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Abstract: In this paper we present a new parsing algorithm for linear indexed grammars
(LIGs) in the same spirit as the one described in (Vijay-Shanker and Weir, 1993) for tree
adjoining grammars. For a LIG L and an input string z of length n, we build a non
ambiguous context-free grammar whose sentences are all (and exclusively) valid derivation
sequences in L which lead to . We show that this grammar can be built in O(n®) time
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Une autre facette de ’analyse syntaxique des LIG
(version étendue)

Résumé : Nous présentons dans ce rapport un nouvel algorithme d’analyse syntaxique
pour les grammaires indexées linéaires (LIG) dans le méme esprit que celui décrit dans
(Vijay-Shanker and Weir, 1993) pour les grammaires d’arbres adjoints. Etant donné une
LIG L et une chaine d’entrée z, nous construisons une grammaire non contextuelle et non
ambigiie dont les phrases sont les séquences de dérivations de L (et uniquement celles-ci),
qui conduisent & z. Nous montrons que cette grammaire peut étre construite en temps
O(n®) et que chaque arbre d’analyse peut en étre extrait en temps linéaire par rapport  sa
taille. Bien que cette borne supérieure en O(n®) n’améliore pas les résultats déja connus,
le comportement du cas moyen est bien meilleur. De plus, en pratique, le temps d’analyse
peut étre amélioré par des calculs effectués statiquement.

Mots-clé :  analyse faiblement contextuelle, ambiguité, arbre d’analyse, forét d’analyse
partagée.



Another Facet of LIG Parsing (extended version) 3

1 Introduction

The class of mildly context-sensitive languages can be described by several equivalent gram-
mar types. Among these types we can notably cite tree adjoining grammars (TAGs) and
linear indexed grammars (LIGs). In (Vijay-Shanker and Weir, 1994) TAGs are transformed
into equivalent LIGs. Though context-sensitive linguistic phenomena seem to be more natu-
rally expressed in TAG formalism, from a computational point of view, many authors think
that LIGs play a central role and therefore the understanding of LIGs and LIG parsing is
of importance. For example, quoted from (Schabes and Shieber, 1994) “The LIG version
of TAG can be used for recognition and parsing. Because the LIG formalism is based on
augmented rewriting, the parsing algorithms can be much simpler to understand and easier
to modify, and no loss of generality is incurred”. In (Vijay-Shanker and Weir, 1993) LIGs are
used to express the derivations of a sentence in TAGs. In (Vijay-Shanker, Weir and Ram-
bow, 1995) the approach used for parsing a new formalism, the D-Tree Grammars (DTG),
is to translate a DTG into a Linear Prioritized Multiset Grammar which is similar to a LIG
but uses multisets in place of stacks.

LIGs can be seen as usual context-free grammars (CFGs) upon which constraints are im-
posed. These constraints are expressed by stacks of symbols associated with non-terminals.
We study parsing of LIGs, our goal being to define a structure that verifies the LIG
constraints and codes all (and exclusively) parse trees deriving sentences.

Since derivations in LIGs are constrained CF derivations, we can think of a scheme where
the CF derivations for a given input are expressed by a shared forest from which individual
parse trees which do not satisfied the LIG constraints are erased. Unhappily this view is
too simplistic, since the erasing of individual trees whose parts can be shared with other
valid trees can only be performed by some unfolding (unsharing) that can produced a forest
whose size i1s exponential or even unbounded.

In (Vijay-Shanker and Weir, 1993), the context-freeness of adjunction in TAGs is cap-
tured by giving a CFG to represent the set of all possible derivation sequences. In this
paper we study a new parsing scheme for LIGs based upon similar principles and which, on
the other side, emphasizes as (Lang, 1991) and (Lang, 1994), the use of grammars (shared
forest) to represent parse trees and is an extension of our previous work (Boullier, 1995).

This previous paper describes a recognition algorithm for LIGs, but not a parser. For a
LIG and an input string, all valid parse trees are actually coded into the CF shared parse
forest used by this recognizer, but, on some parse trees of this forest, the checking of the
LIG constraints can possibly failed. At first sight, there are two conceivable ways to extend
this recognizer into a parser:

1. only “good” trees are kept;

2. the LIG constraints are [re-|checked while the extraction of valid trees is performed.

As explained above, the first solution can produce an unbounded number of trees. The
second solution is also uncomfortable since it necessitates the reevaluation on each tree of

RR n®°2858



4 Pierre Boullier

the LIG conditions and, doing so, we move away from the usual idea that individual parse
trees can be extracted by a simple walk through a structure.

In this paper, we advocate a third way which will use (see section 4), the same basic
material as the one used in (Boullier, 1995). For a given LIG L and an input string z, we
exhibit a non ambiguous CFG whose sentences are all possible valid derivation sequences
in L which lead to . We show that this CFG can be constructed in O(n®) time and that
individual parses can be extracted in time linear with the size of the extracted tree.

2 Derivation Grammar and CF Parse Forest

The goal of this section is to set up the vocabulary and to define a grammatical vision of
derivations and parse trees.

Let G = (Vn, Vi, P, S) be a CFG where:

e Vy is a non-empty finite set of non-terminal symbols.

e Vp is a finite set of terminal symbols; Vv and Vp are disjoint; V = Va U Vi is the
vocabulary.

e S is an element of Vi called the start symbol.

e P C Vy x V* is a finite set of productions. Each production is denoted by A — o;
such a production is called an A-production.

We adopt the convention that A, B, C denote non-terminals, a, b, ¢ denote terminals, w,
denote elements of V7, X denotes elements of V', 3,0 denote elements of V* and r refer to
productions.

On V* we define a binary relation named derives and denoted by :G> (or simply = when

G is understood) as the set {(¢Bo’,0p0’) | B —> 3 € P}.
Let o1,...,04,0441,...,01 be strings in V* such that Vi, 1 <1 <[, 0, = ;41 then the

sequence of strings (o1, ...,04, 0it1,...,01) is called a derivation.

A o-derivation is a derivation whose first element is 0. A o-derivation whose last element
in the sequence is B is called a o/B-derivation. The elements of a o-derivation are called
o-phrases. A o-phrase in V} is a o-sentence. On the other hand an S-phrase is a sentential
form and an S-sentence is a sentence.

The language defined by G is the set of its sentences:

LG)={z|SZznreVi})

In a rightmost (leftmost) derivation, at each step the rightmost (leftmost) non-terminal
say B is replaced by the RHS of a B-production. A rightmost (leftmost) derivation can
equivalently be specified by its first and last string and by the sequence of productions used
at each step. For example if S % T_—G’ﬁ z is a rightmost S/z-derivation in which at each

INRIA



Another Facet of LIG Parsing (extended version) 5

step the relation symbol is overlined by the production used, we will also say that ry...7r,
is a rightmost S/z-derivation.

A symbol X is accessible (from the start symbol) if X appears in some sentential form,
productive if X = z and useful if it is both accessible and productive. A production is useful
if all its symbols are useful. A grammar is reduced when all its productions are useful. We
will see how these classical definitions extend to LIGs in section 3.

For a CFG G, the set of its (say) rightmost derivations can itself be defined by a grammar
called rightmost derivation grammar.

Definition 1 Let G = (Vn,Vp, P,S) be a CFG, its rightmost derivation grammar is the
CFG D¢ (or D when G is understood) D = (V2 VP, PP SP) where

. VTD =P

. VJ\Q =Vy.

o SP =5

o PP = {Aq — A1 Agr | r=Ag s wodwn L owgmi Aquwg E PAw EVEANA; €V

From the natural bijection between P and PP we can easily prove that
L(D)={rn...r1|r1...7, is a rightmost S/z-derivation in G}

This shows that the rightmost derivation language of a CFG is also CF. We will see in
section 4 that a similar result holds for LIGs. Note that this grammar is reduced iff G is
reduced.

A shared parse forest is the intersection of a CFG and a non-deterministic finite state
automaton (FSA). From the language theory we know that this intersection is itself a CFG.
In (Lang, 1994) B. Lang gives this definition to denote the set of parse trees since any input
string = can be modeled by an FSA'. Moreover, the consideration of an FSA as input rather
than a simple linear sequence can be interesting in natural language processing since regular
languages can express different phenomena like ill-formed or ambiguous inputs. Below, we
formally define a shared parse forest when the input is an FSA.

Definition 2 Let G = (Vy,Vr, P,S) be a CFG, G' = (VN U{S'}, Vp, PU{S" — S},5") its
augmented grammar, and M = (Q,X, qo, 8, F) be an FSA. The shared parse forest for M
(w.r.t. G) is the CFG, GM = (V{1 VM, PM[S]) where:

o VM = {[STTULIX) | X € Vv Aid,j € Q).

QVT“M:{(I|GEVTOE}.

lif 2 = aq ... an, the states of the FSA can be the integers 0...n, 0 is the initial state, n the unique final
state, and the transition function § is s.t. 7 € §(¢ — 1,a;) and ¢ € (3, €).

RR n°2858



6 Pierre Boullier

o PM={[S]—[Slit las € FYU{IXY —»e| X 5 ce PAj€d(i,e)}U
{IX]? Y1 Y. Y | Xo = X1 ... X ... X, € PAig € QAVE, 1 <k < pJix € Q
s. 1. (Yk = [Xk]z:_l ANXg e VNVY, =X AXg eV n E) A(i(ik_l,Xk) = ik}‘
This grammar described the intersection of G and M:
L(GM) = L(G) N LM)

Each production rf € PM is denoted by a double index (p, q) where the lower one p is
such that r, is the associated production in PU{S’" — S}.

We call canonical shared parse forest the reduced CFG whose production set PM is the
subset of PM where all productions containing useless symbols have been eliminated. In
fact, any CFG GM = (VM VM, PM SM) st. PM C PM C PM is called a shared parse
forest.

It should be noticed that this definition is completely independent of the way (i.e left-
to-right, top-down, bottom-up, ...) the forest is built.

A “blind” implementation, simply based upon combinatorial considerations, which does
not rely upon dependencies from one production to the other, and which generates PM,
leads to a parser which may be qualified of global. The forest is built without any left-to-
right, top-down or bottom-up bias. In such a case inaccessible and non-productive symbols
can be produced.

The bottom-up version, where a production is generated only when its RHS symbols have
already been computed leads to a parser in the CKY style. In this case, in the generated
forest, all symbols are productive but some of them can be inaccessible.

The counterpart, where all the productions, having a given non-terminal in LHS, (and
all possible combination of symbols in RHS,) are produced only when this LHS non-terminal
has already been generated (or is the start symbol) leads to a top-down parser. In this case,
in the generated forest, all symbols are accessible but some of them can be non-productive.

In all cases, the recognition problem of z in GG is to decide whether the language of this
parse forest grammar is empty or equivalently whether the start symbol [S’] is useful.

If we build the rightmost derivation grammar associated with a shared parse forest, and
we remove all its useless symbols by the classical algorithm, we get a reduced grammar
D*. The CF recognition problem is now equivalent to the existence of an [S’]-production in
D?. Moreover, each rightmost S/z-derivation in G is (the reverse of) a sentence in £(D7).
However, this result is not very interesting since individual parse trees can be as easily
extracted directly from the parse forest. This is due to the fact that in the CF case, a tree
that is derived (a parse tree) contains all the information about its derivation (the sequence
of rewritings used) and therefore there is no need to distinguish between these two notions.
This 1s not always the case with non CF formalisms, and we will see in the next sections
that a similar approach, when applied to LIGs, leads to a shared parse forest which is a LIG
while it is possible to define a derivation grammar which is CF.

In the sequel we will assume that only linear inputs are processed, but all results stay
valid when they are transposed to FSAs.

INRIA



Another Facet of LIG Parsing (extended version) 7

3 Linear Indexed Grammars (LIGs)

Indexed grammars are syntactic formalisms which are extensions of CFGs in which a stack
of symbols is associated with each non-terminal. Besides this CF property, these grammars
express the way these stacks evolve. In a LIG, which is a restricted form of indexed grammar,
in productions with (at least) a non-terminal in RHS, the same stack is associated with
both the LHS symbol and this RHS symbol. Of course, the content of this stack can change
between its LHS and its RHS occurrence: some symbols may be pushed or popped. Other
RHS non-terminal symbols, if any, are associated with (new) stacks of bounded size.

Following (Vijay-Shanker and Weir, 1994)
Definition 3 A LIG, L is denoted by (Vi,Vp,Vr, Pr, S) where:

o Vn is a non-empty finite set of non-terminal symbols;

o Vr s a finite set of terminal symbols, Vy and Vi are disjoint, and V = Vy U Vp 1s
the vocabulary;

o U7 is a finite set of stack symbols (T stands for indices);
e P is a finite set of productions;

e S € Vy is the start symbol.

A string of stack symbols is an element of V. We adopt the convention that a will
denote members of V; and v elements of V7. In fact, in a LIG production, the structure
associated with a non-terminal can be either a stack or a stack schema. A stack schema
denoted (..a) matches all the stacks whose prefix (bottom) part is left unspecified and whose
suffix (top) part is a. In a LIG production, we call primary constituent the pair denoted
A(..a), consisting of a non-terminal A, and a stack schema (..a) and secondary constituent
the pair denoted A(«), consisting of a non-terminal A, and a string of stack symbols a.

In the sequel we will only consider a restricted form of LIGs with productions of the
form

P = {A) 2 w|AeVyAweVFAD < |w| <2} U
{A(..a) = T1B(.d) Ty |A,BE VN Aad € V[ A0 < |ad| < 1}

where T1T'y € Ve U{e} U{C() | C € Vw}.

Such a form has been chosen both for complexity reasons and to decrease the number of
cases we have to deal with. However, it is easy to see that this form of LIG constitutes a
normal form.

We use 7() to denote a production in Pr, where the parentheses remind us that we are

in a LIG!

RR n°2858



8 Pierre Boullier

The CF-backbone of a LIG is its underlying CFG in which each production is a LIG
production where the stack part of each constituent has been deleted, leaving only the non-
terminal part. We will only consider LIGs such there is a bijection between its production
set and the production set of its CF-backbone?.

We call object the pair denoted A(a) where A is a non-terminal and (a) a stack of
symbols. Let Vo be the set of objects Vo = {A(a) | A € Vv Aa € V'}. We define
on (Vo U Vp)* the binary relation derives denoted :L> (the relation symbol is sometimes

overlined by a production) by:

A(..a)=T1B(..a’)Ty

I A(a” )Ty ['T1B(a"a")T5T

T, AT I\l

In the first above element we say that the object B(a'«’) is the distinguished child of
A(e”a), and if T1Ty = C(), C() is the secondary object. TLet Ty,...,T; Tiy1,...,T; be
strings in (Vo U Vp)* such that Vi, 1 < i < ,3r;() € Pr,T; %9 [;41 then the sequence of

strings (T1,...,T,Tiz1,..., 1) is called a derivation.
The language defined by a LIG L is the set:

E(L):{:p|5()%>x/\mEVT*}

As in the CF case we can talk of rightmost (resp. leftmost) derivations when the right-
most (resp. leftmost) object is derived at each step. Of course, many other derivation
strategies may be thought of. For our parsing algorithm, we need such a particular derives
relation. But we first need to define an ordering relation which will be used to choose in
a string ' which object to derive. This relation is defined on addresses. An address is an
element of {1,2}* denoted by i.j.k ....

The ordering relation < is defined by:

n < nm
n.lm < n2ap
v, n1,m2 € {1,2}*. We can easily check that < defines a total order over {1,2}* (it is a
lexicographic order).
Let Ao(ao) IZ> FlAl(al)ml

ciate an address with any object occurrence in the following way:

7i()

:L> T'1T2z1 be a rightmost Ag(ag)-derivation, we will asso-

e The address of the initial object occurrence Ag(ayg) is &.

2rp and rp() with the same index p designate associated productions.

INRIA



Another Facet of LIG Parsing (extended version) 9

e Assume that each object occurrence in T'1Aj(aj)z; has an address and the address
of Ai(ay) is n, we examine the addresses of T'1Ta2;. The addresses associated with
T'; are identical in left and right hand sides, and the addresses associated with (the
object occurrences of) T's depend upon the kind of the production 7;() used. When
ri() = A1() = wis used (a; = ¢ and T3 = w) this addressing is pointless. In the other
case the addresses of the object occurrences in 'y are 7.2 for the distinguished child
and 7.1 for the secondary object, if any.

This means that the address of a distinguished child is always greater than the address
of its secondary object companion (if any), whether this object lays to its left or to its
right. We agree that at each derivation step the address n of the object to be derived can be

associated with the production 7;() (i.e. T1 A (1)1 n%n I'1T221). Note that in a derivation

such addresses are all differents.

The sequence of pairs (r1(), 71 =¢€),...,(r:(),m), ..., (), n5), -, (ra(), nn) associated
with any rightmost derivation, can be reordered in such a way that any two consecutive pair
(ri (), mk), (e (), mi) verify nx < mi.

Let (ri() = m1(0),n1 = ¢€),..., (7i0),n}), - - -, (7“3()’773)’ ..., (5, (), m,) be this reordered se-
quence. The derivation Ag(ag) TELQ r£(>) %9 TELQ ... implied by this reordered
sequence in which at each step the object to be derived is the one with the smallest address

is called linear derivation® and is denoted by l:z. Moreover, the way it is defined shows that

for each rightmost derivation there exists a unique linear derivation. Since for each word z
in £(L) there is at least a rightmost S()/z-derivation, there is also a linear S()/z-derivation.

For a derivation the reflexive transitive closure of the distinguished child relation is
the distinguished descendant relation. Since the address of a distinguished child is always
greater than the address of its secondary object companion, in a linear derivation, it will
be derived after it (and after the descendants of that companion). Therefore, if we have

A(a) % 1 A'(a')zs, A'(’) is a distinguished descendant of A(a).

The sequence of objects Ay (aq) ... Aj(a;)Aip1(@ig1) ... Ap(ap) is called a spine if, there
is a derivation in which each object A;41(;41) is the distinguished child of A;(e;) (and the
distinguished descendant of A;(a;),1 < j < i). Equivalently, if n and 1.2% are two addresses
in a derivation, the sequence of objects whose addresses are 1,1n.2,...,7.2" ... 7.2% where
0 < h < k is a spine. This means that for a derivation and an object A(a) at a given
address, we can talk, when no confusion can arise, of the spine of A(a).

Definition 4 For a given LIG L, a production r() is useful iff it occurs in some S()/z-
derivation

S():*>F1r:91“2:*>m
L L L

3linear reminds us that we are in a LIG and relies upon a linear (total) order over object occurrences in
a derivation.

RR n°®°2858



10 Pierre Boullier

Definition 5 A LIG is reduced iff all its productions are useful.

We note that if a LIG L is reduced and if its production set Pr is non-empty, we have
L(L) # 0.

However, contrary to the CF case, when L is reduced:

e an accessible object A(a) (i.e. S() :Z> I'1 A(a)T2) can be non productive (i.e. AA(«) :Z>
r);
e a productive object can be inaccessible;

e a new production built with constituents occurring in useful productions is not neces-
sarily useful.

4 Linear Derivation Grammar

For a given LIG L, consider a linear S()/z-derivation

r

J2

(

U=
Sl

—
~
<

1{
.=z
L

(]

3

i

S0

=~
I3

) ) )

The sequence of productions 71()...7;()...7,() (considered in reverse order) is a string
in Pf. The purpose of this section is to define the set of such strings as the language defined
by some CFG called linear derivation grammar (LDG). Such a LDG is of importance since
it defines all valid derivations w.r.t. L (and only these ones). We will see how it can be used
to define a parser (and a recognizer) for LIGs.

Associated with a LIG L = (Vy, Vp, Vi, Pr, S), we first define a bunch of binary relations
which are borrowed from (Boullier, 1995)

= {(A,B)|A(.) = T1B(.)T5 € P}

{(A,B) | A(..) = T\ B(.4)Ts € P}

{(A,B) | A(.y) > T1B(..)T2 € Pr}

oy s Y

{(A1, 4p) | A1() % I'1A,()T5 and Ay () is a distinguished descendant of A;()}

The I-level relations simply indicate, for each production, which operation can be apply
to the stack associated with the LHS non-terminal to get the stack associated with its

distinguished child; <1> indicates equality, % the pushing of v, and % the popping of ~.

If we look at the evolution of a stack along a spine Aq (1) ... A;i(a;)Aig1 (cigr) - .- Ap(ap),
between any two objects one of the following holds: a; = @41, @iy = @41, or @ = a;417.

INRIA



Another Facet of LIG Parsing (extended version) 11

The <> relation select pairs of non-terminals (A1, A,) s.t. @3 = a, = € along non trivial
+
spines.

If the relations ; and & are defined as
+

¥ ¥ ¥
> = = U<
+ 1 + 1
vy
YEVT
we can easily see that the following identity holds
Property 1
< = <-UsU<>=<-U~x<>-
+ 1 1+ +

. . . ¥ .
In (Boullier, 1995) we can found an algorithm* which computes the <+>, i and ~ relations
as the composition of <>, % and » in O(|Vn[?) time. Of course, the maximum size of these
171 1
relations is O(|Vn|?).

Definition 6 Let L = (Vy,Vp, Vi, P, S) be a LIG, ils linear derivation grammar (LDG)
is the CFG Dy, (or D when L is understood) D = (V2 VP PP SP) where

o The set of non-terminal symbols is VP = {[A]| A € Vy}U{[ApB] | AL BE VN ApE
R}, where R is the set of relations {%, < %, Y, ~, %} In fact we will only use valid
non-terminals [ApB] for which the relation p holds between A and B.

o The terminal symbols of D are the productions of L: VTD =P
o SP = 8]

e Below, [T1T'3] denotes either the non-terminal symbol [X] when T'1Te2 = X() or the
empty string ¢ when I''T'y € V.

PP = {4l = r() [ r() = A) > we P} (1)
{4 = 114 < B) | r() = B > w e Py} U @
{[A <+> Cl—= [T1T2r() | r() = A(.) = T1C ()T € PL} U (3)
{44l A~ U (4)

4Though in the referred paper, these relations are defined on constituents, the algorithm also applies to
non-terminals.
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(144 C) = [B < CllA= B} U (6)

{MzC}ﬂB%QHJﬁ@MO:MQ%F@@ﬂUEH}U (7)
{m%cpﬂnmmnm:A@ﬂ%ncumeagu (8)

{m%q%mmmmfﬂum:mqpnmmme&}(m

The productions in PP define all the ways linear derivations can be composed from

linear sub-derivations. This compositions rely on one side upon property 1 (recall that the

productions in Pr, must be produced in reverse order) and, on the other side, upon the
order in which secondary spines (the I'yT's-spines) are processed to get the linear derivation
order.

Theorem 1 Let L = (Vy,Vr, Vi, Pr,S) be a LIG and D = (V2 VP PP SP) its LDG,

we have

=

{r0)...r0 1502 .. 4

L(p) = A

rAxeL(L)}

I3

Proof: In this proof we will only consider two types of linear derivations. The set B of

linear balanced derivations

(A =

r

[
—
—

. réz Lo z1B()zs | B() is a distinguished descendant of A()}

3

B =

U

I3
~
I3
I3

) ) )

and the set C of linear closed derivations

{A0)

r

l

—
(&
=

rq(

.=z}

)

3

()...rl

)

C =

U
U

~
I3
t~
I3

)

Note that any linear closed derivation is the composition of a linear balanced A()/

7x{)

z1B()zg-derivation and a trivial linear closed derivation B() B(zz_i“ zg. Let A() Z:z
;li) z1B()zz € B, and C() l:*i y1A(a)ys and B(a) f*i z1D()z3 be two linear

) )

derivations, then C/() z:*z y1A(e)ys r;:%) ré(> y1z1B(a)z3ys z:*z y1z121D()z323y3 is a

I3
~

)

linear balanced derivation.
Recall that the language of a non-terminal A is defined by £(A) = {z | A = z}. Our

theorem results from the proof that the languages of non-terminal symbols in V2 can
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Another Facet of LIG Parsing (extended version) 13

be defined in terms of linear balanced or closed derivations in L in the following way

LlAnps <= A1) = {10700 | A ﬁ? ?2 2141 ()zs € B}
L)) = {n0..m0 140 . Haec
The proof that if r1() ...r,() € L([A <+> BY]), the derivation A() r%) . TIL() z1B()zs is

a linear balanced derivation or if r1() ...7,() € L([A]) the derivation A() TELQ o r%) x

is a linear closed derivation is performed by induction on the length of the strings in

L([A <~ B]) or L([A])-

%%) ) z1B()zs € B (resp. A() rg) )

The proof that every derivation A() = = =
z € C) is such that 71()...7,() is a string in L([A <+> B]) (resp. L£([A])) is performed

)

by induction on the length of these derivations.

Finally the theorem results from the fact that £(D) = £([5]).

o
Moreover, we can show that LDGs are non ambiguous. This non ambiguity results from

the following property. Let o € P; and X € V& s.t. ¢ € £(X): there is a unique production

X 5 YZ € PP such that X X—gz YZ :> Yo, :> o109 = o. In fact we can prove a much

stronger result: LDGs are SLR( ). The proof of that theorem strongly relies upon the
property that the sets FOLLOW([A]) and FIRST([B <+> (1) are disjoint for all [A] and

[BYC]inVJ{?.

If D is generated top-down: we first produce the [S]-productions and then an [X]-
production is produced iff the non-terminal [X] occurs in the RHS of some already produced
production, we are sure that all symbols in D are accessible. However, some symbols can be
non productive. This is due to the fact that when a non-terminal, say [A <+> (' is generated

in some RHS, though we are sure that there is at least one spine between A and C, the
relation <+> does not guaranty the existence of linear closed (sub-)derivations starting on

secondary objects generated during the walk along the main spine.

If, by some classical algorithm, we remove from D all its useless symbols, we get a
reduced CFG say D' = (VAL,?I, qul, pD’, SDI). In this grammar, all its terminal symbols,
which are productions in L, are useful. This shows that the LIG L' = (Vy, Vp, V1, Vi I,S)
is equivalent to L and is reduced. By the way, the construction of D’ solve the emptiness
problem for LIGs: a LIG specify the empty set iff the set VTDI is empty®.

5Tn (Vijay-Shanker and Weir, 1993) the emptiness problem for LIGs is solved by constructing an FSA.

RR n°2858



14 Pierre Boullier

5 LIG parsing

Given a LIG L = (Vy, Vp, Vi, P, S) we want to find all the syntactic structures associated
with an input string z € V5. In section 2 we used a CFG (the shared parse forest) for
representing all parses in a CFG. In this section we will see how to build a CFG which
represents all parses in a LIG.

In (Boullier, 1995) Boullier gives a recognizer for LIGs with the following scheme: in a
first phase a general CF parsing algorithm, working on the CF-backbone builds a shared
parse forest for a given input string z. In a second phase, the LIG conditions are checked
on this forest. This checking can result in some subtree (production) deletions, namely
the ones for which there is no valid symbol stack evaluation. If the resulting grammar is
not empty, then x is a sentence. However, in the general case, this resulting grammar is
not a shared parse forest for the initial LIG in the sense that the computation of stack
of symbols along spines are not guaranteed to be consistent. Such invalid spines are not
deleted during the check of the LIG conditions because they could be composed of sub-
spines which are themselves parts of other valid spines. One way to solve this problem is
to unfold the shared parse forest and to extract individual parse trees. A parse tree is then
kept iff the LIG conditions are valid on that tree. But such a method is not practical since
the number of parse trees can be unbounded when the CF-backbone is cyclic. Even for
non cyclic grammars, the number of parse trees can be exponential in the size of the input.
Moreover, it is problematic that a worst case polynomial size structure could be reached by
some sharing compatible both with the syntactic and the “semantic” features.

However, we know (see (Vijay-Shanker, 1987)) that derivations in TAGs are context-free
and (Vijay-Shanker and Weir, 1993) exhibits a CFG which represents all possible derivation
sequences in a TAG. We will show that the analogous holds for LIGs and leads to an O(n®)
time parsing algorithm.

Definition 7 Let L = (VN,Vr, V1, P1,S) be a LIG, G = (VN,Vp, Pg, S) its CF-backbone,
z a string in L(G), and G = (V5 ,VE, PE,S”) its shared parse forest for x. We define
the LIGed forest for x as being the LIG L* = (V3 ,VF, Vi, P§,S%) s.t. G® is ils CF-
backbone and its productions are the productions of P& in which the corresponding stack-
schemas of L have been added. For example ri() = [Alf(.a) — [B]f(o/)[C]f() € Py aff

rd = [A]¥ - [BI[C]h € PEAr,=A— BC € GAry() = A(.a) —» B(.a')C() € L.

Between a LIG L and its LIGed forest L for z, we have:
reL(L) < zeL(L)

If we follow (Lang, 1994), the previous definition which produces a LIGed forest from
any L and z is a (LIG) parser®: given a LIG L and a string z, we have constructed a
new LIG L? for the intersection £(L) N {z}, which is the shared forest for all parses of the

80f course, instead of z, we can consider any FSA.
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Another Facet of LIG Parsing (extended version) 15

sentences in the intersection. However, we wish to go one step further since the parsing (or
even recognition) problem for LIGs cannot be trivially extracted from the LIGed forests.

Our vision for the parsing of a string z with a LIG L can be summarized in few lines.
Let G be the CF-backbone of L, we first build G¥ the CFG shared parse forest by any
classical general CF parsing algorithm” and then L” its LIGed forest. Afterwards, we build
the reduced LDG Dy= associated with L® as shown in section 4.

The recognition problem for (L, z) (i.e. is  an element of £(L)) is equivalent to the
non-emptiness of the production set of Dye.

Moreover, each linear S()/z-derivation in L is (the reverse of) a string in £(Dr<)®. So
the extraction of individual parses in a LIG is merely reduced to the derivation of strings in
a CFG.

An important issue is about the complexity, in time and space, of Dp=. Let n be the
length of the input string z. Since G is in binary form we know that the shared parse forest
G? can be build in @(n?) time and the number of its productions is also in @(n?). Moreover,
the cardinality of V¥ is O(n?) and, for any given non-terminal, say [A]#, there are at most
O(n) [A]Z-productions. Of course, these complexities extend to the LIGed forest L®.

We now look at the LDG complexity when the input LIG is a LIGed forest. In fact, we
mainly have to check two forms of productions (see definition 6). The first form is production
(6) ([A g Cl—[B g C][A =~ B]), where three different non-terminals in Vi are implied

(i.e. A, B and (), so the number of productions of that form is cubic in the number of
non-terminals and therefore is O(n®).

In the second form (productions (5), (7) and (9)), exemplified by [4 ~ C] — [B %
C[T1T3]r(), there are four non-terminals in Viy (i.e. A, B, C, and X if T4 Ty = X()) and
a production r() (the number of relation symbols Q is a constant), therefore, the number

of such productions seems to be of fourth degree in the number of non-terminals and linear
in the number of productions. However, these variables are not independant. For a given
A, the number of triples (B, X, r()) is the number of A-productions hence O(n). So, at the
end, the number of productions of that form is O(n®).

We can easily check that the other form of productions have a lesser degree.

Therefore, the number of productions is dominated by the first form and the size (and
in fact the construction time) of this grammar is @ (n®).

This (once again) shows that the recognition and parsing problem for a LIG can be
solved in O(n®) time.

For a LDG D = (VP VP PP SP) we note that for any given non-terminal A € V,;?
and string o € £(A) with |o| > 2, a single production A — X; X3 or A = X; X3X3 in PP
is needed to “cut” o into two or three non-empty pieces o1, 03, and o3, such that X; :;> o,

"See (Kasami, 1965) and (Younger, 1967) for the Cocke-Kasami-Younger method, (Earley, 1968) for the
Earley algorithm, and (Lang, 1974), (Tomita, 1987) and (Rekers, 1992) for generalized LR parsing.

8Tn fact, the terminal symbols in Dy« are productions in L% (say RZ()), which trivially can be mapped
to productions in L (here rp()).
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16 Pierre Boullier

except when the production form number (4) is used. In such a case, this cutting needs two
productions (namely (4) and (7)). This shows that the cutting out of any string of length [,
into elementary pieces of length 1, is performed in using O(/) productions. Therefore, the
extraction of a linear S()/z-derivation in L is performed in time linear with the length of
that derivation. If we assume that the CF-backbone G is non cyclic, the extraction of a
parse is linear in n. Moreover, during an extraction, since Dy« is not ambiguous, at some
place, the choice of another A-production will result in a different linear derivation.

Of course, practical generations of LDGs must improve over a blind application of de-
finition 6. One way is to consider a top-down strategy: the X-productions in a LDG are
generated iff X is the start symbol or occurs in the RHS of an already generated production.
The examples in section 6 are produced this way.

If the number of ambiguities in the initial LIG is bounded, the size of Dp=, for a given
input string z of length n, is linear in n.

The size and the time needed to compute Dy- are closely related to the actual sizes of

the <>, ; and =~ relations. As pointed out in (Boullier, 1995), their @(n*) maximum sizes
+ 4

seem to be seldom reached in practice. This means that the average parsing time is much
better than this O(n®) worst case.

Moreover, our parsing schema allow to avoid some useless computations. Assume that
the symbol [A <+> B] is useless in the LDG Dy, associated with the initial LIG L, we know

that any non-terminal s.t. [[A]J <~ [B]4] is also useless in Dge. Therefore, the static
+

. o . ¥
computation of a reduced LDG for the initial LIG L (and the corresponding <+>, i and
~ relations) can be used to direct the parsing process and decrease the parsing time (see

section 6). Up to our knowledge, it is the first time that a static computation on LIGs can
be used to possibly decrease the parsing time.

6 Two Examples

6.1 First Example

In this section, we illustrate our algorithm with a LIG L = ({S, T}, {a, b, ¢}, {¥a, ¥, Ve }, Pr, S)
where Pp contains the following productions:

r() =S5(.)—=S(v)e () =SC)=S(wb r3()=S5(.)—=S(7)c
re() = S() = T(..) rs() =T(.va) = aT(..) r6() =T () = bT(..)
r7() =T(7:) = cT(..) rs()=T() = ¢

It is easy to see that its CF-backbone (G, whose production set Pg is:

S—Sa S—=50 S—=S¢ S—>T
T—al' T2V T T-—>ec
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defines the language £(G) = {wew' | w,w' € {a,b,c}"}. We remark that the stacks of
symbols in L constrain the string w’ to be equal to w and therefore the language £(L) is

b,c}'}.

{wew | w € {a,

We note that in L the key part is played by the middle ¢, introduced by production
rg(), and that this grammar is non ambiguous, while in G the symbol ¢, introduced by the
last production T — ¢, is only a separator between w and w’ and that this grammar is
ambiguous (any occurrence of ¢ may be this separator).

The computation of the relations gives:

Ya
-
+

The production set PP

< = {5
2= A
S
<+ {(s
~ = {(S
I ()

(5,1}

of the LDG D associated with L is:

%

Wn
zz+
=

N

The numbers (%) refer to definition 6.

ry = [S]g = [Slge
=Sl =15 r
ri =[T13 = c[T]5 r
=T = ¢ r
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ra()
[S =~ T

[ ¥ 71r1()
wiﬂmo
[ % TIrs()
rs([S <~ 7]
ro(S < 7]
r()[S - 7]

We can easily checked that this grammar is reduced.
Let & = cec be an input string. Since z is an element of £(G), its shared parse forest G*
is not empty. Its production set Pg is:

Sy
NwWoroW
Ll
° N

I

=
d
o

—
|
o—OW

2
3
4

(2)
(3)
(4)
(7)
(7)
(7)
)
)
(9)

r3 = [ST5 — [Slge
ry = [T15 = [T}
ry = [T15 = [T1;
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We can observe that this shared parse forest denotes in fact three different parse trees. Each
one corresponding to a different cutting out of z = wew’ (i.e. w = ¢ and w’ = ce, or w = ¢
and w’ = ¢, or w = cc and w' = ¢).

The corresponding LIGed forest whose start symbol is S = [S]3 and production set Pf
is:

ra() = [SI3(-) = [SI3(-ve)e  73() = [ST3(.) = [TI3(-)  r3() = [SI3(-) = [So(-7e)e
ra() = [SI3(-) = [TT8() 730 = [Slo(-) = [TTo(-)  r7() = [TTo(--ve) = e[T13(.)
() = [T (.7e) = e[TI3() r5() = [T13() > ¢ r2() = [T13(-ve) = e[T13(.)
rg’() = [T — ¢ rg () = [T]h() = ¢

For this LIGed forest the relations are:

<= = {1 [710), ([S16, [T15), ([STo. [T10)}
L: = {([S15, [S10). (1S5, [S10)}

%C = {(TI,175), (703, [702), (715, [T15)}
~ = {(IS, [T}

<= = <= Ur

+

%: = %U{([S]S’, [TT3), ([S13, [T15)}

The start symbol of the LDG associated with the LIGed forest LZ is [[S]3]. If we assume
that an A-production is generated iff it is an [[S]3]-production or A occurs in an already
generated production, we get:

[[STo] = 13 0llSTo <~ [T1i] (2)

[[STo - (711 = [IS13 ~ [T]i] (4)

(S~ [T’ — (SIS % [T]i]rs() (7)

[[S]%%f [T = 2000586 < (7] (9)

[[STe <~ (Th) = ri() (3)
This CFG is reduced. Since its production set is non empty, we have ccc € £(L). Tts
language is {ri°()r2()r4()r3()} which shows that the only linear derivation in L is 5() fg

’

Tq() T7() T‘a()
S(ye)e = T(ye)e = eT()e — cec.

) ) )

In computing the relations for the initial LIG L, we remark that though T t T, T ;l—) T,
+ +

and T%ﬁ T, the non-terminals [Tvi—l T, [T %: T1], and [T%i T] are not used in PP. This
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means that for any LIGed forest L7, the elements of the form ([T, [T]gi) do not need to be
. Ya Yo Ye . . . .
computed in the :, i , and i relations since they will never produce a useful non-terminal.

. Ye Ye .
In this example, the subset > of > is useless.

1+
The next example shows the handling of a cyclic grammar.

6.2 Second Example
The following LIG L, where A is the start symbol:

()= A(.) = A(ve) () =A(.)—= B(.) rs()=B(.7) = B(..) rs()=B() —a

is cyclic (we have A £ Aand B & B in its CF-backbone), and the stack schemas in

production 7 () indicate that an unbounded number of push 5, actions can take place, while
production r3() indicates an unbounded number of pops. Tts CF-backbone is unbounded
ambiguous though its language contains the single string a.

The computation of the relations gives:

< = {4, B)}
3= {a)
2 o= {(8.B)
< = {(4B8)}
~ = {(4,B)}

{(4, B), (B, B)}

+Y3
[l

The start symbol of its LDG associated with L is [A] and its productions set PP is:

(4] — ra(lA < B] 2)
(44 B] = 70 (3)
[A<-B] - [Ax~B] (4)
[A~B] — m$3mo (7)
AZ B =m0+ B ©)

We can easily checked that this grammar is reduced.
We want to parse the input string # = a (i.e. find all the linear S()/a-derivations).
Its LIGed forest, whose start symbol is [A]} is:
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ri() = [Al(-) = [l (-va)  r3() = [Alg(-
[Blo(-va) = [Bls(.-) 7i() = [Blo() = a

For this LIGed forest LT, the relations are:

<
1

The start symbol of the LDG associated with L% is [[A]{].

{([Alo, [Blo)}
{([Alo, [410)}

{([Blo, [Blo)}
{([A5, [Bo)}
{([Alo, [Blo)}

{([Alo, [Blo), ([Blo,

If we assume that an A-

production is generated iff it is an [[A]}]-production or A occurs in an already generated

production, its production set 1is:

A

This CFG is reduced. Since its production set is non empty, we have a € L£(L). Its
language is {ri(){r3()}*r2(){r1()}* | 0 < k} which shows that the only valid linear deriva-
tions w.r.t. L must contain an identical number k of productions which push v, (i.e. the
production 71 ()) and productions which pop %, (i.e. the production rs()).

. . Ya .
As in the previous example, we can see that the element [B]} : [B]} is useless.

7 Conclusion

We have shown that the parses of a LIG can be represented by a non ambiguous CFG. This
representation captures the fact that the values of a stack of symbols is well parenthesized.
This means that when a symbol v is pushed on a stack at a given index at some place, this
very symbol must be popped some place else, and we know that such a pairing is the essence

of context-freeness.
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In this approach, the number of productions and the construction time of this CFG is
at worst O(n®), though much better results are expected in practical situations. Moreover,
static computations on the initial LIG may decrease this practical complexity in avoiding
useless computations. Each sentence in this CFG is a (linear) derivation of the given input
string by the LIG, and is extracted in linear time.
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