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Abstract: In this paper, a particular polling system with N queues and
V servers is analyzed. Whenever a server visits an empty queue, it waits for
the next customer to come to this queue. A customer chooses his destination
according to a routing matrix P. The model originates from specific prob-
lems arising in transportation networks. A global classification of the process
describing the system is given under general assumptions. It is shown that
this process can only be transient or null recurrent. In addition, a detailed
classification of each node, together with limit laws (after proper time-scaling)
are obtained. The method of analysis relies on the central limit theorem and a
coupling with a reference system in which transportation times are identically
7Zero.
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Sur des systémes a scrutin ou les serveurs
attendent les clients

Résumé : Dans cet article, on analyse un systeme de polling particulier,
comportant N stations et V serveurs. Quand un serveur arrive a une station
vide, il attend la prochaine arrivée a cette station. Chaque client choisit sa
destination selon une matrice de routage P. Le contexte du modele est sur-
tout celui des réseaux de transport. On obtient une classification globale du
systeme, sous des hypotheses assez larges, en montrant notamment qu’il ne
peut étre que transient ou récurrent. On donne aussi une classification dé-
taillée pour chaque file, ainsi que des lois limites aprés changement d’échelle
temporelle convenable. La démarche proposée s’appuie sur le théoreme de la
limite centrale et sur un couplage avec un processus de référence, ou les temps
de transport sont identiquement nuls.

Mots-clé : Marche aléatoire, Réseau, Récurrence, Scrutin, Transience,
théoréeme Central Limite.



1 Description of the model

Consider an open network, consisting of N stations (nodes, parking lots) and
V cars, which circulate among the stations. Let & = {1,..., N}. The arri-
vals of customers form a simple point process, defined by a metrically transi-
tive sequence of interarrival times {a,,n > 1}. Assuming the first customer
arrives at ¢t; = 0, then the (n + 1)-th customer enters the system at time

tnt1 = > a; and is directed to some node ¢ with probability v;, i € S,7; > 0
7j=1

and g:l vi = 1. All customers choose their destination via some ergodic routing
matrix P = (p;j)ijes- Let m = (m,...,my) be the invariant measure associa-
ted to P. A car arriving at a station where there are waiting customers takes
one of them to some destination. Whenever the car finds a station empty, it
stops and wait for the next arrival at this node. After having reached their
destination, customers leave the network. Also, a customer who, upon arrival,
does not find an available car waits in a queue (no impatiance phenomenon is
assumed). Capacities of waiting rooms for clients are supposed unlimited and
there are at least V' available parking lots for cars at each station, i.e. empty
displacements of cars are not allowed in this model.

We introduce the following quantities, for all 7,7 € S,n > 1:

e 7,;, the time to go from node i to node j, V1 < i,j < N. The N? random
variables do not depend on the arrival process, but can be correlated
between each other.

e ¢j(n), the number of customers at node j at time ¢, — 0;

e z;(n), the number of cars at node j at time ¢, — 0;

e S(n), the position of the server at time ¢, — 0 when V = 1.

e v,, the set of nodes at which there is at least one vehicle at time ¢,;

Assume the n-th customer arrives at node i(n) and intends to go to node j(n).

The pairs
{(i(n),j(n)),n = 1},
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are supposed to form a sequence of independent and identically distributed
(i.i.d.) random variables. This means concretely that the choice of a destina-
tion by a customer depends only on his arrival node and on nothing else. Let
also

N N
A= (Ea,)™, 7= piE(r;), 7= ™. (1.1)
J=1 i=1
The main goal of the study is to analyze the behaviour of the process

QE{Q(n),n>1} = {(g;(n), zj(n); j€S),n>1}
= {@n),#(n),n > 1}. (1.2)

Definition 1 The network is said to be ergodic if, and only if, there exists a
stationary and a.s. finite sequence

QZ{Q(n),n 21} Z{(G(n), 7;(n); j €8),n 21},

such that Q(n + k) converges weakly to @(k’) as n — oo,Vk > 1. Accordingly,
a node i is ergodic if, and only if, ¢;(n + k) weakly converges to a stationary
sequence G;(k) as n — oo.

Definition 2 The network is transient if
N
T}EIgOZq](n) =00, a.s.
7=1

A node 1 1s transient if
lim ¢;(n) =00, a.s.

n—0oo

Definition 3 The process Q is said to be null recurrent if it is non-ergodic
and there exists a state, say ((kj, rj); j € S), such that

P({q;(n) =kj, zj(n) =r;, j €S; for infinitely many n}) = 1.

Similar definitions hold for each separate node.
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General notation

e Occasionally, it will be convenient to consider the system in continuous
time and the same symbols will be used, e.g. Q(t), whenever no ambi-
guity arises.

e Taboo probabilities: If A C S,7,j € S, then 4N;; represents the number
of times the Markov chain associated to P visits node 7, starting from
i, under the restriction that none of the nodes in the set A is entered
in-between.

e {F,,n > 0} will denote the increasing sequence of c-algebras generated

by {Q(t), t < n}.

e A,(t) stands for the event that an external arrival takes place at node i
at time ¢.

e Z [resp. R] is the set of integers [resp. of real numbers]. The positive
parts of these sets are Z, and R, respectively. The components of a
vector X € R¢ will be denoted by X;,i=1,...,d.

e The complementary S — A of A € S will be written A and the indicator
function of an arbitrary event B will be denoted by 1z,.

2 Classification of the network

The purpose of this section is to classify the process Q(n), viewed as a random
walk on Z2¥ in terms of ergodicity, transience and recurrence. Throughout
this paper, we suppose N > 1,\A > 0. One of the basic results is that the

process @ is never ergodic.

Theorem 2.1 If v # 7, then the network is transient. Moreover, for any k

such that
N

Tk > Z%‘pik, (2.1)
i=1

node k 1s transient.
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Proof When v # m, there exists at least one node, say k, such that condi-
tion (2.1) holds. Define then, for all m > 0, the quantity

e (mm) = Pgu(n) < m / qu(1) = m).

Out of the first n arrivals in the system, let v;;(n) be the number of clients
who arrived at node 7 and wanted to reach node j. Let

I/Z(n) £ z_:l yzj(n), 171(7’1) £ z_:l V],(n) (22)

In (2.2), v;(n) represents the total number of exrternal customers arriving at
node ¢, while 7;(n) stands for the number of internal customers intending to
go to station ¢. Now the following inequality is obvious:

ap(n;m) < P{vg(n) < U(n)} = Br(n). (2.3)

To study the asymptotic behaviour of fi(n), as n — oo, let A;;(s) be the event
that the s-th customer arrives at node ¢ and wants to go to node 5. One can
write

n N n N
v() = 2 2 Magr () = 22 Liauoys (2.4)
s=1j5=1 s=1j5=1
vi(n) — Dg(n) = 6k(s)
s=1

where

N
k(s) = D (Lgag s — Lia,u(s)))-

7=1
From our general assumptions, it follows immediately that the random vectors
6(s) = (61(8),---,0n(s)),s > 1, are i.i.d. Furthermore

N
Eék(s) = v — Y_ vipjk = px > 0.
7j=1

Using well-known large deviation upper bounds (see e.g. [5]), one obtains the
estimate
Bu(n) < cre~e2V® (2.5)
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where ¢; and ¢, are fixed constants. It follows from (2.3) and (2.5) that

oo
> ar(n,m) < oo.
n=1

The Borel-Cantelli Lemma ensures that the process {gi(n),n > 1} takes its
values within an arbitrary bounded interval [0, A] a finite number of times
only: this means that gx(n) is transient, and so is the network. The proof of
the theorem is concluded. |

Theorem 2.2 If
y=m, (2.6)

then the network is always transient for N > 4 and any arbitrary 7. It s null
recurrent for N = 2,3 and 7 = 0.

Proof

Case N > 4. It suffices to prove the transience for 7 = 0, since one
can easily show that a system with 7 = 0 is pathwise dominated by a system
having the same arrival and routing processes, but an arbitrary 7 > 0.

For the sake of shortness, let us denote by V the state of Q(n) when there
are no customers in the network and all cars are waiting at node 1. Since
{i(n),j(n)} is a sequence of i.i.d. random vectors and 7 = 0, the state V is a
regeneration point for the process (). Setting

the following standard classification holds (see e.g. [7]):

(i) @ is transient if

a(n) < oo; (2.7)
n=1
(i) Q is ergodic if
liminf a(n) = a > 0; (2.8)
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(#i) @ is null recurrent if

i a(n) =oc and Jim a(n) =0. (2.9)

n=1
Assuming Q(0) = V with probability one, we have the inequality
a(n) < P(vi(n) = (n),Vi € S) = B(n). (2.10)

Expression (2.4), giving v;(n) — 7i(n) in terms of the vectors 6(s),s < n,
together with condition (2.6), which yields

Eéz(n)zo, iES,

permit to use the Local Central Limit Theorem, since the vectors 6(n),n > 1,
are 7.1.d.. Consequently,

Bn) ~C/n"T, (2.11)
so that, with (2.10), condition (2.7) holds for N > 3.

Case N =2,3.  Showing the property for V' =1 will ensure it holds for
any V. Thus take V =1 and let ¢(n) be the vector with components

bi(n) = vi(n) —s(n), VieS, Vn>0.

Introduce the events .
Cn = {¢(n) =0}

and

3

Lia(n) = {H{Ai(s)} = Nyays)) = 1} {H{Ai(lc),k>s} = 0} :

s=1

L;;1(n) says that, among the n first arrivals in the network, the destination of
the last client arrived at node ¢ was node 1.

Clearly C,, C {S(n) = 1}. Moreover the event {S(n) = 1;¢1(n) = 0} says, in
particular, that among the n first arrivals, all clients whose destination was 1
have been served right after the n'® external arrival. Now the result follows
from the Central limit theorem.
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(i) N = 2. We have, for all n sufficiently large,

1)1 1)2

— ~P(C,NL <P =V) < P(C,) ~ —,

\/ﬁ ( 21(77’)) — (Q(n) ) — ( ) \/ﬁ
for some constants D; and Dy, which proves the null recurrence according to
(2.9).

(i) N = 3. First, the irreducibility of the routing matrix P allows to
assume ad libitum, for instance posps3; # 0. Then, for all n sufficiently large,
there exit constants D3 and D, such that

D D
73 ~ P(C, N Lai(n) N Lzi (n)) < P(Q(n) = V) < P(C,,) ~ 74
Again (2.9) is satisfied and the theorem is completely proved. [ ]

3 Local behaviour

A detailed classification of the nodes will be presented in the next 5 theorems.
For many quantities of interest, the reader is referred to definitions given in
section 1, in particular in (1.1) and (1.2).

Theorem 3.1 If
y=m,
then all the nodes are non ergodic.
Proof For the non ergodicity, it suffices to carry out the analysis in the case

7 = 0 and then to prove that, for any k, the sequence {qx(n),n > 1} forms a
submartingale with respect to the family of o-algebras {F,,n > 1}. We have

g(n+1)=q(n) =0, Vk€uv,, (3.1)
and
ar(n+1) = qe(n) > Ly — D oaNik L)y, Yk € T (3.2)
1€V,
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It follows from (3.2) that, for all k£ € 7,

E(qe(n+1) — gr(n)/Fn) > 7 — > 7 E(o, Nik)

1€V,
Setting
P, = (pij, i €vn, jET,),

To, = (T, 1 € vy),

n

the above relation yields, for all £ € 7,

E(g(n+1) —q(n)/Fo) > m— Y m ) piE

€U, JEUR

= Tk — (tﬂ—vannﬁn Z(Pinin)q> = 07
k

q2>0

which, together with (3.1), shows that {gx(n),n > 1} is a submartingale.
Consequently g, will no reach a compact set containing 0 in an integrable time
and the nodes are non ergodic. The proof is concluded. [ ]

In fact, there is a more precise result.

Theorem 3.2 If
y=m and 7 =0,
then each node is null recurrent and has always a positive probability of being

empty.

Proof Let a;(n) be the probability that node ¢ is empty at the instant of the
(n + 1)-th arrival in the system. We shall prove that

lim inf a;(n) =a; >0,

and this will be sufficient for node ¢ to be null recurrent. Here, there is no
loss of generality in assuming V = 1 and ¢;(0) = 0,Vi € S. Then, with the
notation of theorem 2.1, we have

N{w(n) > Be(n)} € {S(n) =i}  {@i(n) = 0}.

k#£i
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Thus

P(g(n) =0)> P (ﬂ {E?%ik(t) > 0}) .

ki
Hence, using v = 7w and the Central Limit Theorem, we get

lim inf a;(n) = a; > 0.

n—oo

]
Theorem 3.3 When v = 7, the nodes are
(a) transient if A\t >V ;
(b) recurrent if A\t <V, under the additional assumption
E(1ijT) < 00, Vi, j,k,l €S, (3.3)

and in this case all conclusions of theorem 2.2 hold.

Proof

Case (a) One can use standard queueing theory arguments. Consider an
arbitrary node, 7 say. It can be viewed as a single queue with V' servers working
in parallel and an equivalent average service time which is larger than

TrTrk T
Z +TZ’:—.
T

ki v 7

The corresponding traffic intensity p; satisfies the inequalities

AT
7—7 =T >V,

T

pi >

which means that each node is transient.

Case (b) Introduce the system Q, obtained from @ by taking 7 = 0. This
means in particular that ¢ and () work under the same arrival and routing
processes. Assuming Q(0) = Q(O), the idea is to couple Q and Q pathwise, at
properly chosen instants.
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Step 1.  Let us show first that, if all cars are blocked at a given node 7 at
some time 7T in system Q, then Q(T) = Q(T). Let Uy;(t) [resp. Uy;(t)] be the
number of clients who arrived at node ¢ and have been transported to node j
on the time interval [0,t] in Q [resp. Q]. The machinery of the two systems
ensures that

Uy(t) < Uy(t), Vi,j€S,Vt>0. (3.4)
Now the definition of 7" yields

Ui(T) = Uyu(T) and ; Ui(T) = ; U,i(T),
whence, by (3.4), N
Ui(T) =Uy(T), VjeS. (3.5)

Suppose there 35 # 4, such that ¢;(T") > §;(T') and let 7 be the destination node
of the last customer served at node j in system Q, before time 7. But then
U;(T) < U;(T). For r = 4, this immediately contradicts (3.5). Otherwise,
¢(T) > G.(T), since there were more visits of cars at node ¢, before time T, in
system Q than in system Q, remembering that at time 7" all cars are blocked
at node i. Now, by induction, there would exist s, such that U, (T) < Uy(T),
contradicting again (3.5).

Step 2. Now we will construct an increasing sequence of stopping times
{T}, k > 1} satistying the following properties:

E(Ty41 —Tx/Fr,) < C < oo and 3i(k) with
Gy (Tr) = 0, @iy (Te) =V, Vk > 0.
Take, using the notation (1.2),
0 < q0) < K,

with strict inequalities, K being a fixed positive vector. The point is to prove
that at least one arbitrary component of ¢(t) will reach 0 in an integrable time.
This will be done by means of a supermartingale argument, focusing on the
evolution of a fixed component, say ¢;, at arrival times wu, us,..., at node i.
Clearly, the time necessary to empty one arbitrary component is not greater
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than the time to empty ¢;, conditioned on the fact that all other components
remain strictly positive in the meanwhile.

This reads more precisely, setting G(t ﬂ{ql # 0,Vr < t},

inf{t > 0/ 3], (]j(t) = O,Vj c S} < inf{us, s> 1, l{g(us)}]l{qi(us)zo} = 1}.

Let M,((a,b]),1 < v < V, be the number of visits made by an arbitrary
vehicle v going from node k to node i, on the time interval (a,b]. For the sake
of shortness, the position of v at ¢ = 0 is omitted. Then the following global
equation holds:

1 L V N
ZE[Q%(UL) - qz( )/ :FO = 1= Z Z Z sz[ka Us— laus])/]—-b] on g(UL)

o (3.6)
Choose € > 0 arbitrarily small. From the ergodic renewal theorem, together

with additive properties of the M,;’s and (3.3), there exists L (depending on
€) in (3.6), such that

1 i \%
ZE[%‘(UL) ¢:(0)/ .7‘"0]<1—V22i\k:]: =1—;+e<0, a.s on G(ur).
(3.7)

The supermartingale constructed in (3.7) will reach 0 (see e.g. [6]) after an
integrable time and remains at 0 with a positive probability. Moreover when
a queue, say m, is empty, one can always force all cars to go to node m, before
the next arrival at m occurs: this takes a (residual) time R which, by (3.3), is
uniformly integrable with respect to the positions of cars at time u, in equation

(3.7).
Hence, T} < Uy + R. Then letting

A(Tl) = mf{t/t > T, (]J(t) >0,Vj € S},
one can simply choose

T A+R if A(Ty) > A,
P L AM) + U+ R otherwise,
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where A is a fixed constant and U , R are respectively obtained in the same
way as U, R above. The introduction of A is just in case the second moment
of the residual interarrival time would not exist.

This procedure can be repeated, remarking that, once a coordinate has reached
the value 0, its next strictly positive value at some arrival instant will be exactly
1.

Thus the existence of a sequence {T,,,n > 1}, with sup E(T,,41 — T,,) < 00, is

established.
Step 3. Since

Q(T.) = Q(T), n> 1,

the conclusion of part (b) is immediate from theorems 2.2 and 3.2, using the
uniform boundedness of F (7,11 — T,,). Theorem 3.3 is completely proved. m

In the next two theorems, pathwise comparisons are needed between the pro-
cess @, introduced in theorem 3.3, and its restriction to a polling system where
only a subset of the nodes is visited.

Set A & {1, ..., ix}, for all k-tuple of integers 1 <4y < ... <ij... < N, and
let P2 denote the transition matrix of the restriction to A of a Markov chain
with state space S and transition matrix P. Introducing the two vectors 74
and 7%, with components
~A Ty ~A i .
T = , A= , VjeA, (3.8)
’ 2icA Ti ! 2ieA Vi

it is well known (see e.g. [7]) that the invariant measure of P2 is indeed given
by 7. The exact form of P* can be found in [7] but is not needed there.

To avoid uninteresting technicalities, we take z;(0) = 0, Vi € A. Let 7 = 0
and consider the process Q* on Z% x Z* constructed as follows:

e it corresponds to a new polling system with zero transfer times;

e its sample paths are obtained by assuming the server never stops at the
nodes in A and that the arrival and routing processes are the same as

for Q.
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15

Then, writing g (n) for the number of customers at the n-th arrival instant,
waiting at node k,Vk € A, in the system Q*, we have

P(n) < qgn), VieA, VYn>o0.

Theorem 3.4 Let B = {(z1,...,2n) € Z¥;2; = 0,Vi € A}, for any arbi-
trary A, and assume v = w. Then

P((ql(n), ...,qn(n)) € 0B, for infinitely many n) =0, VIAl>4
In other words, the boundaries of codimension > 4 are transient.

Proof As already remarked, it suffices to prove the statement for 7 = 0,
since the case 7 # 0 follows by direct sample path comparison. Consider Q*,
with A = {4,...,4,}. Here & = 7 (see (3.8)) and theorem 2.2 implies

P('q”ﬁ(n) =...= @i(") =0) ~ —,
for some constant C*. Since |A| > 4, it follows that

> P(g(n) = ... = ¢, (n) =0) < o0

n>0

and the proof is concluded by using the Borel-Cantelli lemma. [ ]

The next theorem deals with the complete classification when + # 7, in which
case we introduce a numbering of the nodes, according to the following inequa-
lities:

< =< v

T -1 ! TN

Mo <V (3.9)

Note that, since I < N, (3.9) excludes v = 7.
Theorem 3.5 Assume (3.9) holds.
(a) For anyi > 1, lim, . ¢;(n) = oo a.s.

/\T’)/l
U1

(b) Assume l =2 and put p; = . Then,
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(b1) for p1 <V, node 1 is ergodic;
(b2) for pr >V, node 1 is transient.

(c) Assume | > 3. Then the set of nodes A = {1,...,1 — 1} behaves as a
polling system, with parameters v, 7 and P*, which have been formally
defined in the preamble before theorem 3.4. mutatis mutandis.

This theorem claims, among other things, that the original polling system
has at most one ergodic node when ~y # .

Proof

(a) Choosing a node i with ¢ > [, we consider the system Q* corresponding
to A = {1,i}. Here 3* # @* and, more precisely, 7' > ¥, 3'Py;. Using
now theorem 2.1, it follows that ¢* is transient and so is ¢;, since ¢*(n) <
¢i(n), Vn > 1.

(b) It follows from part (a) that

lim ¢;(n) =00, Vi>2 as.

n—0o0
Hence, the traffic intensity at node 1 is exactly

)\T"/l
p1 =

T
and the result follows easily.

(c) Using again part (a),

lim ¢;(n) =00, Vi>1I as.

n—0o0

So, for n sufficiently large, the cars will not stop anymore at the nodes be-
longing to A. In fact, omitting the details, one sees that the original network
decomposes into two subsystems:

e a system of N — [+ 1 transient nodes.
e a polling system Q" of | — 1 nodes.

The proof of the theorem is concluded. |
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4 Time scaling and limit laws

When ~ = =, it has been shown above that each node is null-recurrent and
the system is either null recurrent or transient. In this section, limit laws are
obtained for the joint distribution of the position of the server and the number
in the queues.

Notation Here vectors will often be written with arrows (e.g. Z, ¢(n), E,
etc.). Setting
iN & ((Nay...,iNw), Vies,

the quantities {?(s; i),8> 1} will stand for a sequence of vectors which, for
each fixed i, are i.i.d., independent of the arrival process and distributed as
z]_\/} Let

z‘ﬁj &t (’iHjla"'7 iHjN)7 Vi ES,

where ;Hji, in the Markov chain with matrix P, is the number of visits to £,
starting from j, without hitting 7. In addition, define

n N
7(71; HEDY (11{,41-(5)}7(8; DEDY ]1{,4]-(5)}63) , VieS,
s=1 j=1

where €; is the j-th unit vector of RY and, by convention, ;N;; = 1,Vi € S.
Letting A?(n; i) = 7(n +1;4) — 7(n, i), it follows (since v = 7) that

E[AZ (n;)] =0, Vies.
Introduce also the following covariance matrices, which do not depend on n:

Iy & (B(AZ;(n;6) AZu(mi1))

Jke

. Vies.
S

In the sequel N (T';) will represent a random vector in RY, normally distibuted,
centered at the origin, having its i-th coordinate identically 0 and I'; as cova-
riance matrix. Using the symbols “ (*) ” for convolution, we are in a position
to state the main theorem.

Theorem 4.1 Ify =7, 7 =0, £0) =7, §0)=0, Vj € S, then

RR n~° 3058
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lim P(3i # j,{i,j} Cva) = 0, (4.1)
( ( a> <q Z(nyi) _ - )
= {i}; F) = pli< <k+ ,(4.2)

limP( = {i}; 1‘5) = P(N(I) € [0,F]), (4.3)

\_/

=y

IN

a\

(

=y
\_/
VAN

a\

Vi e RY, Vi, j € S.

Proof Equation (4.1) is a staightforward consequence of theorem 3.4 and
the limit law in (4.3) is obtained by letting n — oo in (4.2). It is also worth
noting the choice k=3 in (4.2), which gives the time-dependent probability
of having at least one vehicle at a given node. Thus we are left with the proof
of (4.2).

The argument will first be developed for V' =1 and relies on a counting (and
in some sense combinatorial) argument, where the time does not play any role.
Consider the system at the n-th arrival instant and condition its state on

7(n) = b (by, by, ... by),

where 7(n) is the vector of the number of arrivals at each queue, introduced
in section 2. Let X(¢;n) denote the position of the server after ¢ effective
visits (or services) up to time n. Clearly, ¢ < n and the evolution of X (¢;n)
is Markovian, with transition matrix P. Thus one can write, for some fixed 1,
with the notation S(n) instead of v, since V =1,

P(S(n) = [7(n); S(0) = i) = P (N < w(m), Wi # 1 /7(n); S(0) = i)

which in turn yields

INRIA
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Similarly, remarking that the event {(n) = k} can occur only if X (¢;n) takes
the value ¢ exactly b; times and the value j exactly b; — k; times, for all j # 1,
we get

~—

_qn - N o 7(71,2) o
P(S(n)—z,ﬁgk/S(O)—z)_P<O§ 7 <k,
and the result follows from the central limit theorem.

The extension to V' > 1 is not difficult, noting simply that when all cars are at
some node 7, the procedure for V =1 can be reproduced. Details are omitted.
[ ]

The last theorem given hereafter does in some sense justify, beyond its theo-
retical interest, the detailed analysis made for the system @ in which 7 = 0.

Theorem 4.2 When v =7 and A\t <V, the distribution of Q(t), as t — oo,
satisfies

lim P (% < E) = gp (N(r) € [0,\2F])),  VE e RY. (4.4)

The remarkable fact is that, after a scaling in 1/\/t, neither transfer times
nor the number of vehicules do appear in the explicit form of the limiting
distribution. This 1s indeed a phase transition phenomenon. Obuviously, this is
not the case as far as speed of convergence is concerned.

Proof Let v(a,b) = SN, v;(b) — vi(a) be the total number of customers
arrived in the time interval (a,b). Pathwise, we have

Q) < Q(t) < Q) +v(t — Ty, (4.5)
where {7,,n > 1} is the sequence introduced in theorem 3.3 and
(t)=inf{n /T, <t < Thi1}.

But the constructive procedure of this sequence shows that the random va-
riables 7,1 — 7},,n > 1 can be bounded by the increments of a renewal point
process, having a proper distribution for its stationary residual time, whence

t=T
fm P (Y0 o ) 2o ve s o,
t—oo \/E
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and the relation (4.4) follows directly. The theorem is proved. n

Remark The fact that 7 does not take place in (4.4) can be explained by
coupling. The non-influence of V' follows from theorem 3.4 and equation (4.4):
asymptotically, all cars are blocked at some node (not always the same) and
only one customer can be transported, no matter the value of V' may be.
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