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Dérivées de déplacement en optimisation de forme de
coques minces

Résumeé : Dans cet article on établit le cadre de ’analyse de sensibilité par rapport
a la forme de systémes d’équations définis sur une surface de IR®. On considére le
modéle de coque mince présenté par (Koiter, 1970). La formulation du modéle dans
un domaine de référence a été choisie pour notre analyse. Les gradients de forme et
les Hessiens de forme associés aux fonctionnelles de forme ont été définis et évalués
en utilisant la dérivée de déplacement.

Mots-clé : optimisation de forme, gradient de forme, Hessien de forme, coque
mince, dérivée de déplacement, fonctionnelle de forme de surface
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1 Introduction

Shape optimization is quite indispensable when constructing industrial structures.
For example plane and space shuttles have to satisfy in the same time very hard
criteria on good mechanical behaviour and have to weight as less as possible.

For the last thirty years, there were many studies developed in this field of struc-
tural optimization. They combine the most recent results on mechanical formulation
of the problems, on functional analysis of such problems and on control theory. For
such results we can refer to e.g. (Duvaut, Lions, 1972) and to (Lions, 1968).

A structure is generally an assemblage between different parts like beams, plates,
shells and three dimensional medium. Here we will restrict our attention to the
general continuous formulation of such optimization problems for general thin shallow
shells.

The geometry of a general thin shell can be characterized by two different map-
pings:

1. the mapping ¢ which defines the middle surface S of the shell as the image of
the closure of a bounded domain O of the plane;

2. the mapping e which defines the thickness of the shell at any point of the
middle surface along the normal of this surface.

The shape optimization problem for such a shell consists in finding the geometry
of the shell (middle surface and thickness) which minimizes a given functional (for
example, the weight of the shell) and satisfies some constraints (for example, bounds
on the thickness, on the strain energy, on the displacements).

We consider the following shape functional as an example,

J(8) = /SS(%ﬁ(S)(ﬂf)f(S)(w))dF(w) (1.1)

where @(5)(z), z € S, is the displacement field of the shell.
We denote by J(¢,e; %) = J(S5) the integral functional defined on the reference
domain O,

Ao = [ 3(p(6), £- ). e€)dS(© (12)

with
£-(e) = 7S)(¢(©), = = () € 5, (13)
€(§) = #S)(()) €0, (14)
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4 Jan Sokotowski

where @(&) = col(uy(€), uz(§), us(§)) denotes covariant components of the displace-
ment field %(S) o ¢ of the middle surface S, and linear mapping £ is defined in terms
of contravariant basis on S, i.e. £ -4 = u;a@".

Computational algorithms usually require that we can compute the derivatives of
shape functionals with respect to the geometry, i.e., with respect to S = ¢(0O) and e.
This is a difficult problem since in general shape functionals depend on S and e not
only explicitely but also implicitly through the dependence of the displacement field
#(S) on S and e. To circumvent this difficulty we make use of the classical adjoint
state method.

We use the shell model presented in (Koiter, 1970). A detailed discussion related
to numerical analysis of such problems can be found in (Bernadou, Ciarlet, 1976),
(Bernadou, Boisserie, 1982) or (Bernadou, 1995).

2 Shell model

The following hypothesis are assumed to be satisfied.

1. the shell is clamped on its boundary 05

2. the shell is loaded by a distribution of forces whose resultant has density p on

S,

3. the shell is elastic, homogenous and isotropic.

Moreover, according to (Koiter, 1970), we assume that

4. the normals to the middle surface remain normals to the deformed middle
surface;

5. the stresses are approximatively plane and parallel to the tangent plane to the
middle surface.

Under the assumptions (1) to (5) above, the problem takes the following varia-
tional form.

Find @ = (u1,uz,uz) € H = (HL(0))? x H(O) such that (2.1)
a(@,0) = f(6) YoeH,

where ,

a(@,5) = [ B ap(@®) + S5 pan(@)pr()}dS, (22)

INRIA



Displacement Derivatives in Shape Optimization of Thin Shells 5

1@ = [ g s, (2.3)
(@
E 2

Eaﬁ/\a — [aa)\aﬁa T aouaﬁ/\ 4 H aaﬁa/\a]’ (24)

2(1+ p) 1—p

dS = \/ad€e'de?
F = Young modulus ; v = Poisson’s coeflicient.
L1

’Yaﬁ(“) = §(Ua|ﬁ + uﬁ|oz) — bapus (2.5)
Prap(iit) = sjap — binborgtiss + b gue + biatians + bistnfa (2.6)

These expressions can be simplified by taking into account deformations of general
thin shallow shells. This allows to keep 7,3 unchanged and to replace p, (@) by

—

pap(t) = U3)0 (2.7)
Theorem 2.1 Problem (2.1) has a unique solution.

The proof of Theorem 2.1 is given in (Bernadou, Ciarlet, 1976), we refer the reader
also to (Bernadou, Ciarlet and Miara, 1994) for a more simple proof.

Theorem 2.2 Problem (2.1) with p,g(i) replaced by po5(w) (see (2.7)) has a unique
solution.

The proof of Theorem 2.2 is given in (Bernadou, Lalane, 1986) or in (Bernadou, 1994
or 1995).

3 Displacement derivatives

Basic assumption we make in this section is that the shape functional J(S) =
J(¢, €; @) under consideration depends only on S = ¢(Q) and € and is independent
of the parametrization ¢ for a fixed surface S and the given reference domain O.
Under this assumption, by an application of the Hadamard formula (see section
4 for details), we can obtain the form of shape gradient of the shape functional
J(S) = J(p,e;@). In particular, we can use displacement derivatives of solutions to
shell equations to evaluate the Eulerian derivative dJ(S;V) in the direction V.

RR n2995



6 Jan Sokotowski

Notation

Let O be a bounded domain of a plane IR? with boundary I' = 0. We assume that
the middle surface S of the shell is the image of the set @ under a regular mapping
4 ie. 5= ¢(0),
pr (€€ cOCR =o', e) e SCR (3.1)
We define two local bases in S:
1. the covariant basis (@;, i =1,2,3)
. agp 51 X L_iQ

Uy = P o = 73 52#, 3.2
T P (32)

2. the contravariant basis (@', i =1,2,3)
@ Gy =065 3 @ =ds. (3.3)
From now on small greek indices take values 1 and 2 while small latin indices take
values 1,2 and 3. We use Einstein’s summation convention for repeated indices at
higher and lower positions.
To the covariant and contravariant bases we assign the first (a,s, a*?) and the

second (bag, b2, b%%) fundamental forms of the middle surface (note that b° = be, =
b3) , respectively,

Uop =y -dg; a*P=a-@°; a=det(anp) (3.4)
bog = @3- dup; U =a"bye; P =0,
It is also convenient to introduce the covariant derivatives
A A
Ug|g = Ua,p — Lnpgtin ; U\ = U3 ; Usjap = U305 — L'nptiz ) (3.5)
where the Christoffel symbols are given as
Topg = iag=T53,. (3.6)

Subsequently, the same notation will be used for the surface 5;.
The thickness of the shell can be defined as a regular mapping

e: () eO0CR »e(,&)e{zeR: >0} . (3.7
Then the shell S is the set
S = {MeR®: OM = (6% + £a,(¢1, €Y, (€1.¢) € O,
(€€ <€ < sele )

INRIA
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The family of surfaces S;

By t we denote a real parameter which belongs to [0,6], § > 0. Let S; be a family
of surfaces defined as the images of the reference plane domain O under regular

mappings ¢; :
pr: (§6) €O CR = (¢!,6%) € S C R (3.8)
For t = 0 we recover the original surface 5, i.e.,
Yo = &, and So = 5.
It follows that )
D¢
ot

and for convected parametrizations, i.e. when ¢ = 0 we have

 a= .
= C; Uy + W3,

Doy
—— = wyd, 3.9
(?t tWit3 ( )
where w; is the normal speed of the surface S;, and @3 is the unit normal vector to
S;.
For any parametrization of the surface Sy we have

0ot on | 0
e = it

where % denotes the displacement derivative defined below (Definition 3.1).

Definition 3.1 Let zz : O — R, t € [0,6] be a family of functions and let gy,

t €10,6), be a family of reqular mappings, S; = p;(0). The displacement derivative

%t for this family of functions is defined by
(SZt 32,5

ot 7 apB, .
51 a1 ctald " PB

Doy
T (3.10)

Remark 3.2 Using the material derivative method a mapping Ty = Ty(V) : R? s
R? is constructed where V is a given vector field. The mapping, in the case of thin
shell, assigns the surface Sy to the reference surface S, i.e.,

S, = T(S)

RR n2995



8 Jan Sokotowski

For

pr=Tiop=Ty(V)op, tecl0,0)
we have P oT

% = 8—;0Tt_1:| ogo:‘/(t)ocpt:v(t’@t) (311)

therefore

oz dz

5—; = a_tt - Zt,agaﬁ@t,ﬁ V(L) - (3.12)

It is easily seen that the displacement derivative of ¢; takes the form
St —V = -
ot (VL 1), l3t)paar = wilss - (3.13)

Now we determine the displacement derivative of the restriction of a function to S.
Let ¢ :[0,8) x D — IR. Denoting us = ¥ (¢, ), we get

% 6) = 221, 6) + (Vb 2 €), V(1 u(E) e
duy

216 = 2206 (Ve ), Tl

If 2/(S;V) is the boundary shape derivative of 2(Sy) = ¢g, in the direction of a

vector field V(1) = % o T, it follows that the following relation is obtained

6Ut

B o) = Z(S:V) (06

For ¢ > 0 we use the following notation,

5ut

U € = /(5 V 1)) ()

It is clear that if %—f = % =0on S and u; = ¥(t, ¢¢), then % =0fort=0.
Remark 3.3 Given mappings ¢: , @, we can define the mapping
Ty : S St

of the form Ty = ¢; 0 01, and the vector field

Vi) = [Troti| @)= [Eow| @) wes.

INRIA



Displacement Derivatives in Shape Optimization of Thin Shells 9

The normal and tangent components of the field V on S are given by

w(t,z) = (V(t,z),n(t,z))p = €S,
Vilt,z) =V(t,z) —w(t,z)n(t, z),
w(§) = w(t, pi(£)),

n(t,z) = dwm(p; (z)) = €5, .

Therefore, without any loss of generalily we assume thal there is given a mapping @
and an admussible vector field V' such that o, = TH(V') o .

A tangent vector on 95, = {z € R>|z = p(£) ¢ € A0} is denoted by by(£);
[;(€) = Y2, a!(€)d@;(€) is the unit vector normal to @Sy such that (I;(€), gt(f))]RS =0.
For t = 0 we denote g(f) = go(€),l_if) = l_g)(f), respectively; f(t,x) = l_;(got_l(f)) for
r = (&) € 05y, g(t, z) is defined in the same way for & € 95;.

4 Derivatives of shape functionals

We recall here the basic notions of the shape calculus which are used in the paper. For
further results on the material derivative method we refer the reader to (Sokolowski
and Zolesio, 1992). Shape optimization problems in solid mechanics are considered
in (Khludnev and Sokolowski, to appear)

Suppose we are given an open set D in IR", a measurable subset Q of D, an
admissible vector field V € C(0,e;C*(D; IRN))7 k > 1, and an associated transfor-
mation T3(V) from D onto D.

Let J(€2) be a well defined functional for any measurable subset Q of D. Assume
that Q; = T:(V)(Q), t € [0,6), is a family of deformations of Q. The set € is a
measurable subset of D for any ¢ € [0, §).

Definition 4.1 For an admissible vector field V € C(0,e;C*(D;RYN)), the Eulerian
derivative of the domain functional J(Q2) at Q in the direction of V is the limat

4J(:V) = lm(J (©) — J()/1, (4.1)

where

Q= T,(V)(Q) .

Definition 4.2 A functional J(Q) s shape differentiable (or simply differentiable)
at Q of

RR n2995



10 Jan Sokotowski

1. there exists the Eulerian derwatiwe d.J(Q2; V) for all directions V,

2. the mapping V — dJ(Q;V) is a linear and continuous mapping from C(0,¢e;
C*(D;RM)) into R.

Gradients of shape differentiable functionals can be characterized as follows.

Theorem 4.3 Let J(2) be a shape differentiable functional at every domain Q of
class C*, Q C D. Assume that Q C D is a domain with the boundary of class C*~1.
There exists a scalar distribution

g(I') € D7H(I)

such that the gradient of the functional J at Q, G(Q) € D™F(Q; RY), with sptG(Q) €
I', s given by

G(Q) ="yr(g - n), (4.2)
where yr € L(D(D;RN), D(T;RY)) is the trace operator and *~r is the transpose
of vr, n s a unil normal vector on I directed into the exlertor of 2.

From (4.2) it follows that

dJ (V) = {9,V - n)p—rm)xpr()>

where V-n = (V(0,2),n(z))gy ,z €T
In general, g = ¢(Q2) € D~%(T'). However, for some classes of shape functionals
it can be assumed that ¢(€) is an integrable function on I' and then

dJ (V) = /Fg(m)<V(O, o), n(z)) g dT (4.3)

and we denote

DJ(Q;V(0)) = /Fg(x)<x/(o,:c),n(x)>mdr .

Let S = ¢(0), and let J(S) be a given differentiable shape functional. For
any vector field V such that sptV(0) N dS = (), the Eulerian derivative dJ(S;V) =
limyyo(J(Se) — J(S)))/t of the shape functional takes the following form.

Corollary 4.4 There exists a distribution Gs € D™F(S) such that
dJ(S;V) = (Gs, w>D—k(S)ka(s) ) (4.4)

where, w 1is the normal speed of the surface Sy att = 0, r.e. w(z) = w(p(£)) =
<V(07 99(5))763(5)>IR3} fOT T = 9‘9(5) €5 and 5 = S‘Q—l('r) €0.

INRIA



Displacement Derivatives in Shape Optimization of Thin Shells 11

Remark 4.5 If sptV(0) N 3S # O, then in the above formula for dJ(S;V) an addi-
tional term related to the boundary 35S may appear. The term takes the form

(G5, Vi(0))p-r (5% x D (55:R) (4.5)

where ‘Q(O) is a component of tangent vector field v5sV;(0) orthogonal to the tangent
vector b on C1 curve 35, i.e. Vi(0,0(£)) = (V(0,0(8)),1(€))gel(&) for & € 90.
vasV-(0) denotes the trace of V.(0) =V — (V,n)psn on 05.

We recall the formulae for the derivatives of integrals. Given a family of shape

differentiable functions y(£2), y(I'y), Q: = T;(£2), then

7L viead] = @it [ @ mgear

%[/th(rt)dx] |t:0:/Fz’(F;V) — 2k2(T)(V(0), n) v dT

where Kk = —%dinn is the mean curvature on 9.

Let us consider a surface integral J(S) = [¢ Gdl'. For S = ¢(0) C R? it follows
that J(S) = [, G o ¢dS, dS = azdf, where a = det [a, ).

Given vector field V' and the transformation 7; = T3(V) : S — S, we denote

or =Tiop + O S, V(t,z) = Path oTt_l} (z) for € S;. Consider the shape

functional defined on S,
J(S) = / F(t)dl = / 2(S,)dr
St St
_ j(t):/ Fds,
(@]

where F : R x R® — IR is a given sufficiently smooth function and the following
notation is used,

2(S)) = F(t,)s,
Fi(&) = F(t,¢:(8)) €€0,
dS, = det([DT) o 9)|| [* DT 0 9| - sl oS -

We are going to evaluate the second order shape derivative of the shape functional
J(S¢) in the direction of vector fields V, W. For the first order shape derivative we

RR n2995



12 Jan Sokotowski

have the following representations
dJ(S; V() = /St 2 (S V() — 26(8)2(Se)(V(t), n(t))gedly
= [ G0+ (G0 2O F0) (V0. n(0)gedr

_dy OF; ]
= dt(t) —/O |: 5t —2/{,5Ftwt dSt

where we denote

k(t,z) is the mean curvature at z € Sy ,

n(t) = @30 ;' the normal vector at o = ;' (£) € S; , & € O,
(t) (VE@), n(t))gs
(5) = k(i (€)),
S o
wy(§) = St —— (&), dr(§) , £€0.
]HS
Remark 4.6 In general, we have the following formula for derivative of a surface
integral, we refer the reader to (Sokolowski, Zolesio, 1992) for the proof
Let X be a connected surface contained in I' with C? boundary 0%, [ denote the

unit normal vector to 0% that is perpendicular to the surface normal n to I' and
directed into the exterior of 3. For Xy = Ty(X) C I'y it follows that,

[/E () dFt] . [/ () o Ty(V)w(t)dT -

_ / (T3 V) + &(T; V) 2(T)dr
p)

Z(0;V) + Vrz(T) - V;(0) — 262(T)V(0) - n + 2(T)divpV,(0)dl

m\t?\

Z(T;V) — 262(D)V/(0) - ndl + / divy (2(T)V, (0)) dT
= / Z(I;V) = 2k2(1) ndF—l—/ 0), s dl,
p)

where w(t) = y(8)|[* DT, -n(t)|| e and & = =26V (0) -n+divrV; (0) in the notation
of (Sokolowski, Zolesio, 1992).

INRIA



Displacement Derivatives in Shape Optimization of Thin Shells 13

To differentiate the shape functional
1(5) =2J(5;V(0))

in the direction of a vector field W we need the following notation, r € (—¢,€) is a
parameter,

S, =T.(S), where T, =T, (W) : 55— S, ,
V(T’ = V(T‘, 5‘97’(5))7
pr=T,(W)op,

e (€) = (r, 21 (6))
2 €)= O, 0rl€) (Ve F (1, 20(6), Era(Oes €€ O

With the notation we have
I(S,) = dJ(S.;V(r))
/S 2'(Sp V() = 26(r)2(S:)(V(r), n(r))gedl

T

= [ G+ (G ) = 2 F0) ) (V) n(r))edr

& SF,
E(r) _/O [ 5 —QI{TFT’U)T] ds,

For u(S,) = 2/(S;;V(r)) — 26(r)z(S,)(V(r),n(r))g: and u, = u(S,) o @, = 55{ -
2k, F,w, it follows that
DI(S;W(0)) = D2J(S; V(0), W(0))
— /S (S W) = 26u(S) (W (0), n) e dT

[d dj ] [ du,
drdi"

= — 2 (Kpupw,) ), dS
r=0  Jo Or |r=0 (it =0

In the present paper the second order derivatives of shape functionals are evaluated

for the fields W =V = 22t o ;!

RR n2995



14 Jan Sokotowski

The second order derivative d*J(Q;V, W) of the shape functional .J(Q2) in the
direction of vector fields V, W is defined as follows

1
2J(Q;V, W) = hﬁ? -[dJ(Qs;V(s)) = dJ (@ V)],
where Q; =T,(W)(Q), V(s) = V(s,z) with 2 = T5(W)(X) for X € Q.

It can be shown, that we have the following representation of the second order
shape derivative, if the shape derivative exists,

2TV, W) = 02J (; V(0), W(0)) + DJ(Q2; V(0)) ,
DJ(V(0)) = DJ(Q; 8,V (0)) +DJ (4 [DV - W](0))

where V(0) denotes the material derivative of the velocity field V' in the direction of
the field W,

. v ‘

V(0,) = —5-(0,)+[DV-W]0,) =0,V (0) + [DV - W](0) .
Definition 4.7 The linear operator D(D;RN) +— D'(D;RY) associated with the
symmelric bilinear form 9*J(€2;-, ) is called the Shape Hessian.

Whenever it exists the Shape Hessian is a symmetric operator. The form of the Shape
Hessian can be identified from the second order shape derivative d.J(Q;V, W) by
taking the vector fields V' such that V' (0) = 0. Therefore, at least at the first stage,
the material derivatives can be used in order to evaluate the second order shape
derivative of a specific shape functional.

On the other, the second order Eulerian derivative

02J(Q;V(0), W(0)) = 021 (Q; V(0), W(0)) + ©J(Q; [DV - W](0)) (4.6)

can be evaluated by taking the shape derivative of the shape functional 1(Q) =
D.J(£2;V(0)) in the direction of a vector field W, we refer the reader to eg. (Delfour,
Zolesio, 1991) for related results. In particular, our definition of the Shape Hes-
stan is stricly different from the definition given in (Delfour, Zolesio, 1991), where
the nonsymmetric shape Hessian is introduced. It is also a difficult task to eva-
luate the symmetric part of the shape Hessian directly from the Eulerian derivative
D2J(Q;V(0),W(0)) as it was observed in (Novruzi, Roche, 1994) where the rela-
tion similar to (4.6) was established for a specific problem of shape optimization.
The Shape Hessian is required for the applications to the Newton method (Novruzi,
Roche, 1994) as well as to the stability analysis of the shape optimization problems
(Sokolowski, 1993).

INRIA



Displacement Derivatives in Shape Optimization of Thin Shells 15

Remark 4.8 For T: = I + tO, the associated velocity field takes the form V =
2t o7t = O o0 (I+t0)7!, whence the material derivative V(0) = 49 =0 in any
direction W.

Hence for vector fiels V (t,z) = [@o (I+t0)~](z), W(t,z) = [Wo (I +t¥)~!](z),

we have

d2J(Q; V, W) =22 (Q; V(0), W(0)) =027 (Q; 0, ¥),

and the second order Frechetl derivative evaluated by the method of perturbation of
wdentity 1s symmetric, hence

027 (Q;0,¥) =027 (Q;¥,0)  for all admissible vector fields ¥, ©

Therefore, the second order derivative 9*J(Q;V(0), W (0)) is symmetric with respect
to directions V(0), W (0) whenever the second order shape derivative d*J(2;V, W)
ex1sis.

Results on the second order differentiability of shape functionals were derived by
several authors, eg. by N. Fujii, Z. Mréz and H. Petryk, J. Simon, P. Guillaume and
M. Masmoudi.

5 The first order shape sensitivity analysis

The displacement derivative of solutions to (2.1) is given by the solutions to the
following system.

Theorem 5.1 Assume we are given the displacement derivatives 55% and %.
The derivative @' = %“:0 of solution to equation (3.3) at t = 0 is the unique

solution to the equation

find @ € H = (H3(0))* x HZ(O) such that

('?at (;&,975 ('?at oo 5675 - %

) s ¥t i’ a2 — e
(@, ¥) + Doy (&%) 8t [t=0 + Oey (@) Ot =0 Ot ()10

VT € (Hp(0))* x Hg(O)

where the subsequent terms are given below and @ denotes a solution to (2.1).
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16 Jan Sokotowski

We have

d - Opy _, 0P _, =
VOl = [0y T+ Gy 208 S

Here we use the following notation.

day iy B ot
a t( 5; ):/OetEtﬁ#{P)/tozﬁ<5tt> ’)/t/\,u( )

E o A
:/(926twt{1+y [atAbtﬁ#—i'atﬂbﬁ +

a1 A Apgo
— (atﬁbtu + atubtﬁ)]
2
afA . s € _ _
e BP0 v (8) + T5Prag () P (0) |

o ) . ) B
—ecky ru { [ung (’Ymﬁ) + Ut3E (bmﬁ)] Yip (U)

. 5

+Ytap (Ut) [UAE (Ft/\u) + USE (bt/\#)]
2
6

+12[ 3 L(;St (Pias) + utS% (babiwp) — Utw% (bialg) = ww,s ;t (b7

—Hm% (b(fa %wg) - utw,a% ( ;?jﬁ) + Uto% (btﬁrtwa) i|ﬁt/\,u‘ (17)

‘|’%ﬁtaﬁ (ﬁt) {’US,L% ( iy\u) + ’03% ( ?i\btwp) _ %% (b;?;/\ #) » (;St ( w)
-|-vé(;st (b twu) - Uw,A(;St (b‘”) + v, (;St (b‘;’u ;w/\) }}dst

day _, 0ey

Jey Be, B0 O 57 5t

B de e2_
= [ B S a7 (5) + L (@), (9)) S

Remark 5.2 The form of displacement derivatives used in the above formulae can be
obtained by direct computations. We refer the reader for such formulae to (Kosinski,
1986) and (Khludnev, Sokolowski, to appear).

Let J(4, €45 U;) be a functional that we are going to optimize. We assume that

(e, €13 1) = J(S¢), where S; = ¢4(O) (5.1)

INRIA
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and J(S;) is a shape functional.
Put

J () = 3, e ty)
Under the assumption that data are sufliciently smooth and J is differentiable, we
can compute (Chenais, 1987)

dj o o J(t) —4(0)
A S — (5-2)
A Jdpy  0F _.0ex 0T 01y
- |:099 (“pv €U t) at + a (997 €t U t) dt + au (9‘97 tvut) dt}
Denote
(S] 63 (Sg@t 0 Et Oj 5ut
E( ) {099 (9976757 75) 5t + 5= 0 (997 € U t) 5t + au (99767,‘7%,‘) 5t} (5.3)

By applying the structure theorem 4.1, it follows that,
dy J
20 =750

Since, in general, we are not able to compute & 5t 8 for any 5t , we introduce the adjoint
state equation

Find ¢ € (H}(0))? x H2(O) such that

{dj

T (Pt €t @] 0 VT € (H3(0))* x HE(0) . (5.4)

a(q,7) =

Clearly, equation (5.4) is uniquely solvable and expression (5.2) takes the form

d] Gat (;&,975 ('?at - (;675
%(0) bu (@ @) 5 ot Lt:o B {ﬁ(ut’q)ﬁht:o
& f 3 Sy a3 Se,
+[¥ ((]_) } |t=0 + {099 (99757 €43 ut) 5t Lt:O + [ae (99757 €U l‘) 5t Lt:O y

where the subsequent terms of the right—hand side can be obtained in the explicite
form (Khludnev, Sokolowski, to appear). One should note that the right-hand side

is actually a linear mapping with respect to (w = 5(;’? JE= %,t =0).
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6 The second order shape sensitivity analysis

For any ¢ > 0, (5.2) can be written as

dt(t) J t(@vetvut) 5t + de t(@a tvut) 5t + du t(@vetvut) 5t (61)
and for any ¢ > 0 we can define the following adjoint state equation.
Find ¢ € (H3(0))* x HZ(O) such that
oo 6_j R - 1 2 2
ar(Gi, 0) = 7~ (@ e @), VO € (Hp(0))" x Hy(O) . (6.2)
¢

As in Theorem 4.1, we get the following result.

Theorem 6.1 The displacement derivative % of a solution to (3.3) is a unique

solution to the following equation given (%t, %), find 5;; (HY(0))? x H2(O)
such that

(S’LLt = (?at P 55075 8@75 R 56,5 . 5ft =
a(—70) a,—%(“tav) 5 T a—et(utav) 5= 5 O (6.3)
Vi € (Hy(0))? x H3(0) |
where the subsequent lerms are given wn theorem 5.1
For t = 0 we denote
o da; , 5997: da; ,_, _, Oey 5ft -
/ 7 —_ 1 — —_
o(@, ) + Oy (&%) Ot |t=0 + ey (&%) 5 6t =0 oL (v )|t:0

Furthermore, the displacement derivative 5—? of a solution to (6.2) is given as a

unique solution to the equation

find 22 € (H3(S))? x H3(S) such that

5(],5 _, 8@75 o 55075 Oat _, _, 56,5
92] i . 02 Ny
= W(@n €t; W)U + m(@% €t} Uy) (Ua W)

+782J (01, €43 Uy) (’17 &)
Du,des Pty €1, Ut "5t
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VT € (H3(0))? x HE(O) .

Therefore, by relations (6.1)—(6.3), we obtain

0 4 0 0
D= [ s = - ET) T - G T T, (6.5)
(Sft 3 ‘5997,‘ a~ ‘567,‘

—I_W( )—I_ago(g‘gv t; t)(st—i_at(@v ty U )
Using (5.1) it follows that
4

() =dJ(SsV (D), V()= % o

&t

therefore,

Corollary 6.2 The second order Eulerian derivative of shape functional (5.1) (see
section 4 for the definition) is given by

d*j G,
D27(S: V(0),V(0)) = “Z (0 :/ 0Ct wkG| ds
( (0), V(0)) dt2( ) oL & ;=0 o
We obtain the form of the Shape Hessian using the latter formula.

Corollary 6.3 We have
221 (S;V(0),V(0)) = —Q/OwnGdS
+(.§%2(% er; iit) <%)2 + 28?:;@ (¢, €45 Uy) <% %)
+%(%et;ﬁt) (% %) + (gz—j)g(%fft;ﬁt) (%)2
+3f;]ut (ipr i @) <55€tt’ 55?) Tl <%>
—62(% Do) (i, G) <%) - 23(:;; (s, Gt) (%7 %)

_% <5ﬁt _,) 59975 3(175 <_, 5(]_}) %

Do \ ot ') 5 9, \"" 8t ) ot
626675

AT )<5€t)2_%<@ ~>&_%<ﬁ @)&
AR AN de; \ot ") 5t 9e, \"V 5t ) Bt
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