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Abstract:

We consider the following stochastic differential equation (S.D.E.) for describing financial data evolution:
dX; = b(t, Xt) dt + o(t)h(X:) dWr, X(0)=x

with a stochastic volatility o(¢) (e.g. the combination of a diffusion and a jump process). We prove the
existence and positivity of the solution of a Cox-Ingersoll-Ross type S.D.E. with time varying coefficients which
is a special case of our model. From observation on X; at times ¢; (with non regular sampling scheme), we
propose a non-parametric estimator for the volatility that is optimal in a certain way. We show its pointwise
convergence and its asymptotic normality. We propose an estimator for the volatility jump times and prove a
Central Limit Theorem. The application of these estimators to the BTP futures (Italian ten year bond futures)
and Lira 1 month deposit Eurorates seems to confirm the adequacy of the proposed model.
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Key-words:  Stochastic Volatility, Non-parametric Estimation, Estimation of the Volatility Jumps.

(Résumé : tsup)

Ce travail g’inscrit dans le cadre d’une collaboration avec D. Talay et son projet OMEGA. Les simulations
numériques ont été faites par B. Iooss & 'INRIA. Nous remercions Luciano Tubaro (Universitd di Trento)
pour ses conseils, ainsi que les participants & la semaine Numerical Methods au Isaac Newton Institute for
Mathematical Sciences (Cambridge, Avril 1995) pour leurs commentaires. Les erreurs restantes seraient de
notre responsabilité.

R.G.A. : Dip. di Scienze Economiche, Universita degli Studi di Brescia, Italia. E-mail: rga@opoipi.it
P.B. : Université des Antilles et de la Guyane. A partir du 1/9/1996 : Université Blaise Pascal, Laboratoire de
Mathématiques Appliquées, 63177 Aubiere Cedex, France. E-mail: bertrand@ucfma.univ-bpclermont.fr

Unité de recherche INRIA Sophia-Antipolis
2004 route des L ucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex (France)
Téléphone: (33) 9365 77 77 — Télécopie : (33) 9365 77 65



La volatilité stochastique comme couple d’un processus a

saut et d’un processus de diffusion

Résumé :
Motivés par des considérations économiques, nous proposons de modéliser

I’évolution des données financieres par une équation différentielle stochastique (EDS)
dXt = b(t, Xt)dt + O'(t)h(Xt)th, X(O) = X.

ol le coefficient de diffusion (appelé volatilité) o(t) est stochastique (couple de diffusion continue et
processus a sauts, par exemple).

Nous donnons d’abord un résultat d’existence et de positivité de la solution de 'EDS de Cox-Ingersoll-Ross
a coeflicients variables stochastiques. Puis, & partir de I’observation d’une trajectoire X; a des instants
discrets t; (irrégulierement espacés) nous proposons un estimateur non-paramétrique de la volatilité
(d’un certain point de vue optimal). Nous montrons sa convergence ponctuelle et sa normalité asymp-
totique.

Ensuite, nous proposons un estimateur consistant des instants de saut de la volatilité pour lequel,
dans le cas d’instants de sauts déterministes, nous montrons un Théoréme Central Limite. Enfin, nous
appliquons ces estimateurs & des données financiéres italiennes qui semble confirmer ’adéquation du
modele proposé.

AMS Classifications : 62M 05, 60G 35.

Mots-clé :  Volatilité stochastique, Estimation non-paramétrique, Détection des sauts de la volatilité.
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1 Introduction

In recent years accurate analysis of financial time series has brought to the attention of resear-
chers the existence of several anomalies. In particular, volatility estimation has always occupied
a central place in the research on financial markets: this is due to the practical implications
that an accurate measure of this quantity would have in terms of derivatives pricing. All the
original models developed for pricing options and other interest rates derivatives such as the
Black-Scholes model shared the feature of a constant volatility parameter. It is true that, for
example, in the Cox-Ingersoll-Ross [8] term structure model, the volatility parameter is speci-
fied so that the stochastic process {X;} describing the underlying asset shows a state dependent
evolution, i.e., higher (lower) volatility for higher (lower) level of the state process. At the same

time the specification chosen in [8] keeps ¢ constant:

This situation has been called into question in recent years due to two innovations which took
place respectively in applied work and in theoretical finance.

On the first account we experienced the explosion of the econometric literature on ARCH-GARCH
models which showed the pervasiveness of heteroskedasticity in the evolution of financial time
series. On the other side, starting with Hull and White [22], a new family of models incorporates
the idea that volatility follows itself a diffusion process. Bensoussan, Crouhy and Galay [2], for
example, derived an extension of the Black and Scholes model where stochastic volatility arises
from the impact of a change in the value of the firm’s asset on the financial leverage. These
developments produced a new vein of empirical research aimed at the estimation of stochastic
volatility using different approaches as in Gourieroux, Monfort and Renault [18], Harvey, Ruiz
and Shephard [21], and Nelson [31]. At the same time growing evidence has been collected
pointing to the presence of parameters instability in the estimation of Cox, Ingersoll and Ross
type of models. Brown-Dybwig [5] and Barone, Cuoco and Zautzik [1] for example find in
different situations that the constancy of the long term mean of the short term interest rate
(0) and of the recal parameter (/) is not supported by the data; Fournié and Talay |14] found
non constancy of the diffusion parameter .

More problems pointing to the same issue of parameters instability have been evidenced
more recently even inside the ARCH-GARCH approach by Hamilton and Susmel [20]. What
has been questioned is the autoregressive nature of the process the variance should follow. The
rational motivating these criticisms is that the excessive persistence ARCH-GARCH models
imply for the variance reduces their forecasting performance. In particular it has been observed

that big shocks have different implications for the future evolution of the variance with respect

IFor example the September 1995 issue of The Journal of Fized Income is almost entirely devoted to the

problem of parameter instability in term structure models
INRIA
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to small shocks. In the ARCH-GARCH set-up what we are supposed to observe is that small
shocks are followed by small shocks and big shocks are followed by big shocks giving rise to
the now well known volatility clustering effect first evidenced by Mandelbrot [29]. What is
troublesome with this approach is that it implies higher persistence for big shocks than for
small shocks due to the autoregressive nature of the volatility process. Therefore a big shock
implies a longer transition period before the process returns to its natural state. Financial time
series instead seem to suggest a much faster adjustment path. Therefore the crucial question
is: for how long does volatility persists?

In order to give a solution to these problems Hamilton and Susmel [20] propose that the
parameters of the ARCH process characterizing conditional volatility evolution may come from
one of several different volatility regimes and that the transition from one regime to the other
be governed by an unobserved Markov chain. In this way sudden jumps in volatility can be
accomodated by the switch of the volatility process to a new regime without being forced to
assume long and unnecessary transition dynamics. Even this approach, unfortunately, has its
own drawbacks. In fact there is no way to identify rigorously the number of states the process
under investigation may have been through. The computational requirements to perform the
analysis when the number of states is greater than 4 are prohibitive.

From the analysis so far performed it appears, that more work needs to be done in order to
identify the nature of volatility evolution in financial time series data. This seems particularly
needed since it has been only in recent times that data on financial transactions at a very high
frequency became available. This type of data are particularly apt for testing the continuous
time models that characterize large part of theoretical finance. In fact so far most of the
estimations of financial models were performed using daily data, which are a poor approximation
for continuous time. It is our claim, supported also by Miiller, Dacorogna, Davé, Olsen, Pictet,
Weizsidcker [30] and Goodhart, Ito, and Payne [17], that the observation of almost continuous
time real financial processes will highlight a complete different set of dynamics from the ones
discrete time econometrics models brought to our attention.

The difficulties of this approach are just begining to unravel and they point out the necessity
of linking continuous time stochastic process analysis with estimation. In order to reach this
target we need to state our problem in terms of stochastic differential equations. We consider

a stochastic process statisfying the following stochastic differential equation:
dXt = b(t, Xt) dt+0’(t, Xt) th, X(O) =XT. (].)

We observe a sample path of the process {X;} at the discrete times ¢; and we want to estimate
the diffusion coefficient o (¢, X;).

The parametric case o(t,z) = of(x) is studied in Dohnal [11] for regular sampling times
and by Genon-Catalot and Jacod [16] in a general framework. The non-parametric case for a

non time varying diffusion coefficient, i.e., o(t,z) = o(z), has been treated by Florens-Zmirou
RR n~° 2848
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[13| for one dimensional process and by Brugiere [6] for multidimensional processes. Fournié
and Talay [14] tried to estimate the Cox, Ingersoll and Ross model with constant coefficients
on real financial data (daily observations of the French short term interest rates) and they
concluded that, at least the diffusion coefficient was time varying.

Florens-Zmirou [12] gave a non-parametric estimator for a time varying volatility o(z,t) =
o(t)h(z). Genon-Catalot, Laredo and Picard [15] introduced the non-parametric estimation
by wavelet method. In a companion paper Bertrand [3| compares the estimator proposed here
with a wavelet estimator in terms of their Mean Integral Square Errors (MISE) and proves that
the one proposed here is better as soon there is at least a volatility jump and it is more robust.

Both Florens-Zmirou [12] and Genon-Catalot, et al. [15] consider a time varying coefficient
o(t) which is a C' function of time and deterministic. However, for financial applications it
seems more reasonable to consider a stochastic volatility o(¢). In this case the coefficent o(¢)
would be less regular than C'. We will consider both a Hélder continuous function of time and
a piecewise constant function corresponding either to a continuous diffusion either to a jump
process. A description of stochastic volatility which is the same as the one used in this paper
is considered by El Karoui and Jeanblanc-Picqué [9]. As an example we can think of a Wiener
process (W) with the standard filtration (G;}") and o(t) another stochastic process independent
of the increments of W;. Let (F;) be the enlarged filtration, o(t) is F;-adapted and (W) is still
a Wiener process for this filtration.

The plan of the paper is the following. In Section 2 we describe the model we will use and we
give some results on the existence and positiveness of the time varying coefficients stochastic
differential equation which characterizes the Cox, Ingersoll and Ross model. In Section 3
we describe the kernel estimator we use for irregular sampling times, we prove its point-wise
convergence and study its Mean Integral Square Error. In Section 4 we make some numerical
simulations of the volatility estimator. In Section 5 we study the estimation problem for jump
times. Finally in Section 6 we apply our method to real financial data?.

Most proofs are given in the appendixes. In Appendix A, we prove the existence and positi-
veness of the time varying coefficients Cox, Ingersoll and Ross stochastic differential equation
(Theorem 2.1). In Appendix B we give some bounds which are used in Appendix C to prove
Central Limit Theorem for point-wise convergence of the volatility estimator (Theorem 3.1).
In Appendix D, we prove a Central Limit Theorem for the volatility jump time estimator

(Theorem 5.1) when the jump times are deterministic (but with random jumps).

2In this paper we use off-line estimation in every case.

INRIA
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2  Description of the Model

We assume that there exists a stochastic basis (2, F, F;, P) and a one dimensional Wiener
process (W;) adapted to (Q,F,F;, P). We will denote by Leb the Lebesgue measure on IR.

We consider a stochastic process statisfying the following stochastic differential equation:
dX; = b(t, X;) dt + o(t)h(X;) AW, (2)

where the function A(-) is assumed to be known, the volatility coefficient o(-) is an unknown
function of time and has to be correctly estimated, the drift coefficient b(¢, ) could be unknown.

We observe one sample path of the process (X, t € [0,7]) at irregular sampling times ¢; for
i=0,..,N. We denote A; =t;; —t; and [|A|| = sup;cpo nj Ai- We assume that [|Al| is small in
comparison to 7.

We impose the following assumptions:

(A0) o(t) is adapted to the filtration F;, b(t,.) is a non-anticipative map, b € C*'(IR™, IR) and
dLy >0 such that Vte|[0,T], Fo'(t) < Ly.

Moreover, we want to consider both a jump process and a diffusion process, respectively cor-

responding to the following assumptions:

(Al)o(t) = Zgzo 0y 1jt,1,.1)(t) wheret, are the jump times. We assume there is a finite number

2 0.2

of jumps, i.e. f < oo. We denote the jump (50/2, =0, 41— 0,

If we assume that the volatility jump times correspond to the sampling times ¢;, we have:
’ N
(Al ) U(t) = ;)O-i ]‘[ti,ti+1)(t)'

(A2) 3m > 0 such that o*(-) is almost surely Holder continuous of order m with respect to a
constant K(w) and such that IEK (w)? < oo.

Remark : If o(t) (or o(t)?) satisfies a stochastic differential equation then (A2) is fulfilled, see
for example Revuz and Yor [32, th. 2.1, p. 25].
tit1
We need to check the existence of [ b*(s, X,)ds, so we will impose the following conditions:
t;
(B1) JKr >0, Vte[0,T], I[E|bt X,)|* < Kr.
In Section 5, we will use assumption (A3) defined for convenience on page 16. In the sequel
we work on the simplified model:

dX; = by (t, X,)dt + o(t) dW;,  X(0) = z. (3)

In fact, under reasonable assumptions, the model (2) becomes (3) after a change of variable.
RR n 2848
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Proposition 2.1 Assume that there exists a domain D C IR such that h € C'(D,IR"), h™' €
Li,.(D) and verifying P(X;,€ D, Vt € [0,T]) = 1, where X; is the solution of (2). Let
H(z) = [h *(§)d¢, then Y, = H(X,) satisfies (3), with by (t,z) = h™*(z)a(t,z) — 3 (x)0*(t).

Proof : It follows directly from It6’s Formula. [ |

Applications

Example 1: Let S; be an asset price satisfying the following stochastic differential equation

dsS, = S, [a(t, S,)dt + o(t)dW,],  X(0) = So.

Then X, = In(S;) satisfies (3) with b(¢, z) = a(t,e®) — 262(¢) and b(t, z) fulfills the assump-
tion (B1).

Example 2: Let X; be an asset price satisfying the stochastic differential equation
dXt = [c(t)a(t) — Xt] dt -+ O'(t) \/Xt th, X(O) = X(). (4)

i.e., the Cox, Ingersoll and Ross differential equation with time varying parameters where
c(), a(t), and o(t) are F; adapted. If P(X; > 0, Vt € [0,T]) = 1, then Y; = 2(X,)"/? satisfies
(3) with b(t, z) = 2z [c(t)a(t) — Lo ()] — La(t)z.

We deduce the positiveness of X; in the case stochastic ¢(t), a(t) and o(t) from the following

generalisation of the well-known result for the time constant case.

THEOREM 2.1 Assume that c(t), o(t) and «(t) are Fi-adapted, there exist K, A > 0, such
that ¥Vt > 0, | c(t) |[< K and A < o(t) < K, Vt > 0, o(t)? < 2¢(t)a(t) and X(0) > 0 a.s.. Then
(4) has a unique strong solution and P(X; > 0,Vt > 0) = 1.

Proof: see Appendix A. [ |

We need some stronger assumptions to obtain (B1).

3  Volatility Estimation

3.1 Description of the Estimator

We give a description of the estimator depending explicitely on the the number of observations
taken into account to estimate o(¢). The number of observations taken into account is defined
as the window size and denoted by A.

The non-parametric estimator for the volatility is defined as follow:
INRIA
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N A2 2 (X — Xiy)?
SA,A(t) = Z {A_l Z ( tﬁﬂ?‘, ) t1+z) }1[tj,tj+1)(t) (5)
j=A/2 i=—A/2 I+

It is a symmetric kernel type estimator which generalizes the estimator for regular sampling
interval given in [3]. In the following we extend the results given in [3] to the case of non

constant sampling intervals.

Remark 3.1:
i) The estimator Sy a(%;) is defined by (5) for t € [t;_4/2,tj1a/2)-

ii) At each time ¢;, S4 a(%;) is the average of the last A/2 and of the next A/2 instantaneous

quadratic variations A;\; (Xy,,,,, — Xy,,,)?; therefore the estimator Saa(t;) is Fi,,, /2

adapted.

3.2 Construction of the Centred Kernel Estimator

In the case of regular sampling, ¢; = i/n, the kernel estimator for (3) given in [12] is :

Sn(t,K):n{gKF};t]}_léKl%}; t] (Xizr — X1)? (6)

n
n

where K is a compactly supported kernel. Florens-Zmirou [12, Th. 3, p. 200| shows that for a

deterministic C! function o (),
(nha )28, (t) = N(0, || K||% 02(t))

Let £ = Leb (supp K), we remark that the flat kernel Ky = £7'1j9 is an optimal kernel.
Indeed, S,(-,AK) = S,(., K), thus we can impose the condition:

1= [ K@)do < 1Kl 10 1]z200m0 1)
Therefore, ||K||z2 > £ /2 = || Kp||2. If we choose £ =1, K = 1|_151/9], denote A = 1/n and

A = [nh,], we obtain (5).

3.3 Local Consistency of Estimator

At each point of continuity of o, we have the following convergence result:

THEOREM 3.1 Assume that (A0), (B1) are satisfied, A||Al] — 0 and A — oo. Then
San(t) = 1/2[6%(ty) + o(t_)] almost surely, where o*(t_) (respectively o?(t,)) denotes the
left (respectively right) limit. Moreover

RR n~2848
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i) if (A1) holds and P(t, =t) =0, then

e [SA,AQ(;)OW = N(0,v2) (7)

2 olds an — then olds.
i) If (A2) holds and AA™/*™ — 0, then (7) hold

This generalizes the result on point-wise convergence from [12], 7] to the stochastic volatility

case.

Proof: In order to prove the theorem we decompose the estimator into three terms. (See
Proposition 3.1 below). The three terms are separately studied in Lemma C.1, C.2, and C.3 in

Appendix so that the theorem follows from the proposition and Lemmas. [ |

Proposition 3.1 Assume that (A0) is satisfied. Then we have

Saa(t) = Maa(t) + Naa(t) + Daal(t) (8)
where:
N-A/2 AJ2
MA’A(t) = Z {Al Z 5?+i} 1[tj,t-+1)(t) (9)
j=A/2 i=—A/2
N—A/2 A/2
Naa(t)=2 ) {A_l > §j+z'} Lt 540 (2) (10)
j=A/2 i=—A/2
N-A/2 AJ2
DA,A(t) =2 Z {A_l Z 77j+i} 1[tj,tj+1)(t) (11)
J=A/2 i=—A/2
and
tit1
G = A7 / o’(s)ds (12)
t;
tiy1 s T
&= A / o(s) [ / o(u) dW, | dw, (13)
t; t; i
tiy1 tit1 s
= A7l { / b(s, X) (X, — X,,)ds + / o(s) (/b(u,Xu) du] dWS} (14)
t; t; Lt;
Proof: Applying Itd’s formula on (X, — X;,)?, we get (8). n

Remark : The function M4 (t) only depends on 72, the average value of 6(t) on the interval

[ti; ti+1]. The properties of the random variables (&;) and (7;) are given in Appendix B.

INRIA
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3.4 Mean Integral Square Error

To analyze more precisely the rate of convergence of the estimator, we look at the Integral
Square Error (ISE) and its mean value (MISE) :

Definition 1 For a given weight function v(-) > 0, we define :

2

ISE(7,4,8) = [ (1) [Saalt) = o*(1)] at

T

MISE(y, A, A) = [E / Y(t) [Saalt) = o*(@)] dt

Let us define some notations. Without any loss of generality we assume that () is piecewise

constant on [t;,%;41) with value 0 or 1. We define:

Ri(7,4,8) = [ (1) [Man(t) - *®)] at (15)
Ro(v, A, A) =/7 (t) N2 (1) (16)
Ry, 4,A) = / 1(8) D4 A1) dt (17)

In the deterministic case without drift, IER; (7, A, A) corresponds to the bias term and IF [Ry(y, A, A) + Rs(7,

to the variance term.

Since Dy a(t) contains all the terms depending on b(¢,x), if (B1) holds, the drift term is

negligeable in the Integral Square Error, as stated below.
Proposition 3.2 Assume that (A0) and (B1) are satisfied. Then:
ISE(’% Aa A) =R (’Y? A7 A) + Ry (77 Aa A) te€

where
Ele| < C| A {ER (7, A, A) + ERy(v, A, A)}'?

Proof : This result follows from the Hélder inequality, Lemma C.2 and from

/ Y Naa(t) [0*(t) = Mya(®)] dt =0
|

Since C' does not depend on A, optimizing the Integral Square Error is equivalent to opti-

mizing IFR;(7y, A,A) + [ER,(7y, A, A). We turn now to those two terms.
RR n 2848
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Proposition 3.3 Assume that (A0) is satisfied. Then

ERy(v, A, A) + ERy(v, A, A) = (18)
N-1 N-1 AJ2 2
(¢ AV2+Z’Y AEU—AIZEg_i +4A71 Za] ]Ef)
7=0 1=—A/2 7=0
where
Ljt1 )
Vf = Aj_l / [0’2(8) — Eg] ds
t
and
AJ2
D V(i) Aji
1=—A/2
If moreover (A2) holds, then Ry(7, A, A) < (A||AIN*™ |7z K2 (w).
Proof : From (10) and (27) (see Lemma B.2 in Appendix) , we have
N-1 A/2
ERy(v,A,A) = 43 y(t) Ay EAT Y &)
=0 i=—A/2
N-— A/2
= Z Z §]+z
7=0 1—7A/2
N-1
- 4A_1 jE(é-j)2
=0
AJ2
We turn now to the term Ry(vy,4,A). Let u; = Y @5, we have:
1=—A/2
N-1 tit1 )
Ri(v, A, A) = > ~(t)) / I:,U,j—O'Q(S)] ds
7=0 t;
combined with
tjt41
2 2
At [u~—o(s)] ds =V? [-—U}
t
we deduce (18). |
Remark :  Replacing o?(t) by its average values o induces on R;(v,4,A) an error of
Y35 (t)A,; V2, which is bounded either by C||A|| when (A1) is fulfilled either by K (w)[|A]|*™

when (A2) holds. This means that when o(t) is a diffusion process observed at discrete times,
we do not never see the local structure of o(t) but we are only able to estimate the average of

o(t) between two successive observation times ¢; and ;1.

INRIA
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4 Some Numerical Simulations

In this section, we consider a regular sampling scheme. We assume that 7" =1 and fix N = 5000,
A = 1/N. We simulate numerically a path of the process X, satisfying (4) using the Euler
method with step A/10. We consider two different specifications of volatility evolution. For
each one we plot two estimators corresponding to two different window sizes, i.e., A = 105 and

A’ = 3A. The first one is an example of a piecewise constant volatility.

RR n~2848
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Example 4.1: Piecewise Constant Volatility with Jumps
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The second example is the case of jumps in volatility followed by a continuosly decreasing
volatility. We take this as an example of jumps and diffusions in volatility. Notice that, after
the second jump, volatility decrease particularly fast so that, a priori, it seems difficult to

distinguish this from a case of a jump. However our estimator seems to be able to distinguish
this from a volatility jump.
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Example 4.2: Volatility Jumps and Diffusions
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5 Volatility Jump Times Estimation

For the case showed in example 4.1, i.e., volatility jump, the simulations just presented suggest
us that by varying the size of the windows we obtain two non-parametric estimations of volatility
which cross each other in a neighborhood of the volatility jump time. Now we will make this
heuristic remark more precise.

Let X be a fixed integer A\ > 2, from Proposition 3.1 we have:

Sana(ty) = Saanalty) = Maa(t;) — Myanal(ty) (19)
+ Naa(t;) = Naaa(ty) + Daalt;) — Daaa(ty)

From Lemma C.2, and C.3 we have
E|Nsa(t;) — Naaalty)]? < KA™

and
E|Daa(t;) — Daaa(t)]? < K| A

Therefore these two terms could be disregarded when A — oo and ||A|| — 0. At this point
we are left with the first term which is not small. Let ¢, be the volatility jump time and assume
it is an isolated jump time i.e., there is no other jump time in the interval [¢t,_xa,t,41a]. We

have:

My a(t;) — Maaa(ty) = (A7 (5 — p)) (20)
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where ¢(-) is an affine function vanishing at zero defined in the following figure, when do> > 0.
Elsewhere we should replace ¢(.) by —¢(.) in (20).

Representation of the function ¢(¢)

| /2 (1-1/A) 3o 2

This explains why the two estimators cross each other in a neighbourhood of ¢,. For this
reason, we define our volatility jump time estimator as a crossing time of the centred kernel
estimator with two different window sizes, A and A\ A, where ) is a fixed integer A > 2.

More precisely we define

C(A, A) € {Z s. t. [S)\A,A(tz‘) — SAyA(ti)] X [S)\A,A(tﬂ-l) — SA,A(ti+1)] <0
and | S)\A,A(ti—}—l) — SA,A(tH-l) |> 0}

The index ¢(A, A) correspond to the crossing time denoted by ¢.(A, A). Let B4 o = {w such that e with Sy a(

Sxana(te) and |c — p| < A/2}. Moreover we introduce the following assumption:
(A3) (AI’) is fulfilled and t, is the only jump time in [t,_xa,t,+aal-

Proposition 5.1 Assume that (A0), (A1’), (B1) and (A3) are satisfied. Then there exists
Ky > 0 such that
P(Baa N{ldo,| > k}) > 1— Ky (A7 +|A])

Proof : Let us define

94(j) = Saal(t;) —Siaalty) (21)
La(j) = AY?[Naa(ty) — Naaal(ty)] (22)
Da(j) = Daa(t;) — Draa(ly) (23)
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To fix the idea, let do” > 0, if ga(p — A/2) > 0 and ga(p+ A/2) < 0 then w € By a. Therefore
P(Bja) < P(galp— A/2) <0) + P(galp+ A/2) > 0)

The two probabilities can be bounded in the same way. We just consider the first one. From

assumption (A3) and (20), we have:
1 _ _
ga(p— A/2) = S (1= A)(007) + A7V La(p = A/2) + Dalp - A/2)

This implies

P(ga(p— A/2) <0)

P(|A7 2 La(p— A/2) + Dalp — A/2)| > 5(1 = A71)|da7))

A1 = AR E[JAT2La(p — A/2) + Dalp — A/2)[%]

Ky 2 (A7 +[|A]]). [ |

VANVANVAN

The above proposition induces the consistency of our jump time estimator, as stated below.

Corollary 5.2 Assume that (A0), (A1’) and (B1) are satisfied. If A — oo and A||Al| — 0
then lim 4. ajaj—o0te(A, A) = t, in Probability.

Proof: If (A1l’) is satisfied for a given sampling procedure, say, Ay, then it is also fulfilled for
every refined sampling procedure A. So the asymptotic ||A|| — 0 is meaningful and hereafter
A — oo and A||Al| — 0.

Since there is only a finite number of jumps, for each fixed A € IN*, for A||A|| small enough,
the assumption (A3) holds. Indeed, let &y := infyecn, | tiz1 — ¢ |, (A3) is fulfilled as soon as
A< ﬁ which holds asymptotically.

The convergence in Probability directly follows from the above Proposition. [ |

When the jump time is deterministic (even with random jumps), we have a more precise

result. In this case we have a Central Limit Theorem.

THEOREM 5.1 Assume that (A0), (A1’) and (B1) are satisfied. If A — oo and A||A|| — 0
then P(Baa) — 1. Moreover, on the set B4 a we have

A7V (p— (A, A)) = Uy (A, A) + Vi (A, A) (24)

with

N\ 2
Ul(A7 A) (:>) <ﬁ> l/p_1 N(Oa \/5)

where 502
g
_ P

T 208 1208 7
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and for every o < 1/4 there exist two constants K,  and IN(OQ,\ > 0 such that
EVi(A,A) < Ko l|All+ Kan(J|A]* + A7)

Proof: See Appendix D. [ |

1/

Remark: What is the good choice for A ? Remember that VA € IN, (ﬁ) ’ > 1. On the

other hand, (A3) may fail for A too large. Since A = 3 gives us (ﬁ)l/z = 1.22, this could be

considered as a good choice and it is used in the applications (see next section).

6 What Do We See in Real Data ?

In order to highlight the differencies in data behavior with different time resolutions we use two
data sets. The first is the series of the daily observations on one month Italian euro deposit
rates from 1984 to 1994. In this period the Italian Euromarket became very liquid and we can
observe several shocks. These were caused by the impact on the interest rate of expectations

of realignments of the Italian Lira.
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Italian 1 month Euro deposit rates 1984-1994

Italian 1 month Eurorates
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The second series is the Italian BTP (ten year bond) futures price as a five minutes average
of quotations from January 1994 to May 1994. For the BTP futures this period was crucial
since the political instability which characterized Italy severely hitted in particular the bond
market. Secondly, at the begining of 1994 the Federal Reserve suddenly changed the course of
its monetary policy and this action had a strong impact on all the major bond markets rising

the degree of uncertainty.

Italian BTP futures Jan 1994 May 1994

BTP futures
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The observation of these two series seems to suggest a different local behavior of the two
data generating processes. In the interest rate series few clear episodes of changes in volatility

are visually detectable.

Volatility non-parametric estimations: Italian 1 month
Euro deposit rate 1984-1994
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In the BTP futures series instead substantial changes in volatility seems to happen more

often.

Volatility non-parametric estimations: Italian BTP futures
Jan 1994-May 1994

The estimations just proposed suggest several interesting considerations. In both cases
the proposed estimator seems to track correctly the expected volatility evolutions. For the
Eurorates series we observe episodes of volatility explosion the most notable of which is the
one corresponding to September 1992. At that time the Italian lira was forced out of the EMS
and we had an enormous increase in uncertainty on interest rate markets. For the BTP futures
we can see that in addition to the several sudden jumps we have an initial period of increasing
volatility followed by a gradual decline.

What seems to be interesting is that for example in daily data (the Eurorates) if we use a
window size of 80 days we see clear abrupt changes. At the same time, as should be expected,
with a window which is three times bigger (270 days) the volatility evolution becomes smoother
and a certain degree of autocorrelation seems to emerge. The same behavior is apparent for
the BTP futures. Therefore we are brought back to the initial question: when we talk about
persistence which is a reasonable time horizon? Secondly: if the volatility micro structure
presents relevant breaks, are we doing the right thing by imposing instead an autoregressive

structure?
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In any case the crucial question remains that of evaluating the structure of the process

followed by the instantaneous volatility.

A APPENDIX (Existence and Positiveness of the Solution
of the Cox, Ingersoll and Ross type Stochastic Differen-
tial Equation)

The Cox, Ingersoll and Ross model has been used to describe the evolution of financial assets

and it is the solution of the following stochastic differential equation:
dX, = c(a — X;)dt + o(0 v X,)'/? dW, (25)

The statistical work done so far in order to identify the values of the coefficients ¢, o, and o
from real world financial data shows that these parameters are time dependent (Brown and
Dybvig [5], Barone et. al. [1], Fournié and Talay [14]). It is therefore natural to consider the
Cox, Ingersoll and Ross model with time dependent or stochastic coefficients as in (4).

In this situation we have to ensure that, as in the case of constant coefficients, the solution
of this stochastic differential equation exists, is positive and determine under which conditions

1t does not vanish.
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A.1 The Problem and its Solution

Let us consider a probability space (2, F,ZP) with a filtration F; such that (W;) is an F;-adapted
Wiener process.

Let us recall the result for the case of constant coefficients, see e.g. Ikeda and Watanabe,
24, p.236]):

Proposition A.1 If ¢, and o are constant then: 1) for all initial values X (0), there exists a

strong unique solution for equation (25). Moreover, if ca > 0 and X (0) > 0 almost surely then

P(X(t) >0,Vt) =1.

i) if o> < 2ca and X (0) > 0 almost surely, then P(e = +00) = 1, where e(w) = inf{t, such that X (t,w) =
0} is the time at which the process X; reaches the bound 0.

We now generalize Proposition A.1 to the case of time varying coefficients. We need the

following assumptions:
(C1) 6(t), c(t) and «(t) are (F;) adapted.
(C2) VN € IN, 3Ky, Ay > 0 such that V¢ € [0, N],

le(®)], |a(®)],10(t)| < Ky a.s.  and 10(t) > Ay
(C3) 6(t)* < 2c¢(t)a(t) P ® Leb -almost everywhere

We have the following result.

THEOREM A.1 If hypothesis (C1), (C2), (C3), are satisfied, IE | X(0) |*< oo and X (0) > 0
a.s. then there exists a unique strong solution of the equation (4). Moreover P(X(t) > 0,Vt) =
1.

Proof: The proof is devided into three steps.

First Step : The strong uniqueness of the solution to (4) follows from the Yamada-Watanabe
theorem, see for example |25, Prop.2.13, p. 291], after having adapted the proof to our condi-

tions.

Second Step : We assume there exist a strong solution on a random interval [0, 7[. This
solution turns out to be positive, by an easy adaptation of the proof of Ykeda-Watanabe [24,
p. 236]. We will prove the existence of a lower bound, i.e., V¢ > 0, X; > Z; a.s. where the
process (Z;) satisfies a Cox, Ingersoll and Ross stochastic differential equation with constant
coefficients and V¢ > 0, Z; > 0 a.s.
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We want to use the comparison theorem for a process solution of (25), with constant coeffi-

cients. We go back to the case of o(t) constant through a time change. We set:
t t
M, = / o(5)dW,, < M >= / o?(s)ds
0 0

Thanks to Time-Change Theorem for martingales see e.g. [25, th 4.6, p.174|, we have
M; = By, with By a standard Brownian motion for the filtration G, := Fp(,) and T'(s) =
inf(t>0,< M >;>s).

Since ¢ (u) > 0, we have du = 07 *(u)d < M >,. Let Y := Xr(,) we have:

S

/(Xv)l/Q dM, = /(Yu)1/2 dB,
0 0

From 6*(u) > 0, we get < M >rp(,)= v, therefore

T(s) T(s)
Y, = 0/ o () (Xo)V2dW, + 0/ ;2(22) [a(u) — Xo]d < M >,

Following Karatzas and Shreve |25, Prop. 4.8, p.176] if [ |X (s)|d < M >:< +0o0 a.s., we have
S S T
v, = [(r) dBu—i-/M[a(T(v)) —Y,] dv
o
0 0

This Proposition 4.8 in [25, p. 176] remains true under a local condition [ |X(s)|d < M >,<
+oco a.s. for every N € IN, which is verified under our hypothesis, since (X;) has a.s. continuous
trajectories (using (C2)).

Since Y; > 0 a.s., Y, verifies the stochastic differential equation:

_ 1/2 c(T'(s)) alT(s)) — s
AV, = (V)" #aB, + S (1) = V] d

The Comparison Theorem by Tkeda and Watanabe [24, Th. 1.1, p. 437] can be used even
though the drift b(¢,y) is not continous in ¢. In fact we only use the condition that the function
b(t,y) be uniformly Lipschitz continuous in y, uniformly in ¢, almost surely which follows from
(C2).

Therefore we have P(Y; > Z,,Vs > 0) = 1 with

dZ, = (2,)/%dB, + B — sup (;,f&) Zs] ds

and Z(0) =Y (0) = X(0)
Since the process Z; satisfies a Cox, Ingersoll and Ross type stochastic differential equation
with constant coefficients, from Proposition A.1, we get P(Z, > 0,Vs > 0) = 1 which implies

P(Y;>0,Vs>0)=1.
RR n 2848
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Third Step : Now we prove the existence of a positive strong solution.
For every n € IN, we define Xt(n) as the solution of the following stochastic differential

equation
1 1/2
dx{” = c(t) [a(t) — X["] dt +6(t) [; v Xt(")] aw,,  X™(0) = X, (26)

We have suppressed the neighbourhood [0, %[ where the diffusion coefficient vanishes, therefore
we get a Lipschitz continuous diffusion coefficient. Since IEX (0)* < +oo, there exists a strong
solution of the Stochastic Diffrential Equation (26), with almost continuous paths [25, Th.2.9,
p-289].

We define the stopping times 7,, := inf {t such that Xt(”) < %} and Too 1= SUPpeNTH- >From
X (0) > 0 a.s. we get 7o, > 0 a.s. Therefore, X; is well defined by X, := X™ fort e [0,7,). Of
course X, satisfies the SDE (4) and X; > 0 for every t € [0, Too)-

It remains to prove that 7., = oo. This follows from the second step.

Indeed, we have P(Y; > Z,,Vs > 0 suchthat T(s) < 7o) = 1 and P(Z; > 0,Vs > 0) = 1.
As the solution of the stochastic differential equation (25), Z; has continuous path, almost

surely. Then there exists a sequence of negligible sets Sy such that
VN € N, Vw ¢ Sy, I3m(w) > 0 suchthat Vs > 0, Z; > m(w)

Therefore VN € N, Vw ¢ Sy, Im(w) > 0 such that Vn > m(w) !, Vu < inf(N,7,), X, > =.
But X, is almost surely continuous on [0,inf(N,7w)[, thus 7, < N = X, = L. This
induces
VN € N, Vw ¢ Sy, Im(w) > 0 such that Vn > m(w)™, 7, > N

Outside S = Unenw Sy, We have 7, = oo. Since S is a negligible set, we have proved the
existence of a strong solution of the stochastic differential equation (4) on R™.

This ends the proof and allow us to deduce Theorem 2.1. [ |

B APPENDIX (Some Properties of the Random Variable
¢ and Bound on 1)

First we propose a bound on 7;.
Lemma B.1 Let X; verify (3) and assume that (A0), (B1) are satisfied. Then Vj we have

B() < 12V2A, [Kr | Eo* (llieom] [1 + O]
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Proof: It follows from Jensen and Holder inequalities, (14) and the following bound:
E(X, = X;,)" < 8(s = ;)" [36 [ o™ (Mt s) + K A1)
|

We now give some useful properties for the family of random variable (&;) defined by (13).
Lemma B.2 Assume that (A0) is satisfied, then we have:

E¢; =0, and IE(&&) =0  when k#1 (27)

EE < 3B (=@ and  EE < CillEo® ()|l re 00 (28)

Proof: Formula (27) follows from (13), assumption (A0) and Stochastic Integral properties.
The bounds (28) result from (A0), bound of Stochastic Integral Moment, see e.g. [25, p. 163]

and standard calculations using Holder inequality (see detailed proof in [3]). |

Using the regularity assumption, we get a better result:

Lemma B.3 (i) If (A0) and (A2) are satisfied. Then:

Ljt1

&= (L)A [ (Wo =Wy )aW, + ¢ (29)
t;
with
m 1/2
Ee <30 [EK' ()] " 1B ()2 0m 1+ 12 Al (30)
Therefore
1 m
B = S Ea*(t;) + (|1 A[™) (31)

(i1) If (A0) and (A1) are satisfied, then (31) holds with

1/2 1/2
Be; <12P(t, € [t;, ;1) Pllo 125, | Bo*() [ Zor (1+121A10 (32)

Loxm)
and
Jim P(t, € [t = byt +h]) = P(t, = 1) (33)
Proof: We have:
tj+1 s
6 = A / [0(s) — o(t;)] / a(u)qu] dw,
i i;

Using (13), the bounds of Stochastic Integral moments and Holder Inequality, a straightforward
calculation leads to (30).

The proof of (32) is quite the same. From Lebesgue’s Dominated Convergence Theorem,
we deduce (33). [ |
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C APPENDIX (Proof of Pointwise Convergence)

The term Ma a(t) converges to the volatility function o?(t) exept at the jump times. This is

the statement of the following lemma.
Lemma C.1 i) Assume that (A2) holds, then for every t,
[Maa(t) = o*(t)] < K(w)(AA[)™
i1) Assume that (A1) holds. Then for every t when A||Al| is small enough
Maa(t) = 1/2{c*(ts) + o*(t-)}
Proof: This results from the fact that M4 A(f) is the moving average of size A of o(t)%. |
The terms Da a(t) is of order ||A||*/2, as stated below.

Lemma C.2 Assume that (A0) and (B1) are satisfied. Then ¥Vt > 0,

1/2
E[Daat)] < 48V2] A [KTIIJE04(-)|IL°°<O,T>] [+ O(]|A])]
Proof: From Jensen Inequality we get:
A/2
E|Daa(t;)]? <447 > En7y)
i:*A/Q
The result follows from Lemma B.1. [ ]

The term N4 a(t) satisfies a Central Limit Theorem.
Lemma C.3 (i) Assume that (A0) is satisfied. Then for everyt
E | Naa(t) '< 124 Eo* ()l 1=(or) (34)

(11) If, moreover A — +o0o, A||Al| = 0, and vy > 0 such that Vt, o(t)> > vy, and P(p=1) =0
. Then
AYE N, A(1) )0 (1) = N(0,V2) (35)

Remark : If o(t) is deterministic, we get:
N4 a(t)
A2 N(0,V/2).
o2(t) N( 7\/_)

This follows from Lindeberg Theorem with Lyapunov condition. Here the difficulty to ob-
tain (i7) comes from o(t) stochastic and we need to use the Central Limit Theorem for array

martingale.
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Proof of Lemma C.3:
(i) Using Lemma A.2 (27) we have IE | Nya(t;) |*= 4A72 Zgiﬁ/ip IE(£7). Therefore (34)
follows from (28).

ii) We consider the time ¢; as fixed and A, A depending on N as defined by the asymptotic.
j

Let
A2

Sy =072 (tj ap) Naalty) =247 > o072t ap)é

i=j—A/2
and Fy,; := F,, the random variables & are Fy ;41 adapted. Since o?(t;_4/2) is Fy, adapted
(for every i > j — A/2) and IE(&; | Fn,;) =0, Sy is a martingale array. Anyway the filtrations
are not nested i.e. Condition (3.21) [19, p.58| is not satisfied. To avoid this difficulty, we prove
that the Conditional Variance V32 has, in Probability, a deterministic limit [19, p.59|. Indeed,

we have:
J+A/2
Vi =447 Y E(o *(tj—ap)& | Fno) =
i=j— A2
J+A/2
=4A7? 0_4(tj—A/2) Z E(& | Fna)
i=j—A)2

From Lemma B.3 and (29), we get:

1
E(ff | ]:N,i) = —04(tj—A/2) + A

2
Therefore
VZ?=2A7"[1+ Res]
with
J+A)2
Res = 4A_1 Z 0'_4(tj,A/2)Az’
i=j—A/2

where exact formula for ); could be derived from Lemma B.3.

If (A2) holds, we have IF(Res?) = O(A||A|])*™ — 0 as A||A]| — 0. If (A1) holds, we have
E(Res*) = O(P(p € [tj—a/2,tj+a/2])"*) — 0 from (32). In both case, we apply Central Limit
Theorem for array martingale [19, cor.3.1, p.58| (after normalization by A*/2) and we get (35).
The verification of Lyapunov Condition is equivalent to limy_.., A~} = 0 and follows from (28).
|

D APPENDIX (Rate of Convergence of the Volatility Jump

Time Estimator)

With a little abuse of notation, we still denote ga(-), La(-) and D4(-) the functions defined by

(21) but with argument ¢; instead j. Recall that we are considering the asymptotic A — oo,
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therefore when (A1’) is fulfilled (A3) holds for A||A|| small enough (see proof of Corollary 5.2).
When (A3) is fulfilled, on the set By a we have

(p; C) (1= X 1)(002) = A V2L y(t,) — Dalte) (36)

This follows from (19) and (21). For each fixed time ¢;, we have

A—1\"?
LA(tj) é <T) [Uﬁ_ +0;1+ 1/2./\/(0, 1)

when A — +o0. Since (A, A) is a random variable, we cannot deduce directly the Theorem

5.1. Therefore we proceed as follows (using the same kind of strategy as in [4]).
1) we show that ¢.(A, A) converges to ¢, (in L?*(Q2) norm);
2) we show asymptotic normality with ¢.(A, A) replaced by t,;

3) we bound the error by showing a Holder continuity result with the help of Kolmogorov’s

Lemma.

Recall that the jump times ¢, are deterministic (by assumption of Theorem 5.1). For notatio-
nal convenience, we will denote ¢. instead t.(A4,A). We first state the Hélder continuity and

boundness results, in the following lemma.

Lemma D.1 Assume that (A0), (A1’) and (B1) are satisfied. Then we have
i) There exists K1 > 0 such that IE(1{c—p<a/2yD5(te)) < K1 ||A|l;

i) Va < 1/4,3K, > 0 such that EM* < K, and a negligeable set N4 such that Yw & N,
Vi, k €0, NJNIN,
— k
La(t) = La(te)] < M, [7—=°

i1) there K3 > 0 such that  IE(1yc_y<a/2} L(t:)?) < K.

Proof :
(i) We want to apply the Kolmogorov Lemma in order to obtain the continuity of Da(t;). If
we can show that

. 2 k _j ’

\V/], ke [O,N] N IN, E|DA(t]) — DA(tk)| < ||A||K0 T (37)
then for every o < 1/2, there exists a random variable M,, and a constant v(«) > 0 such that
EM? < (o) Ko [|A]] and
k—jl*

Vi, k € [0, N]NIN, |D4(t;) — Dalty)] < M, Y
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Combined with Lemma C.2, this induces

E 1y, o<amDi(t)]

IN

2 (l{lpfcISA/z}mA(tc) - DA(P)\Z) +2IED (p)
< EM] +2IED%(p)
< KA

In order to show (37), we get 4 terms of the type

2

= A72 z E(nllnm)

11,12

k—A/2

Ail Z 771

i=j—A)2

FE

< A7 (k — j)*sup(En})

After we deduce (37) by using Lemma B.1

(ii) It directely follows from Kolmogorov’s Lemma. So it suffices to verify
o— i\ 2
Vi k€ [0,N]NIN,  IE|La(k)— La(t;)|* <~ (Tj>

Here we have 4 terms of the type

k—A/2 |4

> &

i=j—A/2

A2E = A7) EEE)

11,12

< NollzeorCA™2( — k)?

where we have used the independency of the & and Lemma B.2.

(iii) We proceed in the same way as in (7).

Remark : We are not using the Kolmogorov’s Lemma stated in Revuz & Yor [32, th. 2.1,

p.25]. Here we need a bound for a moment of the Holder continuity constant (for e.g. EM?2 <

v(a) K ||Al| in (i)). This improvement could be easily deduced from a careful reading of the

proof of Revuz & Yor. Moreover, since for each fixed A and A there is only a finite number of

times ¢;, we do not need all the power of Kolmogorov’s Lemma. But it is more convenient to

use it.

Now we can yield the first step:

Lemma D.2 Assume that (A0), (A1’), (B1) and (A3) are satisfied. Then there exist K3 > 0

such that:
p—c

E (1BA,A ) < Ky (302)7 {IA]2 + 472

RR n~2848
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Proof : From (36), Jensen Inequality and Lemma D.1, we get:
(602) (1= A7) B (15, , |25|)
< ATVE (1{|pfc\§A/2} \ﬁA,A(tc)\) +IE (1{|pfc|§A/2} Da,alte) |)

) 1/2 1/2
< AVE (LgpmgcamLialt) | + B (Lgp-gzamDialte)
< Ka{al2 + a7}, -

We have the second step:

Lemma D.3 Assume that (A0), (A1’), (B1) and (A3) are satisfied. If A — oo, then

L2
L4(t,) £ (%) [0§7+0ﬁ+]1/2./\/'(0,1)

Proof : From (21) and (10), we have

A2 AA/2
La(t) =2A47"°X7 (A =1) Y &ri— Y &
i:—A/Q i=—XA/2
i \>A/2

Recall that in the deterministic case, the random variables §; are independent. We obtain:

A2 AA/2
Sa = 4ATNTIN-1)? Y B+ Y EE,
i=—A)2 i=—XA/2
i |>A/2
L A A
= 44 T)\? {(/\ — 1)250;4, + (A — 1)50§}
where 1
&;; = 5[0;1— + 02+]
Finally

Sa=21"'(A - 1)5*

The Lyapunov condition is satisfied if A= — 0. Therefore we can deduce from the Central

Lalp) =N (0, (2 A ; ! a;f) 1/2)

and the lemma is proved. [ |

Limit Theorem:

Finally we have the third step:

Proof of Theorem 5.1 :

INRIA
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The assumption (A3) is satisfied when A||A|| — 0, see the proof of Corollary 5.2. From (36),

we get
AT (p—c) (1 =271 (5‘72) = La(p) + A7V?Da(te) + {La(t.) — La(t,)}

Therefore we have (24) where

Ui(4) 1= 52 (602) Lalty)

and

Vi) = (525) () {47 Date0) + (L) - Lt}

The convergence in law of U; is given by Lemma D.3

From Lemma D.1 (i), we have
2
B [1,—qeamA*Da(te)]” < K1 AA|

On the other hand, using successively Lemma D.1 (ii), Holder Inequality, Jensen Inequality

2a>
c—p

A
c—p

2a
2

Ky (A2 + A7)

and Lemma D.2, we get:

c—p
A

B (tpalbalt) = La(t)) < B (a2

IN

4a> 1/2

(EMf;)lﬂ FE <]‘BA,A

IN

K/*E (1BA,A

IN

Let us stress that the last inequality does not directly follow from Lemma D.1 (i), but we need
the improved bound of Lemma D.2.
This ends the proof of Theorem 5.1. [ |
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