeoffs that arise for the rescheduling portion of the query scrambling
technique.

We first described the performance problems that arise from the iterator model, i.e., when exe-
cuting a static query plan in the presence of unexpected delays. We then discussed alternatives for
rescheduling and the tradeoffs among them. In particular, we focused on the way that memory mana-
gement issues influence the feasibility of different rescheduling options. In general, memory mana-
gement issues lead to rescheduling techniques that use minimal amounts of memory. Such techniques
allow operators to be run “out-of-turn” by materializing their results to the local disk of the query
execution site.

We studied two reactive policies: RM, which initiates the materialization of data from all remote
sources when a delay is detected during normal query processing; and RMJ, which works similarly to
RM, but in addition, has the ability to reschedule (and materialize) individual join operators, one-at-a-
time. RMJ uses more memory to be reserved for rescheduling than RM but it has a greater opportunity
to perform useful work when delays arise. The memory requirements for RMJ are much less than for
a more general policy that would allow entire subtrees to be rescheduled at once. More importantly,
RMJ avoids the potential problems that a more general policy would encounter if the rescheduled
operations themselves became delayed.

The two reactive policies were compared to two static ones: ITR and MA. Policy ITR is an iterator-
based execution policy, while MA augments such a policy by opening scans on all remote sources in
parallel. Policy MA was used to investigate the impact of parallelism outside of a reactive policy. The
polices were compared using a uniform and a non-uniform query tree. In addition, results using a
simplified TPC-D query were also presented. The experiments were run using three network settings:
one where the network was the dominant cost, one where the network and local disk were balanced,
and one where the system was disk-bound at the query execution site. The slow setting is of the
same order of what many current wide-area environments experience (even if the actual wires are
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somewhat faster). The balanced and fast networks show how the policies will change as deployed
network technology continues to improve.

The performance studies showed that in the absence of delay, parallel materializations had little
impact on performance for slow networks and were detrimental for fast networks. When delays were
present, however, such parallelism provided substantial benefits; in a situation where all data sources
are subject to delays, the performance improvement due to parallel materializations is a factor of the
number of sites involved in the query. With the slow network, parallel materializations where seen
to be always beneficial, and the reactive techniques were hurt slightly by their delay in initiating and
resuming materializations. With the faster network, and less delay, however, the blind use of mate-
rializations as used by MA was seen to significantly hurt performance, while the reactive approaches
were able to successfully hide delay in many cases. In terms of the reactive approaches, they were
seen to have similar performance in most cases, but the ability to execute joins was seen to bene-
fit RMJ in certain cases with long initial delays. Finally, using a query based on Q2 of TPC-D, we
observed that the RM policy was effective at hiding delay across a range of delay scenarios.
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Unit é de recherche INRIA Lorraine, Technopôle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LÈS NANCY
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