archives-ouvertes

Equal Time for Data on the Internet with WebSemantics
George A. Mihaila, Louiga Raschid, Anthony Tomasic

» To cite this version:

George A. Mihaila, Louiga Raschid, Anthony Tomasic. Equal Time for Data on the Internet with
WebSemantics. [Research Report] RR-3136, INRIA. 1997. inria-00073553

HAL Id: inria-00073553
https://hal.inria.fr /inria-00073553
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.inria.fr/inria-00073553
https://hal.archives-ouvertes.fr

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Equal Time for Data on the I nternet with WebSemantics

George A. Mihaila, Louiga Raschid, et Anthony Tomasic

N° 3136
Mars 1997

THEME 1

apport
derecherche

VAV 1 IN IN I A

ROCQUENCOURT

Equal Time for Data on the Internet with WebSemantics

George A. Mihaila*, Louiqa Raschidf, et Anthony Tomasic?

Theme 1 — Réseaux et systemes
Projet Rodin

Rapport de recherche n° 3136 — Mars 1997 — 20 pages

Abstract: The Internet contains a large amount of structured data, accessible via ftp files, ODBC connec-
tions, or embedded in HTML documents. This data cannot be effectively used for several reasons. First, the
structure of the data (type, format, etc.), is usually not described. Second, no tools exist for locating sources
for structured data. Third, accessing the data requires either finding or building translators, and handling
multiple incompatible protocols. This paper describes a system, WebSemantics, that provides integrated access
to tools for accomplishing these tasks. We describe a protocol and architecture for locating data sources and
translators; a query language and query processing system for accessing data; and a common protocol for data
exchange. The result is a system that gives “equal-time” to data access on the Internet. Our goal is to support
a world-wide community of users who share data with the same economy and ease with which documents are
currently shared.

Key-words: Internet, Heterogeneous Database, Wrapper, Mediator, Translator, World-Wide Web

(Résumé : tsup)

* University of Toronto Department of Computer Science. E-mail: georgem@cs.toronto.edu
 University of Maryland Department of Computer Science. E-mail: louiqaQumiacs.umd.edu
f E-mail: Anthony.Tomasic@inria.fr

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
Téléphone: (33) 0139 6355 11 — Télécopie: (33) 01 3963 53 30

“Equal time” pour information en I’Internet avec WebSemantics

Résumé : L’Internet contient une grande quantité de données structurées, accessibles par des fichiers ftp, des
connections ODBC, ou contenues dans des documents HTML. Ces données ne peuvent pas étre utilisées d’une
maniere efficace & cause de plusieurs raisons. Premiérement, la structure de ces données (le type, le format, etc.),
n’est pas décrite, normalement. Deuxiemement, il n’y a pas d’outils pour localiser des sources pour des données
structurées. Troisiemement, pour accéder les données on doit soit trouver soit développer des traducteurs pour
plusieurs protocoles incompatibles. Ce papier décrit un systéme, WebSemantics, qui fournit un acces intégré aux
outils pour achever ces taches. On décrit un protocole et une architecture pour localiser les sources de données
et les traducteurs; un langage de requéte et un systeme d’exécution des requétes pour accéder les données; et un
protocole commun pour I’échange des données. Le résultat est un systeme qui donne “equal time” pour ’acces
des données sur I’Internet. Notre but est d’aider une communauté globale d’utilisateurs & partager des données
d’une maniére aussi simple que la facon dont on partage maintenant les documents.

Mots-clé : Internet, Base de donnée, Médiateur, Adapter, Traducteur, World-Wide Web

Equal Tivme for Data on the Internet with WebSemantics 3

cat al og
[} [}
° Rest aur ant

co2 °
° Hot el

co2

Figure 1: The space of data sources (represented by a circle) and the associated type.

1 Introduction

The amount of structured data available today in the INTERNET makes it an invaluable resource of information.
By structured data, we mean data associated with a well defined type, e.g., tables of data located in ftp-able
files. Effective use of this data is difficult due to the absence of various services in the INTERNET. For structured
data, there are no well defined ways for the following:

o describing the structure and semantics of the data;
o locating relevant data; or
e accessing data in an efficient and uniform manner.

Consider a file containing a table of environmental measurements, e.g., the amount of CO» in the air at Notre
Dame, in Paris, on February 9th, 1997, measured in one hour intervals. There is no agreement upon data model
for describing the structure and semantics of the types in a file. Each file may have a different data format,
and the type of the information in the file is either undocumented or documented only in human-readable form,
such as a text document, and not in machine-readable form.

Locating relevant data is exceedingly difficult. For an environmental scientist to locate the file, she must find
the ftp address, directory path, and file name of the file. There is no widely accepted agreement for locating
this information. Users find this information in various ad hoc ways: from other users, news groups, conferences,
advertisements, etc. In addition, none of these methods are ideal for finding information of a particular type.

Finally, access to the data is not efficient or homogeneous. Even for data with a well-understood data
format, type and semantics, the data must be down-loaded, (usually by hand), and pre-processed, (usually with
a FORTRAN program), before the data can be used by the environmental scientist. In addition, the data may
be available via some other protocol besides ftp.

A second major source of structured information on the INTERNET is from databases. Access to a database
is generally achieved through a gateway protocol such as ODBC. While access is efficient, this method still
suffers from the above problems. Support for a data dictionary is cumbersome in ODBC; several queries need
to be processed to obtain the types. Further, the same type in different databases could conflict with each other,
since there is no standard type system. No mechanism is provided for the location of ODBC server databases.
There is also the drawback that the protocol for accessing data from a database and from ftp files is completely
different.

Besides structured data, the INTERNET contains a vast amount of semi-structured data, mostly embedded
in HTML files. Data stored in semi-structured HTML files suffers from the same limitations of location and
access. If the HTML file contains a human-readable description of the meaning of the data, in addition to
the data itself, then locating data stored this way is somewhat easier since the WWW can be searched using
information retrieval techniques. However, the lack of a formal type makes it difficult to access the kind of data.

In summary, although much interesting structured data, and semi-structured data, is available on the IN-
TERNET, this data is difficult to describe, locate, or access. Users or application programs have to deal with
heterogeneity of access protocols and data formats. In this paper we describe a system, call WEBSEMANTICS,
that attacks these problems.

1.1 WEBSEMANTICS Support for Structured Data

For structured data, WEBSEMANTICS first provides a data model and tools, for users to describe a “cloud” of
types, as illustrated in Figure 1. By type, we mean a user-defined class or interface in the WEBSEMANTICS data
model. Each circle represents a data source which has an INTERNET address and exports a type as indicated

RR n°3136

4 G. Mihaila, L. Raschia, & A. Tomasic

cat al og
[}

Rest aur ant

Hot el

Figure 2: A catalog server knows the address of the data sources for type co2.

by the type name near the circle. WEBSEMANTICS extends the protocol of the mediator/wrapper architecture
of Disco [TRV96] for accessing heterogeneous data sources. More detail on the architecture and protocols of
WEBSEMANTICS is given in Section 4.

To access data in a homogeneous way among a heterogeneous collection of access protocols and data formats,
WEBSEMANTICS uses translators. (A translator is an extension to the wrapper concept in heterogeneous dis-
tributed databases.) Translators are services that provide gateways between the WEBSEMANTICS system and
a data source. Translators accept (sub)queries from WEBSEMANTICS, process the queries in a way dependent
on the data source, and return answers to WEBSEMANTICS. This communication is accomplished using the
WEBSEMANTICS sub-query protocol (WS-SQP). Translators are described in detail in Section 7.

WEBSEMANTICS provides a novel catalog server to aid in the location of translators. For instance, the
catalog service can, in response to a query, efficiently provide the addresses of all data sources that contain data
of type co2 and of type Hotel, as illustrated in Figure 2. The WEBSEMANTICS system accesses data by first
accessing the catalog, finding the catalog entry for the some data, and then accessing the data by using the
catalog entry. In addition to locating data sources, the catalog server aids in the integration of data, since it
can be used as a source of standardized types to be shared among multiple users. We do not require that every
data source be recorded in a catalog server.

WEBSEMANTICS aids in the homogeneous and efficient access to data by providing a query language and
query processing system that integrates the location of data sources and the access to data sources. The access
to data sources is through a heterogeneous collection of protocols.

For example, consider the environmental scientist who produced the CO, data mentioned above as the
result of scientific measurements. The data is stored at an ftp file at the address ftp://a.b.c/dir/data and
is formatted as a table. She has published a report in a journal that reports on the data and its interpretation.
A second scientist has read the report and would like to use the data. Using existing technology, he is forced
to copy the data locally via ftp and then determine the schema of the data, usually via e-mail with the first
scientist. In WEBSEMANTICS, this exchange of information is accomplished in a simple way. The first scientist
registers a way to access the data with a catalog server. Registration means transmitting a ¢riple of information
to the catalog server consisting of the address of the data, the type of the data, and the name of the translator
of the data. Suppose our first scientist has a translator ftp-table-translator that translates a ftp file in a
given format. Then the scientist would transmit the following triple

(ftp://a.b.c/dir/data,
interface co2 {
attribute Integer time;
attribute Integer date;
attribute Integer location;
attribute Integer value 1,
ftp-table-translator)

as an update to the catalog server. We call these triples catalog entries.!

Once the catalog entry for the data has been registered, the first scientist includes the address a of the
catalog server in the journal article. To access the data, the second scientist down-loads the WEBSEMANTICS
system into his browser, attaches the catalog server to the system by specifying the a, and accesses the data
with the following query:

select x.time, x.date, x.location, x.value
from co2 x

ITechnically, the WEBSEMANTICS system can function without catalog servers. However, this requires the user to specify catalog
entries directly in a query to specify the location of some data.

INRIA

Equal Tivme for Data on the Internet with WebSemantics o

Figure 3: Links between the WEBSEMANTICS world and the WWW.

The WEBSEMANTICS system will access the data by first accessing the catalog at address a, finding the catalog
entry for the co2 data, and then accessing the data by using the catalog entry. Thus, at this point, the scientist
is free to browse or down-load the data with the full functionality of the WEBSEMANTICS query language. In
addition, should he have addition data of the co2, he can export his data into the WEBSEMANTICS system by
adding a catalog entry to the same catalog server.

In our example, we assumed that the meaning of the co2 type is understood to be a standard type, by
both the data provider, (the first scientist), and the user of the data, (the second scientist). This assumes a
degree of semantic homogeneity of the types; we do not need to impose homogeneity of the access protocols. In
this example, this assumption of standard types is reasonable. First, the scientific document itself can clear up
any misunderstandings. Second, there are national standards for environmental information. For example, the
Sandre French national standard for environmental information [San95] consists of hundreds of relations and
associated documents that precisely define the measurement of some types of environmental data. In fact, any
community of users can create a new standard for types by simply providing a catalog server for the types.

There are situations however, where structured data does not support this assumption of semantic homoge-
neity. For example, two employee types from two databases, accessed via ODBC, may not be identical. There
has been much research on semantic heterogeneity [Ken89, Kim95]); it is a complex problem and we expect
that this research will continue. However, many application areas have defined sophisticated standard seman-
tics. These semantics are described in (lengthy) documents that define the meaning of each field and provide
a record format. For instance, US MARC [USM96] is a standard that defines bibliography records for libraries
— it includes definitions of author, title, editor, etc. in detail. The STARTS project [LGP97] defines standard
meta-data semantics for WWW search engines. There is an initiative to harmonize metadata standards and
to develop interoperable metadata registries accessible via the WWW [WMR97]. While all of these initiatives
propose standards for data formats and semantics, they do not generally define protocols for the location of
data sources and translators, nor do they provide access to the associated data. These latter tasks are the focus
of WEBSEMANTICS.

1.2 WEBSEMANTICS and the World Wide Web

The above description is entirely independent of the WWW | with the exception of the issue of semi-structured
data. We view the WEBSEMANTICS data space as complementary to the WWW. As described above, WEB-
SEMANTICS requires users to “publish” in catalog servers the address of data in the form of catalog entries.
Because of the ease of use and broad popularity of the WWW, it is advantageous to provide a way to map
WEBSEMANTICS catalog entries into WWW documents, such that publishing of an HTML document simulta-
neously publishes a catalog entry and information about the catalog entry. Thus, users browsing the WWW
can read the description of some data source and automatically have query access to the source.

To accomplish this mapping, catalog entries are paired with HTML documents. (These pairs of text and
type are called dyads in [TS97].) These documents can be used in lieu of a catalog entry. That is, a triple
does not need to be registered with a WEBSEMANTICS catalog server and we provide a mechanism, based
on WWW information retrieval, to locate the catalog entry and the associated data. Figure 3 shows this
relationship between WEBSEMANTICS and the WWW. Each arrow indicates a reference between an HTML
document containing a catalog entry, on the right, and the corresponding data source, on the left. Thus, we have
two sets of objects and a relation between them. The first consequence of this mapping is improved flexibility
in access since a user simple needs an HTML address to access data. Secondly, the user has better access to
various subsets of data sources and HTML pages. Subsets of data sources in the WEBSEMANTICS world and
subsets of HTML pages in the WWW world can be easily constructed. In the WEBSEMANTICS world this is
accomplished via the catalog server. In the WWW world this is accomplished via informational retrieval search

RR n°3136

6 G. Mihaila, L. Raschia, & A. Tomasic

engines. In addition, the WEBSEMANTICS language permits access to the image of a given subset in the other
world. For instance, the image of the subset of Figure 2 is documents 2 and 5. Third, users no longer need to
explicitly catalog entries in a catalog, since the catalog can simply sweep the WWW looking for catalog entries.

Consider the example of an administrator who is organizing a lunch meeting in Paris for people arriving
from other countries. The administrator must find both a restaurant and a hotel for the meeting. Thus, the
administrator is interested in a data source that exports restaurant reviews and a data source that exports hotel
reviews. The administrator examines a standard WWW site that lists the standard types available and finds
two of interest: the type Restaurant and the type Hotel. The administrator would like a table of all excellent
restaurants (two or three star) as rated by the guide Gault Millou and excellent hotels (four or five star) that
are in the same arrondissement. The following query expresses this table:

select (y.name, b.name)
from x mentions ‘‘Gault Millau’’, Restaurant y in x,
b exports type Hotel,
where y.arrondissement = b.arrondissement and y.stars > 1 and b.stars > 3

The select and where parts have a classical interpretation. The from clause has the following meaning.
The variable x is bound to all URLs that match (in the information retrieval sense) the phrase “Gault Millau”.
The variable y is bound to any data source, identified in URL x, that provides data of the Restaurant type. If
no such type can be identified by the URL, then it is ignored. The variable b is bound to any data source that
matches (in the sense of type matching) the Hotel type. Both the processing of mentions and exports type
are accomplished by consulting indexes. In the former case, an information retrieval index of the WWW is
consulted. In the latter case, we provide an index for the catalog server that does type matching. In our example,
we again assume a level of semantic homogeneity; i.e., the attribute arrondissement of the Restaurant and
Hotel types can be sensibly compared using equality.

Another contribution of WEBSEMANTICS permits data to be located in HTML documents via a WEBSE-
MANTICS data exchange format (WS-DEF) and a special translator for this data format. This permits, as a
special case, the processing of queries over data that directly resides in HTML documents. However, we note
that this is a particular application of the WEBSEMANTICS translator protocol to the WWW. The existence of
data in HTML documents is not central to the WEBSEMANTICS architecture. This special case of translators
for processing WEBSEMANTICS data in HTML documents is described in Section 7.

1.3 Summary

In summary, WEBSEMANTICS addresses the problem of describing data by providing a data model, locating data
by providing catalog servers, and accessing structured (and some semi-structured) data by providing a translator
system and a query processor. The system operations in an environment with a heterogeneous collection of
access protocols and data formats. For the problem of describing data, (a) we define an architecture based on
translator technology that permits dynamic connection to translators; and (b) we define a strongly typed data
model. For the problem of locating data, (a) we define a catalog service (that performs type matching); and
(b) we define a language for declaring translators and types in an HTML based syntax. For the problem of
accessing data, (a) we define a query language that combines location of data with the access of data; (b) we
define an algebra for processing queries in the query language; (c) and we define a protocol for data access from
translators. As a special case, we consider a special case of the translator when data is contained in HTML
documents. The result is a system that gives “equal-time”? for data access on the INTERNET. Our goal is to
support a world-wide community of users to share data with the same economy and ease with which documents
are currently shared.

The paper is organized as follows. Section 2 describes the WEBSEMANTICS data model. Section 3 describes
the catalog service. Section 4 describes the architecture. Section 5 describes the query language, its meaning,
and the algebra for executing queries. Section 7 describes the interface to translators. Section 8 discusses
related work, and Section 9 concludes the paper by summarizing its contributions and describes the status of
our prototype implementation.

2This expression also means that television broadcasting time for the discussion of an issue is equally divided among different
political parties.

INRIA

Equal Tivme for Data on the Internet with WebSemantics 7

2 Data Model

2.1 Overview

WEBSEMANTICS currently supports a very simple object data model. (The model is similar to the Level 1 Me-
diator Standard proposed in [BRU97].) The model is strongly typed and consists of base types and user defined
types (classes). A type defines a set of properties, which are either attributes or relationships. An attribute is
defined over basic types. A (binary) relationship is defined between two object types and has an identifying label
representing a path traversal between the two types. We support the basic arithmetic comparison operators
and boolean operations. The BNF description of the syntax for the data model is described in Appendix A.
The syntax is similar to the ODMG object data model, proposed by the ODMG committee [CT96]. A simple
example of user defined type is:

interface Restaurant {
attribute String name;
relationship Business headquarters;

}

The data model is simple and does not support many features (e.g., type hierarchies, structured objects,
etc.) nor does it support global object identity. In Section 7, we consider the impact of the lack of global object
identity.

2.2 Data Exchange Format (WS-DEF)

WEBSEMANTICS also provides support for processing queries directly over data that resides in HTML docu-
ments. Suppose the document contains objects of type Restaurant. In WEBSEMANTICS this data can be
simply expressed as follows:

<HTML>
<HEAD>
<WebSemantics>

interface Restaurant {
attribute String name;
attribute String street;
attribute Integer number;
attribute Integer arrondissement;
attribute Integer price;
attribute Integer stars;
relationship Business headquarters;

}

Restaurant ("Caveau Francois Villon","rue de 1’Arbre Sec", 64, 3, 230, O,

"http://server.com/business.html#villon")

Restaurant ("Chez Allard", "rue de 1’Eperon", 1, 6, 370, O,
"http://server.com/business.html#allard")

Restaurant ("Faugeron", "rue de Longchamp", 52, 16, 580, O,
"http://server.com/business.html#faugeron")

etc.

</WebSemantics>
<HEAD>
<BODY>
</BODY>
</HTML>
As the example shows, relationships are encoded using object references. We assume that the document

"http://server.com/business.html” contains Business objects. Individual objects in this document are identified
by HTML labels () placed just before the object.

RR n°3136

8 G. Mihaila, L. Raschia, & A. Tomasic

3 Catalog Server

For each data source willing to provide access to data through WEBSEMANTICS, a catalog entry must be created.
Catalog entries can be added directly to a catalog, or they can reside in documents. These documents contain
two parts: (i) the catalog entry (in a suitable syntax) and (ii) a textual description of the data present in the
data source. For example, to describe a database with tourist information for Paris, one would write an HTML
document like the one below:

<HTML>

<HEAD>

<WebSemantics>

interface Restaurant {
attribute String name;
attribute String street;

etc., including the definition of Hotel

}

CatalogEntry (Restaurant, rmi://server/transR, http://www.paris.guide)
CatalogEntry(Hotel, rmi://server/transH, http://www.michelin)
</WebSemantics>

</HEAD>

<BODY>

Welcome to the "Gault Milau" guide online. We provide information
about the best restaurants and hotels in Paris.

etc.

</BODY>
</HTML>

The data source connection information is written between special <WebSemantics> HTML tags so it will
be ignored by a regular browser. 3

After a new WEBSEMANTICS document is created, its author could register it with a catalog server by using
a form based interface to the server. We also envision using robot technology to periodically traverse the Web
in search of WEBSEMANTICS documents and extract the catalog entry. The format of the data maintained by
a catalog server is a relation with the following attributes:

Catalog[U RL, type, translator, source]

where URL is the address of the WEBSEMANTICS document describing the data source, type is the name of
an object type made available by that source, translator specifies the address of an interface program that
reads data from the database and delivers it using the WEBSEMANTICS protocol (see Sect.7) and source is the
address of the data source itself. The triple (typeT, translator R, sourceS) expresses the fact that objects of the
type T' can be extracted from the data source S using the translator R.

A catalog supports the following functionality.

o If we are interested in finding all WEBSEMANTICS documents that serve as entry points for databases
containing a certain type, or using a certain translator, or accessing a specific source, a lookup in the
catalog will select the qualifying URLs.

e On the other hand, if we have the URL of a potential WEBSEMANTICS document, and we want to find
out if we can extract a certain type, the server will look it up in the table, and if it can find it will return
a triple with the corresponding connection information; if the URL is not found in the table, then the
server will fetch the document referred to by it, scan it for CatalogEntry triples and add them to the
table.

INRIA

Equal Tivme for Data on the Internet with WebSemantics 9

Figure 4: An example configuration of WEBSEMANTICS components. Dotted boxes refer to hosts. Small boxes
indicate either protocols or software subsystems. Lines indicate the exchange of queries and answers.

4 Architecture

In this section we describe the architecture of WEBSEMANTICS. Our description is based on an example
configuration of components shown in Figure 4. Each large dotted box represents a component. A component
has a separate address space and resides on a separate host. Lines between components represent the exchange
of queries and answers, in various protocols. A data source component has stored data — in this case a
collection of HTML documents, or a relational database engine and a database (of some sort). The type
(schema) of each data source is different. A catalog component also has stored data — but this data is the
location, type and translator information needed to access a data source or another catalog. There are multiple
independent catalogs in the system. The type of all catalogs is the catalog type provided by WEBSEMANTICS.
Catalog components are similar to data source components; the only difference is that catalogs have a fixed
type and semantics associated with them. A translator component provides translation from some protocol to
the WEBSEMANTICS data exchange protocol. Translators isolate both the work of the translation of a query
into a local format and the work of translating answers back. In our example, a translator component translates
ODBC. Finally, there is the WEBSEMANTICS query processor component that provides a query service to the
user.

Each component consists of subcomponents. For the data source component, the subcomponents depend
on the data source and on the type of translation services provided. In this example, the database data source
component contains two subcomponents: a database and a translator. The translator exports the WEBSE-
MANTICS sub-query protocol, indicated by the WS-SQP box. The HTML data source component contains two
subcomponents, entirely dependent on the WW W; they are the HTML documents and the HT'TP server. That
data source does not need a translator and does not provide any direct support for WEBSEMANTICS. The
query processor component, of WEBSEMANTICS provides support to process WEBSEMANTICS data resident in
HTML documents, since it has a translator subcomponent for HTML documents. The translator component
shown in the diagram contains a single subcomponent: the translator for ODBC. The translator uses two pro-
tocols to accomplish this task: the WS-SQP protocol and the ODBC protocol. The query processor component
contains three subcomponents: UI, the user interface, WebSemantics, the WEBSEMANTICS query processor,
and Translator DEF, a translator that understands WS-DEF, the WEBSEMANTICS data exchange format.

Interactions between components occur in two ways: updates to the catalogs and query processing. We
envision two kinds of updates to the catalogs — explicit updates by users (via HTML forms based input) and
robot-based scanning of HTML files that contain catalog information expressed in WS-DEF.

Query processing proceeds as follows. A query is entered into the user interface (UI). The query is parsed
and checked for catalog searches. If catalog searches exist, they are performed and a set of results from the

3To see a catalog entry in an HTMTL document, we plan to provide a Java applet that can visualize it.

RR n°3136

10 G. Mihaila, L. Raschia, & A. Tomasic

catalogs constructed. The remaining portion of the query is processed by the WEBSEMANTICS query processing
engine. This engine issues sub-queries to the appropriate translators and combines the results, which are then
returned to the user. As mentioned in the introduction, to call a translator, three pieces of information are
needed: the location of the data source; the type processed by the translator; and the sub-query to be processed
by the translator or the data source. Depending on the translator, the type processed by the translator may be
located in the translator itself, or passed as an argument to the translator. Similarly, the location of the data
source may be located within the translator, or it may be passed as an argument to the translator.

5 Query Language

In this section we introduce our WEBSEMANTICS query language WSQL whose purpose is to provide declarative
location and access to data. For location of data sources the language uses constructs derived from WebSQL
[MMM96]. The data manipulation is expressed using standard select-project-join constructs. The precise syntax
of WSQL is given in Appendix B.

To illustrate the various features of the language we use our running example with restaurant and hotel
information from the introduction.

Suppose we are interested in finding all restaurants in Paris meeting certain criteria but we don’t know where
this information is located. All we know is that there is a registered type Restaurant used by people exporting
this information. Assuming that the schema is available (by consulting a catalog server), we can write a query
like the following:

select r.name, r.phone
from Restaurant r
where r.city = "Paris" and r.price < 200;

This query is evaluated by consulting one or more catalog servers®, in search for data sources that contain

Restaurant objects and then querying each of these sources. This type of query presents the highest degree of
transparency for the location of data since it doesn’t require the user to have any a priori information about the
repositories containing the data. The downside of this is, of course, performance, because a potentially large
number of data sources is contacted out of which many may not be relevant to the query.

To make up for this inconvenience, we provide the user with the ability of specifying a data source, when
its location is known, like in the query below:

select r.name, r.phone
from Restaurant r in "http://www.michelin.fr/restaurants.html"
where r.city = "Paris" and r.price < 200;

Here we assume that the specified (fictive) HTML document is a WEBSEMANTICS catalog entry (see Sec-
tion 3) for the Michelin guide online. Transparency in data access is expressed through the in keyword, which
provides the link between the description of the location of data and the data itself. The from clause defines
the range of the variable r as the collection of all the Restaurant objects that are accessible from the specified
WEBSEMANTICS document.

Suppose now that a server hosts several WEBSEMANTICS documents, each pointing to different databases
and that we are interested in data found in all these databases. Furthermore, assume that all these documents
are accessible via hypertext links from the server’s root page. The first step towards accessing the actual data
is finding these documents. This can be accomplished by using path regular expressions a la WebSQL:

select r.name
from Document d such that "http://server.com" ->* d,
Restaurant r in d;

Out of all the documents hosted by the server mentioned in the above query, only some are WEBSEMANTICS
documents, the others being regular HTML documents. The regular documents will be skipped in the evaluation
of this query.

Another method for finding WEBSEMANTICS documents is based on keyword search. This can be done by
using a mentions clause:

4The list of catalog servers used is specified at startup.

INRIA

Equal Tivme for Data on the Internet with WebSemantics

select r.name
from Document d such that d mentions "Paris restaurant",
Restaurant r in d;

The first from sentence restricts the range of documents to those that mention the phrase ” Paris restaurant”.
Each such document is then examined and if it is a WEBSEMANTICS document exporting Restaurant objects,
all those objects are extracted.

The functionality of the mentions predicate is very convenient. However, it accesses a broad number of
documents, and the contents of the documents are not known to the user. To restrict the search to relevant
documents, we need a list of all the sites containing a specific data type, the sites using a specific translator,
or the sites referencing a particular database. This can be accomplished by sending a query to a catalog server
(described in Sect. 3). For example, suppose we know the address of a data source containing data of interest,
but we don’t know all the connection information needed to contact that source. We can rely on the system
to extract this information from the catalog server, connect the data source and extract the required data, by
submitting a query like the following:

select r.name
from Document d such that d exports source "db.server.com",
Restaurant r in d;

Thus, the exports source keyword instructs the query processor to contact the catalog and extract catalog
entries containing a particular source address. The domain of WEBSEMANTICS documents can also be defined
through an exports type keyword, which matches a particular type, or an exports translator construct
which matches a particular translator.

Finally, the WEBSEMANTICS data model supports relationships. To use relationships, the WEBSEMANTICS
query language borrows constructs from OQL [C*96] for path traversal. For example, to retrieve the address
of the business office for restaurants we use a path expression:

select r.name, r.headquarters.address
from Restaurant r;

6 Query Processing

6.1 Virtual Algebraic Machine

To answer a query the WEBSEMANTICS query processor parses it and generates a tree of algebraic operations.
The tree represents the algorithm for processing the query. The run-time system uses the Graefe iterator model
(presented in [Gra93]). In order to model the various constructs in the language we introduce several algebraic
operators:

6.1.1 Operators for the Location Phase

e mentions: String — List(URL) outputs a list of URLs whose associated documents contain the string
String in their text;

e traverse: pathx List(URL) — List(URL) reads a list of URLSs a and returns a list all the URLSs accessible
from a by following all paths from each URL in a that match the path regular expression path;

e export: feature X value — List(URL) outputs a list of all URLs of WEBSEMANTICS documents that
contain a catalog entry with the feature equal to value. The parameter feature can be type, translator
Oor source;

6.1.2 Operators for Transparent Access

o deref: type x List(URL) — List(dataSourceSpec) extracts all the catalog entires with type type from
the WEBSEMANTICS documents associated with the URLs in the input;

e extract: query X type X List(dataSource) — List(dataObject) sends query to the translators specified in
dataSource and outputs the union of data objects of type type that the translator returns; the query may
only contain selections and projections;

RR n°3136

12 G. Mihaila, L. Raschia, & A. Tomasic

6.1.3 Operators for Data Manipulation
o singleton: URL — List(URL) constructs a singletone output list of its URL input parameter;

e op: List(dataObject) — List(dataObject) is the regular select operator from relational algebra where P
is a predicate;

® Tmep: List(dataObject) — List(dataObject) is the regular project operator from the relational algebra
where map is a mapping of attributes;

e Xp: List(dataObject) — List(dataObject) is the regular join operator from the relational algebra where
P is a join predicate;

6.2 Query Processing

The query parser generates a query execution tree whose nodes are labeled with operators from the set described
in the previous section. Consider for example the following query:

select r.name, h.name
from Document d such that "http://www.michelin.fr" ->* d,
Restaurant r in d,
Document g such that g mentions "hotel Paris",
Hotel h in g
where r.arrondissement = 6 and h.arrondissement = 6
and r.stars >= 1 and h.stars >= 4
and r.street = h.street;

This query can be translated in the tree shown in Figure 5. In the figure we use a slightly different notation
for operators to clearly indicate which arguments are the result of data processing and which arguments are the
result of the construct of the tree.

T r.name, h.name

N r.street=h.street

T T

0 arrondissement=6 " stars>=1 O arrondissement=6 * stars>=4
| |
et ectaurant extract Hotel
| |
deref estaurant deref Hotel
| |
traverse _, mentions, o paris

s nglaor’\mp:/lwww.mi chelin.fr

Figure 5: An unoptimized operator tree.

According to this tree, the query is evaluated as follows: first, the traverse_~ operator finds all the do-
cuments reachable from the Michelin home page®; then, for each WEBSEMANTICS document in the collection
dere frestaurant, the operator will extract all the specifications of data source containing restaurants; then, the
extractyy operator will extract all Restaurant objects from each data source; a similar processing is done in the
right subtree for Hotel objects; the remaining of the tree consists of regular relational operations that compute
the final answer.

5Some HTMTL pages will contain catalog entries; other regular HTMT, pages will simply be ignored.

INRIA

Equal Tivme for Data on the Internet with WebSemantics

6.2.1 Optimization

Currently our system performs only a few optimizations for query processing. Cleary many possible optimiza-
tions are possible. In this section we give an example of one such optimization. Note that the optimization
depends on the ability of translators to execute sub-queries.

One obvious problem with the above execution strategy is that all data objects are extracted from the data
sources, which can seriously affect the performance. To avoid this unnecessary data transfer, parts of the query
can be shipped to the corresponding translators associated with the data sources, shown in Figure 6.

i r.name, h.name

N r.street=h.street

T

extract extract g o)
‘ name,streetoarrondisement:e A gtars>=1 name,street ~ arrondissement=6 " stars>=4

e estaurant deref Hote
traverse _, mentionsy el Paris
singleton

http://www.michelin.fr

Figure 6: Shipping sub-queries

The following algorithm produces an operator tree for a query. This algorithm processes the atoms in the
from clause, generating the corresponding sub-trees modeling the computation of the domain associated with
each variable. The array Operator|] stores in the slot associated with a variable z a handle to the operator
that produces the values for that variable. This array is then consulted in order to build the links between the
operator nodes.

Step 1:
for each atom A in the from clause
switch(A)
case "Document d such that d mentions keyword’:
Operator[d] = new mentions(keyword)
case "Document d such that d exports feature value”:
Operator[d] = new exports(feature, value)
case "Document d such that wu pathRegExp d”:
Operator[d] = new traverse(pathRegExp)
Operator[d].input = Operator(u).output
case "type z in d’:
op = new deref(type)
op.input = Operator[d].output
Operator[z] = new extract(null)
Operator[z].input = op.output
end switch
end for

Step 2:
for each data variable x
collect all where predicates of the form xz.pathexp op constant
into a sub-query ¢ and place it as argument in the corresponding
extract operator
end for

Step 3:
RR n°3136

14 G. Mihaila, L. Raschia, & A. Tomasic

Build the rest of the tree using standard techniques from relational
databases, using Operator[z] instead of the base relation for each
data variable z.

Finally, we note that the query processor does not isolation properties (in the sense of transaction proces-
sing) of queries. For the database aspects of our system, there is much research in transaction consistency in
heterogeneous databases which we have yet to consider. For the information retrieval aspects of our system, to
our knowledge, little work has been done on establishing isolation properties over systems such as WWW.

7 Translators

In this section, we discuss several aspects of translators. We discuss three classes of translators, the translator
interface for sub-queries and answers, and a special case translator that directly extracts objects in WS-DEF
format. Finally, we discuss the implications of the lack of a global object identity for the translator interface
and for the WEBSEMANTICS system as a whole.

7.1 Classes of Translators

To function properly, all translators need a data source address and a type. We classify translators by the
location of this information. The first class of translator has the data source location and types built directly
into the translator. This case corresponds to wrappers in heterogeneous database systems. Thus the translator
always accesses data from the same data source. The second class of translators provides a gateway type of
access with respect to another protocol, e.g., JDBC. This class of translator requires a data source location to
be passed as an argument to the call of the translator. The translator then dynamically extracts the types from
the data source. The third class of translator requires both the data source location and type to be passed as
arguments. It too encodes access with respect to a certain object interchange protocol. The type is used both to
type-check the sub-query and to extract data from the data source. All translators support the WEBSEMANTICS
sub-query protocol, described next.

7.2 Sub-query Protocol (WS-SQP)

A translator interacts with the sub-query protocol in two phases. First the translator registers itself with
a name server, then it accepts sub-queries and returns answers to them. In our implementation, based on
Disco, the Java Remote Method Invocation system is used. Thus a name server has an address, for example,
rmi://opera.db.toronto.edu. A translator registers itself with the name service under a given name, say
TranslatorServer. The URL to contact the translator is the concatenation of the two strings, i.e.,

rmi://opera.db.toronto.edu/TranslatorServer

The translator program then waits, ready to service sub-queries. There are three phases for servicing a
sub-query from a translator; the connect phase, the query phase and the data access phase. During the connect
phase, a URL of a particular translator is used to obtain an instance of the TranslatorServer, say ts1. During
the query phase, a collection of arguments are passed to the object ts1 which returns a query object, q1. The
arguments that are required depend on the class of translator that has been invoked. In any case, an object q1
results. This object accepts sub-queries and generates answer objects, say al. The object al has three methods
in accordance with a classical iterator model. These methods are open, getNext, and close. These methods
are invoked remotely by the WEBSEMANTICS query runtime system to access data. The open method initiates
query processing. The getNext method returns each element in the answer to the sub-query. The close finishes
the sub-query and performs any needed clean up operations.

7.3 Example of Translator for HTML Documents

WEBSEMANTICS has a special translator provided directly in the run-time system to access objects in DEF
format embedded in HTML documents. The encoding of the WEBSEMANTICS objects is described in Section 2.

This translator is invoked by the extract,yery operator. When this operator is executed, the data source
is inspected to see if it is an HTML document. In that case, the special translator is invoked to execute the
sub-query query. The sub-query is restricted to use only select, project, and scan operations.

INRIA

Equal Tivme for Data on the Internet with WebSemantics

select x.name, x.headquarters.name select x
from Restaurant x from Restaurant x
where x.name = "FourSeasons" where x.name = "FourSeasons"

Figure 7: Two different possible sub-queries for translators.

To construct a query object from this translator, the argument the the URL of the HTML document is passed
and optionally a type. Since the HTML document contains an encoding of the type, the type information can
be obtained from the document in the case that the type is missing. The result is a query object that can
accept queries on the document. Given a query, the resulting answer object supports the same methods open,
getNext, and close for data access so that it can be smoothly integrated into query processing.

7.4 Compatibility with Generic Translators

For a more complicated example of a translator, we consider a source which is an Oracle database, which
supports ODBC. We envision that the translator for such a source will be implemented using the JDBC interface
to ODBC. The WEBSEMANTICS run-time system would invoke an instance of the JDBC translator; using the
RMI protocol, as described previously. The translator accepts a sub-query and converts it into an SQL query
for the Oracle ODBC server. Tuples are accepted from the server and the translator would convert ODBC
tuples into WEBSEMANTICS objects. This translator instance would support the method open, getNext, and
close in the usual way.

7.5 Use of OIDs and Effect on Translators

Supporting object identity (OID) and object reference (ODMG relationships) is an open issue in heterogeneous
database environments based on the object model. A trivial solution is to not include OIDs in the model.
All accesses to the translators must be value based. If OIDs are indeed required in the model, then a global
OID can be supported across all sources, or a local OID may be made visible across the translator interface.
Mandating a global OID is often not feasible. Support of a visible local OID has been supported in systems
such as IRO-DB [G196] and Garlic [C*95], but each of these solutions has had to resolve complex issues. The
option that we have chosen in WEBSEMANTICS is to allow the model to have OIDs, but not permit OIDs from
sources to be made visible across the translator interface.

Given this situation, the answer to a query can be either permitted to be an object or it can be restricted
to be value-based (scalars). In WEBSEMANTICS we have chosen that the answer to a query can be an object.
Now, this object, and all other objects to which it makes reference must be materialized across the translator
interface. The WEBSEMANTICS data exchange format that was discussed previously in this section is able to
handle such materialized objects. Materialization of objects has several implications. One is that there can be
no cycles of object references. The second is that either the translator must accept queries that include path
expressions, or if the translator will not accept path expressions, then the path expression must be evaluated
in the WEBSEMANTICS runtime system.

Consider the following query, where x.headquarters is a Business object.

select x.name, x.headquarters.name
from Restaurant x in "http://server.com"
where x.name = "FourSeasons"

This query is processed by the run-time by constructing a sub-query to submit to a translator. A translator
that accepted path expressions would accept the query on the left in Figure 7 and it would produce scalar
values. A translator that did not accept path expressions would accept the query on the right and would
produce Restaurant objects. Another query would have to executed on these Restaurant objects, within the
run-time system, to produce the answers to the query.

8 Related Work

Current research in heterogeneous databases has attacked in various ways the problem of describing, integrating
or accessing structured data on the INTERNET. However, little research has been done on the problem of locating

RR n°3136

16 G. Mihaila, L. Raschia, & A. Tomasic

data sources. This is the main contribution of WEBSEMANTICS. However, WEBSEMANTICS is not a stand-alone
technology, and it depends on the existence of other technologies. In this section, we review this research.
We consider industry-wide open database standards and wrapper mediator architectures; both are critical for
WEBSEMANTICS. We also review some alternate technology such as Harvest/Essence [BDH'95]; InfoSleuth
[BT97]; and WWW query languages [KS95, MMM96]. In addition, there has been important research in
access to semi-structured databases [AQM*96, BDHS96]; ontologies [Gru93]; and in semantic heterogeneity
and information integration in databases [Ken89, Kim95].

There are currently two major competing standards for database integration: CORBA (the Common Object
Request Broker Architecture), proposed by OMG (Object Management Group) [Gro92], and OLE/DB (Object
Link Embedding for Data Bases), by Microsoft. Since 1989, OMG has been concerned with the definition of an
open object infrastructure, or “global bus for distributed components”, known as CORBA. One of the defining
aspects of CORBA is that it creates interface specifications instead of code. The specifications are written in a
neutral Interface Definition Language (IDL). The IDL ensures the portability of components and data across
languages, tools, operating systems and networks.

At Microsoft, efforts have been made towards the development of a set of interfaces whose goal is to enable
applications to have uniform access to data stored in both DBMS and non-DBMS repositories. The main idea
is to benefit from database technology, without transferring the data into a DBMS. The approach consists in
defining an open, extensible collection of interfaces that encapsulate orthogonal portions of DBMS technology.
This set of interfaces, collectively referred to as OLE/DB, is described in [Bla96]. One key idea of this approach
is the concept of component DBMSs, which consist of several independent data providing units, communica-
ting with the main query processor through a set of well defined interfaces. This facilitates data integration
while imposing minimal requirements on the functionality of the data sources. Unlike ODBC (Open Database
Connectivity standard), which requires data providers to implement SQL access to data, the OLE/DB standard
can integrate sources that implement interfaces for tabular access, at the minimum.

We now consider wrapper mediator architectures, as proposed in [ACPS96, BT97, C*95, G196, KLSS95,
R*89, PT96, TRV96, Wie92]. These systems differ widely in the capabilities of mediators and in the capabilities
of wrappers. However, we believe that interoperation between WEBSEMANTICS and these systems is possible.

WEBSEMANTICS differs in two distinct ways from these systems. First, all of the above systems assume
that the location of the data sources and the types are embedded within the wrappers (translators). We lift
this restriction in our system. Second, all of the above systems do not provide facilities for the location of
components such as mediators and wrappers. This facility is a central contribution of this paper.

The importance of the World Wide Web as a repository of information has generated an increasing interest
in the research community for the design of high-level, declarative languages for querying it. WebSQL [MMM96]
integrates textual retrieval with structure and topology-based queries. Instead of trying to model document
structure with some kind of object-oriented schema, as in [CACS94, QRS™95], a minimalist relational approach
is taken: each Web document is associated with a tuple in a virtual Document relation and each hypertext
link with a tuple in a virtual Anchor relation. In order to query these virtual tables, one must first define
computable sub-domains, either using keyword matching or through controlled navigation starting from known
URLs. Another Web query language, W3QS [KS95] includes the specification of syntax and semantics of a
SQL-like query language (W3QL) that provides simple access to external Unix programs, advanced display
facilities for gathered information, and view maintenance facilities.

Distribute information retrieval systems, for example the Harvest/Essence information retrieval based sys-
tem [BDH™95] are indirectly related to our work. Essence is a customizable information extraction system
that is used to extract and structure mostly textual infromation from documents in Harvest. It exploits the
formats of common file types and extracts contents of files. The result is a summary object (a SOIF record).
Collections of SOIF records are are indexed and organized into brokers, a kind of mediator. Brokers provide
information retrieval search on their associated SOIF records. SOIF records are related to the WS-DEF object
format. However, these systems focus passive documents and information retrieval search whereas we focus on
querying strictly typed data in structured and semi-structured data sources. Another systems [WID97] focus
on CORBA IDL object access via WWW protocols instead of query based access.

InfoSleuth [BT97] proposes information brokering and domain ontologies as two ways to handle data sources.
We believe that domain ontologies are promising extension to the catalog server, since they provide a way to
structure domain information (types). However, this system does not propose specific techniques for identifying
types and translators.

INRIA

Equal Tivme for Data on the Internet with WebSemantics

9 Conclusion

9.1 Summary of Results

We have presented a new system, WEBSEMANTICS, that gives “equal-time” to data access on the INTERNET. We
described our data model and we introduced an encoding of typed data in HTML documents to facilitate light-
weight publishing of data. We proposed an architecture based on components that can be integrated in arbitrary
ways, to support specific applications. Thus, we introduced four types of components: data source components,
which contain data stored in a collection of HTML documents or in a database; translator components, which
provide translation from some protocol to the WEBSEMANTICS data exchange protocol; catalog components,
that contain the type, translator, and location information needed to access a data source or another catalog;
and query processing components that provide query processing capabilities, in an integrated way, over the other
three components.

To allow for dynamic location of data sources we proposed a special type of HTML document pairing data
source connection information with a textual description of the data source content. These documents enable
us first to use information retrieval techniques for the location of relevant data sources and second to permit
the easy publishing of data source connection information.

Furthermore, we introduced our WEBSEMANTICS query language (WSQL) whose purpose is to allow decla-
rative location, access and manipulation of data. To support the constructs of the query language we introduced
an appropriate set of algebraic operators and we gave an algorithm that constructs a query evaluation tree.

We described the interface and the operation of various types of translators and catalogs in conjunction
with the query evaluation engine. The overall result is, we believe, a system that provides an alternative to the
WWW for access to structured data. Given a large population of components and an agreed upon semantics
for data, a world-wide body of users can easily exchange data.

9.2 Implementation Status

In this section we describe the status of our prototype implementation of the WEBSEMANTICS system.

The WEBSEMANTICS prototype has four main components: the WSQL Compiler, the Query Engine, a
Catalog Server and the Translators. All these components are implemented as a collection of Java [SM] classes,
organized in a WEBSEMANTICS Class Library, which facilitates their integration in Java application programs.

WSQL Compiler. The WSQL compiler parses the query and, if no errors are present, translates it into a
program in a custom-designed abstract machine used for query execution.

Query Execution Engine. The program is executed by an interpreter that implements a stack machine.
Its stack is heterogeneous, that is, it is able to store any type of object, from integers and strings, to whole
vectors of WEBSEMANTICS data objects. The evaluation of the ranges specified in the from clause is done via
designated operation codes implementing the algebraic operators described in Section 6.1.1 and Section 6.1.2.
Whenever the interpreter encounters an operation code corresponding to a range specifying condition, the query
engine is invoked to perform the actual evaluation. Depending on the operation, this involves sending a request
to an index server (for the mentions operator), to a catalog server (for the exports operator), or a depth-first
traversal of a sub-part of the document network (for the traverse operator). After the document variables have
been instantiated, the appropriate translators are contacted to extract the data from the data sources described
in each document.

Catalog Server. For the first prototype, we have implemented a simple catalog storing connection infor-
mation for a small collection of data sources. The catalog is accessible through an RMI interface containing
the open(), get next() and close() methods. The open() method is invoked with a (feature,value) pair
as argument (where feature €{url, type, translator, source}.), thus specifying the selection condition
feature = value to be applied to the catalog’s table. The tuples containing connection information are retrie-
ved through successive get_ next () calls. Finally, a call to close() closes the data stream.

Translators. So far we have implemented only two translators, named FileTranslator and UrlTranslator.
Both of them are able to extract data objects from WEBSEMANTICS HTML documents using the encoding des-
cribed in Sect. 2. The only difference between the two translators consists in the access method used for reading
the HTML files: the former accesses local files whereas the latter retrieves files from the Web using the HTTP
protocol. Neither of the translators supports select-project queries for now®, and therefore are only able to
extract all objects of a given type from a source.

SFully operational translators are under development.

RR n°3136

18

G. Mihaila, L. Raschia, & A. Tomasic

The prototype uses a catalog at URL rmi://opera.db.toronto.edu/CatalogServer. The fully functional
WEBSEMANTICS prototype, together with a comprehensive list of WSQL query examples is accessible at

http://www.cs.toronto.edu/"georgem/WebSemantics

Acknowledgments

Thanks to Helenas Galhardas, Francoise Fabret and Philippe Monneret for comments on earlier drafts of this

paper.

References

[ACPS96] S. Adali, K. S. Candan, Y. Papakonstinou, and V. S. Subrahmaniam. Query caching and optimi-
zation in distributed mediator systems. In Proceedings of the ACM International Conference on
Management of Data (SIGMOD), pages 137-148, 1996.

[AQM*96] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel query language for
semistructured data. Technical report, Department of Computer Science, Stanford University, 1996.
http://db.stanford.edu/pub/papers/lorel96.ps.

[B197] B. Bohrer et al. InfoSleuth: Semantic integration of information in open and dynamic environments.
Proceedings of the ACM International Conference on Management of Data (SIGMOD), 1997. To
Appear.

[BDH*95] C. Bowman, P. Danzig, D. Hardy, U. Manber, and M. Schwartz. The Harvest information discovery
and access system. Computer Networks and ISDN Systems, 28:119-125, 1995.

[BDHS96] Peter Buneman, Susan Davidson, Gerd Hillebrand, and Dan Suciu. A query language and optimi-
zation techniques for unstructured data. In Proceedings of the ACM International Conference on
Management of Data (SIGMOD), 1996.

[Bla96) J. Blakeley. Data access for the masses through ole db. Proceedings of the ACM International
Conference on Management of Data (SIGMOD), 1996.

[BRU97] P. Buneman, L. Raschid, and J. Ullman. Mediator languages — a proposal for a standard. ACM
SIGMOD Record, March 1997. To Appear.

[CT95] M. Carey et al. Towards heterogeneous multimedia information systems: the Garlic approach.
Technical report, IBM Almaden Research, 1995.

[CT96] R.G.G. Cattell et al. The Object Database Standard - ODMG 93, Release 1.2. Morgan Kaufmann,
1996.

[CACS94] V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From structured documents to novel query
facilities. In Proceedings of the ACM International Conference on Management of Data (SIGMOD),
pages 313-324, 1994.

[G196] G. Gardarin et al. Iro-db: A distributed system federating object and relational databases. In O.A.
Bukhres and A.K. Elmagarmid, editors, Object-Oriented Multidatabase Systems : A solution for
Advanced Applications. Prentice Hall, 1996.

[Gra93) G. Graefe. Query evaluation techniques for large databases. ACM Computing Surveys, 25(2), June
1993.

[Gro92) The Object Management Group. The Common Object Request Broker: Architecture and Specifica-
tion. QED Publishing Group, Wellesley MA, 1992. OMG Document Number 91.12.1, revision 1.1
edition.

[Gru93] T.R. Gruber. A translation approach to portable ontology specifications. Knowledge Acquisition,

1993.

INRIA

Equal Tivme for Data on the Internet with WebSemantics

[Ken89] William Kent. The many forms of a single fact. In Proceedings of Thirty-Fourth IEEE Computer
Society International Conference (COMPCON), San Francisco, (Spring) February 1989. IEEE.

[Kim95] Won Kim. Modern Database Systems: The Object Model, Interoperability, and Beyond. ACM Press,
New York, NY, 1995.

[KLSS95] T. Kirk, A. Y. Levy, Y. Sagiv, and D. Srivastava. The Information Mani-
fold. In Proceedings of the AAAI Spring Symposium on Information Gathe-
ring in Distributed Heterogeneous Environments, Stanford, California, March 1995.
http://portal.research.bell-labs.com/orgs/ssr/people/levy/im95.ps.Z.

[KS95] D. Konopnicki and O. Shmueli. W3QS: A query system for the World Wide Web. In Proceedings
of the Twenty First International Conference on Very Large Data Bases, pages 54—-65, 1995.

[LGP97] H. Garcia-Molina L. Gravano, C.-C. Chang and A. Paepcke. STARTS: Stanford proposal for internet
meta-searching. In Proceedings of the ACM International Conference on Management of Data
(SIGMOD), 1997. To Appear.

[MMM96] Alberto O. Mendelzon, George A. Mihaila, and Tova Milo. Querying the World Wide Web. In
Proceedings of Parallel and Distributed Information Systems (PDIS), pages 80-91, 1996.

[P196] Y. Papakonstantinou et al. Capabilities-based query rewriting in mediator systems. In Proceedings
of the International Conference on Parallel and Distributed Information Systems (PDIS), 1996.

[QRST95] D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman, and J. Widom. Querying semistructured hetero-
geneous information. In Deductive and Object-Oriented Databases, Proceedings of the DOOD ’95
Conference, pages 319-344, Singapore, 1995. Springer Verlag.

[RT89] M. Rusinkiewicz et al. Query processing in a heterogeneous multidatabase environment. In Procee-
dings of the IEEE Symposium on Parallel and Distributed Processing, 1989.

[San95] Sandre. Dictionnaire de données sur ’eau. Technical report, Office International de I’Eau, France,
1995.
[SM] Sun Microsystems. Java (tm): Programming for the internet. http://java.sun.com.

[TRV96] A. Tomasic, L. Raschid, and P. Valduriez. Scaling heterogeneous databases and the design of disco.
In Proceeding of the International Conference on Distributed Computing Systems (ICDCS), 1996.

[TS97] A. Tomasic and E. Simon. Improving access to environmental data using context information. ACM
SIGMOD Record, 1997. To Appear.

[USM96] The USMARC home page. Technical report, Library of Congress, 1996.
http://lcweb.loc.gov/marc/.

[WID97] Web interface definition language (WIDL), 1997. http://www.webMethods. com.

[Wie92] Gio Wiederhold. Mediators in the architecture of future information systems. Computer, 25(3):38-
49, March 1992.

[WMR97] Joint workshop on metadata registries, July 1997. University of California, Berkeley.

A The BNF Specification of the Data Model

The definition is based on the ODMG schema definition, using ODL, in [C196]. A user defined type is specified
by its interface. The interface definition is the following:

InterfaceDcl ::= interface Identifier [InterfaceBody]
InterfaceBody ::= Export | Export InterfaceBody
Export ::= AttribDcl ; | RelationDcl ;

AttribDcl ::= attribute DomainType Identifier
DomainType ::= BaseTypeSpec | CollSpec Identifier

RR n°3136

G. Mihaila, L. Raschia, & A. Tomasic

RelationDcl ::= relationship Target Identifier
Target ::= Identifier | CollSpec Identifier
CollSpec ::= Set<Identifier> | Bag<Identifier>

Base types are the atomic/literal types of ODMG. We support (parameterized) collections Set<t> and
Bag<t> where t is a base type or a user defined type.

B The BNF Specification of the WEBSEMANTICSQuery Language

Query := select AttrList from DomainSpec [where Condition] ;
AttrList := Attribute {, Attribute}
Attribute := Var.Field{.Field}
Field := Identifier
Var := Identifier
DomainSpec := DomainTerm {, DomainTerm}
DomainTerm := Type Var such that DomainCond
| Type Var [in SourceSpec]
DomainCond := Node PathRegExp Var
| Var mentions StringConstant
| Var exports type Type
| Var exports translator Translator
| Var exports source Source
SourceSpec := Node
| ¢ Type, Translator, Source)
Type := Identifier
Translator := StringConstant
Source := StringConstant
Node := StringConstant
| Var
Condition := BoolFactor {or BoolFactor}
BoolFactor := BoolTerm {and BoolTerm}
BoolTerm := Attribute = Attribute
| Attribute = StringConstant
| Attribute contains StringRegExp
| (Condition)
PathRegExp := Link
| PathRegExp *
| PathRegExp PathRegExp
| PathRegExp “|” PathRegExp
| (PathRegExp)
Link := = | #> | => | -> | Identifier

INRIA

/<

Unité de recherche INRIA Lorraine, Technopodle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhone-Alpes, 655, avenue de |’ Europe, 38330 MONTBONNOT ST MARTIN
Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
http://www.inria.fr
ISSN 0249-6399

