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Random Polynomials and
Polynomial Factorization

Philippe Flajolet, Xavier Gourdon and Daniel Panario

Abstract

We give a precise average-case analysis of a complete polyno-
mial factorization chain over finite fields by methods based on
generating functions and singularity analysis.

Polynomes aléatoires et
factorisation de polynomes

Résumé

Nous donnons une analyse en moyenne précise d’une chaine
compléte de factorisation de polynomes sur les corps finis par
des méthodes fondées sur les fonctions génératrices et ’analyse
de singularités.

To appear in Automata, Languages and Programming, Proceedings of the 23rd
ICALP colloguium, Paderborn, July 1996, F. Meyer auf der Heide, Ed., in Lec-
ture Notes in Computer Science.
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Abstract. We give a precise average-case analysis of a complete polyno-
mial factorization chain over finite fields by methods based on generating
functions and singularity analysis.

1. Introduction

Polynomial factorization is basic to many areas of computer algebra [12], al-
gebraic coding theory [1], computational number theory and cryptography [2, 6,
18, 20]. Its implications include finding complete partial fraction decompositions
(a problem itself useful for symbolic integration), designing cyclic redundancy
codes, computing the number of points on elliptic curves and building arithmetic
public key cryptosystems.

Polynomial factorization may be carried out over any field, but the efficient
algorithms are essentially probabilistic and they eventually rely on factoring over
a finite field F, where ¢ is a prime or the power of a prime, see [16] for an excellent
introduction. This paper derives basic properties of random polynomials over
finite fields that are of interest in the study of factoring algorithms. We show that
the most important characteristics can be treated systematically by methods of
“analytic combinatorics” based on generating functions and singularity analysis.

We have elected here to consider a classical factorization chain over finite
fields that is at the same time simple, fairly efficient, and complete. It is close to
what is used internally in the Maple computer algebra system [12] and to what is
likely to be required of a general purpose computer algebra system that mostly
deals with polynomials of intermediate “size”. Our factorization chain may not
be the fastest at the moment, compare for instance with Shoup’s technique [24].
However the discipline of completely analyzing such algorithms, which is in the
line of Knuth’s works [16], reveals parameters that are of intrinsic interest for
polynomial factoring in general. To the best of our knowledge, such a task has
not been undertaken systematically beyond rough (mostly worst-case) bounds.

Our reference factorization chain comprises the following three classical steps:

ERF: Elimination of repeated factors replaces a polynomial by a square-
free form that contains all the irreducible factors of the original poly-
nomial with exponents reduced to 1.

DDF: Distinct-degree factorization splits a squarefree polynomial into
a product of polynomials whose irreducible factors all have the same
degree.

EDF: Fqual-degree factorization factors a polynomial the irreducible
factors of which all have the same degree.
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The top-level code of our factorization chain (in pseudo-Maple) is given below.

procedure factor(f : polynomial);
1: a := ERF(f);
2: b := DDF(a);
F :=1;
3: for k from 1 to n do
F := F . EDF(b[k],k);

od;
4: return(F . factor(f/a));
end;

Computational model. All average-case analyses are expressed as asymptotic
forms in n, the degree of the polynomial to be factored. We fiz a finite field IF,
with ¢ = p™ (p prime) and consider the polynomial ring F,[z], see [12, 16, 19].
For simplicity of exposition, we assume here that the characteristic p is odd,
but the algorithms and their analyses can be easily adapted to the otherwise
important cases of Fs and Faom. Our model assumes that a basic field operation
has cost O(1); then the cost of a sum is O(n) and the cost of a product, a division
or a ged is O(n?), when applied to polynomials of degree < n. For dominant
asymptotics, we can freely restrict attention to polynomial products and ged’s
whose costs can be taken under the standard form

product: T1n?, ged: myn?.

2. Summary of results

It is well-known [1, 16] that a random polynomial of degree n is irreducible
with probability tending to 0 and has close to logn factors on average and with
a high probability [4, 10]. Thus, the factorization of a random polynomial over
a finite field is almost surely nontrivial.

The first phase FRF of our factorization chain classically starts with the elim-
ination of repeated factors, a simplified form of squarefree factorization described
in Section 4. Theorem 1 quantifies this process and shows that up to smaller
order terms, the expected cost is dominated by a single ged of the polynomial f
to be factored and its derivative f/, so that it is @(n?) on average. In a precise
technical sense, most of the factorization cost results from the subsequent phases
since the non-squarefree part has average degree O(1).

The second phase DDF that is described in Section 5 splits the squarefree
part a of the polynomial to be factored into a product a = by - by - - - b,,, where by,
is itself the product of the irreducible factors of a that have degree k. This phase
is based on elementary properties of finite fields and is the one with the highest
computational cost, namely @(n®) on average. Theorems 3,4,5 provide a precise
comparison of three strategies: the naive rule, the “half-degree” rule and the
“early abort” rule whose costs are found to be in the approximate proportion
1: % 5 % Thus a savings of about one third results from controlling the DDF
phase by the early abort strategy. At the end of this phase, the factorization is
complete with a probability ranging asymptotically between 0.56 and 0.67, see
Theorem 6.
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The third phase EDF can be exactly analysed and it is found that its ex-
pected cost is comparatively small, being @(n?), see Theorems 7,8 for precise
statements. For each nontrivial factor b, it involves a recursive refinement pro-
cess again based on properties of finite fields. The analysis is close to that of
digital trees known as “tries” [15] but under a biased probability model.

Precise statements are given in the next few pages with an explicit depen-
dency on the field cardinality ¢, and some of them involve number-theoretic
functions that can be both evaluated and estimated easily. Therefore, the re-
sults obtained allow us to quantify precisely what goes on. A simplified picture
is as follows. The ERF phase involves with high probability little more than a
single polynomial ged. The DDF phase of cost @(n?) is the one that is most in-
tensive computationally, where control by the “early-abort” strategy is expected
to bring gains close to 36% at no extra cost. The last phase of EDF is executed
less than 50% of the time and its cost is again small compared to that of DDF.

3. Basic methodology

This paper relies heavily on a symbolic use of generating functions (GF’s).
These are used to express enumerative properties of random polynomials and
also to derive direct asymptotic results from singularities. General references
are Chapter 3 of Berlekamp’s book [1], the exercise section 4.6.2 of Knuth’s
book [16], and the paper by Flajolet and Odlyzko [9] for asymptotic methods.

3.1. Generating functions. We specialize our discussion to polynomials over
a finite field IF,. Let 7 be the collection of monic irreducible polynomials. The
two expressions

(1) 0=JJ+w), and P=]JJ01-w)"

weT w€eT

when expanded by distributivity “generate” formally the family @ of monic
squarefree polynomials and P of all monic polynomials. In this context, Z may
itself be identified with the formal sum 7 = ZwEI w.

Let z be a formal variable. The substitution w — zI“| with |w| the degree
of w € 7 produces generating functions by a well-known process For instance,
Kz) =3 er 2l = > In2", where I, is the number of polynomialsin 7 having
degree n. The same substitution applied to P and Q yields two series, P(z) and
Q(z), that are found to satisfy

[ee] o0

(2) Q)= [TA+=""  P)=J[Q—2")""

n=1 n=1

Then, the coefficients @, = [2"]Q(z) and P, = [z"]P(z) represent the number
of polynomials of degree n in @ and P respectively.

Since P, has value ¢, we have P(z) = (1 — ¢z)~!, and the second rela-
tion of (2) implicitly determines I,, by a well-known process based on Moebius
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inversion [1]

(3) I _lz B¢, sothat L=L 10 7
n—nkl HAR)q ) n= " )
! o a(k) 1
4 I(z) = —1 .
(4) 0= L s

Thus a fraction extremely close to 1/n of all polynomials of degree n are ir-
reducible. This result was first proven by Gauss [11] for prime fields (see also

[8]).
As regards @, the formula 1+ z = (1 — 22)/(1 — 2) applied to the infinite
products for P(z), Q(z) entails

P(z) 1—qz?
P(z?)  1-—gqz

5) Q)= ,and  Qu=¢"""(¢-1) (n2>2),

with Qo = 1, @1 = ¢q. Apparently, this result was given for the first time in [5].
Parameters. We need extensions of this symbolic method in order to take care
of characteristic parameters of polynomial factorization. Let ® be a class of
monic polynomials, y some integer—valued parameter on ®. The sum

D(z,u) = Z Z@lyx(@)

weD

is such that the coefficient [z"u*]®(z, u) represents the number of polynomials
of degree n and y—parameter equal to k. For additive parameters x, the product
decompositions above generalize, provided one uses the translation rule w —
Z“lyx(«@) The technique of rearranging logarithms of infinite products is useful
in simplifying such expressions.

Averages and standard deviations are obtained by taking successive deriva-
tives of bivariate generating functions with respect to u, then setting u = 1.

3.2. Asymptotic analysis. Generating functions (GFs) encode exact infor-
mations on their coefficients. Furthermore, their behaviour near their dominant
positive singularity is an important source of coefficient asymptotics.

Most of the generating functions f(z) to be studied in this paper are singular
at z = 1/q with an isolated singularity of the algebraic-logarithmic type. In that
case, an expansion near z = 1/q of the form

1 1\
(6) 1) = o (los =2 ) (1ot

is translated to coefficients by the method known as singularity analysis [9, 21]

a—1
™ 7)1(2) = 0" g o n)* (1+o(1)
whenever o # 0,—1,—2,.... This requires analytic continuation (isolated sin-

gularity), a condition for instance satisfied by the GF’s of Theorems 1,3,4.
The same translation can be effected under a variety of alternative conditions
corresponding either to Darboux’s method [7] or to Tauberian theorems of the
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Hardy-Littlewood-Karamata type [13, 21, 22]. Such alternative conditions are
needed in Theorems 5 and 6 where the GF’s have a natural boundary.

The permutation model. The following property is well-known. The joint
distribution of degrees in the prime decomposition of a random polynomial over
IF, having degree n admits as a limit, when the cardinality ¢ of the base field
tends to infinity (n staying fixed!), the joint distribution of cycle lengths in
random permutations of size n. Accordingly GF’s of random polynomials at z/¢
converge to GF’s of corresponding permutation families when ¢ — +oc.

This gives rise to a useful heuristic for large field cardinalities. An instance is
mentioned in [13] in connection with the probability that a random polynomial
admits factors of distinct degrees which, for large ¢ and large n is found to
approach e™Y. OQur Theorem 6 illustrates an instance of this situation.

4. Elimination of repeated factors (ERF)

The first step in the factorization chain of a polynomial is the elimination
of repeated factors (ERF). In characteristic 0, this is achieved by the ged of f
and its derivative f’. In finite characteristics, additional control is needed in
order to deal with pth powers whose derivatives are 0, see [12, 16]. The auxiliary
computation of pth roots, g'/?, is performed in the classical way described in [12,
p. 344] for example.

procedure ERF(f : polynomial);
g := ged(£f,£’); h := £/g; k := gcd(g,h);
while k<>1 do g := g/k; k := gcd(g,h) od;
if g <> 1 then h := h*ERF(g~(1/p)) £i;
return(h);

end;

Theorem 1. (i) A random polynomial of degree n > 2 in F,[x] has a probability
1—1/q to be squarefree.
(ii) The degree of the non-squarefree part of a random polynomial has expected

value asymptotic to
nl
Co=3. -
2n _ 4n’
Syatt—a
and a geometrically decaying probability tail. We have Cy ~ 1/q as ¢ — .

ProoF. Part (i) is classical and is the consequence of Eq. (5). As for (ii), the
bivariate generating function of the degree of the non-squarefree part of monic
polynomials in F,[z] is, by the symbolic methods of Section 3,

n I
z

n>1

The mean degree of the non-squarefree part is obtained from the derivative
P,(z,1) by singularity analysis. The generating function P(z,3/2) is dominated
by P(z) near its dominant singularity, so that the geometrically decaying prob-
ability tail holds. Finally, the asymptotic value of C;; as ¢ — oo is obtained by

means of the expansion n I, = ¢" + (’)(qn/2). 0
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Theorem 1 has important consequences for the recursive structure of the
factor procedure. First, the overall cost of the recursive calls (Step 4 in the
top-level procedure) remains O(1) on average. Next, alternative strategies giving
the full squarefree factorization [12, p.345] have asymptotically equivalent costs.
Finally, the ERF phase has a cost dominated by its first ged.

Theorem 2. The expected cost of the ERF phase applied to a random polyno-
mial of degree n is asymptotically that of a single gcd,

TERF, ~ t9n’.

5. Distinct-degree factorization (DDF)

The second stage of our reference algorithm requires finding the distinct-degree
factorization (DDF) of the squarefree polynomial a. This means expressing a in
the form by - by - - - b, where by is the product of irreducible factors of degree k.
The principle is that the polynomial 2 —z € F,[z] is the product of all monic
irreducible polynomials in [F,[z] whose degree divides k (see [19], p. 91).

procedure DDF(a : polynomial); [a is assumed squarefreel
n := deg(a); g := a; h := x;
for k := 1 to n do

1. h := h"q mod g;
2. blk] := ged(h-x,g);
3. g := g/blk]; [a without irred factors of deg<=k]
4. if b[k] <> 1 then h := h mod g fi;
od;
return(bl[1].b[2]...b[nl);
end;

The computation in step 1 is done by means of the classical binary powering
method [16, p. 441-442]. With v(q) the number of ones in the binary represen-
tation of ¢, the number of products needed to compute h? (mod g) is

(8) Aq) = |logy q] +v(g) — 1.

By the exponential tail result of Thm 1, we need only consider the cost of DDF
applied to the squarefree part a of the input polynomial f and our subsequent
analyses are all relative to the statistics induced by a random input f of degree n.

Theorem 3. The expected cost of the basic DDF phase satisfies

TDDF,, ~ % M)+ 7m2) n where A(q) = [log, q] +v(q) — 1.

Proor. The cost of the basic DDF is C; 4+ C2 + C3 + C4, where €} denotes
the cost of line number j. We let C_J be the expectation of C;. Since the mean
number of factors of f is O(logn), we find C3 + Cy = O(n?logn).

Let di denote the degree of polynomial g when the kth iteration of the main
loop starts; the parameter dy, is also the sum of the degrees of the distinct factors
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of f with degree > k. The quantity C1+C5 is equal to (A(g)71+72) 5, d2. The
bivariate generating function associated with dy is, by the basic decompositions,

1 L -4 T
Pk(z,u):H<1_Zj) H<1+UJ1_Z]') .
ik

i<k

The expected value of C'= 3", d? is then given by

__iz” z Z) = @zu aﬂzu
C-_qn[ 1R(2), R()_E<6u2(’)+ 3U(’))u:1.

E>1

The GF R(z) involves the coefficients I, and from the main estimate nl, =
¢" + O(¢"/?), the behaviour near the dominant singularity z = 1/q results:
R(z) ~ g(l — qz)~*. Singularity analysis entails that [z"|R(z/q) ~ %n?’. ]
5.1. The “half-degree” rule. A natural idea is to stop the DDF loop when
k = n/2, since at this stage the remaining factor is either 1 or it is irreducible.

Theorem 4. The expected cost of the “half-degree rule” DDF phase satisfies

TDDFHHD) ~ 15_6 Mg + 1) n where A(¢) = |logs q] +v(q) — 1.

ProOF. The cost is now given by (A(g)7 + 72)C™"), where C(1) = Ek<n/2 dz.
Let D; be the highest degree of all irreducible factors of f. We study the
difference C?) = C —CW. If D; < n/2, we have C® = 0, otherwise we have
C®) = (D; — |n/2]) D} since there can be only one factor of degree larger than
n/2, namely Dy. Thus the mean value of C®) is given by

(9) C®= 3 PyDi=k) </<:— gJ) k2.

n/2<k<n

The probability Pr(D; = k) is derived from the generating function y(z) of
polynomials whose factors have all degree < k as

q 1— 2

Pr(D = 1) = BT () i) ) =TT (1 )

When £ > n/2, the n-th coefficient of x1(z) — xx-1(z) is obtained from

Xk (2) — xk-1(2) = P(z) (1 —(1- zk)I") H(l — zj)Ij = P(2) (Ikzk + (9(2""'1))
i>k

which entails Pr(D; = k) = I/¢* ~ 1/k for n/2 < k < n. Plugging this

information into (9) gives C(2) ~ 2 n?, thus C(1) = C' — C©) ~ B3, 0

Thus, the half-degree rule results in a savings of 25% asymptotically.
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5.2. The “early-abort” strategy. A still better strategy called “early abort”
consists in stopping the main loop of DDF as soon as 2k exceeds the degree of
the remaining factor, since then the remaining factor must be irreducible. The
analysis now has some analogy to that of integer factoring given by Knuth and

Trabb-Pardo [17].

Theorem 5. The expected cost of the “early-abort rule” DDF phase satisfies

TDDF™Y ~ §(Mg)r + )0, where 6 = 0.2668903307 ... |

1 [e%s) o0 —u 1_, 2
5= E— —/ e~ 2% exp —/ € du T dz.
12 3 Jq :c U z

The constant 6 is a close relative of the famous Golomb constant that intervenes
in the expectation of the longest cycle in a random permutation [23].

Proor. Let D; and Dy be the degrees of the two irreducible factors of f of
highest degree, setting Dy = 0 if @ is irreducible. The iteration is now aborted
at step k = max{|D1/2],Ds} + 1. The cost of DDF with this stopping rule
becomes C'3) = stmaX{I_Dl/zJ,Dz} d2 times the constant (A(¢q)m1+72). Consider

the difference ¥ = ¢ — ¢(3). We have

0(4)_ (Dl— I_Dl/QJ)D% 1fD1/2>D2
- (D1 — Dy)D? if Dy/2 < Ds.

The generating function of polynomials for which Dy > 2D, is given by

1 1 D1
¢p,(2) = H <1_2z) ID1<1_ZD1)’

1<€<D,/2

and the generating function of polynomials for which Dy < Dy < 2D; is given

by
1 I, 1 Ip, D,
o= | T (22)| [() " 1] o %]

1<4< Dy

(we do not need to take the case D; = Dy into account since it contributes 0 to
0(4)). Hence, the GF of the cumulated values of the parameter C(4),

o(z) = <D1 - [%D Diép,(2)+ Y. (D1—D2)Di¥p, p,(2).

D, Dy<D,<2D,

The analysis of this generating function near its positive dominant singularity
g1 is done by approximating sums with integrals (Euler-Maclaurin summation)
after the change of variables z = e~%g~!. A somewhat delicate analysis shows
that ®(z/q) ~ co(1—2z)"*as z — 17, where ¢g = 3—66. A Tauberian argument
is needed since the positive singularity is not isolated. ]

The global savings of the early abort rule is of 36% and the expected cost of
O(log q - n3) for DDF clearly dominates in the whole factorization chain.
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6. The output configuration of DDF

The DDF procedure does not completely factor a polynomial that has different
irreducible factors of the same degree. However, as shown by the following
theorem, “most” of the factoring has been completed after DDF.

Theorem 6. (i) The asymptotic probability of a complete DDF factorization is

1, n
CQIH<1+qn_1)(1_q )Ina

n>1

c2 = 0.6656, ca57 = 0.5618, ¢, = €Y = 0.5614, where v is Euler’s constant.
(ii) The expected degree of the part of the input polynomial subjected to the
EDF phase is asymptotic to logn.

ProoF. (i) The GF of polynomials with irreducible factors of distinct degrees

(10) 11 <1 +In%)

n>1

has the equivalent form (1 — ¢z)~! ¢(z), where ¢(z) is obtained by multiplying
each term of the product (10) by (1 — 2")!». The function ¢(z) is continuous at
1/q and a Tauberian-like argument applies. Finally, when ¢ is large, the relation
nl, = ¢"+O(q"/?) is used to prove that cq tends to Hn>1(1+1/n)6_1/" —e 7.

(ii) The bivariate generating function associated to the total degree of the
nontrivial part of DDF is

P(z,u) = H

n In n

z z
1+ — (" -1, ——
<+u l—z") (u ) 1—2n
n>1

The corresponding mean value is ¢~"[2"]R(z), where R(z) equals P,(z,u)l|,_;-
Near z = ¢~ R(z) behaves like (1—¢2z)~!log(1—qz)~!. As before, a Tauberian-
like argument is needed, giving ¢~ "[2"]R(z) ~ logn. 0

7. Equal-degree factorization (EDF)

From Section 5, the factorization problem is eventually reduced to factoring
a collection of polynomials b; of a special form that have all their irreducible
factors of the same (known) degree j. Our reference chain uses the classical
Cantor-Zassenhaus algorithm [3]. The analysis combines a recursive partioning
problem akin to digital tries [15] with estimates on the degree of irreducible
factors of random polynomials [14].
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procedure EDF(b : polynomial, k : integer);

[b is a product of irreducibles of degree k]
if degree(b) <= k then return(b) fi;
h := randpoly(degree(b)-1);

1. a := h"((q"k-1)/2)-1 mod b;

2. d := gcd(a,b);
return(EDF(d k) .EDF(b/d,k));

end;

7.1. EDF and digital tries. By elementary properties of finite fields, each
factor of b has a probability a = 2;41 to be a factor of d and the complementary

probability § = ﬂ to divide b/d. The probability that a random choice leads
to a split of b that is of type (£, j —£) is thus the Bernoulli probability ( ) atpi—t,

Theorem 7. The cost of the EDF algorithm on polynomials with j irreducible
factors of degree k is Cj j =

NENDY Z < ) Q™ (1= (1= ™ YY) | (e 7o)k,

2 6 m>0 £=0

where p, = AM(¢* —1)/2) = [log2 J —|—1/(q _1) -1

PrOOF. A complete recursive execution of the EDF procedure is equivalent to
developing a binary tree of possibilities. For a tree ¢ with root subtrees tg,%1,
we thus consider a general cost function of the additive type,

(11) Clt] = ey + Clto] + Clt].

where ey is a (problem specific) “toll” function that depends on the size |¢|
(number of nonempty external nodes) of ¢.

Like for tries [15], the subtree sizes obey the Bernoulli probability given above.
Thus, the expectation ¢; of C[t] over trees of size j satisfies the recurrence

CJ—6]+Z<) éﬁ] Zcz—|—cj ¢ _6J+Z<) Zﬁj_z—kaj_zﬁz)cz

This translates, in terms of exponential generating functions, C'(z) = Ej ;2 /!
and E(z) =3 . ¢; 27 /5!, into the functional equation C(z) = E(z) +e”*C(az) +
e**C(Bz), that iterates to give the explicit solution

J . v
(12) C(Z) = ZZ <‘2) E(aj—ﬁﬁzz)eg(l_aj—lﬁz).
j>04£=0
Here, the toll function e; = j% — §; 1 leads to

CE) = gt 423 Z( ) ammtpt (e — cH-am 50

m>0£=0
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by means of Eq. (12). From there, an explicit expression for the coefficients
results. The analysis is completed by finally taking into account the cost of

multiplications modulo b that intervene in the computation of R =1/2 mod b
by the binary powering algorithm, leading to the pyg. O

7.2. Complete analysis. Completing the analysis of EDF only requires weight-
ing the costs given by Theorem 7 by the probability Pr(w, (k) = j) of finding
J irreducible factors of degree k. Let w,(k) be the random variable counting
the number of distinct irreducible factors of degree k£ in a random polynomial of
degree n. The corresponding probability distribution can be computed by the
decomposition techniques of Section 3, see [14], and one has:

I

(7)

. =i
(l—q_k)l"_] ~ eTMEZ_ i > kI,

Pr{w,(k) =3} = (Igc) n/k]-i (Ik_j)
ﬁ Z (-1)° qiz it kj<n<kl.
£=0

The distribution is essentially a negative binomial that can be approximated by
a Poisson law of parameter 1/k. Hence:

Theorem 8. The expected cost of the EDF phase satisfies

o 2 -1 &1
EDF, ~ — , =11 -1
Ty~ T5 S = [lown T 4o ()

In addition, this cost is O(n?) and

2

e 3

| =
| =

ProoF. The intuition behind the proof is that the major contribution comes
from situations where just 2 factors are present, the other cases having globally
a very small probability of occurrence. Let Ej be the expected value of the
cost of the EDF algorithm corresponding to degree k. By definition, we have
E; = Ej>2 Pr(wn (k) = j) Cj i, where Cj j is given by Theorem 7.
First, the form of the distribution of the number of distinct factors implies

<I2k) . 1

o2 (1+0(1/k)) for2k<n, Pr(w,(k)=3)=0 )

Pr(wn(k) =2) =
Next, from Theorem 7, we deduce

2
Cor=C15=0, Cop= of (prm1 + 72) k?,  and uniformly Cjr = O(*k%).

This entails that, as k£ — oo with 2k < n,
I
()

kT, g 71
S+ 00/ + 0 (S0 20) = I+ o),

i>3 op

Er = Cop
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while E; = 0 for 2k > n. Thus, the overall cost of the EDF component
[n/2]

is EkE_k = ;—1‘7 b1 Hr + O(n). The second form is easily obtained from
klogs ¢ — 2 < px < 2klog, g. O

Under the unproven assumption that the binary representation of ¢* behaves
like that of a random integer, the arithmetic function &, should be close to 0.
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