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Abstract: In this report we study the stability of cone support points Min(A|K) of a given
set A in a topological vector space Y, equipped with a closed convex cone K C Y. We prove
sufficient conditions for the lower continuity of Min(A|K) when A is subjected to perturbations
(Theorem 2.2, Theorem 2.3). The crucial assumption is that the set Min(A|K) is dense in the set
of strict cone support points (Definition 2.1). In normed vector spaces Y the set of strict support
points contains the set of super eflicient points in the sense of Borwein and Zhuang. By making
use of the density result for super efficient points Theorem 4.2 gives sufficient conditions for the
lower continuity of cone support points for cones with weakly compact bases and the original set
A being closed and convex.

When K is a Bishop-Phelps cone in a Banach space Y we give a simple characterisation of
strict support points (Theorem 3.2) which allows us to give a variant of the result of Attouch
and Riahi (Theorem 3.4) without any compactness assumption (Theorem 3.5.

Key-words: stability of minimal points, lower continuity, super efficiency, Bishop-Phelps cones,
convexity
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Cones de Bishop-Phelps et convexité: applications a la stabilité
de problemes d’optimisation vectorielle

Résumé : Dans cet article nous étudions la stabilité de ’ensemble des points de support
Min(A|K) pour des parties quelconques A d’un espace topologique vectoriel Y muni d’un coéne
convexe fermé K. Dans I'optimisation vectorielle Min(A|K) est nommé I'ensemble des points
minimaux de A par rapport & K. Nous démontrons des conditions suffisantes pour la continuité
inférieure de Min(A|K) (Théoreme 2.2, 2.3). Dans ces deux résultats ’hypothese essentielle est
que l'ensemble Min(A|K) est dense dans I’ensemble de points de support stricte (Definition 2.1).
Dans les espaces normés ’ensemble de points de support stricte contient I’ensemble de points
super efficaces au sens de Borwein Zhuang (Proposition 3.1). En utilisant les conditions suffisantes
pour la densité des points super efficaces on obtient la continuité inférieure des points minimaux
pour cone K possedant un base faiblement compact et partie A convexe fermé (Théoreme 3.1,
Théoreme 4.2).

Dans le cas ou K est le cone de Bishop-Phelps dans ’espace de Banach nous donnons une
caractérisation simple de points de support stricte (Théoréme 3.2) qui nous permets de formu-
ler un resultat proche de celui de Attouch et Riahi (Théoreme 3.5) sans aucune hypothese de
compacité (Théoreme 3.4).

Mots-clé : la stabilité de points minimaux, la continuité inférieure, super efficacité au sens de
Borwein et Zhuang, cones de Bishop-Phelps, convexité
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1 Introduction

Let Y be a topological vector space ordered by a closed convex pointed cone K. The cone K
supports a subset A of Y at ag € A if (A — ag) N (—K) = {ao}. The point aq is called a cone
support point of A. In vector optimization cone support points are called minimal and the
set of all cone support points is denoted by Min(A|K) .

In this note we investigate lower continuity of cone support points when A is subjected to
perturbations.

Let U be a topological space. A multivalued mapping I' : U — Y is lower continuous (l.c.)
at (yo, up) if for each 0—neighbourhood W in Y there exists a neighbourhood Uy of ug such that
(yo+ W)NT(u) #0 forall w € Uy. T is Lc. at ug if it is l.c. at every point yg € T'(ug) . We say
that [' is upper Hausdorff continuous (u.H.c.) at ug if for each 0—neighbourhood W of Y
there exists a neighbourhood Uy of ug such that I'(u) C I'(ug) + W .

One of crucial properties ensuring lower continuity of support points is the domination pro-
perty. We say that the domination property (DP) holds for A if A C Min(A|K) + K.

To derive our basic continuity results (Theorem 2.2, Theorem 2.3) we need also to distinguish
some subsets of cone support points. We say that a cone support point ag € Min(A|K) is a
strong proper cone support point, or a strongly properly minimal point, and we write
ag € SPMin(A|K), if there exists a closed convex pointed cone Ko, intKy # (I, such that
K\ {0} C intKy, and for each 0—neighbourhood W there exists a 0—neighbourhood O

(K\W)+0 C Ko, (%)

and ag € Min(A|Ky) .

The following auxiliary lemma will be of use in the sequel.

Lemma 1.1 Ifag € SPMin(A|K), then for any 0—neighbourhood W there exists a 0—netghbourhood
O such that for all z ¢ ag+W and z &€ ag — Ko we have (z4+O) N (ag— K) =0.

Proof. We start by showing that if the condition (%) holds, then for any 0—neighbourhood W
there exists a 0—neighbourhood O such that for any 2z ¢ W, and 2 ¢ Ky we have

(z+0)N(=K)=90.

Let us first note that for any 0—neighbourhood W one can choose 0—neighbourhoods Wy , Wy
such that [W°+ Wi]N Wy = (0, where W¢ stands for the complement of W . Moreover, by (x),
there exists a 0—neighbourhood Oy such that

(IC\WQ)+OQCICO7

and hence

(/C\WQ)—}-OQﬂWlCIC(). (1)

Now, suppose on the contrary that there exists W such that for any O one can find z ¢ W,
and z ¢ (—Kg) such that
z+0)N(=K)#0. (2

Let us take O = Oy N Wy . By (2), there exists z ¢ W, z € (—Ko) such that 2 + w = —k,
where w € O NWy, k€ K, and k ¢ W5 . Hence, by (1), k+ O N Wy C Kg, and consequently
k—w= —z € Kg, contrary to the fact that z ¢ (—Ky) .

!This work was supported by the INRIA project NUMATH during the author’s stay at the Institut Elie Cartan,
Universite de Nancy 1, Departement de Mathematiques. On leave from the Systems Research Institute, Polish
Academy of Sciences, 01-447 Warszawa, Newelska 6
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4 Fwa M.Bednarczuk

Now, if we take z — ag ¢ W and z — ag € (—Ko) we have [(z — ap) + O] N (=K) = 0, which
means that (z4+0)N(ag— K)=0.

2 Basic results

In [2] we have proved the following stability result.

Theorem 2.1 Suppose that I'(ug) # 0, and
Min(I'(ug)|K) = SPMin(I'(u)|K)),

and (DP) holds for all I'(u) in a certain neighbourhood Uy. If ' is l.c. and u.H.c. at ug, then
MU =Y, M(u) = Min(I'(uw)|K) is l.c. at ug.

Here we prove the following refinement of this result.

Theorem 2.2 Let I'(ug) # (0, and (DP) holds for allT'(u) in a certain neighbourhood Uy of ug .
Assume that

Min(I(ug)|K) C cl(SPMin(I'(uo)|K)). ()
IfI' ws l.c. and u.H.c. at ug, then M 1s L.c. at ug.

Proof. Since I'(ug) is nonempty, [ is l.c. at ug, and (DP) holds for all I'(u) , u € Uy, we have
Min(T(u)|K) # 0 for u € Uy .

Let W be a 0—neighbourhood and let yg € M (ug) . Let Wy, W3 be 0—neighbourhoods such
that Wi+ Wy C W and W+ W, C Wy . By (¢), there exists a strongly properly minimal element
y1 such that yq € yo + Ws.

Since y; € SPMin(I'(ug)|K), by Lemma 1.1, there exists a 0—neighbourhood O such that

(z40)N(y1 — K) =0
for all z € (y; — Ko)°, 2 & y1 + Wa . This means that
[(y1 = Ko)*\ (y1 + W2)]+ OIN (11 — K) =0,
and consequently,
[y = Ko)\ (y1 + W2)]+ O1] N [(y1 + O1) = K] =0, (1)

for any 0—neighbourhood O; such that O, + O, C O.
On the other hand, since y; € Min(I'(uo)|Ko) ,

[(uo) C (y1 — Ko) U {y1}-

Therefore,

[uo) C [(y1 = Ko)*\ (1 + W2)]U (41 + W3)

and

['(uo) + O1 0 Wy C [[(11 — Ko)°\ (y1 + Wa)]+ O1 0 Wa] U (y1 + Wh).

There exists a neighbourhood U; of ug such that for all w € U; we have

I'(w) C I'(wo) + 01N Wa C [[(y1 — Ko)\ (y1 + Wa] + O1 N Wo] U (y1 + W1) . (2)

INRIA
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Moreover, there exists a neighbourhood U, of ug such that
(p+01NWy)NI(u) #0,
for w € Uy, i.e., there exist y,,
Yu € I(w) 0 (y1 + O1 NW3)

and consequently,

yu—ICCyl—}—OlﬂWz—lC.

By (1),
(yu — K) N [[(yo — Lo]°\ (11 + W2)]+ O1 N W] =10,

and, by (2), for u € Uy N U; we have
(yu =K)NT(u) Cyr + W1 Cyo+W.
Now, by (DP), for each u € Uy NU; N Uy there exists 7, € Min(I'(v)|K) = M(u) such that
M € (yu = K)OT(w) Cyo+ W

This completes the proof.

Lemma 1.1 allows us to make an important, though elementary observation.

Remark 2.1 Ifag € SPMin(A|IK), then AN (ag — Ko) = {ao} . Hence, for any a € A and any
0—nieghbourhood W such that a ¢ ag + W we have a &€ ag — Ko. By Lemma 1.1, there exists a
0—neighbourhood O such that

[(AN\ (a0 +W)) + 0] N (ao — K) = 0.
This leads us to the following definition.

Definition 2.1 An element ag € A is a strict cone support point, or a strictly minimal
element, ay € SMin(A|K), if for any 0—neighbourhood W' there exists a 0—neighbourhood O
such that

[(A\ (e + W) +O0IN (a0 —K)=0.  (xx)

Note that each strict cone support point is a cone support point. Suppose on the contrary that
there exists a; € A, a1 # ag such that a; € AN(ap—K) . Then there exists a 0—neighbourhood W
such that a; € A\ (ap+W) but, for each 0—neighbourhood O, a1 € [(A\ (ag+W))+O0]N(ag—K)
contrary to (#%) .

Moreover, by Remark 2.1, each strong proper cone support point is a strict cone support
point.

Let us note that (x%) can be rephrased as

[(A=a) \W)+0In[-K]=0,  (xx)f

or

[((A=a)\WIN[O=K]=0.  (xx)"

With this definition we can prove a stronger version of Theorem 2.2.

RR n2806



6 Fwa M.Bednarczuk

Theorem 2.3 Let I'(ug) # 0 and (DP) holds for T'(u) for all u in a certain neighbourhood Uy
of ug .
Assume that
yo € cl(SMin(I'(ug)|K)) (22)
If ' is l.c. and w.H.c. at ug, then M s l.c. at (yo, uo) -
Proof. By our assumptions we have Min(I'(ug)|K) # 0.

Let W be a 0—neighbourhood and let yg € M (ug) . Let Wy, W3 be 0—neighbourhoods such
that Wiy + Wy C W and Wy + Wy C Wy By (i), there exists y; € SMin(I'(ug)|K) such that
that y; € yo + W>.

By definition,

[(I'(wo) \ (g1 + W2)) + Ol N (y1 — K) =0,
and consequently

[(C(uo) \ (y1 + W2)) + O1] N (11 + O1 = K) =0, (1)
for any 0—neighbourhood O; such that Oy + O, C O.
On the other hand,

(o) C (I'(uo) \ (y1 + W2)) U (y1 + W2).

Therefore,
F(’LLO) +O0,NW; C [(F(UO) \ (y1 + WQ)) +0:1N WQ] U (y1 + Wl) .

Now, there exists a neighbourhood U; of wg such that for all w € Uy

[(u) C D(ug) +O1 N Wo C [(I'(uo) \ (y1 +Wa)) + O N WalU (yr + W1) . (2)
Moreover, there exists a neighbourhood U, of ug such that
(1 + 01N W) NL(u) #0,
i.e., for each u € U; there exists y, ,
Yu € D) N (y1 + 01 N W),

and consequently
yu_]CCy1+O1ﬂW2—/C.
Now, by (1),
(yu = K) N [(I'(uo) \ (y1 + Wa)) + O1 W] = 0.

By (2), for w € Uy NU,
(yu —K)NT(u) Cpn + Wi Cyo+ W

By (DP), for each u € Uy N Uy N U there exists n, € Min(I'(u)|K) = M(u) such that
N € (Yu — K)NT(u) Cyo+ W,

which completes the proof.

Clearly, to get lower continuity of M at ug it is enough to replace (iz) by
Min(T (ug)|K) C cl(SMin(T(ug)|K)).  (i1)’

We close this section with a characterization of strong proper cone support points for cones
with bases.

Recall that cone K has a base © if © is convex, 0 ¢ cl(0), and K = cone(B) If cone K is

based, it is necessarily convex and pointed.

INRIA
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Proposition 2.1 Suppose that cone K posseses a base O, then
K© = cone(® + 0) C Ko (%)

for some 0—neighbourhood O.
Moreover, if base © is topologically bounded, then (x)" implies (x) .

Proof Since 0 ¢ O there exists a 0—neighbourhood W such that © "W = §. Thus, by (x) there
exists a 0—neighbourhood O such that © +O C Ky, or cone(© +0O) C Ky.

On the other hand, if () is not satisfied, then there exists a 0—neighbourhood W such that
for each 0—neighbourhood O one can find an element k, € K, k, € W, such that k&, + O € Ko,
ie., k,+0 & Ko . Now, k, = A0, and there exists Ag such that for 0 < A < A\g we have A\O@ C W .
Thus, A, > Ag, and

)\O/)\O(AOGO + )\0/)\00) Q/ ICO .

This means that

)\000 + )\0/)\00 Q/ ICO .

Since Op = ApO is also a base we get
o+ 0 ¢ Ky,

which contradicts (x)’.

3 Applications to normed spaces
Let Y be a normed space with the unit ball B. We start with the following proposition.

Definition 3.1 A point ag € A 1s said to be super efficient in the sense of Borwein and
Zhuang [3], ag € SE(A|K), if there exists a number M such that

cl(cone(A — ag))N(B-K)C MB.

Each super efficient point is efficient. Moreover, we show that each super efficient point is a
strict support point.

Proposition 3.1 For any subset A of Y we have
SE(AIK) C SMin(A|IK) .

Proof.
In normed spaces strict minimality can be rephrased as follows: for each € > 0 there exists
d > 0 such that
[(A\ (a0 +£B)) + 6B]N (ap — K) =0,

or equivalently

[(A—ap)\eBlN[éB-K]=10.
Thus, if ag ¢ SMin(A|K) there exists £g > 0 such that for each § > 0

[(A = ao) \ &oB] N [6B — K] # 0.

RR n2806



8 Fwa M.Bednarczuk

Hence, there exists a,, € A, ||a, — ao|| > €0, such that
a, —ag = 1/n(b, — k,,) .

This implies that n(a, — ag) = b, — k,, and ||n(a, — ag)|| — +oc. This, however, means that
ap € SE(AIK) .

Proposition 3.2 Suppose that K has a bounded base © . Then
SPMin(AIK) C SE(A|K).

Proof . If ay € SPMin(A|K), then, by Proposition 2.1, there exists £ > 0 such that

(A — ap) Ncone(—K.) = {0},
where K. = cone(© + ¢B) . Thus,

cone(A—ag)N(eB-0)=10.
For any y € Y such that y € (a — ap) — K we have

a—ag=1y— A0,

for some A > 0 and 8 € ©. The rest of the proof is the same as the proof of Proposition 3.4 of
3. 11 A =0, then [la — ol = [lyl] . 1 A >0,

A a—ag) = (A ly —6),

Since A™! € cone(A — ag) ,
A"yl > e

Now
lla — aol| < [ly|[+ Asup# .
< lyll+ Am = lyll(1 + 7

ls1]
<yl +2) = Mllyll,

where, by assumption, m = sup ||f|| < 400 . This means that ag € SE(A[K).

In view of the above results, we have the following variant of Theorem 2.2.
Theorem 3.1 Let I'(ug) # 0. Suppose that
Yo € c(SE(I'(uo)|K)), (vi1)

and (DP) holds for all'(u) is a certain neighbourhood Uy of ug . IfI' is L.c. at (yo, uo) and u.H.c.
at ug, then M s l.c. at (yo, uo) .

Proof. By Proposition 3.1, each super efficient point is a strict support, hence yo € clSMin(I'(ug)|KX),
and by applying Theorem 2.3 we obtain the assertion.

As previously, to get lower continuity of M at ug, it is enough to replace (ii¢) by

Min(I'(ug)|K) C (SE(T(ug)|K)).  (dit)

INRIA
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3.1 Bishop-Phelps cones
Let Y be a Banach space and K be a Bishop-Phelps cone, i.e.,

Ko={yeY|fly)>allylllfll},

where f is a linear continuous functional on Y and 0 < a < 1. This is a closed convex pointed
cone. If it is nontrivial, then K, has a bounded base ©

O={:eK|f(z)=1}.
The following characterisation holds.

Theorem 3.2 Let Y be a Banach space, A a nonempty subset of Y and ag € Min(A|K,). If
there exists § < o such that ag € Min(A|Kg), then ag € SPMin(A|K,) .

Proof. We show that cone Kjg satisfies the condition (%) of the definition of strong proper
minimality.
Let us take any ¢ > 0 and z € K, ||z|| > . We have

f(z+0) = f(2) + F(0) > a| flll=] + f(o)
> o[z + oll[l 71l = el £][|e]l = Il /1lle]
1711112 + of for — GrERLA
> |1 F1llz + ofl o — il

VARV

S — | O

(a - P)e
llof| < dati-3"

In [7] Phelps proved the following result.

Theorem 3.3 LetY be a Banach space and A a nonempty closed subset of Y . Ifinf f(A) > —o0,
then for any a € A there exists ag € A such that ag € (a — K,) and ag is a cone support point,
i.e., AN (ag— Ka) = {ao} .

Proof. Let a = a; € A and
Al :Aﬂ(al—lC).

Having defined a4, ..., a,, we choose a,+1 € A, such that

inf [(A,) > f(2ns1) +1/n.

Since a,4+1 € a, — K we have a1 — Ky C @, — K, and A, 41 C A,,. Moreover, for a € A, 41
we have
Now

aflfllants = all < flanta) = f(a) < fangr) —inf f(A, < 1/n.

This means that diam(A4,4+1) < n||J2‘||a . By the completeness, (| A, = {ao} . Moreover, for all n,

AN(ag— Ka) C Ap,

hence AN (ag — Ko) = {ao} -

RR n2806



10 Fwa M.Bednarczuk

Theorem 3.4 Let Y be a Banach space. Assume that
(i) there exists a neighbourhood Uy of ug such that all the sets I'(u) are closed and inf yer(y) f(y) >

i
yo € clf U Min(I'(ug)|Kg)) . (iv)
B<a

If T is l.c. at (yo,uo) and u.H.c. at ug, then M s l.c. at (yo, uo) -
Proof. By Theorem 3.3, (DP) holds for all I'(«) in Uy. By Theorem 3.2 we have

(| Min(D(uo)|Kp)) € SPMin(I'(w)|K.) .
B<a

Now, the assertion follows from Theorem 2.2.

Theorem 3.4 is a variant of the following result proved by Attouch and Riahi [1].

Theorem 3.5 Let Y be a Banach space, {D,;n € N} a sequence of closed nonempty subset
which Painleve-Kuraltowsk: converges to D C Y, and K s a closed pointed convexr cone 'Y,
KcC{yeY;l(z)+e|z|| <0} for somel € Y* ande > 0.

Suppose that the following conditions are satisfied:

(1) infeninfp, I > —o0,

(i1)for every p > 0 there exists a compact subset K, C'Y such that for everyn € N

Min(D,|K)NnpB C K, .
Then Min(D|K) # 0 and

Min(DIK) Clim inf (Min(Dy|K).

We see that in Theorem 3.4 the condition (z¢) of Theorem 3.5 is replaced by a weaker condition
(tv), but a stronger type of convergence is used.

4 Density problems

The conditions (¢), (¢¢), (¢4¢) , and (iv) are density type assumptions. They express the property
that Min(A|K) is dense in the set of certain kinds of proper cone support points. This property
has been investigated in many different setting and for different notions of properness (e.g., [3],
], [6], [8]):
Here we cite the result of Borwein and Zhuang [3] which is particularily useful to our purposes.
We say that a subset A of Y is K-lower bounded if there is some constant M > 0 such that

ACMB+K.

A subset A is K—lower bounded if either it is topologically bounded, i.e., A C M B for some
positive constant M > 0, or there exists an element m such that a —m e K forallaec A.

Theorem 4.1 (Borwein, Zhuang [3]) Let Y be a Banach space, K an ordering cone and A a
nonemply subset of Y . Assume that K has a closed and bounded base © . If either of the following
conditions is salisfied, then SE(A|K) s norm-dense in the nonempty set Min(A|K):

(1) A is weakly compact;

(11) A is weakly closed and K—lower bounded while © is weakly compact.

INRIA



Bishop-Phelps cones and convexity: applications to stability of vector optimization problems. 11

For convex sets the condition (7¢) can be rewritten in the form
(ii)” A is closed and K—lower bounded while © is weakly compact.
In view of this result we can rewrite Theorem 3.1 in the following form.

Theorem 4.2 LetY by a Banach space. Suppose that K posseses a weakly compact base, I'(ug)
is nonempty, closed and convexr, Min(I'(ug)|K) is bounded, and (DP) holds for all I'(u) in a
certain netghbourhood of ug .

IfT' s l.c. and u.H.c. at ug, then M 1s l.c. at ug .

Proof. It is enough to observe that if Min(I'(up)|K) is bounded and (DP) holds for I'(ug) , then
['(ug) is K—lower bounded. Thus, by Theorem 4.1, Min (T (ug)|K) C cl(SE (T (ug)|K)) . Now, the

assertion follows from Theorem 3.1. a

5 Concluding remarks

The results presented here for problems in normed spaces concern mainly cones with bounded
bases. It was shown by Petschke [6] that each cone with a bounded base can be represented as
a Bishop-Phelps cone. On the other hand, there exist important classes of cones which do not
have bounded bases. It was shown by Dauer and Gallagher [4] that nonnegative orthants in the
spaces [P, and L? for 1 < p < 400, do not have bounded bases, and hence, weakly compact
bases.
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