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Abstract: This is the first part in a series of papers, where we consider new connec-
tions between computer science and modern mathematical physics. Here we begin to
study a class of ”concrete” random processes covering most of well known processes,
such as locally interacting processes, random fractals, random walks, queueing net-
works, random Turing machines, etc. Here we restrict ourselves to linear graphs.
We establish existence and uniqueness of the dynamics in the thermodynamic limit
and prove that this dynamics is clustering. We get ergodicity and non-recurrence
conditions in a small perturbation region. We study invariant measures and large
time fractal type behaviour for random context free grammars and languages.

Key-words: grammars, L-systems, thermodynamic limit, cluster expansion, branch-
ing process.
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Grammaires Aléatoires
Résumé : On commence a étudier une nouvelle classe des processus stochastiques,
qui proviennent de nouveaux liens entre informatique et physique mathématique.

Mots-clé : grammaires, L-systémes, limite thermodynamique, processus de bran-
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4 Vadim Malyshev

1 Definitions

Let us consider configurations w = (s;) € S on the integer lattice Z with values
in some finite set S. It is well known that S% is the standard state space for
processes with a local interaction (see [6]) which act on this state space by randomly
updating symbols s, at sites z. We want to consider processes where one symbol
sz can be replaced say, for example, by two symbols. The question is where to put
these symbols without destroying space homogeneity. To have sufficient space for
this on the lattice one would have to move apart all other symbols, producing new
enumeration for an infinite number of them. This procedure is intractable because
on a finite time interval we should do an infinite number of such renumerations.

We discuss here rigorous definitions of such processes in one-dimensional case
(that is for linear graphs). We establish existence and uniqueness of dynamics in the
thermodynamic limit and prove that this dynamics is clustering. We get ergodicity
and nonrecurrence conditions in a small perturbation region. We study invariant
measures and large time fractal type behaviour for random context free grammars.

We widely use here some ideas from cluster expansions technology which has
proved to be strongest tool in mathematical physics but has not yet been used in
computer science.

This section contains mainly definitions and the simplest results. The main re-
sults of section 2 are theorems 1, 1 constructing the thermodynamic limit of the
dynamics for finite time. The proofs use essentially cluster expansion techniques
introduced in the same section. In section 3 we consider the simplest process with
a local interaction and its small perturbation where vertices can be produced and
killed. Main results are theorems 2, proving convergence to a unique invariant mea-
sure for infinite string dynamics and 3 giving conditions for transience and ergodicity
for finite string dynamics. It is worth notice that these conditions can only be given
in terms of invariant measure for infinite system. Section 4 deals with context free
grammars outside of small perturbation region. We consider the large time limit of
correlation functions. We find invariant measures (theorems 5,6). For degenerate
cases we define fractal behaviour of grammars and finiteness of the number of critical
exponents (theorems 7,8). Also the asymptotic probability distribution on the set
of sentences of a context free language is found (theorem 9).

1.1 Grammars

Consider a finite set S which we call the alphabet. A string « is a linearly-ordered
(or completely ordered) sequence of symbols from S. For finite strings

INRIA



Random Grammars 5

O =2T1...Zn, 0 = Y1.--Ym

their concatenation af is

aff = Z1...TpY1---Ym

Concatenation of infinite strings is defined similarly.
Let n =| @ |= I(a) be the length of a. Let e = () be an empty string, so that

e = e = o

We call vy a substring of « if & = @6 for some strings 3, 6.

Denote S* to be the set of all finite strings over the alphabet S, including the
empty one.

Let U a finite number of elementary substitutions (productions), i.e. ordered
pairs of finite strings v; — 6;,2 = 1,...,k. A grammar theory considers trajectories,
i.e. sequences of strings o, ..., a3 such that for each j =1,2,...,k — 1 string o1 is
obtained from o; by deleting some substring 7y; of o; and appending ¢; instead, i.e.
replacing ; by 6;.

A pair (S,U) we shall call grammar. We shall always use this general definition
but note that in computer science the definition of grammar is more restrictive. We
remind it here.

Grammar (with nonterminal symbols) is a 4-tuple G = (W, V,U, ny) where

(1) W is a finite set (its elements are called nonterminal symbols, variables, or
syntactic categories ), V is also a finite set such that VW = 0.

(2) U is a finite subset of productions, i.e. pairs u = (o — ) where « is a word
over S =W JV containing at least one symbol from W, g € §*.

(3) ng € W is a distinguished symbol (initial sentential form).

Sentential form is defined by : ng is a sentential form and if a7y is a sentential
form and 8 — 6 € U then adv is a sentential form.

A sentence generated by G is a sentential form containing no W-symbols.

Simplest classes of grammars are the following. G is said to be

(1) Linear if each production is of the form n — lam, where [,n,m € W, € V*.
It is called right linear if each production is of the form n — am, where n,m €
W,a € V*.

(2) Context-free if each production is of the form n — «, where n € W, a € S*.

RR n° 3187



6 Vadim Malyshev

Language L over ¥ is a set of strings over ¥.. Concatenation (product) of lan-
guages Li1Lo is the set of all strings af8,a € Li,8 € Ls. The closure of L is
UL, L™ L™ = LL" 1, L0 = {0}.

The language L(G) generated by G is the set of all sentences generated by G.
Language L(U, o) generated by U and « is the minimal set of strings satisfying the
following conditions :

(i) « € L(U, a);

(ii) if pBy € L(U, a) and (8 — 8) € U then péy € L(U, ).

Language L(G) has type (i) iff G has type (i), i = 1, 2.

Lindenmayer theory of L-systems is a parallel analog of Grammar Theory. It
considers trajectories where ALL possible substitutions should be done simulta-
neously. This poses some restrictions because ambiguities can arise. That is why
normally only the case when the left side of each production is one symbol only.

The following are classes L-systems are similar to subclasses of context-free gram-
mars:

e OL-system has all productions of the form s — «a,s € S and at least one
production s — « for each s € S;

e DOL-system (deterministic OL-system) is an OL-system with exactly one pro-
duction for each s;

e Context-sensitive L-systems have productions like
oz — oy

1.2 Random Grammars and L-systems

Computer science studies languages generated by grammars. Then random gram-
mars should study probability measures on languages.

Random grammar is the following countable Markov chain. Assume that on U
the nonnegative function ¢(a — ) = ¢(«, 3) is defined. Countable continuous time
Markov chain G(U, q) with state space S* is defined by the following transition rates:
for any string a-y@ and any production v — ¢ the rate of the transition ayf — «adf
is equal to g(v, 6).

We discuss the following basic problems:

e Thermodynamic limit for such processes, existence and uniqueness;

INRIA
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e (lassification of such chains. We use martingales and cluster expansion to pro-
vide explicit necessary and sufficient conditions for ergodicity and recurrence
in a ”small perturbation region”;

e We study large time behaviour in transient context free cases and show that
it can be decomposed on invariant measure type behaviour and fractal type
behaviour.

Stochastic L-systems are discrete time systems, they were introduced earlier.
But it seems that the terminology of Markov processes was not even known to the
authors, see for example [3]. As a consequence the authors rediscovered some ele-
mentary results from branching processes. When we do trajectories random we get
asynchronous (continuous time) dynamics for grammars and synchronous (discrete
time) dynamics for L-systems.

Random grammars and L-systems are known to have applications to program-
ming languages and to biological growth models.

Turtle Dynamics One can also define a local sequential alternative of such pro-
cesses. The state space is now the set of all pairs (a, ;) where « is a string and z;
is some of the symbols of . One can think about a particle which is situated at
this specified symbol. Each transition (in discrete or continuous time) consists of
the creation by the particle, instead of the symbol z; where it is situated, two, one
or zero symbols and simultaneous jump of the particle to one of the created symbols
or to the neighbours of x;.

Existence The continuous time homogeneous countable Markov chain G(U,q) is
non exploding, i.e. one can construct a process with a.s. finite number of jumps
on any time interval [0,7] for any initial state. It is quite obvious because sum of
the rates of jumps increasing the length of the string is dominated by the rates of
the pure birth process on Z, with transition rates A\(n — n + d) = Cn, where n is
the length of the string, C' is maximum of the transition rates for our process and d
is the maximal difference of string lengths in the productions. But such pure birth
process with linear growth of transition rates is known to be nonexploding.

Classification The complete classification for the case of context-free grammars
is provided below. Put W(«a) equal to the number of W-symbols in .

RR n -~ 3187



8 Vadim Malyshev

Proposition 1 Assume that is there is only one W-symbol n . For context free
grammars the process is ergodic (null-recurrent, transient) iff

Z(W(a) —1g(n,a) <0

o

(correspondingly, =0, > 0).

Proof. Note that W-symbols behave as the particles in the simple branching process.
Then the assertion follows from well known results about branching processes.

If W contains more than one symbol then one can also obtain the ergodicity
and recurrence conditions using branching process with several types of particles.
Similarly one get the classification for a little bit more general case when we do not
make difference between terminal and nonterminal symbols and U consists only of
substitutions s — 8 with s € S.

1.3 Semigroup Representations

Assumption 1 To simplify notation we shall consider in this section only the case
when all productions are of the type

Yyé — vB6

for some y € S,6,7,8 where l(y) + 1(6) < 1,1(8) > 0. In this subsection however
we do not need this assumption. Moreover, in the cluster expansion we need only
to take more separating symbols (instead of one, as below) to deal with the general
case.

Let H be the generator of our Markov process. We decompose it in some way as

H=Hy+V =Hy+ Y V,
a

Below we shall use three types of such splitting. Using the differential equation

dwW (1)

_ Hot —Hot
o =W(t)e"" Ve "0%s

for W (t) = e(Ho+V)te=Hot gne can get the following expansion

exp(tH) = exp(tHyp) + /Ot exp(Hs)V exp(Hy(t — s))ds = exp(tHp)+

INRIA
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S t prs1 Sp—1
Z/o /0 /0 exp(Hysy)V exp(Ho(sp—1 — $p))--
n=1

.Vexp(Hy(t — s1))dsy...ds1 = exp(tHp)+

g/ot /081 /Osn_l > exp(Hosn)Va, exp(Ho(sn—1 — $n))---

.V, exp(Hy(t — s1))dsy...dsy (1)

where the last sum runs over all sequences aq, ..., ay.

Operator Representation. Here we take Hy = 0. Symbol a = (u,%) consists
of a particular production v = (yyé — (36) and an integer i > 1, V, is a linear
operator in the Banach space [1(S*) which acts in the following way. We write down
its action on measures from the right. Denote 6, the point measure on S* with
support on string a. Then

00 Vo = Q(“)(‘Sawﬁmz —ba)

if @ = z1...¢, = a1yybay so that z; =y if a = (u, 7). Otherwise we put

0aVa =0

In this case the expansion can be rewritten in simpler way

exp(Ht):Zn—n' > VapVa (2)
n=0

T Qnye..,Q1

Lemma 1 Now apply the last term of the expansion (2) to some 6. Then the
number of terms for given n has an upper bound Cy(l(a)C™ for some constants
C,Cy = C1(l(e)). Then for small t the series is a norm analytic function of q(.)
and t in the space of measures.

Proof. For given aj,...,a; consider the number of operators V,, ,, giving nonzero
contribution to 0 Va; .-+, Vo, Vay,,- It does not exceed I(a) + Ck where () is the
length of the initial string. This gives the desired estimate.

Note that the norms of V, are uniformly bounded. Thus we get analyticity for
small £.

RR n°3187



10 Vadim Malyshev

Trajectory Representation. We take Hy to be the diagonal part of H, it has
negative elements on the diagonal. Symbol g has the same meaning but now we put

0aVa = Q(“)6a17ﬁ6a2

if @ = aqyydao, also
6aVa - 0

otherwise.

Note that the terms in this expansion have a precise probabilistic meaning. They
give the following formulae for the density function in the space of trajectories with
respect to Lebesgue measure on the union of simplexes

{(Sny-er81) 2 S < Sp1 < ... < 81 < t}

More exactly, matrix elements (§,e”?,8,,) are sums of integrals of the following
products of basic matrix elements V,3 of V' and of the diagonal part

(E_Hosn)aavaan (G_Ho(sn_l_sn))a”an - Vazat (e_HO(t_81))a1al

where we assume that the trajectory w starts from « and has n consecutive jumps
to ay, ..., a1 at times s, < ... < s1 respectively.

2 Infinite String Dynamics

Infinite string here is defined as a string which is isomorphic (as a completely ordered
set) to Z. For finite time we would like to define the analog of the process G(U, q) for
infinite strings as the thermodynamic limit of processes G(U, ¢) starting with finite
strings of length N. We study also how this limit is related to large time limit. The
answer is not as straightforward as for locally interacting processes and depends on
the problem one considers. We discuss various approaches to the thermodynamic
limit.

In the standard approach to thermodynamic limit one is looking for the limit of
correlation functions. The situation with our processes is more delicate because all
vertices constantly die and reappear. One of the questions is how to specify a point
in which we want to find (e.g. one-point) correlation function. Second, one cannot
expect to define an honorable process if we renumerate the infinite string after each
transition. In finite interval we shall have infinite number of transitions and there is
no unique natural enumeration at time ¢. One could say that there is no coordinate
system for strings.

INRIA



Random Grammars 11

There is however a straightforward way to reduce infinite string dynamics to a
finite strings dynamics. If such reduction exists we say informally that the dynamics
is clustering (or cluster). We give two rigorous incarnations of this intuitive idea.

2.1 Cluster expansion

Probabilistic expansion. Let us start with any initial infinite string. Fix some
symbol zq of this string labelling it with number 0. We get then natural enumeration
s(z): Z — S that is a one-to-one mapping of Z onto the string. Fix some pair (U, q)
and consider the sequence of Markov processes GV on probability spaces Q¥ which
are copies of the process G(U, q) starting with the finite substring z_ ...z of the
initial infinite string. We want to study the limit N — oc.

Let Q%’t COV,-N -1<i<0<j<N+1, be the event that symbols x;
and z; of the initial string z_y...zx are not changed in the time interval [0,¢] and
moreover there are no symbols in the substring z;;1...z;_1 with this property. Note
that ¢ = — N — 1 means that all symbols 3,k < 0 are updated in this time interval.
Similarly for j = N + 1.

Then a.s.

U Qfje =9
i~ N<i<0<j<N+1

Theorem 1 Probabilities PN (t;i,5) = P(Qf}{t) tend to some limit P(t;i,7) as N —
00. Moreover

> P(tig) =1

(4,§):1<0<5
Define the following probabilities for the process G(U, g) on the interval [0, ¢]

e PN(z;) - probability that starting with initial string z_p...7; extreme right
symbol z; is not updated

e PN(z;) - probability that starting with initial string z;...zy extreme left sym-
bol z; is not updated

e P(z;,z;) - probability that starting with initial string z;...z; both extreme
right and left symbols z;, ; are not updated but all other symbols are updated.

Lemma 2 For alli,j,z;,zj, N the following formula holds

PY(t;4,) = P(;) = B (z:)P(i, z;) P ()

RR n -~ 3187



12 Vadim Malyshev

This is intuitively clear because until one of the symbols z; and z; is not updated

the process runs as 3 independent processes - left, middle and right - due to our

assumption about productions that a symbol can be updated only separately through

left or right context. We shall give however more arguments which we shall need

further for another expansion.

First of all, we introduce finite string dynamics with boundary conditions G(U, gy (2, y)), z,y €

S U{e}, where {e} means empty boundary conditions. More exactly, this is a Mar-

kov chain where rate functions ¢ . (z,y) coincide with the rate function for G(U, q)

with the following exception: we add transitions for the extreme left symbol z;

0 — ab

with rates
Gb.c. (210 — b)) = q(xx16 — zOd)

inherited from G(U, q). Similarly, we add the transitions for the extreme right symbol
Ty
YLy — Y

with rates q(yz,y — yay).

Let w be a trajectory for the process GV satisfying our conditions that Ti, Tj
are not updated but other symvols between them are updated. These notupdated
symbols subdivide w onto three parts w<;, wsj,w;; correspondingly from the left of
z;, from the right of z; and in the middle.

By P(w), Py (w<i), ..., we denote density functions for trajectories of the pro-
cesses GV, G(U, gp.c.(e,2;)),.... Note that, for example, w.; may be considered as a
trajectory of the process G(U, ¢p.c.(e,2;)) with boundary conditions.

Let w have jumps at times s; in the part w.; and at times ¢; in the part w;;.
Denote y(s) the symbol of the string of the trajectory w at time s, which is next to the
left from the symbol z;. Consider the conditional probability (for the process G(U, ¢))
that z;, z;, are not updated under the condition that the trajectory w (outside these
two symbols) is given. It is equal to

P(z;, 15 | w) = P(z; | wei) P(x4, 75 | wij) Pz | wsj)

where for example

n+1

P(z; | wei) = [] exp(—(sk—1 — s£)O_ a(y(sk)z: — y(sk)B))) (3)
k=1 B

INRIA
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where sg = t, sp,4+1 = 0. But at the same time

PN (@) = [ Plai | wedne (o)

The same equalities can be written for two other probabilities and also for the whole
process we get

PY(t50,) = [ Plai,a; | @) o)

where pyp .. is our process with excluded rates which could update z;,z;. Now we
note that up.. is a product of three independent processes with boundary conditions

MHo.c. = u(e,zi)'u‘(ﬂ?iawj)'u'@j €)

Using this and the last formulae we get the result.

Operator Expansion. Introduce a structure of noncommutative algebra in [; (S*)
in the following way. Note that , form a basis of this space. Define a multiplication
of these elements in the following way:

0o @ 6 — 0o % 63 = 00
For the initial finite string aN) = T_pn...xny put
Qi = T New-Tjm1, Qi j = Tip1--Lje1, Usj = Tjq1.- TN
We say that a linear operator A in [1(S*) admits a cluster expansion if there exist

| S | operators A<,z € S, | S | operators As ;,z € S, and | S |? operators

Ao zy,Z,y €S, such that for all = aV =z_y..zN,

ball = Z (baciAc,z;) * by * (ba;;A0,2i,3;) * ba; * (bay; As a;)
i,j:— N<i<0<j<N

Our goal now is to give explicit cluster expansion for the semigroup exptH
Lemma 3 The following algebraic identity holds

bqv) exp(tH) =

Z [5a<ie$p(tH(e,mi))] * Og; * [6C¥i,j L; ;] % 6mj * [6a>j eXP(tH(mj,e))] (4)
ijim N<i<0<j<N

RR n -~ 3187



14 Vadim Malyshev

where H with indices mean generators of Markov chains with the corresponding
boundary conditions. The central term is L_19 = 1 and otherwise

o tn
> Hvan...val
n=j—i—1 """

where the last summation is over all ay,..,a1 such that each symbol of the string o
is updated at least once. In L;; we take all Vy from the Markov chain with boundary
conditions (z;,2;).

Proof. Note that L;; can be considered as the restriction of one operator (connected
kernel) to strings of length j —4 — 1. To get the algebraic expansion rewrite the sum
> an,....a; in the right hand side of formula (2) as

DEED S Dl

Ay yerny@1 ij Qnyen@1
where the last sum is over all a,, ..., a1 such that
e No V, factors for symbols z; and z;;
e At least one factor V, for each symbol of the initial string between z; and z;.

It is useful to come back to the expansion (1). Call diagram G a sequence V,_, ..., Va,.
Contribution Q(G) of this diagram is the corresponding term in the expansion in-
cluding integration over the simplex of the time variables, correspondingly to the
order in the sequence V,,,...,V,,. Now we define a partition

Arere|J Amidaie | Arignt = {0y - 1}

where these three subsets do not intersect each other: for example, k € A iff Vg,
acts from the left of z;. Correspondingly, V,, and time variables sj fall into three
subsets.

With a given diagram G we associate three other diagrams Gy, Gy, G, as follows.
G is a subsequence of V, ,...,V,, with indices belonging to A;.r;. To get G, we
also take a subsequence of V,_, ..., V,, with indices belonging to A,,;q4i and modify
the indices in the following way. If k € A, qae then for ap = (ug,ix) we define
ax = (uk,Jx),Jjk = ik — l(@<i(.)) — 1 where a;(.) is the string to the left of z; at
the corresponding time moment. That is for the action 6,V,, we count j; starting
from the first symbol to the right after ;. Remind that we alsways know where the

INRIA



Random Grammars 15

conserved symbol z; is. Similarly G, is defined but in this case we count starting
from the first symbol to the right after x;.

With given diagram G we associate a class of diagrams C(G) consisting of all
diagrams which can be obtained from G by all allowable permutations of V,, . Per-
mutation is called allowable if the order of each pair V,,,V,, belonging to the same
class Ajeft, Amiddie Or Aright is not changed.

Then

> Q6) = RG)QGCR(G,)

GeC(G)

This follows from the commutativity of Vi, V,, = V,,V,, belonging to different
classes, using separation of time variables s;.

Remark 1 The last formula gives some interesting interplay between concatenation

and shuffle algebras. Concatenation algebra was defined above, the definition of
shuffle algebra see in [10].

2.2 Cluster dynamics

Operator version.

Proposition 2 From the operator expansion we see that for any € > 0 there exists
n = n(e) > 0 and operators M, such that for every initial string « = y_n...ynthe
norm of

0o (exp(Ht) — My,)

is less than a™ for some a < 1.
Moreover for some operators A = Ag?y)i,yﬁ every N and every initial string
Q& =Y-_N---YN
M, =

> 6y iy eXP(HE) % 8y, % Sy i AT % 8y % 8y Ly exp(HYE)
where the sum is over all 1,5 such that —2n <i < —n,n < j < 2n.

Proof. By induction where on the first we put M,, = 0. On the second step take the
operator expansion (4). All terms of it with —2n <i < —n,n < j < 2n we add to
M,,. On the next step we expand each term of the operator expansion with either
n<i<0<j<2n0or —2n <13 <0 < j < n further. We do it in the following

RR n° 3187



16 Vadim Malyshev

way. Take for example the case —n < 4,n < j < 2n and write for exp(H, ;) an
expansion similar to the basic expansion (4)

1
6a<i exp e ﬂU@ Z 604<k eXp e,wk) * 5$k * 6$k+1---wi—1Lkz’

k:k<t
We add terms with 2n < k < n to M,, and for —n < k continue in a similar way.
The induction expires after finite number of steps.

Probabilistic version. The central idea of the cluster expansion is to further
expand P¥(z;) and PN () in the same spirit. One cannot do it with only positive
terms in the cluster expansion.
Let denote now p (z;) = P (z;). Then
N~ N N~ N/- -
pi (%) =1 —p; (zi) = p; (Ti, Tim1) + p; (Ti; Ti1)
Index ¢ at pZN means that we consider our process starting with the string x_ n...x;,
the bar means that the symbol under the bar was updated. For example, p (%, ; 1)
means that z; is updated and z;_; not. Then using arguments similar to lemma 2
we get
P (Zi, 1) = pi 1 (zi 1) Plwi 1)
where P(z;_j) is the probability that in the process started with the string z; ;. z;
symbol x;_j, is not updated but other symbols are updated. Also

pi (%, Tio1) sz iy oo Bickrl, Tik) = 9 P(ick)Pi 1 (Ti—k)
k=2

Our final expansion is thus

o
pi (i) =1—= P(zi )Py 4(zi k) (5)
k=1
Note that P(z;_;) = O(t*) and by iterating the expansion we get the exponentially
convergent series for pl (z;).
Proof of theorem 1. Using smallness of ¢t we get

P(Qf}(’t) < al™

for some a = a(t) < 1 (this fact can be easily proven without cluster expansion).

Tterating the expansion (5) we get a convergent series for pY (x;) with terms not
dependent on N up to terms of order a¥ for some ¢ < 1. Exponential convergence
of pl¥(z;) as N — oo follows.
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Random Grammars 17

Theorem-Definition 1 For any t there exists cluster dynamics on the set of infi-
nite strings. This means the following.

e For any initial string « a random point set A(w,t,«) is defined. It consists
almost surely of infinite number of symbols Ty, (w) = zg, (w, a,t) in o such that

e <y (W)eoe < zp; (W) <o

and which are the only symbols not involved into substitutions during whole
time interval [0,t]. Let us take the agreement that kg is the smallest nonnega-
tive index. These sets satisfy the following properties:

1. For allt1 < t9 a.s.
A(watQ) C A(watl)

2. Given g, (w) = 7° and 7y_, (w) = 37! conditional distributions of T, (w)—
Tk, ,(w),t <0, are independent and identically distributed.

The same of course holds in the direction to the right.

o Take some symbols _ '
<zt << <.

Then the dynamics under the condition that for all i
T, (W) =

consists of independent ditributions p; on finite string trajectories (in-between
z' and 2'71). These distributions are the restrictions of the process G(U, q)
with initial strings Ty,...xx,, | to the trajectories such that starting with initial
string x;...x; both extreme right and left symbols x;,x; are not updated but all
other symbols are updated.

We get this dynamics as a limit of finite string dynamics for small . We use the
cluster expansion. Let oY) = z_y...zx be the substring (of the length 2N + 1) of
the infinite initial string « (we again fix some symbol zg of the initial string). We
already proved convergence of distributions of symbols z° and 27! and of trajectories
in-between these symbols. Now exactly in the same way, given zj_, (w) = 27! we
find the ditribution of z_,(w), i.e. of the first symbol from the left of z=! which is

not updated. The cluster expansion is the same and we shall not repeat it here. By
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18 Vadim Malyshev

induction we find all other symbols. Independence of increments for this random
point process is clear. All other statements are proven similarly to the statements
for trajectories between 20 and z7!.

The fact that random sets A(t,w) are infinite a.s. for all ¢ follows by covering
[0,%] by intervals of sufficiently small length ¢y. All other properties of dynamics for
arbitrary ¢ are easily obtained because they hold uniformly in all initial conditions
for ¢t < tg.

2.3 Local Observer

We saw that, for finite time, sets A(w,t) together with fixing a symbol of the initial
string gave us a good reference frame. When ¢ becomes infinite this reference frame
dissappears (as A(w,t) — @) and we need some means to understand where we are
situated on the string. There exists one way to do it once and for all. But we shall
see now that this way is extremely non constructive.

Consider the set S% of configurations or functions on Z taking values in S.
This is a topological space equipped with the product topology. Also the group
of translations acts on this topological space. Infinite string can be identified with
an equivalence class of functions up to translations (shifts). Equivalence class can
contain one string (if the function is constant), finite number of strings (if the func-
tion is periodic), otherwise it contains countable number of functions, all of them
different from each other. The set £ of all equivalence classes becomes a topological
space in the induced topology. In this topology two infinite strings are close if there
exists sufficiently long substring common to both representatives.

For Gibbs fields on Z the thermodynamic limit is defined using local functions.
To define a notion of a local function in our case one needs to use Zermelo’s axiom
of choice, i.e. to choose one representative from each equivalence class, that is to fix
some symbol for each string. One can say that to find zero point (coordinate system)
in space one needs Zermelo’s axiom of choice. After this one could consider local
function on these representatives and extend it by translations to all functions in the
equivalence class. This is obviously intractable and we shall use more constructive
appoaches to find reference frames.

I think that these difficulties have some fundamental nature (but completely
different from nonexistence of points in noncommutative geometry), especially in
higher dimensional situations - one cannot fix a point in "space” independently of
the past.

Reference point can be related to a local observer by putting him at some point
of the initial string and defining some rules of his jumping in time. Then we can
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look at the correlation functions at the points close to the observer and far away
from it. One can put also several such observers and study their mutual disposition.

If the initial string is finite then the simplest way is put observer always to one
of the ends of the string (for example, to the left one). More general way is to fix
again a symbol x( of the initial string and assign number 0 to it. Then all remaining
elements get their numbers automatically. One can imagine that a local observer
sits at site 0. Until this symbol is not updated the observer stays at the same point.
When z is updated with some substitution oy — « the observer jumps (using some
Markovian rule) to one of the symbols of « or to one of its neighbours z_1,z; at the
moment. Then number zero is prescribed to the symbol where the observer is and
the remaining elements are reenumerated correspondingly. To escape dissapearance
in case a = e, the observer should jump to one of its neighbours.

For a given observer one can define local correlation functions. A local observer
provides us with a zero point and thus with an enumeration at any time ¢. Then
we look at P(s(—k) = s_g,...,s(k) = sx),k > O, at time ¢. It is clear that in the
generic situation the random field on Z defined by these correlation functions will
not be space homogeneous.

As an example consider the case with substitutions of the form

a—>ﬂ,|0¢|:1,|[3|=2

( context free grammars without terminal symbols).
Let the observer jumps always to the right symbol of the string 5. Then at point
0 we shall see a finite Markov chain with transition intensities

pay =D _q(z = 2y)
z

Denote its stationary distribution by 7. Then stationary distribution of the corre-
lation function

by zg = b) = S () L Bo1bo)
p(r_1 =b_1, o—bo)—; ()qu(ﬂﬂ_’ﬁ)

Contrary to this, the limiting distribution of x; is independent from zg and is the
limiting distribution of the finite Markov chain with intensities

pay =D q(z = y2)
z

For the same example consider k£ observers observers put at different points at time 0.
Here it is evident that local functions at neighbourhoods of different local observers
become mutually independent.
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See [1] where the case of the observer sitting at the end of the string is studied
in more difficult cases.

3 Large Time Behaviour: Small Perturbations

Consider an independent process with local interactions starting with an infinite
string and defined in the following way. With rate 1, i.e. after exponential wai-
ting time with mean 1, the symbol in a given vertex becomes r with probability
p(r), Y regp(r). Invariant measure for this process is Bernoulli sequence with pro-
babilities p(r) of symbols. We shall call such transitions independent transitions.

Consider also a small perturbation of this process. Assume there are also rates
c(sy — a, 30(1})) with which any symbol s, is replaced by a word a. These rates
depend on the configuration sp(,) in the neighbourhood O(v) of v, a can be either
empty or consists of one or two symbols. We assume further that all these functions
c(.) (there is a finite number of them) are small enough. This set of parameters we
shall call the small perturbation region.

3.1 Invariant measures

We shall give two definitions of limiting measures.

Definition 1 Start with some infinite string and consider any local observer (by de-
finition it is always at vertez 0). Consider the correlation functions P(zy(t)...xn5-1(t) =
) where vy is a string of length k. Any limiting point of these functions for t —
oo, n = n(t) — oo, we shall call limiting correlation functions.

Note that at least one limiting point exists due to compactness.

Empirical distribution. In the space homogeneous case we can use an alternative
approach. Fix some numeration at time 0 and assume that the initial distribution
on functions Z — S is a stationary random process 7. Let us consider the sequence
of substrings ay = z_p...xny of the initial infinite string . For fixed N consider
finite dynamics apy(t) started from ax with the initial distribution on it taken as
the restriction of 7. Define empirical one point correlation functions ¢(-y,t). For this
take the string ay(t) at time ¢ and the number Q(v;¢, N) of substrings «y in it.

Lemma 4 For small t
Nyt N) = a(:)
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as N — oo and for all k

> alnt)=1

Yil(v)=k

This follows from the cluster arguments developped in the previous section taking
into account that strings close to the boundary give a vanishing contribution to Q.

Definition 2 Limiting correlation functions are any limiting points u(7y) of q(7y;1t)
as t — oo. We call correlation functions q(vy;t) invariant if they do not depend on
t. We call them translation invariant if they define (by Kolmogorov theorem, if we
enumerate v as Y = Tg...Tx_1) translation invariant measure on SZ.

Theorem 2 In the small perturbation region limiting correlation functions are unique.
They coincide with invariant correlation functions which are also unique.

We shall get explicit series for the correlation functions. In particular, for one-point
correlation functions we have

p(r) = p(r) + O(c())

We shall also prove exponential convergence to this invariant measure.
Proof. We shall use the same kind of expansion as formula (1) where again

H=Hy+V =Hy+ Y V,
a

but here we take Hy to be the generator of independent process, i.e. the rate matrix
for the independent transitions. V corresponds to the small perturbation and is not
positive

0aVa = c(u)(6a,~6as — 0a)

where v is the transition yyé — v36. Note two properties of V:
1. Its norm is 2¢(.). Thus the total variation decreases not less than 2¢(.) times.
2. For any measure p the total charge of the measure uV, is zero.

We can write
Vo = Va+ +V,

where
604Vt-1+ = C(u)6a17ﬂ5a2a6aVa_ = —c(u)&a
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We shall use the expansion (1). Note that in the interval [sg, sy_1] the vertices
do not change and we can write

exp(HoAs) = [[ exp(HopAs) = [[(Po + Wy (As))

v

where As = s;_1 — s, and exp(Hy,As) is independent updating process in one
vertex, Py is the linear operator which transforms any probability distribution on S
to the distribution p(r) on S.

The norm of their difference W, (As) = exp(Hp,As) — Py tends to zero expo-
nentially fast as s — oo. Choose d so that W,(d) < € .

Now we introduce diagrams, i.e. directed graphs in Ry X V where time R will
be vertical direction, and countable set V' - horizontal. Diagrams will label the terms
of the expansion. The vertices of diagrams are labelled by (s,v). At time 0 the set
of vertices coincides with the set of symbols (vertices) of the initial string. We draw
a vertical line from each vertex (0,v) until it meets some V," or V,~ which update
this vertex, at time si. Assume that vertical lines are directed to smaller times.

In both cases we draw a new vertex (si,v). From it we draw horizontal lines
to other new vertices (sg,v;) ((in the direction from (sg,v;) ) )for all symbols z,,
belonging to the neighbourhood of v which gave rise to the transition. In the first
case (for V1) we draw also new vertices (s, w) which appeared instead of the
updated symbol z,. We connect these new vertices by horizontal lines with vertex
(sk,v) (in the direction to (sg,v) ).

By induction we continue in this way until we come to time T slice.

Contribution of the diagram

e = [T1en I Qo)

lines vertices

where only vertices (s, v) will give contribution. They are equal to V,*.

Contribution of each vertical line of length smaller than d is exp(HpAs). Contri-
bution of each vertical line of length greater than d is either Py or W(s; — s_)
where sy is the time coordinate of the upper vertex of the line, s_ - lower coordi-
nate. Contribution of each horizontal line is 1.

As it is standard in cluster expansions for large T' we first take ¢(.) sufficiently
small and show (by appropriate resummation) that the radius of convergence (ana-
lyticity region) is independent of 7.

Take some vertex g = (T,v) at time T sufficiently large. Let v be on distance
exactly L from the left end of the string at time 7' and sufficiently far away from
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both ends of the string at time 7. We assume that the string is finite and its length
N is much greater than L and 7. We shall prove that the one-point correlation
function at this vertex converges to a limit independently of how 7" and L tend to
infinity.

To prove this we shall define for each diagram G a graph 7(G), a cluster of
this fixed vertex. 7(G) is defined as the maximal connected directed subgraph of
G containing g = (T, v) itself and not containing any line with contribution P, and
moreover for each vertex there is only one ingoing line (from bigger times).

Now fix some 7, we define its contribution as

QAT)= > QG)

G:T(G)=T

Resummation also will give us a simpler formula to calculate Q(7"). Consider the
lowest vertices of 7', that is the vertices from which there are no more outgoing lines
belonging to 7. They can be of two kinds: we denote vertices lying on time slice
zero by V and the rest by V3. We remember that in G just below this vertex v € 1}
there is a line [ with contribution Py. If under it there is a vertex not on slice zero,
then we make resummation using V, Py = 0. Thus only lines [ ending at slice zero
are left. They provide the joint probability distribution in the vertices if the tree
just above lines with Py which is independent Bernoulli. Assume first that there is
no vertices in 7 on time slice zero. Then the contribution Q(7) of 7T is

pBQ(T) = ps [[ QD[] Q0
1 v

where Q(1) is either W (As) or ef02% and Q, is V.

Lemma 5 For any € > 0 sufficiently small there is such cy that for all ¢(.) < ¢y we
have

norm(ppQ(T)) < ()7 7)

where 1T is the sum of lengths of lines of T with lengths greater than d, n(7T) -
number of vertices of T .

Similarly, if 7 has vertices on time slice zero, one can prove that their contribution

tends to zero as €/ when T' — co. Thus,using standard methods of summation over
trees one can prove the following theorem.

RR n -~ 3187



24 Vadim Malyshev

Theorem 3 We have the following formula for the one point limiting correlation
function
p(.) =>_Q(T)
T

Correlation functions at time t converge to it exponentially fast.

Corollary 1 Let us consider infinite string process and arbitrary local observer. For
any L1, Ly € Z denote P(v;, Li,t;),i = 1,2, the probabiliies of events that at times
t1,ty = t1 + 7 the string starting from L; is ~v; P(vy1,L1,t1;y2, Lo, ta) the probability
of their intersection. Then the following limits exist

lim P(vi, Li, t;) = p()

t;—00
P(v1,L1;72, La;T) = tllglgop(%,ffl,tl;“rz,f?mh)
and the covariances

P(y1,L1;v2, Lo; 7) — p{y1) p(2)

tend to zero exponentially fast with T.

The proof of this theorem is along the same lines using cluster expansion introduced
above.

3.2 Classification

Intuitively, the strategy of getting stability results is the following. A given vertex
can produce instantaneously zero, one or two vertices. But the production rates
depends also on the environment. We already know that some limiting ”local”
invariant measure will be established in the system after some time. This limiting
measure appears to be the unique limiting measure p for infinite string process.
Exactly this invariant measure will give us infinitesimal mean production rates.
Thus the stability condition should be the following.

Theorem 4 For fized v we put c(50(y), @) = c(sy — @, 50()). We call

M =" u(sow)(—clsow),0) + D c(sow): 7))

50(v)

the infinitesimal mean production rate. The chain is ergodic if M < 0, transient if
M > 0.
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We only sketch the proof for the transient case, ergodic is quite similar. The case
when already

My =Y po(sow)(—c(sow), ) +Y_ c(sow),rs)) > O

S0 (v)

for Bernoulli measure pg invariant with respect to independent transitions. More
delicate is the case when My = 0, i.e. only second order terms are positive.

We will use Lyapounov function (see [11]), which is taken to be just the number
of vertices in the string.

Assume thus that M > 0. We shall prove that there exists such 7 > 0, N > 0
and e > 0 such that for any string «(0) = o, l(a) > N, at time 0 we have

E(l(a(7)) | a(0) = ) = l(a) > €l(a)

We shall choose 1 << 7 << N. So take arbitrary string of length N at time 0, all
probabilities will be conditional under the condition that this string is fixed. Let
I(t) be (random) length of the string at time ¢. Take some T so that at time 7" the
distribution were sufficiently close to the invariant measure. Note that during time
interval [0, 7] the decrease of the length is of order ¢(.)T.

From our assumption it follows that

E((T +1) = (T)) > €l(T)

for some small e. Then take 7 that during time interval [T, 7] we have considerable
increase of the length, i.e.

[r—T1]
E> ((T+k)—UT+k—1))>e(T)(r-T)
k=1

From this the result follows.
Corollary 2 Null recurrent case is of Lebesgue measure zero in the parameter space.

It is an interesting question of whether the last statement holds in the general
situation (without assumption about smallness of some parameters).

Conjecture 1 If M = 0 then the chain is null recurrent.
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About the proof. The case M = ( is more complicated. It is difficult to find an exact
martingale here necessary for criteria of null-recurrence (see [11]). Instead one could
use change of measure for different times and coupling of finite and infinite string
dynamics.

Corollary 3 (Classification for Infinite Dynamics) In the small perturbation region
transient case for finite string holds iff for the corresponding infinite strings anyone
of the following conditions take place:

1. For any two local observers the distance between them tends to oo with positive
probability;

2. There exist nonzero bound for the density of survived observers uniform in
the initial distribution. More exactly, if at time zero we have the density of
observers on the initial string say po then at all times the density is larger than
cpo for some constant ¢ > 0.

4 Large Time Behaviour: Context Free Case

I did not go to maximal generality here, because there are too many types of dege-
neration of the considered processes. This is not too difficult but sufficiently boring
work. But I tried to give interesting examples and considered some cases which
seemed typical.

4.1 Invariant measures for grammars

One nonterminal symbol. First we consider context-free grammars and assume
that | W |= 1. Fix z( in the initial string. Then the initial string becomes a
configuration on Z. Denote by M the class of measures on S# such that

1
liminfﬁ#{i:miEW,—NS?ZSN}>O

Theorem 5 Assume transience for the countable case. Assume also that in the
productions w — « the strings a cannot have a substring ww.
Then the invariant measure is unique in M, translation invariant (we defined it
earlier for empirical correlation functions) and has exponential decay of correlations.
Convergence, starting from some measure in M, of the correlation functions to
those of the invariant measure is exponentially fast.
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Remark 2 Assume that the countable case is ergodic. Then it is easy to see that in
nondegenerate cases there is an infinite number of extremal invariant measures. One
should just take at time 0 special translation invariant distributions with sufficiently
many final symbols on the initial strings with fixed point.

If the countable case is null-recurrent. then the invariant measure (empirical) in
M also exists and seems to be unique in nondegenerate cases.

Proof of the theorem.

Note first that symbols of the initial string which are not in W do not count
because, by transience of finite string dynamics starting with one symbol w, their
density decreases in time. So, we can assume that the initial string is z; = w.

It is useful to start with particular cases where we can find explicitely the inva-
riant measure.

Right linear case. Here only productions w — aw are possible.

The invariant measure can be constructed as follows. Take normalized probabi-
lities
q(w — aw)

M) = ol = aw)

Then replace in the initial string z; = w each symbol (independently of all others) by
a # e with probability p(«). The resulting random infinite string has the distribution
coinciding with that of invariant measure for right linear random grammar with rates
¢(.). Note that the number of w-symbols is conserved but the invariant correlation
functions are zero for any string containing at least one symbol w.

The proof of this statement is obtained by a simple remark that each symbol of
the initial string gives rise to a d-Markov chain and these chains are independent of
each other. Correlation functions of this chain are equal to those of the invariant
measure and to the correlation functions of the random string we obtained by one
step substitution.

Linear case. Here only productions w — waw are possible. Also we can get
the invariant measure using one step replacement of each w independently by aw
with probabilities

q(w — wow)
Y0 @(w — wow)

Note that substring ww become rarer as ¢ — oo as we assumed that there is no
production w — ww.

pla) =

RR n° 3187



28 Vadim Malyshev

All symbols are nonterminal. This case is a deviation from the proof of the
main theorem but it demonstrates sufficiently well what can occur in more general
cases.

Let us consider first the case where the only productions are of the type s —
zy,%,y,s € S and assume that all of them are positive. Define probabilities by

normalization
q(s,7y)

ple,24) = Yas,.)

Let us introduce two stochastic (| S| X | S |)-matrices, left and right:

1(s1,89) = > p(s1, s9u)
u€eS

81782 Zp ‘917“’32
ueS
Lemma 6 Invariant one point correlation function w(s) is equal to the stationary
distribution of the finite Markov chain with | S | states and transition matriz

Q=5Q+@)

if this Markov chain is irreducible aperiodic.

Proof. Each symbol s of the initial string produces a binary planar tree of descen-
dants. There are 2™ symbols on the level n of this tree (discrete time n) and a
unique path to each of these symbols. Summation of the one symbol probabilities at
each vertex of the tree at level n with weight 27" (empirical correlation functions) is
equivalent to consider binomial expansion of Q™. Taking n — oo we have the result.

We shall use algebraic formalism for calculation of other correlation functions.
This will prove also uniqueness of limiting correlation functions. Let F' be an algebra
of all real functions on S, é-functions d,(.) form its basis. Define a comultiplication
AF — FQ® F by

(Af)(z,y) Z fs)p(s,zy), f € F

or

Aés = Zp(s,:vy)éw ® 6y

Remark 3 This comultiplication is not coassociative in general.
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A

Figure 1: Two point correlations

Proposition 3 If n(s) is the one-particle correlation function then two particle nea-
rest neighbours correlation function w9 is given by

™= 5(AT)SQ®Q, (1~ 1 QI® Q)

To prove this one should just note we sum contributions of different neighbours
of the level n of the tree and then put n — oo. Case n = 3 is shown on the following
Figure.

We have
® 1
:—A7r-|— (Aw)Ql®QT . Z—k (AmQF '@ Q!

If the matrix @ is aperiodic but reducible then the random grammar can have
several invariant measures. We shall see it in the next paragraph.

General case. If g(w — e) = 0 then one can use similar arguments with trees as in
the previous paragraph. If there are, for example, productions w — aywaywas then
we consider trees with 5 lines emanating from each vertex. Three of them correspond
to terminal symbols and two other - to nonterminal. The same arguments obviously
work to prove the existence of the limit n — oc.
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4.2 L-systems.

In two following subsections we deal mostly with discrete time case (OL-systems). It
has some notational advantages. Instead of rates we have here probabilities p(i — «)
to substitute string « instead of symbol i € S. We give here a different approach
to context free case based on branching processes. All definitions which we have
introduced for random grammars can be easily reformulated for random L-systems
as well.

Let us consider a finite directed graph, we call it one-particle graph. Its set of
vertices is S, there is a line s — z iff there is a production s — « with « containing
symbol z. As in finite Markov chains, we introduce (maximal) closed classes - subsets
S' € S such that for all z,y € S’ there is a directed path in the one-particle graph
from z to y and back. We will write for closed classes S; that Sy < Sj if there
is a production z — «a with £ € S; and a having at least one symbol from Ss.
Equivalently one can say that we define the directed graph of closed classes drawing
a line from S; to So. There are no cycles in this graph. Thus the set of closed classes
is partially ordered. By transitivity we shall say that S; < Sj if there exists S5 such
that S1 < Sy and Sy < Ss.

Let M be the matrix m;j;,4,j € W, of mean production rates where

my =Y _ Nj()p(i — a)

where Nj(«a) is the number of symbols j in c.

For each closed class S, there is its own matrix M(a) = M(a,a) of production
rates. All of them we assume to be positively regular and thus nonperiodic. We
use here the terminology of [13] and numerate the closed classes so that the matrix
M were lower triangular composed of matrices M(a,b),a > b with the elements
mij,i € Sa,j € Sp.

Let pg be the maximal positive eigenvalue of M(a). Denote pp,q; = max pg.

Let n be the number of closed classes S, such that p, > 1 and there are no closed
classes Sy such that S, < S, and pp > pq,-

Theorem 6 There are at least n extreme invariant measures for the OL-system.
Proof. We can calculate one-point correlation function as the limiting density of
particles of a particular type in the corresponding branching process. Take such S,

and consider the initial string with only symbols in the class S,. Then with positive
probability symbols of S, will not die out. But one can claim even more: the number
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N¢(S;) of symbols from classes S; will be O(N(S,)) if S; < S,. This follows from
results of [12], [13].

Thus the limiting one point correlation function will be nonzero for this class
but zero for classes above S,. By compactness we get at least n different limiting
distributions.

4.3 Fractal Correlation Functions

Invariant measures do not provide sufficient characterization of Random Grammars
or L-systems. One of the reasons for this is that there are strong connections between
Grammars and L-systems on one side and fractals on another side (see [5]). We shall
see it immediately from the example below.

Let us remind these connections (see [5]) starting with a random context free
grammar, which will bring us to the famous Cantor set. Here S = {0,1} and the
only productions are

0 —000,1 — 101

The rates, corresponding to the productions are both equal to 1. If we take DOL-
system with the same productions we get exactly the recurrent procedure to obtain
the Cantor set, After time ¢ = 0,1, ..., we assign to each symbol z1,...,z,,n = 3¢,
consecutive subintervals [(k — 1)37%, k3] correspondingly of black (in case zj = 1)
and white (in case zx = 0) colour. Let C; be the union of black intervals. Then the
Cantor set is (), C;. Random grammar, which we introduced, only makes recurrent
procedure of Cantor set nonparallel.

In this example the limiting (= invariant) measure is atomic concentrated on the
configuration z; = 0. Using geometric language it is equivalent to say that Cantor
set has Lebesgue measure zero. If we want to know the asymptotics of one particle
correlation function p;(1) it is equivalent to the question about fractal dimension of
the Cantor set. Thus, to study the asymptotics of correlation functions we have to
introduce ”fractal language” for random grammars and L-systems.

Lemma 7 Consider a transient OL-system. Assume some power of the matriz of
mean production tates to be positive and let p be mazximal eigenvalue of M, ¥ -
corresponding positive left eigenvector. Start from finite string not identically zero
and denote Ny the vector of numbers of symbols from S in the string after time t.
Then Nt tends in distribution to &v where € is a random variable on R.., which is
positive with positive probability.

This is known from the theory of branching processes with several particle types,
see [7], [8].
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Thus after time ¢ we shall have approximately cp’ symbols in the string. Consider
now some string v and let n.(y) = n(y; @) be (random) number of substrings v in
the string at time t, if the initial string is a.

We shall call random L-system weakly degenerate if all matrices M, are positive
regular and their maximal positive eigenvalues are different from 1 and different
from each other.

Theorem 7 Assume OL-system to be weakly degenerate. Then for each v and each
initial finite string o, under the condition that the length of the string goes to infinity
when t — 00, a.s. either there exists 1 < a = a(y,a) < m such that

log n4(7y) s () = loga
log N log p

as t — oo or ny(y) grows slower then any exponent. In the latter case we put
h(y) = 0. Otherwise speaking, ny(y) = m™?) . The limit is called fractal ezponent
(or critical exponent) h(vy) of v (or of the corresponding correlation function).

If h(y) = 1 we call y (or the corresponding correlation function) normal type,
if 0 < h(y) < 1 we call it of fractal type. If it is zero we call it of zero type. If at
least one string is of fractal type we say that there is fractal behaviour in the random
gramma or L-system.

We again start with particular cases.

Linear case. In the right linear case there is no exponential growth but it is of
some interest as a model example. In the linear case all normal type strings are
substrings of the following strings

WL Way...Woy,

All other have zero type. There is no fractal type strings.

Cantor grammar.

Proposition 4 In this case the only normal type strings are v = 00...0. The only
fractal exponent is h = %g%. Possible fractal strings are all finite substrings, except
00...0, which can appear in subsequent substitutions. All other strings cannot appear

at all.
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Proof. We use a method which we call killing the invariant measure. We consider
a modified Cantor system where S is potentially infinite: S§ = {0,1,3,9,...,3%, ...}.
Substitutions are

0— 3,3 =31 15101

and also have rate 1. Otherwise speaking, we encode long substrings of zeros. After
this rescaling all possible (which appear in the process) substrings have normal type.
That is for the original system (after decoding 3* to zeros) they have the same critical
exponent.

One point correlations. One can consider the system of all one point correlation
functions as particles of a branching process. Assume that the branching process is
nondegenerate and positive regular (some power of the matrix of mean productions
is positive). Then all one-particle correlation functions are of normal type. This
follows from well known results in the theory of branching processes (see [7], [8],
9))-

For degenerate cases theorem 7 follows from the results of [12], [13].

Two point correlations.

Proposition 5 Assume that only productions of the type s — zy are possible and
all the matriz Q of Lemma 6. Then there is no fractal behaviour. All normal strings
are exactly those which can appear with positive probability during the process.

This proposition was in fact proved above.

So, to get fractal behaviour we should consider cases with degenerate one-point
correlations.
Decomposable cases.

Theorem 8 Assume that there are only two closed classes S1 < Sa. Then

1. If ps, > ps, > 1 then there is only one invariant measure and not more than
one critical exponent, the same for each initial string containing at least one
Sa-symbol;

2. If ps, > 1 > ps, then there is only one invariant measure and no fractal
behaviour;

3. If1 < ps, < ps, then there are two extreme invariant measures and one critical
exponent;
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4. If ps, <1 < pg, then there is one invariant measure and no fractal behaviour.
We now can propose the following conjecture for any context free grammar.

Conjecture 2 The set of extremal invariant measures and the set of critical expo-
nents are finite.

For each class S, consider a new OL-system L(S,). Its productions and proba-
bilities pg, (.) = p(.) are
psi(s = B) =Y p(s = @)

where the sum is over all a such that after deleting all symbols from other classes
we get (.
Consider case 3 and start with initial infinite string containing only symbols

from S;. Then symbols from S5 will dominate and the the fractal exponent for
log ps,
log ps, *

one-particle correlation function of symbols from S; will be
Other cases can be treated similarly.

4.4 Measures on Languages

Sentences Consider a context free grammar with | W |= 1. Let L = L(P, )
be the set of sentences in the given language which can be obtained by substitution
process starting from finite string .. Let u be the hitting distribution on L, i.e. u(3)
equals the probability of hitting G starting from «. Let us take all sentences of length

N-1 N-1]

N and enumerate each sentence by the integer points of the intervals [—~5—, ~5—

for N odd and [~4 + 1, ] for N even. Consider conditional distribution p™

N(,B) _ ,U'(/B)

a — Ypas)=n #(B)

We want to consider thermodynamic limit of this random field &V.
To give a more explicit characterization of this limiting field consider the distri-
bution v,, on the set of sentences obtained when starting from the symbol w € W.

Theorem 9 The random field ¢ weakly converges, as N tends to infinity, to a
translation invariant random field on Z with values in V.

This limiting field can be obtained also in the following way: consider the transla-
tion invariant limiting measure for the process with W -symbols and substitute instead
each w-symbol independently a sentence randomly chosen from distribution v.
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At the end we want to add some remarks. It is quite obvious that each random
grammar with fractal exponents should have some geometrical fractal interpretation
(many examples and references see in [5]). Geometrical incarnations of random
grammars (like Cantor) are tightly connected with exit boundaries. In another
place we shall come to this point with more details.

In [1] there is a review of recent results about more general right-linear random
grammars - we do not assume them to be context free. Linear case corresponds to
two-sided evolution of finite string (see also [1]) . Context free linear case is quite
trivial compared to non context free case.
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