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Abstract: This thesis deals with the difficult problem of the recovery of the motion and structure of
a scene, from monocular sequences of images, in the case of a scene constituted of a single rigid curve. The
interest in this problem is both theoretical and practical: indeed, even if the situation we are looking at seems
simplified, it is important to have a good understanding of it as it is, in some way, the generic situation
that is encountered. This is because, computing the motion from edges, engenders problems. The most
famous of them is the so-called aperture problem: at an edge point, only the normal component of the 2D
velocity field is recoverable. In the face of this problem, researchers have developped two strategies: either
they “invent” (in some way) the missing component, or they use some higher order differential information.
It is this last approach that we explore for the case of rigid curves.

We have particularly taken care to use only the information available generically from the image se-
quences. The equations relating the kinematic screw associated to the 3D motion to the image measures have
been studied carefully. An algorithm that works with synthetic and real sequences have been implemented.
Its bringing to life, required the development of methods to compute the needed derivatives (up to order
2). One of the main conclusions that we can draw from these experiments is that, if the computation of
the motion on the basis of a single edge contour is possible, it is absolutely necessary to take into account
certain constraints (called visibility constraint) that can be imposed upon the solution to verify the property
that the corresponding 3D curve is totally in front of the camera.
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Analyse du mouvement de courbes rigides
tridimensionnelles a partir de séquences d’images

Résumé : Cette thése s’attaque au probléme difficile de la détermination du mouvement et de la structure
d’une scéne a partir de séquences d’images dans le cas particulier ot celle-ci est constituée d’une courbe rigide.
L’intérét de ce probléme est a la fois théorique et pratique : en effet, méme si la situation qui nous occupe
peut sembler caricaturale, il importe de bien comprendre ce qui se passe dans ce cas qui constitue, en quelque
sorte, la situation générique a laquelle on est confronté. Car calculer le mouvement & partir des contours
pose des problémes. Le premier d’entre eux est le probléme dit de 'ouverture : en un point de contour
seule la composante normale du champ de mouvement image peut &tre récupérée. Face a ce probléme, les
chercheurs ont développé deux stratégies : soit on «invente» (d’une certaine maniére) la composante du
champ de mouvement manquante, soit on utilise des informations différentielles d’ordre supérieur. C’est
cette derniére voie que nous explorons dans le cas des courbes rigides.

Nous nous sommes tout particuliérement attaché a n’utiliser que I'information génériquement disponible
a partir des images. Les équations liant le torseur cinématique associé au mouvement 3D aux mesures
images sont étudiées en détail. Un algorithme marchant avec des séquences tests synthétiques et réelles a
été implémenté. La mise en oeuvre de celui-ci a nécessité la mise au point de méthodes de calcul pour les
dérivées (jusqu’a l'ordre 2) qui sont nécessaires. Un des principaux enseignements que l'on a pu tirer de ces
expériences est que si le calcul du mouvement sur la base de 'observation d’un unique contour est possible,
il est cependant indispensable de prendre en compte certaines contraintes (dites contraintes de visibilités)
qui imposent a la solution de vérifier la propriété que la courbe 3D correspondante est totalement devant la
caméra.

Mots-clé : Vision par ordinateur, Analyse du mouvement, Courbes rigides, Flot optique, Champ de
mouvement
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Chapter ]_

Introduction

The goal of three-dimensional computer vision is to build a vision system based
on passive sensors. Although it is currently unreachable, the ultimate achievement
would be the design of a system that would mimic our (human) visual system: such
a tool would be of great interest in the fields relying heavily on human vision such
as surveillance, quality control, or robotics. Because of this, and even if not stated
explicitly, most of work in the computer vision has relied heavily on some assumption
arising from our experience about ours visual system: the results that we show are
most often interpreted as images (i.e. re-interpreted in a non-symbolic manner by
our visual system), and the performance that we would like to obtain are those
which we imagine are readily achievable in our everyday lives.

On the contrary, and as far as our knowledge allows such a statement, the treat-
ment of visual information in the brain is somewhat different from the methods of
computer vision. Nevertheless, the input data are similar and the dream of every
researcher in computer vision is to obtain a computerized system that would provide
output data close to the supposed output of our visual system (even if it is difficult
to know exactly what this output is, we do however know quite well what we are
able to achieve on its basis: actually, evaluating the quality of an algorithm is maybe
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one of the most difficult problem in computer vision as, practically, it can be gauged
only on the basis of the subsequent treatments).

From this human centered point of view, and because the study of the biological
visual systems is so difficult, one of the most interesting kinds of information that
could be obtained from our insight of the human visual system relies on the following
assertion:

Biological systems have the tendency to keep only those of the capabilities that are
regularly trained.

Although some care has to be taken with such a statement, should we believe in it,
then every task that our visual system seems to be able to achieve must be studied
within the framework of computer vision. Thus, if possible, tools providing a similar
capability should be designed.

Let us now examine the problem that is the topic of the work presented here:

The analysis of the motion of a 3D rigid curve from a monucular sequence of
mmages.

Whoever has tried to close one eye for a while, has experienced the human capa-
bility of infering motion and structure from a monocular vision of its environment.
Pursuing the experiment further, one can discover how it is possible to do such a job
while observing a single smooth curve even when it is planar (which, in computer
vision, introduces some mathematical difficulties). This tends to show that some
monocular treatment of the visual information is made by the brain and that the
particular task of determining the motion of a single piece of curve might play an
interesting role in our visual system.

1.1 Motivations

Actually, the justification given in the previous paragraph is very philosophic. There
are also some more pragmatic reasons that make the study of the analysis of the
motion of a monocular sequence of 3D rigid curves particularly interesting within
the framework of computer vision:
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The main idea is to develop a generalization of the works on motion estimation
based on points and lines (see for example [LHP80, WU85, WKPS86, Sub88,
FDN89, WHA92]). However, with respect to the problem of motion estima-
tion, a single point or a single line is a very “poor” source of information.
Combining many of these data is somewhat dangerous as, in general nothing
asserts that the underlying 3D motion corresponding to the different primi-
tives is the same: the different primitives may belong to different objects each
of which has its own different 3D motion. Moreover, point based approaches
are penalized by the fact that detecting points from images is a difficult task
that is prone to errors. More structured primitives are easier to recover and to
track. All these reasons make the curve case attractive as a complex enough
curve is both a richer source of information (i.e. the full 3D motion can be
computed from its observation in a monocular sequence) and an easy-to-detect
feature (since it is still a quite structured primitive).

Similarly, a great deal of the work on 3D motion has been done in the case
of discrete motions (especially for the straight line case). In many situations,
continuous theories are also interesting to develop as they provide the ground
for the treatment of images taken in a rapid succession [BBM87]. Making the
assumption of continuous motion simplifies the problem of tracking a feature
a lot as it moves little from one image to an another. Another argument for
working with this kind of image sequence is that it allows the unification of
the concepts of time and space in a single spatio-temporal framework.

One interesting consequence of the estimation of motion is that, once done, it
is in theory possible to recover the 3D structure of the observed curve. This
would allow the development of a device establishing a 3D structure for which
the hardware would be minimal.

Finally, towards the periphery of the work presented here, and more specifically
on the basis of the results obtained in chapter 4, one might wonder what kind of
low-level spatio-temporal information is used in the biological visual systems.
This is all the more interesting as some works in neurophysiology seem to
suggest that these systems are measuring quantities that cannot be recovered
mathematically!
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1.2 Organization of the Discussion

The discussion is organized into three main parts: a preliminary part introducing
the fundamental notions that will be used in the remaining of the discourse, a second
part describing the method used to compute some particular quantities needed in
the third part which itself studies the problem of the recovery of the motion and the
structure of a 3D rigid curve in depth.

In a final part, as a conclusion a brief summary of the contributions of this
work is provided. Notice also that, in order to ease the reading of the text, such a
conclusion has also been provided for each chapter (except for the first two).

1.2.1 The Preliminary Part

The first part is subdivided in three chapters:

Chapter 2: provides for all the useful mathematical background necessary for the
subsequent chapters (essentially chapters 3, 6 and 7). It is designed as a brief
reminder of some classical results of geometry (more specifically projective
and differential geometry) and of the algebra of polynomial systems. However,
some more advanced topics in these fields and also some numerical algorithms
are introduced. The goal of the chapter is not, however, a complete presenta-
tion of these tools and the interested reader is referred to the literature.

Chapter 3: introduces the basic notion and models used in computer vision which
are needed for understanding this work. Moreover, this chapter emphasizes
some common problems that may arise trying to recover 3D properties from
images. Futhermore, it explains some somewhat “arbitrary” choices that were
made in the presented work.

Chapter 4: studies in depth the information which is available from a sequence of
images for understanding the motion of a 3D non-elastic curve. Actually, this
chapter would have found a better place in the third part of the thesis, but it
is presented here as it introduces the quantities whose estimation is the topic
of the second part. This chapter also proposes a set of stimuli that may be
used to clarify the question about what are measuring biological systems. The
development of these stimuli is something difficult, so should still be considered
as “experimental”.
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Apart from chapter 4, which contains some important definitions, most of the
material of this part covers standard or advanced results in mathematics and com-
puter vision which can be skipped for a first reading. They are necessary, however,
for the understanding of some details of the overall presentation.

1.2.2 The Derivative Computation Part

The second and third parts are largely independent: indeed, the estimates obtained
in chapter 6 are used in chapter 9, but the means by which these values have been
obtained is not relevant for the discussion of the last part. The second part is
organized into two chapters:

Chapter 5: presents the problem we want to solve, and gives the general outline
of the algorithm defined to solve it. Then, a complete methodology for the
validation of such an algorithm is presented along with some of the tools needed
to use it effectively. This chapter constitutes the theoretical layer on which
chapter 6 is built.

Chapter 6: displays the results obtained with the defined method. Several variants
are considered (especially for the case of curvatures) and some critical design
issues are discussed. The main goal of this chapter is to prove that it is possible
to compute the second order derivatives accurately. These quantities will be
used by some of the algorithms presented in the third part. The final sections
and the conclusion summarize the interesting remarks that can be made from
the results which have been obtained, and propose some extensions that would
eventually allow a further improvement of the quality of the results.

In addition, a brief introduction describes the goal of the part and gives a brief
summary about derivative computation method and about the use of derivatives in
computer vision.

1.2.3 The Motion and Structure for Rigid Curves Part

This last part is the main goal of the work presented. As an introduction, a brief
history of the problem of motion and structure (mainly centered on the case of
general 3D motions) is presented. The rest of the part is constituted of four chapters:
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Chapter 7: studies in depth the general case of a rigid 3D curve in motion. The

equations relating the 3D motion to the image parameters are established,
and the inter-relations between these different equations are described. The
properties of the points of the curves for which these equations degenerate are
described. Interesting remarks about the properties of the 3D reconstruction
at these points are made.

Chapter 8: gives a detailed study of many different cases which are simpler than

the general one. An attempt is made to characterize the complexity of these
different problems in terms of the number of zeros of the underlying polynomial
systems. These particular cases are divided in two categories: particular mo-
tions and particular geometries (special curves). In the cases of planar curves
and of ellipses, the importance of the second order information is stressed.

Chapter 9: presents different algorithms for the solution of the motion and struc-

ture problems. Attention is mainly focussed on the last one as it is more
general. The importance of taking into account of the fact that the points
observed on the curve must be visible, is demonstrated in terms of the conver-
gence rate of the algorithm with perfect data. Results are shown for synthetic
and real image sequences.

Chapter 10: introduces as a conclusion two possible extensions of the work pre-

sented in the part. The first of these addresses the problem of the estimation
of motion in the uncalibrated case, whereas the second one deals with the pro-
blem of disambiguating stereo matches, by using motion of rigid curves and a
stereo setup.
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Chapter 2

A Few Mathematics

The goal of this chapter is to remind the reader of a few mathematics directly or
indirectly needed for reading the next chapters. On the way, some remarks about
the particular interest of some specific mathematical objects or techniques in the
computer vision framework are made. Most of the time, details are not given here
and the interested reader is referred to more consistent mathematical work for a
complete view of the topic. The presentation adopted is to define as few things as
possible and to give a feeling about “how it works” by making analogies with well
known mathematics or with common understanding. However, the section about
differential geometry goes into some complex details because they will be heavily
used in chapter 4.

2.1 Invariants

Klein in his Erlangen program (1872), revolutionized the study of geometry. He
showed how geometry can be seen as the study of the properties of objects (whatever
they are) that are invariant under the transformation induced by a group. From
this point of view, the “standard” geometries can be classified into a hierarchy
characterized by groups that are more and more general. Generalizing the Euclidean
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group to, successively, the affine and the projective groups, we obtain geometries
that become more and more general. Any projective property is also an affine one.
And, in turn, any affine property is also an Euclidean one. Thus, to prove some
basic properties, one has the choice of the proper geometry to use. If distances or
angles are involved then surely Euclidean geometry is needed, if however only ratio
of distances measured along parallel lines or parallels are appearing then the affine
geometry should be used. If, finally, only incidence properties appear in the looked
for result, then projective geometry is the proper tool. Adapting the level of the
geometry to the property which is studied is often very interesting since it allows to
forget about the irrelevant details.

This hierarchy of geometries is indeed very important in computer vision. Reco-
vering the properties of the 3D world can be made at many different levels:

¢ 3D Euclidean properties of the world are often interesting for obtaining quan-
titative measures required for executing sensori-motor tasks for example. This
is the most common level of work in computer vision.

e Affine properties are very interesting to consider in many applications for which
only relative distances measured along parallel lines are sufficient. For example,
having a robot to follow the center of a corridor needs only an affine recons-
truction of it (at least if the corridor is wide enough). This kind of situation
also appears when the internal parameters of a camera are not known: this
can be considered as inducing an affine transform onto the 3D world.

e Finally, projective properties are sufficient for some recognition procedures or
for recovering properties that depend only on incidence. One simple example
is that it is possible quite easily (at least theoretically) to decide from two
views if a set of points are coplanar or not [Gro94].

Two works characteristic of this level of hierarchies are described in [Fau92,
LV94]: the first one shows how it is possible to reconstruct a 3D scene from two
uncalibrated images up to an affine or projective transformation. Euclidean recons-
tructions can also be made but at the cost of adding more information (more images
[MF92, Har94| or images with known 3D properties [Tsa87, MBB94]|). The second
work clarifies this geometric hierarchy in the computer vision framework.

Remark 2.1 There is one more important level not described in this hierarchy and
that might be quite important for computer vision: the topological level. In this
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level, only the neighborhood properties are of importance. Although there is mot
much work on purely topological aspects, it is however present in a lot of algorithms
i computer viston like recognition, curve matching for stereo purposes or low-level
mage processing.

Notice that the description of geometry made by Klein also applies to less “na-
tural” situations such as differential geometry which is the study of smooth objects
under the action of the group of the different parameterizations or to algebraic geo-
metry.

Computing the basic invariants for a given geometric situation is not always an
easy task. Either if, in some cases, this task is quite easy (for example the coordinates
of a point in a canonical basis formed by some other points are invariants), in
some others it requires sophisticated mathematical tools [Gug77, VMPQO92, Fau94].
Appendix E shows an example of a non trivial computation using Maple.

In this text, we mainly use invariance in a trivial way to find some measures
that are independent of the position of the camera in space (this is used to estimate
the quality of our algorithms on real images). We also characterized the invariants
quantities arising from situations when a rigid motion is seen deformed by a constant
affine transformation. There is, however, a new trend about using invariance in
computer vision that makes heavy use of invariants: this tendency actually aims at

expressing quantities that are viewpoint invariant and, as such, can be computed in
(almost) any image as well as in the 3D world [MZ92, MZF94].

2.2 Projective Geometry

This section introduces the strict minimum of projective geometry that is needed to
understand some parts of the following chapters. The purpose here is to introduce
in some tutorial way the tools that will be needed. For a complete treatment of
projective geometry the reader is referred to [SK52] for example.

2.2.1 Euclidean and Projective Coordinates of Points of P?

What makes projective geometry so appealing for computer vision is that it is per-
fectly well adapted to the description of the features in the images under the standard
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Figure 2.1: An interpretation of the projective space P" as the line directions of an
n + 1 dimensional space. This figure represents the case n = 2.

pinhole model (see next chapter). Actually, one can interpret the projective space
of dimension n (denoted by P™ hereafter) as the space of the line directions of an
Euclidean (or affine) space of dimension n + 1. Figure 2.1 depicts this situation for
the projective plane (n = 2). Each line direction is represented by its intersection
with the projective plane P"™ and reciprocally each point of P™ represents a line
direction in the n + 1-dimensional space. We now briefly describe a few basic tools
allowing manipulation of projective quantities.

A projective basis of P" is constituted by n+2 points no n of which being copla-
nar. The coordinates of a point in such a basis constitues an n+ 1 vector defined up
to a non null scale factor: one of its components, at least, is non zero. This coordi-
nates can be viewed as those of a line direction (a vector) into the n + 1-dimensional
space associated to P™. A transformation between projective spaces is represented
by a non-null square matrix of dimension n + 1 defined up to a scale factor. The
transformation is applied by just applying the linear transform represented by the
matrix to the projective coordinates of a point. The basic invariant of projective
spaces is the cross-ratio which is defined for the configurations of 4 aligned points.

INRIA



Motion Analysis of 3D Rigid Curves from Monocular Image Sequences 15

Suppose now that we have an Euclidean (or affine) basis of the 2D space P
represented by the frame (O, 1,j) and that we want to embed this Euclidean space
into a projective one. The easiest way to achieve such a goal is given by figure 2.1.
In this figure, a new point C not in the plane P has been added. This point can
be chosen arbitrarily as long as it stays away from the plane. Let us chose it on
the normal to P at point O, the distance of C to the plane being 1 (changing the
position of C is just like making a change of projective basis, so this simple choice
is as good as an another one). Thus, the projective or homogeneous coordinates of
a point m of Euclidean coordinates (z,y) is given by the vector (z,y,1). Of course,
(Az, Ay, A) is also a valid projective representation of m as soon as A # 0. Reversing
the same reasoning, we find that the Euclidean coordinates corresponding to the
projective representation (z,y,z) of m in our basis are given by (z/z,y/z). From
this it is clear that projective points for which z = 0 are not Euclidean points: if we
refer to figure 2.1, the line directions corresponding to these points are those that
are parallel to the intersecting plane. Thus, they can be interpreted in two different
ways: either as vectors of the vector space associated to P (thus, in our basis the
projective coordinates of a vector v = [a, b] are (a,b,0)) or as points that lie in some
extension of this plane P that is located at infinity. Indeed, these points are called
points at infinity and P? is the union of P and of the set of these points.

2.2.2 Euclidean and Projective Lines of P?

Having understood what are the representations for points and vectors, the next
object of interest is the line. Following our Euclidean analogy, a Euclidean line
considered as a set of points is represented as m + uv. Following the rules defined
in the previous section, we find the projective coordinates of the points of the line

as
m \%
1 0|

If now we introduce the projective coordinates D of the Euclidean normal vector
to this line, we notice that for any point on the line which projective coordinates
are represented by the vector x, we have:

+p

Dx=0, (2.1)
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where - represent the standard dot product. D is said to be the projective repre-
sentation of the line. Similarly, having the projective coordinates x; and x5 of two
points, the projective representation of the line joining these two points is

x1 A X2,

where A represents the standard cross product. Notice that points and lines have
the same projective representation in terms of homogeneous coordinates and that
equation (2.1) involves the line and the point in a symmetric fashion. This is the so-
called duality of points and lines in the projective plane. This duality principle just
states that manipulating the set of the projective lines is equivalent to manipulating
the points of another projective space (the dual space). Thus equation (2.1) can
also be seen as the set of all the lines passing through the point x. Similarly, the
point intersection of two lines Dy and D4 is D1 A Do!

2.2.3 General Projective Spaces

A lot more can be said on the topic of projective geometry. Basically, replacing the
word line by hyperplane, all that has been said in the previous two section has a
straightforward generalization for the general projective space P™. Similarly, most
of the properties of the projective coordinates can be generalized to any projective
basis. Notice, however, that the way to go from Euclidean coordinates to projective
ones described in section 2.2.1 is supposing a particular projective basis that can
be easily obtained from the Euclidean one. We do not go into deeper details since
what has been introduced up to now is sufficient for the use we make of projective
geometry in this text. For more details about the tools of projective geometry that
can be used in computer vision, the reader is referred to chapter 2 of [Fau93] and to
[Kan91].

2.3 Polynomial Systems

Polynomial systems are appearing in almost all the problems of computer vision:
this is because the camera model that is used is linear (and thus algebraic) and
because most of the characteristics of the 3D world that people want to recover can
be modeled quite easily by algebraic conditions. There is however a big difference
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between the standard mathematical problem of solving a system of polynomials and
the ones that appear in computer vision: on one side, since the measurements are
corrupted with noise the polynomials that are manipulated are not exact which
normally perturbs the solutions (and this effect can be extremely important). On
the other hand, the polynomial systems arising in computer vision are very often
overdetermined but they are known to have solutions (contrarily to the mathematical
situation into which overdeterminated systems are usually not considered since they
do not have, in general, any solution). We are thus facing a non generic problem
that is not much studied by mathematicians. The goal of this section is to give
a brief overview of the standard methods used to analyze and solve polynomial
systems. Unless stated otherwise, the polynomial systems considered here have as
many equations as unknowns.

Basically, two big problems are appearing with these systems:

e Counting the number of solutions is an important task since it characterizes
the eventual ambiguity of a problem (see for example the work of Faugeras and
Maybank [FM90, May90a]) or the troubles that might be encountered while
trying to solve such a system.

e Obviously, the other problem is of course to obtain the solutions. The presence
of noise does not facilitate this task. On the other hand, the overdeterminacy
of the system may help to cope with this problem. Another benefit that might
come from this characteristic is the hope to have more efficient solving methods
than the general ones.

One fundamental problem that comes in addition to the previous ones is that com-
puter vision usually looks for real solutions only whereas standard mathematics
generally consider the situation in the complex field since it is simpler. Real alge-
braic geometry that studies these real properties is very difficult and is thus not
touched upon here. However, one useful result that it states is that, on average, the
number of real roots of a polynomial system is the square root of the number of its
complex roots [SS93]. This, at least, can give a hint about how to derive a result
for the real situation from one found for the complex one.

2.3.1 Symbolic Methods

We give here a brief description of a few symbolic tools that can be used to find
some basic information about a polynomial system or that transform it into some
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canonical form with which it is much easier to find all the complex solutions. These
methods are called “symbolic” because they are essentially manipulations on the
form of the equations.

Elimination and the Bezout Formula

Elimination techniques suppress one or more unknowns between the polynomials
of the system. The main idea is to reduce the number of unknowns by expressing
some of these as (eventually implicit) functions of the others. This is equivalent to
project the original solution set onto a subspace of the original space into which
it “lives” and to keep some information (the functions) allowing the recovery of
the full solution from its projection. This operation decreases the complexity of a
system since it reduces simultaneously the number of equations and the number of
unknowns. However, in general, this means that the degree of the polynomials of
the system is increased since the number of solutions is preserved. Actually, this is
stated precisely by the Bezout theorem.

Theorem 2.1 (Bezout) The number of complez solutions of a generic polynomial
system s equal to the total degree of the system.

The total degree is the product of all the degrees of the polynomials of the system.
Notice that this theorem is exact only in the projective situation where all the
polynomials are homogeneous (all the monomials have exactly the same degree.
This can always be achieved by adding one more unknown). This has the main
drawback of introducing many spurious solutions at infinity. Some results shown in
the work presented here will show how big this number can be. The Bezout theorem
can be refined in the multihomogeneous situation to not take into account some
of these solutions at infinity [WMS90, Wam92], but a better solution is described
below.

The resultant is the resulting polynomial of an elimination. Many techniques
are known to compute the resultant. Most of them involve the computation of
the determinant of a matrix. The particular form, size and complexity of the ma-
trix differs from one method to an another. Each kind of matrix (Bezout, Sylves-
ter, Dixon, Macaulay) leads to a method having its advantages and its drawbacks
[Dix08, Cha90, GCL93]. There is however a new trend in symbolic computation
that aims at efficient implementations of multi-polynomial resultant specially for
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sparse polynomials [MC93, Can93]: the basic idea behind this technique is to take
advantage of the null coefficients that appear in the polynomial to find a smaller
upper bound on the number of solutions. This also leads to methods for solving
polynomial systems.

Grobner Bases

Grobner basis techniques attempt to solve the problem of representing the ideal
associated to the polynomial system in some canonical form!. In some way, this can
be seen as a generalization of the elimination technique or as the generalization of
the standard Euclidean algorithm to multivariate polynomials.

Finding a Grobner basis for a polynomial system is not a trivial task and a lot of
research efforts are made in order to improve the current methods and to speed them
up. The most famous algorithm is the Buchberger’s algorithm whose complexity
is twice exponential in the number of unknowns. This makes it hard to apply to
problems where there are more than 6 or 8 variables (a variable is either an unknown
or a parameter involved in the polynomials). It is however a useful technique to
apply some simplification rules over a formula (see Maple’s simplify function with
side relations for example). A good implementation of Grébner bases is provided
by Macaulay [SSB89]. The interested reader is referred to [GCL93, CLO92]| for a

detailed presentation of Grobner bases.

Newton Polytopes and Bernstein Theorem

As noted previously, there is a big gap between the Bezout bound and the actual
number of solutions of a polynomial system. For example, Canny cites the case of
a kinematic problem for which the Bezout bound is 46656 whereas it is known that
there are not much than 16 solutions. There is thus a lot of improvement to be
made. A new technique appeared recently [Ber75] that counts only the finite zeros
for which none of the components is zero (Notice that this restriction is easy to

!The ideal associated to a polynomial system S is the set of all the polynomials that can be
written as algebraic consequences S. It is, trivially, the object of interest when it comes to work
algebraically with the zeros of S. A canonical form is a specific polynomial system characterized by
some arbitrary rules that make it essentially unique. This allows to take into account the fact that
some polynomials of the system might very well be algebraic combinations of the others. Canonical
forms are specially useful to compare formulas to say whether they are equivalent.
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work with since it is sufficient to make a translation on the space of the unknown
variables).

The basic object manipulated to obtain this bound is the Newton polytope.

Definition 2.1 The Newton polytope of a polynomial P with n unknowns s the
convez hull Q (in R™) of all the monomials of P represented in the space Z™. The
integer coordinates of this representation are the exponents along each of the unk-
nown variables.

An example of the Newton polytope for a polynomial equation is given in figure
2.2. Notice that only the vertices of the convex hull @ are significant. Also the
actual values of the coefficients of the monomial are not taken into account. To
go further, we need to define the Minkowsk: sum and the mized volume of convex
polytopes.

Definition 2.2 The Minkowski sum of convex polytopes of two convex polytopes A
and B in R" is the set A+ B = {a+bla € A,b € B}.

Definition 2.3 Given a set of n convex polytopes Q1,...,Qn C R"™, there is a
unique real-valued function MV (Q1,...,Qn) called the mized volume of Q1,...,Qx
which is multilinear with respect to the Minkowski sum. Note that MV (Q,...,Q) =
n!Vol(Q) where Vol(Q) is the usual Euclidean n-dimensional volume of Q.

Finally, it is possible to state the Bernstein theorem.

Theorem 2.2 (Bernstein) Let fi,...,f, a system of n polynomials in n unk-
nowns. The Newton polytope associated to f; is denoted by @;. The number of the
complex zeros with mo zero component of the system s either infinite or does not
exceed MV (Q1,...,Qy). For almost all specialization of the coefficients of the po-
lynomials, the number of solutions is exactly MV (Q1,...,Qn) (in the following we
adopt the convention MV (f1,...,fn) = MV (Q1,...,Qn)).

This bound avoids counting the zeros at infinity. For example, applied to the
problem mentioned at the beginning of this section it gives a bound of 2304 (or 384
if applied carefully) which is a great improvement over the Bezout bound. Why is
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Figure 2.2: The Newton polytope associated to the polynomial u+2v? — uv? +uv +
3u?v — u3 + 2u3v (the actual values of the coefficients are not significant as soon as
this value remains different from 0. The points corresponding to the monomials are
represented by the dots and the Newton polytope is shown in plain lines.
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this bound not equal to 16, the best known bound? Basically, this arises from the
fact that there might be relations between the coefficients that are not taken into
account by the method. Consider for example the two following systems:

fi=l+z+y+zy, fo=1+2z+2y+ay,

g1 =1+ 2u+u? — 02, gg=1+4u+u2—v2.

The g; polynomials are obtained from the f; ones by the change of variables z =
u+ v,y = u— v but we have VM(f1, f2) = 2 # VM(g1,92) = 4. This illustrates
the difficulty of this method. The obtained bound is however always much better
than the Bezout’s one. In this work, we have used the work of Emiris and Canny
described in [EC93]. A special program to compute volumes of convex polytopes
was used.

2.3.2 Numerical Methods

It is not always obvious to clearly differentiate the symbolic methods from the nu-
merical ones since more and more practical methods for solving polynomial systems
involve both symbolic and numerical aspects. Numerical methods are considered
here as those that directly attempt to approximate some of the roots of the polyno-
mial system.

Continuations

Continuations or homotopy method is a quite old method that uses the continuity
of the zeros of a system of equations when its coefficients are varied smoothly to
find the solutions of a system (the goal system) starting with those (or a subset
of those) of another system of equations (the start system). This start system for
which the solutions are known must have the same structure as the goal system.
This technique has been adapted recently more specifically to polynomial systems
yielding a practical method for finding all the solutions of such a system [WMS90].

Basically, this technique uses one of the bounds on the number of solutions des-

cribed above (Bezout number or Bernstein bound): it computes an initial system
F(x) for which all the complex solutions are known, isolated and that has the same

INRIA



Motion Analysis of 3D Rigid Curves from Monocular Image Sequences 23

structure as the goal system G(x). What exactly is this structure depends on the
used bound: for Bezout’s bound the degree of each equation is the structural para-
meter to preserve whereas for the Bernstein bound it is the vertices of the Newton
polytope that need to be preserved. Then a new system

H(x,\) = (1—))exp? F(x) + A\G(x)

is formed. When A varies from 0 to 1 and provided that no singular situation is
encountered during the path (these situations can be avoided by choosing 6 pro-
perly), the zeros of F(x) are mapped one to one onto the zeros of G(x). The basic
technique is to start with A = 0 and the original zeros of F(x) and then, to make
a small step d\: the zeros of H(x,\) are refined into zeros of H(x,\ + d)\) using
a standard numerical method to find zeros of multivariate systems — usually the
Newton method —, the new obtained zeros being the starting zeros for the next dA
step. The algorithm finishes when A = 1. Of course, things are not that easy since
some zeros might diverge or since two paths of zeros might fuse. Moreover, finding
the system F'(x) might not be an easy task (this is current research specially for
homotopy methods used in conjunction of the Bernstein bound [Wam92, VC93]).
A good implementation of homotopy methods can be found on Netlib? (unfortuna-
tely in fortran !) but we used a re-implementation in C of the program described
by Morgan in his book [Mor87| coming from the vision group of the University of
Illinois.

Exclusion Techniques

There is another kind of numerical method that appeared recently that, contrarily
to homotopy methods, deals only with real zeros. This is the so-called exclusion
technique. It is just cited here for completeness, since we had no experience with
it. Basically, the idea is to look at a finite part of the real domain R™. For each
point of this domain, it is possible to compute a number that characterizes the
neighborhood around this point in which it can be asserted that there are no zeros
(this number is basically the radius of a ball centered at the point). This number
defines a region of R™ which can be excluded from the set of the possible zeros. The
method then scans all the domain of interest to a given accuracy to locate (up to

?Netlib is a server for mathematical routines. There are many sites all over the world, one of
them being netlib.att.com .
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that accuracy) all the zeros that lie in this domain. For more details the reader is

referred to [DY93, DY91].

Least-Squares Methods

Unfortunately, most, if not all, of the previous methods are unable to cope either
with noise on the coefficients or with more equations than unknown variables. To
cope with these problems, the numerical analysis community often uses the least-
squares technique. This numerical technique replaces the computation of the zeros
of a polynomial system (or of any system) by the problem of minimizing an energy
function (or error criterion): this criterion is nothing else than the sum of the squares
of the original polynomials of the system of equations. There are many methods to
perform the minimization (gradient descent, quasi-Newton methods,...) but all of
them require an initial value. How to find this value is not considered with this kind
of approach (one approach is to first use a continuation method onto a subset of the
equations but this might generate much too many initial values).

Notice that the choice of the kind of functional to combine the individual equa-
tions is somewhat arbitrary (one can choose for example the sum of the absolute
values or the sum of the fourth power of the original equations) and might introduce
quite a few “spurious solutions” that are minima of this functional without being
zeros of all the original polynomials. A very simple example of that effect is des-
cribed in figure 2.3. These spurious solutions are not a problem with perfect data
(or just data accurate enough) since the value of the criterion at the minimum can
be checked: if it is zero then the minimum corresponds to a zero of the polynomial
system, if not it is just a spurious minimum. The only problem that remains in this
case is thus to be able to find an initial value that leads to (one of) the looked for
zeros. With noisy data, the problem is much harder since often zeros are undistingui-
shable of local minima. Anyhow, least-squares is the only technique that allows to
have more equations than unknowns (ignoring the noise and local minima avoidance
problems, this certainly reduces the number of solutions of the polynomial system).
Moreover, since it performs some kind of “averaging” among the input polynomials,
it is also the only method that is able to cope reasonably with the noise problem.
One way to avoid the spurious minima problem is either to have a good initialization
(in which case the minimization is just a refinement operation) or to have a quite
convex problem (i.e. a problem with very few minima: for example, problems with
small degrees of freedom or with small degrees are of such a kind).
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Figure 2.3: A simple example of a “spurious solution” introduced using a minimiza-
tion scheme: the left plot shows the graphs of the two polynomials P;(z) = 3z(z—1)
and Py(z) = 2z(z — 3/2) and the right plot shows the graph of the sum of their
squares. Notice that this graph exhibit a minimum at = 1.1 that is a solution of
neither P; nor Ps.

2.4 Differential Geometry

This section is a reminder of a few notions of differential geometry in two and three
dimensions. Basically, differential geometry is the study of smooth objects and of
their invariants. A smooth object is defined® by a C™ mapping f of an open set U of
RP into an open VCR™. f is called a parameterization of V' and differential geometry
is the study of the invariant properties of V under all the possible parameterizations.
Notice that it is possible to add more structure on R", the space into which V is
embedded. This give rise to more invariants. For example, in what follows, R"
will always be considered as an Euclidean space and this introduces in addition
of the tangential properties (which are the basic differential invariants) some more
invariants such as length, normals, curvatures, torsion and Frenet frames (which are
metric invariants arising from the Euclidean structure). In the remaining of this
section, we examine briefly both the purely differential properties and the Euclidean
ones of the situations of planar and space curves and surface patches.

3This definition has deliberately been made simpler than the usual one. It is, however, perfectly
sufficient for our purpose. For a more general definition of differential varieties (the smooth objects)

see [Spi79, BG83.
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2.4.1 Planar Curves

A planar curve (c) is defined by a mapping f for which n = 2 and p = 1. This
mapping associates to a real u of an open set U of R a point m(u) of R? and when
u describes U, m(u) describes a curve of R2. Among all the parameterizations of
(c), it is possible to distinguish a special family for which ||dd—1;1|| = 1. A parameter s
that verifies this property is called an arclength. Given such a parameter s, we have
the well-known two-dimensional Frenet formulas:

dm __ dt __ dn _
E_t’ ds — L, g = Kkt ,

(2.2)
where t and n are the tangent and normal unit vectors to (¢) and & is the curvature
(the inverse of the radius of curvature) at m the considered point. (m,t,n) is the
Frenet frame attached to the curve at m, the sign of k is chosen in such a way
that this frame is oriented in the direct way (by definition this frame is always
orthonormal). Table 2.1 gives the formulas for 6 (the angle between the normal and
a fixed direction of the plane) and x when the curve (c) is defined either implicitly

or in a parameterized way. Another useful formula is kK = %

Parameterized definition

Implicit definition

N

(¢) | mu) = (2(u),y(w)) F(m) =0
0 tan~! (— l—:) tan™1 %—
y T
. I 2F;FyFoy—F 2 F)—F > F;

Table 2.1: Formulas giving  and s for both implicit and parameterized definition
of a curve.

2.4.2 Space Curves

A space curve (C) is defined by a mapping f for which n = 3 and p = 1. This
mapping associates to a real u of an open set U of R a point M(u) of R? and
when u describes U, M(u) describes a curve of R®. Again it is possible to define
the arclength family by considering the parameterizations for which ||%H = 1.
Given such a parameterization S, we have the well-known three-dimensional Frenet

formulas for (C):
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dM __
a5 =T,

o5

= kN, %:—KT—pB, (Zl—?:pN, (2.3)

where T,IN and B are respectively the tangent, the normal and the binormal unit
vectors to (C) at M the considered point. « is the curvature and p is the torsion at
this point. (M, T,IN,B) is the three-dimensional Frenet frame attached to (C) at
M. Notice that a change of orientation of (C) (i.e. changing S into —S) transforms
the Frenet frame (M, T,N,B) into (M, —-T,N, —B).

In this case, k is always a positive quantity, it is the sign of p that is chosen in
such a way that the Frenet frame is oriented in the direct way. Since a planar curve is
also a space curve this seems to be uncompatible with the fact that x defined in the
previous section is a signed quantity. Actually, choosing carefully the orientations of
the plane and of the 3D space makes these quantities compatible. For completeness,
we give the formulas to compute k and p for parameterized curves:

_IMaM) _ (MM M)
E= ™R 0 P I AM

2.4.3 3D Surface Patches

A surface patch (X)) is defined by a mapping f for which n = 3 and p = 2. This
mapping associates to the two reals u and v describing an open set U of R? a point
P(u,v) = M(u,v) of R® and when (u,v) describes U, P(u,v) describes a surface
patch of R3. The normal Np to (X) at point P is the unit vector defined as:

P, AP,

Np= 2+ "
P PL AR,

(2.4)

where P, = g—z and P, = %—P.

The Euclidean properties of such a patch are characterized by two quadratic
forms called the the two fundamental forms, which are defined at every point of ().

The first fundamental form ®; describes how the Euclidean metric is embedded
in the tangent plane Tp (that is spanned by P, and P,) to (X) at a given point P.
Basically, it defines the squared length of a vector of Tp given as AP, + pP,. The
expression of ®; is thus:
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&, (AP, + uP,) = \2E + 20uF + 142G,

where E, F' and G are defined as:

E = “P’M“2 F = Pu'P'u G = I|P'v||2 (25)

Notice that |P, A P,||? = EG — F2.

The second fundamental form ®5 is related to curvature. To state it more
precisely, let us consider a curve drawn onto (X) that goes through P. Locally, such
a curve is characterized by its tangent at P. This tangent is in the tangent plane
at P and can be defined by the vector x = AP, + uP,. Now the curvature of this
curve at P is made of two components: one that depends on the variation of A and
p and another one that depends only on the values of these quantities (i.e. it is the
same for all the curves drawn onto (X) that have the same tangent direction at P).

This last quantity is called the normal curvature since it is the projection of kKN
Py (x
Qi(x

onto N p. This normal curvature is defined by the ratio ;, where

O,(\P, + pP,) = N2L + 22 uM + 42N |

L, M and N being defined as:

L=%8Np M=£FNp N=2%Np (2.6)

The invariants of ®5 (under all parameterizations) are important to study. These
can be found as the invariants of the linear mapping ¢ : Tp — Tp defined by
®,(x) = (x)x. 9 is called the Weingarten mapping associated to ®s.

Principal Curvatures and Principal Directions

The principal curvatures are the eigenvalues of 1. They are given as the two solutions
of the following quadratic polynomial:

(EG — F*o® — (LG + EN —2FM)o + LN — M?=0.
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In particular, the half-sum H and the product K of the two principal curvatures
have very simple expressions:

1 LG+ EN —2FM
H = - ,

2 EG — F?
LN — M?

K = ———— .
EG — F?

H and K are respectively called the mean and the Gaussian curvatures. All the
invariants of ®5 are functions of these.

To each principal curvature, there is an associated principal direction which is
given by the eigenvector associated to the eigenvalue. In the coordinate system
(Py,Py), their coordinates (A, ) are solutions of the following equation:

(FL — EM)X’ + (GL — EN)Ap+ (GM — FN)u2 =0.

Up to scale factor, this yields the following values for A and p:

EN —GL+eVA, (2.7)
p = 2(FL- EM), (2.8)

where ¢ = +1 and A = (GL — EN)%2 — 4(FL — EM)(GM — FN).

The Bonnet Theorem

Actually, it is not necessary to introduce the quadratic forms of greater order. The
Bonnet theorem states precisely how a surface patch is characterized, up to a ri-
gid motion, by its first and second fundamental forms. Before recalling this result
let’s introduce the Gauss and Mainardi-Codazzi equations that are involved in this
theorem.

These equations come from writing conditions of integrability of the derivatives
of the vectors P,, P, and Np expressed in the basis these three vectors are consti-
tuting. They can be written as in [DoC76]:
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ori, ariy

FK = 8u~ Y + I‘%Zrb - F%1F%2 ) (2.9)
oOL OM
5~ g = LD+ M(Th-Th) - VT, (2.10)
oM ON
5 = LTY, + M(13%, - TL) — NI2,. (2.11)

The first equation is referred as the Gauss equation while the two others are
called the Mainardi-Codazzi equations.

The coefficients I‘,f-‘"j, t,j,k = 1,2 are called the Christoffel symbols of the second
type. They can be easily computed from the coefficients of the first fundamental
form and their derivatives. For the details of their computation see [DoC76].

Theorem 2.3 (Bonnet (local form)) Given siz differentiable functions E, F, G,
L, M and N defined on an open set V of R?, satisfying the conditions E > 0,
G >0, EG— F? > 0 and the Gauss and Mainardi-Codazzi equations, then for every
(u,v) €V there ezxists a diffeomorphism from a neighborhood U C V of (u,v) in R3
such that the corresponding regular patch has E, F, G, L, M and N as coefficients
of its first and second fundamental forms. Furthermore, if U ts connected, for every
other such diffeomorphism, the two patches are related by a rigid transformation of

R3.
The proof can be found in [DoC76], for example.

Lie Derivatives

Let V be a function defined on (X) such that V(P) is a vector of Tp. V is called
a tangential vector field. It is very convenient to consider the vectors of Tp as
differential operators acting on the functions defined on (X). For example, P, is the
partial derivative with respect to u. We represent this action by P, f = % and it
becomes even more clear if we use the notation P, = 8% Each vector V of Tp is a

linear combination of P, and P, which we write:

0 0
V=a— —.
a8u+'880
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a and [ are the coordinates of V in the basis (P,,P,) of Tp. From this it is clear
that the action of V upon a function f which we note Lv f is defined by:

of | ,of
Lvf=a— .
vi=a ou +p Ov
L~ f is the Lie derivative of f in the direction V of T p. From this definition follows
immediately the following relation:

Loy vitar v, f =oaly, f+aslvy, f.

Lie Brackets

Given two vector fields V and W on (X), we can consider the operator Ly Lw. It is
a linear operator defined for functions f defined on (X) but unfortunately it is not
a derivation since it does not satisfy Leibniz’s rule. On the other hand, it is easy to
show that the commutator L~ Lyw — Lw Lv is a derivation and therefore a vector
field which is denoted [V, W] and called the Lie bracket of V. and W. By definition,

we have:

Lyvw/f=Lvilwf—Lwlvf.

This allows us to compute the coordinates of [V, W] in the basis (P,,P,) of Tp,
from those of V and W:

2 i Ay
[V,W]' = ZVJ’%TZ. iV 1,2, (2.12)
j=1

ouJ

where u! = u, u2 = v and V* (respectively. W*) indicates the component of V (resp.

W) along the i-th basis vector of Tp (P, ifi =1, P, if i = 2).
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Chapter 3

Cameras, Images and Edges

The purpose of this chapter is to give a very brief introduction on the basic models
and tools used in image manipulation. These include camera modeling, image for-
mation, motion representation and edge detection. Emphasis is made on the tools
that will be used later in this manuscript. As such, this chapter is not intended
to be a review of all the methods and models that exist on the topics considered.
Similarly, it is not an introduction to computer vision. However, to explain some
choices that are made in the sequel of this text, some methods that will not be used
are briefly introduced and discussed. Background material for computer vision can
be found in [Mar82, Fau93].

3.1 About Cameras

Central to almost all work in computer vision is the notion of camera. Basically, a
camera is just a projective device that maps the Euclidean 3D world onto a 2D sur-
face. This description encompasses any imaging process that does such a mapping:
biological systems as the human eye, or artificial ones like video-cameras. Why do
we call these projective devices? Because if one thinks about image formation, one
immediately notice — as people doing e.g. optics or ray tracing know perfectly well
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— that only the “light” rays going from an object to the “eye” are important. The
analogy with figure 2.1 is striking. Consequently, the geometry of the directions of
the light rays plays a central role in the acquisition process and this is exactly why
projective geometry is useful.

Moreover, it is difficult to restrict this projective model to a simpler one, such
as orthogonal projection, since such a model would not be able to cope with all the
possible situations. Notice, however, that such models are perfectly adapted to the
limit case where the distance from the view point to the scene is big compared to the
sizes of the observed objects: then, the observed objects can be considered as being in
the plane at infinity and it is well-known that obtaining tridimensional informations
about those is extremely difficult and often involves some other techniques (this is
usually the case for example for microscopes or telescopes).

3.1.1 The Pinhole Camera Model

The pinhole camera is the simplest model that fully takes into account the projective
nature of a camera. In this model, the camera is modelled by a point O called the
optical center through which all the light rays are passing and by a plane R called
the retina that is the surface on which the image is formed!. The retina is assumed
to be at a distance f (called the focal length) of the optical center.

Remark 3.1 There are more complex models that introduce some non-linear beha-
vtors such as radial distortion or de-centering. These will not be considered here
since it can be assumed that working with good enough lenses and far enough from
the borders of the tmages, these effects can be neglected as a first approximation. If
it 1s needed, 1t will always be possible to correct the distortion prior to any other use
of the image data.

The 2D projection m of a 3D point M is the intersection of the light ray OM with
the retina R. Such an operation is called a perspective projection and is summarized
in figure 3.1.

A frame (O, X,Y, Z) is attached to the 3D space in the following way:

!The actual form of this surface does not really matter so the model uses the simplest possible
kind of surface. Some people prefer to work with spherical retinas but as long as only mathematics
are involved this is totally equivalent to the model described here.
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<
N <

Y

Figure 3.1: The Pinhole Camera Model.

e The retina R is parallel to the plane (O, X,Y).
e The axis OZ is directed towards the retina R.

e The frame (O, X,Y, 7) is oriented in the direct way.

Remark 3.2

e Up to a scale factor on the coordinates (X,Y,Z), it is always possible to assume
that f = 1. This assumption will always be made hereafter.

e From the mathematical point of view, the previous constraints define only a one
dimensional family of frames, all of them being rotationnaly equivalent. Howe-
ver, physics is not mathematics and this often yields some more constraints.
For example, using CCD cameras, it is generally assumed that the axes OX
and OY are aligned with the sensing elements of the CCD.

Since this frame is somehow “naturally” attached to this camera model, all the
equations that involve 3D spatial coordinates will be written in this frame.

With the previous notations, the transformation that gives the image point m
of a 3D point M is characterized by the equation:
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M=Zm. (3.1)

This equation is fundamental since (as it seems natural) all the constraints that will
be written in part III are direct consequences of it. From now on, we use X,Y,Z for
the coordinates of the 3D point M. We will also need a coordinate system in R, the
situation is, however slightly more complex.

3.1.2 Image Coordinates Versus Normalized Coordinates

When working with images, it is convenient to reference each pixel of the image by
its integer coordinates locating it in the matrix of all the pixels. Thus, at least two
coordinate systems can be defined onto the retina:

e One that is inherited from the Euclidean structure of the 3D space. It is natural
to use this coordinate system as soon as it comes to relate 3D characteristics
to their 2D images. The origin of this coordinate system is at the orthogonal
projection of the optical center O onto the retina. The axes are taken to be
parallel to OX and OY. In the following the coordinates of m are called
normalized coordinates and will be referred as « and y.

e One that reflects the array structure of the image. The origin of such coordi-
nate system lies at a corner of the image (usually the top left corner) and the
axes are parallel to the row and column directions of the array. The coordi-
nates of m in this frame are called tmage coordinates and will be referred as
u and v.

The relations between these two coordinate systems have been studied a lot
in the works treating about camera calibration (see below). In the remaining, we
adopt the model defined in [Tos87] which is of common use in the computer vision

community:
x = hyu—+ hov+ h3, (32)
y = hgv—+hs. (3.3)
The parameters h;,2 = 1...5 are called the internal parameters of the camera.

Equations (3.2) and (3.3) define, in general, an affine transform of the retinal plane.
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Consequently, the two coordinate systems have a very different status. As soon as
it 1s needed to speak of Fuclidean properties, the proper coordinate system to work
with s the normalized one since these properties are not all preserved by an affine
transformation. In the remaining chapters, unless it is explicitly stated otherwise
the normalized coordinate system is always used. Notice also that the projective
representation is always used for retinal objects, so those are represented by vectors
with 3 components (the third one being 1 for points and 0 for vectors).

Remark 3.3 The tmportance of working in the proper coordinate system must not
be underestimated. An example of great interest for the matter covered in this work
1s optical flow: it is well known that along an edge, locally, only the normal flow
component can be recovered. This is called the aperture problem (see for example
[Hil83a] for a complete description). However, most (if not all) algorithms that
compute optical flow directly from images (see for example the implementations of
[BFBI4P) use image coordinates without any camera calibration data. Figure 3.2
shows that the error on the angular direction can be as bad as 20° for a typical real
camera. Futhermore, notice that, even in a given family of frames (projective, affine
or Euclidean), the choice of a particular system of coordinates have also numerical
consequences: Hartley obtained recently results that indicate that numerical errors
in the computation of the fundamental matrixz is correlated to the coordinate system
adopted for the image [].

3.1.3 Calibration

When working with real cameras with extraction of 3D features in mind, it is gene-
rally necessary to find the internal parameters that govern the mapping of the 3D
Euclidean structure onto the retina. This operation is performed by a process called
calibration [Tos87, Tsa87]. More generally this operation computes a 3 x 4 matrix
that represent in some arbitrary coordinate system simultaneously the perspective
projection and the retinal transformation from normalized to image coordinates.
The principle of these method is usually to take an image of a perfectly known 3D
pattern and to find the overall transformation from the constraints relating the 2D

2This example is given because the code is widely available on the Internet. Note that this
might not change most of the quantitative results of the paper since these were obtained using
synthetic images for which the horizontal and vertical scale factor might be the same. Only the
results obtained from real images might be affected by this problem.
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Error 204

-80 60 -40 20 20 40 60 80
Orientation

Figure 3.2: The angular error made on the normal as a function of the orientation
of the edge. All the angles are given in degrees. The maximal errors are obtained
for orientations of +45°: this maximal error is around 20°! The internal parameters
used for this figure are those obtained from the calibration of a real camera (Sonny
CCD 75CE). Note that this curve is independent of the focal length, it characterizes
essentially the geometry of the CCD sensors and its sampling.
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Figure 3.3: The INRIA calibration pattern.

image coordinates to their 3D correspondents. An example of such a pattern is
shown in 3.3.

Remark 3.4 There 1s, however, a new trend in computer vision that attempts to
obtain calibration data from points matches without any necessary a priori 3D know-
ledge. Although the first results that have been obtained [Luo92, Har9j] are very
encouraging, such methods are not yet of everyday use, so for the purpose of the
work described here, we still work with the pattern based method.

Of course, since most of the work described here is done in the camera frame, we
are not interested in the full 3 x 4 matrix but only in the internal parameters that can
be extracted from it. See chapter 3 of [Fau93|], for example, for a complete study
of camera modeling and calibration including the formulas that give the internal
parameters from the coefficients of the general projection matrix.
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3.2 Multiple Camera Representation

A vast majority of methods that compute 3D structure from 2D images combine,
to achieve such a goal, information coming from many different view points. To do
so, it is necessary to be able to refer to all these information in a global common
coordinate system. As we have seen in the previous section, the calibration process
is able to compute the transformation that holds between 3D objects coordinates
expressed in some arbitrary frame and their images in image coordinates. We present
briefly here different methods to represent the relative positioning of the cameras to
each other in such situations.

3.2.1 Discrete Situation

In the previous section, we have seen that it is possible to associate a special frame
to any camera obeying the pinhole model. This frame along with the projection
equation (3.1) totally represent this model. So having multiple cameras is equivalent
to having many such frames. This means that the relative positions of the cameras
can be represented by the relative positions of the frames and, since these belong
to an Euclidean world, the transformation that relate them is the combination of
a rotation and a translation. So suppose that we have a global reference frame
into which the coordinates of a point are M, ¢, then using the notation M for the
coordinates of this same point in some camera frame, we have:

M =RM,.+T,

where R is a 3 X 3 rotation matrix and T is a 3D vector representing the translation.
Obviously, the formula (3.1) must be changed according to this transform in order
to be valid in the reference frame.

The previous formulation is perfectly adapted for tasks such as:
e Stereo that combines images taken by 2,3 or more different cameras at a same
time instant to recover the 3D structure.

e Pose determination or discrete structure from motion that combine images
taken by the same camera at different time instants to obtain 3D information
assuming that the scene is static.
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This scheme is however not sufficient for dynamic situations into which a changing
scene is observed continuously. In such situations, the transformation is a first
order quantity (the zero order quantities being the identity for the rotation and null
translation).

3.2.2 Continuous Situation

Continuous situations are those for which the camera moves continuously over time.
Practically, this means that the time between two frames is very small in comparison
with the speed of the camera. This also means that the camera does not move too
much between two frames. Thus, for continuous situations, more than the relative
position, it is the evolution of the position of the camera that is important. This is
usually achieved by representing the velocity of the frame associated to the camera.
This is done using a kinematic screw. Since most of the work dealing with motion
that is presented here assumes that we are in such a continuous situation (this is
sometimes called dynamic vision), we are insisting on this representation and on its
properties.

3D motion representation

The field of the 3D velocities associated to the motion of a rigid body is totally
described by the expression of a kinematic screw at any point of 3D space (it is
assumed that this 3D point is tied to the rigid body). This kinematic screw has two
components (2, V):

e () is the instantaneous rotational velocity. It is independent of the point at
which the screw is expressed.

e V is the instantaneous translational velocity. It depends on the point at which
the screw is expressed.

In the remaining of this text, the kinematic screw (2, V) is always expressed at the
optical center O of the camera.

Two classical results will be needed hereafter:

Proposition 3.1
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o The velocity Vy = M of every point M considered as tied to the rigid body s
given by the formula:

VM=M=V+QAM. (3.4)

e For every vector T of constant norm over time that is tied to the rigid body,
we have:

T=QAT. (3.5)

Let us, first, extend this last formula to the case of any non zero 3D vector W.
Considering the unit norm vector T defined by:

W =|W|T,
and deriving it with respect to time, we have:

W = |[W||T + |W|T. (3.6)

From equation (3.5), we get T = Q A % Furthermore, since |[W/|| = (WW)%,
we have:

W.-W

Wl =

Replacing T and ||W|| by their values in equation (3.6) yields:

W2 (W+WAQ) - (WW)W =
IW[PW — (W-W) W+ [WPWAQ = 0.

Recognizing W A (W A W) in the first term of this last equation, we obtain:

W A (v'V/\w+ ||W||2n) =0. (3.7)
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Taking the cross-product of this last equation with W yields:
W/\(W+W/\Q) -0,

since ||W|| # 0, W being non zero. This last equation is equivalent to equation (3.7)
since the first one implies the second and since developing it and taking its cross-
product by W, equation (3.7) is found again. Finally, we have the following propo-
sition:

Proposition 3.2 For every vector W associated to the rigid body, we have:

WA(W+WAQ)=0. (3.8)

Remark 3.5 All the properties of the velocity field associated to a rigid body come
from the wnvariance of Euclidean distances under rigid motion. The kinematic screw
have some more properties. We describe some of those in chapter 8.

3.3 Image Formation

Although it is a topic that is not often addressed, image formation is very important.
Many people just assume that a pixel is a data point with a grey value associated
to it. However, physically, such assumptions are only true as a first approximation:

e First the CCD sensitive cells are not points. They are usually square shaped
and have some physical extend. As such, the value of a pixel depends on the
energy that arrives on the cell at a given time. Thus, the output of such a cell
is some average value over the 3D region corresponding to the pixel: from this
point of view the cell behaves like an integrator (in space and time).

e Second, the grey level values have no intrinsic meaning in general. The res-
ponse of the CCD cell is usually not linear. Ideally, some calibration procedure
should also be done for the grey level values, but since most cameras perform
some automatic gain control, such a process is almost impossible to achieve
if this gain control cannot be switched off in some way. The problem is even
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worse with sequences of images since the gain may change from one image to
the next, which has a consequence on the intensity derivative with respect to
time!

e Finally, the grey level associated to a 3D region might change with the illu-
mination and unless this effect is taken into account (or not considered by
hypothesis for some reason), grey level values are not reliable data to work
with.

Thus, some image formation characteristics might have important effects on the
algorithms working directly on the grey level values. And the situation is actually
even worse than that depicted since due to some technical problems, the camera
signal is transformed many times before it is accessible from the computer. Fortu-
nately, an important part of computer vision work is more based on some patterns
or discontinuities of the grey levels than on their actual values, and is thus not di-
rectly affected by these problems. This, however, might not be the case for some
shape from shading, some correlation or some optical flow techniques. For all these
reasons, we have prefered to work with edges as primitives rather than with grey
level values: this obviously has some limitations since only a small portion of the
images can be well described by edge contours. However, it grounds our work on a
firm basis from which we can (more or less) safely proceed.

3.4 Edges

3.4.1 What are Edges?

Edges are one of the most reliable information in images. They correspond to discon-
tinuities in the grey level image I(u,v). Such discontinuities are usually preserved
under all the transformations that affect the grey level values as well as under the
affine transformation due to the camera coordinate system.

However, such discontinuities may arise from many different situations. Basically,
edges can be classified in two main categories:

Real edges arise from 3D physical discontinuities or singularities of the surface of
the viewed object. What is important with this kind of edges is that they are
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somewhat independent of the viewing geometry: as long as such an edge is
seen in an image, it always refers to the same set of 3D points independently
of the camera or of the light sources positions. This category of edge can be
further refined in:

¢ Discontinuities of the normal to the object surface.

e Discontinuous change of the reflectance of the object.

Virtual edges are consequences more of the viewing geometry than of any real 3D

discontinuities. The 3D points associated to such edges depend on the camera
and light sources positions. Thus, without further assumptions, the structure
can only, in theory, be recovered by differential techniques or by taking into
account the reflectance properties of the 3D world. This leads to difficulties
with stereo or structure from discrete motion. This type of edges includes:

e Discontinuities in the depth function Z(u,v) that associates to each pixel

the depth of the 3D point that is associated to it. Even in the absence
of any other kind of discontinuities — which is generally not the case
since —, this depth discontinuities give rise to edges due to their relative
position to the light sources. One important instance of this kind of
edges is occluding edges which are edges generated by the 3D surface
points at which the optic ray is tangent to the surface. This case is
quite important for close views of smooth objects and has been studied

in [Vai90b, Vai90a, BC90).

Shadow lines induced by obstacles between light sources and the viewed
surface. The edge points depend on the position of the light sources
with respect to the observed surface. Thus, as long as the cameras do
not disturb the measurements in a stereo setup (i.e. each camera is not
between the light source and the surface) or if light sources do not vary
with time in a motion setup, these edges behave like real edges. This is
not, however, the general case.

Of course, in general, an edge is due to a combination of these different causes. It is
important, however, in some given environment, to be able to distinguish between
real edges and virtual ones. We assume, hereafter, if not stated otherwise, that such
a discrimination has been done so that only the real edges are considered in the

image.
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3.4.2 Edge Detection

Standard edge detection techniques are described in [Hil83a, Can86, Der87] but
many more can be found in the literature. Usually, the basic idea is to detect the
image discontinuities

e Either by looking at the maxima of the norm of the gradient of the image in
the direction of the gradient.

e Or by searching for the zero crossings of the Laplacian of the image as presented
in [Hil83a].

Of course, one of the main problems when extracting edges is the noise. In order
to obtain reliable derivatives, a smoothing operation must be combined within the
derivation process. Many different filters have been designed to achieve this goal each
of which optimizes some aspect of edge detection. Among them, two techniques are
widely used:

e [Can86| proposed a filter of finite extent designed to optimize a quality criterion
that takes into account detection, localization of the edge and uniqueness of
response. [Der87] has done the same work for a recursive filter. However,
these criteria were derived only for 1D edges and then extended on 2D images.
Thus, usually these filters have an anisotropic behavior when applied to 2D
images (isotropic versions of these filters are neither separable nor recursive
and are thus very expensive to compute).

¢ Gaussian filters have the main advantage of being separable and still isotropic
with 2D images. It has moreover some interesting properties when dealing
with scale space [AGLM92, KKvD93]. Implementing such a filter is however
not an easy task since its support is infinite. Classically, two methods are
used. Either the convolution is made in image space using a finite kernel
or in the Fourier domain. Both methods have advantages and drawbacks.
However Deriche have proposed recently a method that combines the nice
properties of the Gaussian with the efficiency of recursive filters: the basic
idea is to approximate the Gaussian or its derivatives by a recursive filter of
the appropriate form [Der92, Der93|.
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These edge extraction operations are then completed with a postprocessing that
eliminates the smallest edges and links edge pixels into chains.

In the work presented here, we have used two kinds of edge detectors. The first is
a Canny-Deriche that gives integer coordinates for the edge pixels. The second one
uses the recursive implementation of the first order derivatives of the Gaussian for the
filtering step. Then, non maxima suppression, hysteresis thresholding and linking
are performed just like with the Canny-Deriche but the edge extraction is done with
subpixelic accuracy. The rationale behind subpixel edge detection is that pixels
have some physical extent. Thus, at an edge the grey level value is intermediate
between the grey values on both sides of the edge. Obviously the problems that
were mentioned in the previous sections must appear here, but using the method
described in section 5.4, it has been proved that the method we use gives edge points
that are accurate to half or a quarter of a pixel with real images. Thus since accuracy
appeared to be crucial for our purpose, this last method was usually prefered.

Remark 3.6 Notice also that in all the methods we have used for detecting edges,
the extraction was done using tmage coordinates. Thus, when extracting the edges
along the gradient direction, we encounter the problem mentioned at section 3.1.2.
However, although ideally one have to compensate for it, this effect might not be as
important for edge detection as for many other problems. This is because mazima
are a topological information of the intensity surface so that, even a quite important
error in the orientation of the direction along which the maxima are extracted, does
not affect much the actual position of the resulting edge.
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Chapter 4

Optical Flow and Motion Field:
the Curve Case

This chapter introduces the main interest of this work which is the problem of
motion and structure. Normally, the right place for this chapter would have been
as an introduction to part III. However, it is placed here since it introduces all the
quantities that we will need and since the computation of those is the topic of the
next part. Its main achievement is the full study of the motion field of the image
curve generated by a moving non-elastic 3D curve. It defines two different motion
fields and show clearly what components of these fields can be recovered from an
image sequence. As such, the work described here provides the ground on which all
the subsequent study of the motion of curves is based. We also show in this chapter
some image sequences designed to try to understand better how the biological vision
systems solve the problems that are raised by the results shown in this chapter.

4.1 Optic low and Motion Field

The concept of optical flow was introduced by Gibson [Gib50] and is based upon
the idea that there is a relationship between the temporal variations of the image
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intensity at one point of the retinal plane and the motion of the camera, the motions
and the shapes of objects present in the scene. As we noticed it already some
photometric model of the scene would, in theory, be necessary to achieve such a
task.

4.1.1 The Optical Flow

Let us consider the image intensity I(m, 7) at pixel m in the retinal plane at time
7. m is the image of a 3D point M moving in the scene with a velocity V. The
velocity of m is vy, (see figure 4.1). If we take the total time derivative I of I with
respect to time, we obtain:

f=Vivm+ L.

or

This formula involves no approximations but involves one quantity, I, which cannot
be computed simply from the sequence of images. Actually, in order to compute it,
we need to introduce models of the scene reflectance. However, the standard optical
flow constraint is defined by assuming that I = 0:

VIvy + % =0, (4.1)
which has been presented by many authors as a constraint on the velocity vy,. This
constraint is the so-called motion constraint equation. It is easy to see, however,
that the assumption that I = 0 does not hold even with very simple photometric
models (see [FP93] for a simple example, or [VP87| for a more complex examples).
Consequently, equation (4.1) should not be considered as a constraint on the image
velocity field vy, but as the definition of a new image vector field v¢,, the optical
flow, parallel to VI

aI
0 or VI

= — —_— 4.2
v = NIV (4.2)

The qualitative properties of this vector field are similar to those of the motion
field vy so that, tasks like segmentation from motion or like giving qualitative
properties of the motions can still be performed [VGT89, BF93]. It is difficult,
however, to use this information in a quantitative manner as for example for the
problem of structure from motion.
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Figure 4.1: Optical flow.
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Remark 4.1

e Taking the total time derivative of I(m,T) supposes that I is a differentiable
function with respect to time which is not the case at the edges since those
correspond to discontinuities of I(m,T).

e Fquation (4.1) is in theory valid on surfaces defined by I(m,T) = constant.
However, it 1s known that edges are isointensity curves only in a first approxi-
mation and considering the spatio-temporal situation worsens the quality of
this approzimation. It is thus dangerous to give any spatio-temporal meaning
to isointensity surfaces.

Following Horn [Hor86], we draw a sharp distinction between the motion field
v and the optical flow field v{,. Note that v2, can be computed from a sequence
of images.

4.1.2 The Motion Field

According to the previous discussion, the motion field vy, is the time derivative m of
the representation m of pixel m. This quantity can be derived from the perspective
equation (3.1) in the case of a rigid 3D motion. Taking the total time derivative of
this equation leads to

VMZm + ZVm = VM ,
where Vy is the 3D velocity of point M. From section 3.2.2, we know that

Thus, we obtain:

Z(Vvim— Q2 Am+ (2,mkm)=V —V-km. (4.3)
If we have several n pixels my,---,m, at which we know the motion fields
Vg, s Vm, and if we assume that the n corresponding 3D points My, --,M,,

belong to the same object moving rigidly with the kinematic screw (2, V), we have
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2n equations in the unknowns (2, V,Zq,---,7,). To solve for those unknowns is
to solve the so-called motion and structure problem. A closer look at equation
(4.3) shows that the problem is homogeneous in (V, Z1,---, Z,), therefore the total
number of unknowns is n + 5.

A naive counting of the equations tells us that if n is larger than or equal to 5,
we may be able to solve the problem!. Note that the equations are linear in £ but
nonlinear in (V,Z1,--+,Z,).

But as it was discussed previously, it turns out that the most difficult task is not
to solve this system of nonlinear equations but to actually compute the motion field
vm With enough accuracy at a sufficiently large number of points. At edges, the well
known aperture problem states that only the normal component of the velocity field
can be recovered. So full velocities can be recovered only at special points that can
be tracked (such as inflexion or bitangent points or special grey level patterns that
are known to be preserved in some way under perspective projection).

The standard approach to this problem in computer vision has been so far to
identify v2,, the optical flow field defined by equation (4.2) with the projection of
the motion field vy, along the direction of the gradient

VI) VI
Vo= (Vo ) or - (4.4)
< VI v

As we have already seen it, this equation results from assumptions that are not
generally true.

Assuming this equation, this yields a linear constraint on the two coordinates of
vm and therefore only one equation at every pixel, obtained by projecting the two
sides of (4.4) along the direction of the image gradient. The motion and structure
problem is thus impossible to solve since n points yield n equations in n+5 unknowns.
In order to overcome this new problem, researchers have tried to “invent” a motion
field by imposing a smoothness constraint [Hor86, Hil83b, WW88, Nag83|.

The first kind of idea is to find a smooth field ¥y, whose component along the
direction of the image gradient is equal to the measured optical flow vJ,. Practically,

!That this is indeed the case and that the number of solutions is at most ten has been proved

by Maybank [May90b]
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however, this cannot be done exactly and an optimization problem that minimize
the difference between the projection of the field vy, onto the gradient direction
and the measured optical flow v2,. This can be expressed mathematically as the
following minimization problem:

mln// |VI|| v2 )2+ A\Tr(Dvy(Dvy)T))dedy , (4.5)

where Dvy, is the Jacobian of the function vy (m) with respect to the (spatial)
coordinates of m at the pixel m. Denoting these coordinates as v = [va, v,], We
have:

Ovg  Ovg
0 0
oz Oy

The criterion (4.5) is the sum of two terms: the first term imposes that the com-
ponent of the “invented” field ¥, along the gradient direction is as close as possible
to the measurements vy, and the second term controls, through the parameter A,
its smoothness.

A detailed analysis of the possible solutions to this minimization problem can be
found in [Hor86]. For a related approach, see [Hil83b| or [Nag83]. Of course there
is no guarantee that the “invented” field is close to the motion field vy, and in fact
it is, in general, different. We show this in Appendix C for a method related to the
one described in [Hil83b].

Another kind of approaches include those of Lucas and Kanade [LK81], Waxman
and Wohn [WWS88]|, Fleet and Jepson [FJ90] and Singh [Sin90] that fit the measured
normal flows to a local model of the 2D velocity field (e.g. a low order polynomial
model). Finally, some methods [Nag83, UGVTS88| use the first order derivatives
(spatial and/or temporal) of equation (4.1) to get more constraints on the optical
flow. Notice that some of these techniques are difficult to use along edges since at
such points the available information is essentially one dimensional.

Before continuing, let us derive a useful formula that will be used in the remaining
of this text. This formula relates the component of the velocity field in one specific
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direction 1 (at this point 1 can be any vector). So let us project equation (4.3) onto
vector 1

Z(Vml— (@,m,1— (m1k)) =V (1- (m1)k).

Since m-k = 1, we recognize that 1 — (m-1)k = (m-k)l - (m-l)k = m A (1A k) and
thus obtain:

Z(vel— Q(mA (mA (1AK)))) = V-(mA (1A k). (4.6)

Notice that equation (4.6) is true for every point m of the retina and for every vector
1. Moreover, the third component of equation (4.3) is trivially true (do not forget
that m-k = 1), which means that equation (4.6) is totally independent of the third
coordinate of 1. As a consequence, we can restrict 1 to be parallel to the retina R
without loss of generality.

In the remaining of this chapter, we are going to investigate in great depth the
relationship between vy, and Vi along edges. Then in part 111, we will make use of
the kinematic equations introduced in this section so as to derive a new formulation
for the motion and structure problem for rigid curves.

4.2 Spatio-temporal Surfaces

We now assume that we observe in a sequence of images a family (¢,) of curves
where 7 denotes the time, which we assume to be the perspective projection in the
retina of a 3D curve (C) that moves in space. If we consider the three-dimensional
space (z,y, ), this family of curves sweeps in that space a surface () defined as the
set of points ((c;), 7). As an example, figure 4.2 shows the spatio-temporal surface
generated by a circle rotating around one of its diameters in front of the camera.

This surface encodes all the information available from the image sequence about
the 3D curve. Consequently, the study of this surface is of great importance for
the understanding of the motion-and-structure problem for curves. The next two
sections are dedicated to this task.
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Figure 4.2: The spatio-temporal surface generated by a circle rotating in front of
the camera.

4.3 Real versus Apparent Motion Field

At a given time instant 7, let us consider the observed curve (c;). Its arclength s
can be computed and (¢;) can be parameterized by s and 7: it is the set of points
m(s, ) in the retinal plane. The corresponding points P on (X) are represented by
the vector P = (m%(s,7),7)T. Now, let S be an arclength defined along the 3D
curve (C). We assume that the motion of (C) preserves the arclength. This rules
out elastic motions but allows rope-like and rigid motions. Such motions are called
tsometric motions. Then, notice that the arclength s of (¢,) is a function s(S, ) of
the arclength S of the 3D curve (C) and of the time 7, and that the two parameters
(S,7) can also be used to parameterize (X) in a neighborhood of P. Of course, the
function s(S,7) is unknown.

As shown in figure 4.3, we can consider on (X) the curves defined by s = constant
or S = constant. These curves are in general different, and their projections, parallel
to the 7-axis, in the (z,y)-plane have an important physical interpretation, related
to our upcoming definition of the motion fields.

Indeed, as shown in figure 4.4, suppose we choose a point My on (C) and fix
its arclength Sp at time 7. When (C) moves, this point follows a trajectory (Cwr,)
in 3D-space and its image mg follows a trajectory (cy,,) in the retinal plane. This
last curve is the projection in the retinal plane, parallel to the 7-axis, of the curve
defined by S = Sy on the surface (X). We call it the “real” trajectory of mg because
it is the retinal image of (Cn,) which is the trajectory of a physical point attached
to (C).
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AY

s = constant

Figure 4.3: Definition of the spatio-temporal surface (X).

We can also consider the same projection of another curve defined on (X) by
s = s9. The corresponding curve (cg, ) in the retinal plane is the trajectory of the
image point my of arclength sy on (¢;). We call this curve the “apparent” trajectory
of my (see figure 4.5) because it is not, in general, the retinal image of a physical
point attached to (C).

The mathematical reason why those two curves are different is that the first one

is defined by S = Sy while the second is defined by s(S,7) = sp.

Let us now define precisely what we mean by motion fields. If we consider
figure 4.6, point m on (c;) is the image of point M on (C). This point has a 3D
velocity Vi whose projection in the retina is the real motion field v}, (r for real);
mathematically speaking:

e vy, is the partial derivative of m(s,7) with respect to time when S is kept
constant, or its total time derivative m (it is the vector vy, of the previous
section).

e The apparent motion field v&, (a for apparent) of m(s, ) is the partial deri-
vative with respect to time when s is kept constant, %—T =m,.
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Figure 4.4: Projection in the image plane, parallel to the T-axis, of the curve S = Sy
of the surface (X): (cp,,) is the “real” trajectory of myg.

Figure 4.5: Projection in the image plane, parallel to the T-axis, of the curve s = s
of the surface (3): (cf,,) is the “apparent” trajectory of my.
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Vum

O

Figure 4.6: Definition of the two motion fields: the real and the apparent.

Those two quantities are in general distinct. To relate this to the previous
discussion about the curves S = Sy and s = sy of (), the vector v, is tangent
to the “apparent” trajectory of m, while v}, is tangent to the “real” one. This is
summarized in figure 4.7. Figure 4.8 shows how much the two fields v}, and v, are

different.

We now make the following important remark. All the information about the
motion of points of (¢;) (and of the 3D points of (C') which project onto them) is
entirely contained in the surface (X). Since (X) is intrinsically characterized, up
to a rigid motion, by its first and second fundamental forms and the Gauss and
Mainardi-Codazzi equations (see section 2.4), they are all we need to characterize
the motion fields of (¢;) and the motion of (C). Our main conclusion will be that
only the apparent motion field can be recovered from (X).
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Figure 4.7: Comparison of the two motion fields and the real and apparent trajec-
tories: n is the normal to (¢;).

04

0.2

Figure 4.8: A plot of the real (left) and apparent (right) motion fields along an
ellipse. The horizontal axis is the arclength, the vertical one is the value of the
tangential field.
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4.4 Characterizing the Spatio-Temporal Surface

In this section, we compute the first and second fundamental forms and the Mainardi-
Codazzi equations of the spatio-temporal surface (X). On the way, we shall be glea-
ning a number of interesting facts relative to the motion and deformation of the
curve (¢;). The following result about functions defined on (c¢;) and thus on () will
often be used hereafter.

Given a function f of the variables s and 7, it is a function on (¢;). It is also
a function f’ of S and 7, and therefore it also defines a function on (X). We will

have to compute %%I and %él The second derivative is also called the total time

derivative of f with respect to time, f'; introducing u = g—g, and v = %, we have the

following equations:

af' 1)
fl — f — u .Lf — uf37 ( )
3 _ Of _ g _ of g — '
f = i = f = v83+8 vfs-|—f7_‘

Note that when we write %é’ in the second set of equations (4.7), it is a partial

derivative at S = constant whereas when we write %;, it is a derivative at s =
constant.
Following these notations, we denote by P(s,7) = [m”(s,7),7]7 the generic

point of (¥) and by P’(S, 1) = [m'7(S,7),7]T the same point considered as a function
of S and 7.

4.4.1 The First Fundamental Form of the Spatio-Temporal Surface

(%)

Using equations (4.7), and the first two-dimensional Frenet formula, we write

ut
<.

1 “‘] ; (4.9)
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in which t is the unit tangent vector to (¢;) at m.

We now write the apparent motion field vg, in the Frenet frame t,n, where n is
the unit normal vector to (¢,) at m:

vl =at+fn. (4.10)

We call o and § the tangential and normal apparent motion fields, respectively.
We see from equation (4.9) that P! = [(v + a)tT + Bn®,1]T; but by definition,
P = [m!/T 1]T = [mT,1]T = [vZ]' 1]7. Therefore the quantity v+« is the tangential
real motion field which we denote by w and (3 is the normal real motion field. The
real and apparent motion fields have the same component along n, we call it the
normal motion field (see figure 4.7). According to all this, the real motion field is

given by:

Vi = wt +f6n . (4.11)

Let us define V& as [v¢ 117 and V7, as [vi1,1]7 = P.. V& and V7, are
three-dimensional vectors. Consider the tangent plane Tp to the spatio-temporal
surface (X) at P. By definition, it is spanned by the two vectors Py and P!, (see
section 2.4). Examining those two vectors, we see that the vectors to = [t7,0]7 and
ng = [BnT, 1] which are orthogonal, also span T p since Pl = utg and P, = VI, =
wto + ng (see figure 4.9). From this follows that the two vectors Vi, = wto + ng
and Vi, = atg+ng belong to Tp and define on (¥) two tangent vector fields. The

relationship between those vectors of T p is shown in figure 4.10.

Expanding on this idea, we can give a geometric interpretation of the operation
of partial derivative % when the image arclength s is kept constant and of the total
time derivative. Given a function f of s and 7 into R, it induces a function F' from
(X) by f(s,7) = F(P(s,71)). %é is the directional derivative of F' in Tp along V&,
which we denote by Lya F'. This is called the Lie derivative of the function F with
respect to the tangent field V% (see section 2.4). It satisfies the following linear

property:
LV;ln = Lat0+n5 = aLtO =+ Ln;3 .

Thus
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Figure 4.9: The vectors tg and ng span the tangent plane Tp to X.
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s = constant

Figure 4.10: Various vectors of the tangent plane Tp to (X).
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of
5. = oL F + Lo, F.

Ly, F is simply % and we note Ln, F' = O, f. The meaning of this quantity is shown
in figure 4.11. We consider the normal n at the point m of the curve (¢;). At time
T 4 dr, the curve (c;44,) is intersected by the line defined by m and n at a point
represented by m 4+ Gndr and we have

f(m+ fndr) - f(m)

Ons [ = dlflglo dr
Thus we write:
of  of
3= ag + 8nﬂf . (4.12)

Similarly, the total time derivative f of f, is the directional derivative of F in Tp
along V7 :

. o)
f=LVRF=thOF+LnﬂF=w8—J;+3nﬁf. (4.13)
Equations (4.12) and (4.13) have the advantage of expressing %; and f as functions

of % and On, f which can be computed from the sequence of curves (for 9y, f we
need to know 3 but we will show in a moment that it can be estimated from (X)),
and of the two unknown tangential motion fields, the apparent one «, and the real
one w.

Equations (4.12) and (4.13) also hold for functions f into RP. We will be using
heavily the cases p = 2,3 in what follows.

From equations (4.8), (4.9), and equations (2.5), we can compute the coefficients
of the first fundamental form (see section 2.4):

Proposition 4.1 The coefficients of the first fundamental form in the basis (P'y, P!)
of Tp are given by:

E=v’, F=uw, G=14+w>+p%. (4.14)
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(er)

Figure 4.11: A geometric interpretation of Oy, .

We can also compute those coefficients in the basis (tg,ng):

Proposition 4.2 The coefficients of the first fundamental form in the basis (tg,ng)
of Tp are given by:

E'=1, FF=0, G'=1+p*.

Proof: Let us denote ¢ the linear mapping Tp — Tp such that ®;x = px-x for
all x of Tp. Since we have:

to=1P%, ng=-2Py+P/, (4.15)

we obtain immediately B/ = ®1tq = u%‘I)lP' = u% =1,G'=®ng = z—jE—Q%F—G—
G=1+p%and F' =ptyng=—-%E+L1F=0.
Od

A normal Np to (X) that will be needed for the second fundamental form can
also be computed:
fn
1 .

t

0 A

Np=t0/\1’lg=[
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Let t = [t,,t,]”, then n = [t,, —t,]” where e = £1. The cross product appearing
in the previous equation is therefore equal to

=]

—ef8 —p
Finally

NP =£ [ _nﬁ ] .

Given a normal Np to the spatio-temporal surface (X) whose coordinates in the
coordinate system (t,n,7) (7 is the unit vector defining the 7-axis) are denoted by
N¢, Ny, N, we have:

We have thus proved the following proposition:

Proposition 4.3 The normal to the spatio-temporal surface (X) yields an estimate
of the normal motion field 3 as

g=-—=L. (4.16)

In what follows, we take Np = [n, —ﬂ]T since N p is defined up to a scale factor.

4.4.2 The Second Fundamental Form of the Spatio-Temporal Sur-
face (%)

2 2 2 2 .
We denoteng‘; loy ug, ﬁzby Ur, % by u,, and % by vg. We are going to
compute % 51,; ,%le, and %. We start with the last one and prove on the way
that the apparent tangential velocity is determined by the curvature of (¢,) and the

normal motion field.
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Computing the Apparent Tangential Velocity

Using equation (4.9) and the first equation (4.7), we deduce

o’P' | vst+u (vnn + 0:9’—5")
8Sdr 0 '

Let us now evaluate 8;—5“ From the definition of v, — equation (4.10) — and the

two-dimensional Frenet formulas (2.2), we infer:

ovy, (O op
5 (33 nﬂ) t+ </<;a + 83) n. (4.17)
Thus,
2p! da _ 9B
%P [ (vs+u(§e—n0))ttu(mo+ F)n] (4.18)
0Sor 0

Computing %; from equation (4.8), we deduce

5P’ urt + ut
= 4.19
0TS [ 0 (4.19)
Using the derivation rule (4.13), we write
: ot
t= wos + Onyt = Kwn + On,t . (4.20)

The vector 9p,t is a derivative of the unit vector t, it is therefore perpendicular to
t, thus in the plane defined by n and 7. We write

Onyt = pn+n7. (4.21)

Therefore, equation (4.20) yields

t= (kw4 p)n+nr. (4.22)
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From Schwartz equality % = gi—g;,, and u; = vg. We conclude, by equating

equations (4.18) and (4.19) that, if u # 0, n = 0, g—g = kf, and p = g—'[j We call p
the (B-curvature of (¢,) while k is the space curvature.

We have thus proved the following theorem:

Theorem 4.1 The tangential apparent motion field o and the 3-curvature p satisfy:

Oa
_ o

Corrolary 4.1 The (-derivative of t and n are:

_ 98
8n5t == gl’l s (425)
9B

Equation (4.23) is instructive. Indeed, it shows that «, the tangential component
of the apparent motion field vZ, is entirely determined up to the addition of a
function of time by the normal component of the motion field 8 and the space
curvature k of (¢;):

o= /:n(t,T)ﬂ(t,T)dt. (4.27)

Changing the origin of the arclength parameterization from sg to s; on (e¢,) is equi-
valent to adding the function [;* (v, 7)B(y,7)dy to «, function which is constant
on (¢;). This is the fundamental result of this section. We have proved the following
theorem:

Theorem 4.2 The tangential apparent motion field can be recovered from the nor-
mal flow up to the addition of a function of time through equation (4.27).
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Or(t + dr)

(¢riar)

(cr)

Figure 4.12: The choice of the origin of arclength on (e,).

The choice of this function of time is related to the choice of the origin of the
arclength parameterization at each time instant. In practice, we want this function
of time to be smooth, i.e if Or(7) is the origin at time 7, its tangential apparent
velocity is 0 by definition (equation (4.27)), and we would like the origin at time
Or(t 4+ dt) to be Or(1) + fndr (see figure 4.12). Mathematically, this means that
if P,, is the corresponding point on (X), it follows a trajectory described by the
following differential equation?:

=ng. (4.28)

We know from the theory of differential equations that if ng is smooth enough, then
equation (4.28) has a unique solution for the initial condition P,.(0) = Py in a
neighborhood of Py. Thus, since ng(r) is known at each time instant, if we choose
the origin as P at time 0, we can compute what the origin is at time 7, and compute
a from equation (4.27).

We now prove an interesting relationship between the - and space curvatures

of (er).
Proposition 4.4 The (3- and space curvatures of (¢;) satisfy

dp

L = — 2
s Ongk — KB,

20r equivalently, the point Or in the image follows a trajectory defined by: ddoTT = fn.
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which can be rewritten as:

Onyk = il + K23 (4.29)

ngh = Hs>

Proof: We compute 8‘93—2(% and % and write that they are equal. Using the deri-

=
vation rule (4.12), we can write:

o _0(aft+0ut)  9((na+t p)m)
dsOr Os - Os '

Thus:

9sdr

o (8—h +"8—a+@>n—ﬁ(/~:a+ )t
0sa h@s Os It -

On the other hand:

9t _ O(kn) _ a@(nn)

drds It Os + Oy (km) ,
thus,
d%t Ok
ey (aa + Bnﬂn) n— k(Ko + p)t .

From where the announced results follow. O

Computing the Coefficients of the Second Fundamental Form

62P’ 82P’
Let us now evaluate 557 d 57

(4.7) we derive

; from equation (4.8) and the first equation of

2
“ t
%2:U2P32+USP3:lUKnJ_uS ] ,
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and from equation (4.9):

C
Pizzlth+%t+vm‘| .

We have seen previously that t = (kw + p)n (equation (4.22)); now, using again the
derivation rule (4.13), we obtain

OV
Vin = W— + Ony Vi

Os

From equations (4.17) and (4.23), we know that 3—’“ = (ka + p)n, so evaluating
On, vy, from (4.10),(4.21) and (4.26) yields

ng ¥m

8ngvm = (8nga - ﬂp)t + (O‘p + 6nﬂ/6)n
Finally,

, [ (00 Ouy0 = Bt + (P + 2up+ By B
72 T 0

We can now compute the coefficients of the second fundamental form; after some
algebra, and using equation (4.24), we obtain:

Proposition 4.5 The coefficients of the second fundamental form in the basis (P'g, P.)
of Tp are given by:

a8
I — o M= (fcw—l— )u N = "'w2+2wﬂ+8“5ﬂ .

4.30
ol bl o) o (4.30)

We can also compute those coefficients in the basis (tg, ng):

Proposition 4.6 The coefficients of the second fundamental form in the basis (tg,ng)
are gwen by:

a8
I = = (i 1 Ongh

— vl T
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Proof:

Let us denote ¢ the linear mapping Tp — T p such that ®ox = 9px-x for all x
of Tp. Since we have

tO:%P{SW ng=—y {9+Plra

we can write
On B

V1+p2’

and

L'=®tg = 58P = L N =&y = %L —-22M+N =

uZ?

M =ytong=—-%L+ LyP P = -5+ 1y =
O

This proposition shows that neither u nor v can be recovered from the first and
second fundamental forms of (). Indeed, we have seen in section 2.4 that the quan-
tities of interest (i.e. invariant with respect to changes of the parameterization of
(X)) are the principal directions and curvatures which depend only on the coeffi-
cients E',F',G' and L' ,M',N’. Since none of these quantities depend upon u and v
this is also true of the principal directions and curvatures. This means that if we
observe (X) and compute its differential invariants, we will not be able to recover u
and v and therefore, we will not be able to recover the real tangential motion field
w =+ v.

4.4.3 The Mainardi-Codazzi Equations

The reader may wonder whether we have completely characterized the spatio-temporal
surface (X) and if it is not possible to find other relations that may yield more in-
formation than what we have found so far. The answer to this is no, thanks to
the Bonnet theorem. We show that by combining equations (2.9)-(2.11) with the
expressions (4.14) and (4.30) that the Gauss and Mainardi-Codazzi equations (2.9),
(2.10), (2.11) for (¥) imply equations (4.29) and (4.23). With the help of a computer
algebra system, it can be shown that the Gauss and Mainardi-Codazzi equations are
given by:

wuf 2 agﬂ_ L) -
(1+ﬂ2)3< 7o >_O’
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(KL +8%) = 0u,8) (ur —ws +wuf) =0,

(1+42)2
w  [0a0p 95\ 0 (0n,8)
(1+ﬁ2)% (Eg_anﬂ <g)+ 8; ) -0

The first equation is equivalent to equation (4.29) in the general case where w, u
and (3 are different of 0. Using the facts that w = v 4+ o, vg = u,, and ag = ug—(;,
we can write the second equation as:

u2

da
(614 87) = 0a,) (5o — ) =0
(14023 O
This is equivalent to (4.23) if On 8 # (1 + (%) which is, in general, true. We show
it later in the simple case of the retinal rigid motion (see appendix B).
9(0n

It is easy to recognise in the term (—agL) — Ony (%g), which appears in the
second factor of the third equation, the Lie bracket L[ng,tg] applied to B. Let us thus
compute this quantity.

Equation (2.12) given in section 2.4.3 shows how to compute the coordinates of
[ng,to] from those of tg and ng. Moreover, we have seen in section 2.4.3 how to
compute the Lie derivative in a given direction of T p given the coordinates of that
direction in the frame (P’y,P’). Thus, the coordinates of ty and ng in this frame
being given by equation (4.15), we have:

te] — ( “"9(%)—13(_%)+3(%))Pg+op;,

w08  u dS or
_ Ws —Ury,, OS5,
= T2 Ps=aPs
since w = a4+ v and vg = u,. Consequently, the Lie bracket Lin, 1) 1s given by
ag 0 da 0 da
L =——=—7—=—L4, . 4.31
ot = 4298 T 85 ds  0s (4.31)

Applying this result to 3 yields
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op
L[l‘llg,to]ﬁ = 8ng(£) -

ds  0sds’

which proves that the third equation is always true.

From the Bonnet theorem, the two equations (4.23) and (4.29), together with
those giving the coefficients of the first and second fundamental forms (equations
(4.14) and (4.30)), completely characterize (X), up to a rigid motion. But since
(4.23) and (4.29) do not depend upon u and v, they cannot help us to recover w

from (X).

Theorem 4.3 The tangential real motion field cannot be recovered from the spatio-
temporal surface.

4.5 Joint Experiment between Computer Vision and
Neurophysiology

There are some results in neurophysiology that tends to show biological vision sys-
tems do overcome the aperture problem. From our previous study, it is hypothesized
that the obtained motion field is the apparent one: actually, it is possible to recover
the real motion field if some more assumptions are made about the 3D motion like
rigidity (see part IIT). However, in such a case, the tangential component of this
field is deduced from the 3D motion and since the area of the brain (the middle
temporal area MT) occurs at a quite early stage of the “processing” of the retinal
data, this is fairly improbable. Designing and realizing an experiment to test this
hypothesis is the topic of a joint experiment between the group of neurophysiology
directed by Prof. Orban (KULVNP) and INRIA in the framework of the European
project INSIGHT II.

Actually, the situation is slightly more complex. There is a good evidence that
in the monkey MT area, an optical flow map is computed. Cells in this area are
both direction and velocity tuned [MVE83, LRX090]. Moreover, there is a strong
evidence that these MT cells only react to local situations. Consequently, it seems
that they are not using any global data to deliver an output. Furthermore, the design
of a neurophysiological experiment is a very difficult task: the visual stimulus must
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provide only those cues which the tested cell is known to be sensitive to. From this
point of view, the experiment showing that the biological vision systems overcome
the aperture problem is questionable since it used two intersecting nets of straight
lines as the visual stimulus and since such points may provide a strong cue about
the real field. We have thus tried to design a new experiment in order to clarify the
two following question:

e The first question to answer is whether neurons of this M'T area are measuring
the normal flow or a full flow along an edge.

e If the answer to the previous question is that MT cell measure a full flow then
it would be interesting to check if this flow is the real or the apparent velocity

field.

To achieve such a goal, we have used some of the tools developed for generating
synthetic image stimuli sequences of rigid 3D curves (see part II).

4.5.1 Principle of the Experiment

The basic idea of the proposed experiment is to take a neuron for which field of
view and the direction preference are known, and to stimulate it twice. The image
sequence is a film of a translating pattern and the two different stimuli are obtained
from each other by a symmetry with respect to the direction of translation. This
operation has the advantage of preserving the direction of the real flow whereas
the normal flow is changed since the orientation of the edge is changed by the
operation. If the neuron reacts the same way with the two stimuli then it is sensitive
to the real motion field, if it does not then if measures either the normal component
of this field or something else (the apparent motion field 7). The same kind of
experimental protocol can be used to discriminate between the apparent and real
motion field although it is more complex to design. The main difficulty encountered
when generating these image sequences is to choose the curve in such a way that the
range of the orientations along the viewed part of the curve is as small as possible
(in order to be able to say that there is one main orientation of the curve in the
receptive field) while preserving the ability of the visual system to find a unique
motion. Furthermore, there must be as few other cues as possible in the stimulus.
Of course, these two constraint are somewhat incompatible and some optimal choice
must be made.
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4.5.2 Examples of Stimuli

We generated many different sequences. Each of these sequences shows a set of rigid
planar curves moving together with the same motion. To obtain these curves we
have taken the model defined by the equation

y = 25+ px + translation .

The nice property of this model is that it have one clear main direction in the
image. Moreover, the parameter p controls the value of the derivative at the inflexion
point? of the curve and the parameter translation allows to translate arbitrarily
the curve along the y axis: this allows some flexibility in the design of the image
sequences and allows the tuning of the parameters to optimize the criteria described
in the previous section. To obtain space curves, we extended the (z,y) plane with
a z axis defined as the normal to the plane and added a rotation with an angle «
around the « axis. Thus the motion observed is the translation in the tilted plane
of a rigid planar cubic defined in that plane. This generic model of curve is then
projected onto a camera whose optical center is on the z axis and whose retina is
parallel to the (z,y) plane. We have the mathematical equations of this generic
projection, it is thus easy to obtain some statistics or probability measures of the
repartition of the normals.

The image is defined as the set of such rigid curves obtained by varying translation
parameter for each curve (this same parameter is again used for all the curves glo-
bally to generate the motion). We thus have a computer program that takes the
name of the sequence, several time sampling parameters, the o« and p parameters
and a file giving the translation values from one curve to an another and the grey
level value between two curve and produces a 512 x 512 image sequence.

We have generated many such sequences giving the values of 0.0, 0.1, 0.2 radians
for the a parameter and the values of 0.0, 0.25 and 0.5 for the g parameter. We
have limited ourselves to these values because higher angles give rise to very strong
perspective effects, and because the visual effect obtained with higher values of the p
parameter is more and more non-rigid (although the model is strictly rigid) according
to what have been observed by Nakayama.

3The presence of the inflexion point seems not to be a cue problem since it seems that the visual
system does not track this kind of points.
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Figure 4.13 show one image excerpted from each sequence. Figure 4.14 is excerp-
ted from a sequence for which the p parameter is 0.25 with a tilt angle of /6 radians
and shows the strong perspective distortion that we obtain. Figure 4.15 show the
next generation of stimuli we have developed. In these, we have added a surroun-
ding circle to obtain a circular field of view and to minimize the compression effects
that can be seen on the borders of the images shown in figure 4.13 (these constitute
an undesirable cue that hints the visual system toward the actual structure of the
scene). At this stage, it seems that using these stimuli would need a psychophysical
experiment to assert that the global percept of the visual system is that of a rigid
motion. Figure 4.16 shows the distribution of the orientation along the curves of

figure 4.15.

It is not yet clear how useful will be these stimuli. Some more experiments are
needed to be able to decide if it is possible to define a rigorous experimental proto-
col based on these. However, the task of designing them has already raised many
interesting questions and has pinpointed a lot of possible cues that the biological
visual systems might use for motion analysis. This is interesting both for computer
vision and for the study of biological visual systems.

4.6 Conclusion

There are three main consequences that we can draw from the analysis made in this
chapter. Under the weak assumption of isometric motion:

1. The normal motion field 8 can be recovered from the normal to the spatio-
temporal surface (proposition 4.3),

2. the tangential apparent motion field can be recovered from the normal motion
field through equation (4.27), up to the addition of a function of time, and we
have seen how to eliminate this problem,

3. the tangential real motion field cannot be recovered from the spatio-temporal

surface.

Therefore, the full real motion field is not computable from the observation of
the image of a moving curve under the isometric assumption. This can be considered
as a new statement of the so-called aperture problem. In order to solve it we must
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Figure 4.14: An image excerpted from the sequence obtained using a tilt angle of
0.52 (approximatively 7/6) radians and a derivative value of 0.25 at the inflexion
point.

add more hypothesis, for example that the 3D motion is rigid. This is what will
be done in part III. Note that it is not what previous authors have done [HS81,
Nag83, Hil83b, Gon89, Bou89|. We suspect that those authors actually compute
the apparent motion field which, as we have shown it on an example, can be quite
different from the real one. In particular, we show in appendix C that it is the
case for the algorithm described in [Bou89|. Furthermore, stimuli have been defined
that might be used to understand better how biological systems handle this problem
at a low-level (if they handle it at all). Defining such stimuli has already raised a
lot of questions about what cues are actually used by those systems. It is hoped
that they will be used in a near future to understand better the functioning of
biological system. The consequences of this study will certainly be very important
for computer vision as well.

We show in chapter 7 that if we assume a 3D rigid motion then the problem is,
in general and in theory, solvable but that there is no need to compute the full real
motion field.
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Figure 4.15: Images excerpted from the generated sequences. The left (resp. right)

images correspond to a derivative value at the inflexion point of 0.25 (resp. 0.5).
The rows correspond respectively to tilt angles of 0.0, 0.1 and 0.2 radians. A circular
mask centered at point (256,256) and of radius 192 has been added.
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Figure 4.16: The orientation distributions visualized as polar plots. Each plot cor-
responds to the visible part of a curve in an image. The plots are in correspondence
with the images of figure 4.15.
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As presented in the introduction, the main goal of this work is the estimation of
the motion of a rigid 3D smooth curve. We consider a monocular image sequence of
it, and use a pinhole camera model®. In the next part, we will see that the measures
needed to achieve such a computation are the quantities: m, n, &, 3, g—f, On,y 3 where
we use the notation introduced in chapter 4. None of these are provided directly by
the CCD sensors. However, as sketched briefly in chapter 3, many reliable methods
have been proposed to extract edges robustly from images [MH80, Can86, Der87].
Applying one of these methods to our images immediately provides for the first of
these quantities, m. The remaining ones are derivatives up to the second order in
space and time defined only along smooth edges. As such, they are more difficult
to obtain from the intensity images — it is well-known that the bigger the order
of derivation, the more noisy the results, and in practice, second order derivatives
are seldom used in the algorithms of computer vision because they are troublesome
to compute accurately. The purpose of this part is to show that computing these
quantities is not an unrealistic challenge and that quite good quantitative values can
be obtained provided that the curve is sampled sufficiently often.

Basically, the tools developped in this part are completely general and can be
used for every differential quantity, but both the methods and the results provided
in this part can be used for many other edge based computer vision algorithms that
also involve their quantitative differential properties [AB86, WKPS87, Sub88, RF91,
VMPO92, KTZ92]. Since derivatives hold a very important information about the
contour deformation (as we will see it for our case in the part), it is likely that the
techniques discussed in these works, as well as other techniques based on differential
properties, will play a more and more important role in computer vision. The high
resolution devices that are emerging nowadays will certainly ease the generalization
of these techniques to implementation within many of the practical situations.

Many methods have been proposed in the litterature to compute such derivatives.
They can be amalgamated in two main categories:

Global methods: this kind of method first computes a smooth global model that
fits to the data (image intensities or edge points), and then uses it to compute
all of the desired derivatives. The efficiency of this approach in terms of preci-
seness is directly related to the number of parameters involved in the model.

*The importance of the rigidity assumption will appear clearly in the next part. For now, let us
just say that its main advantage is to provide for a way to globally describe the motion of the curve
by a finite set of parameters.
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These are closely related to the flexibility of the model. Generally, this kind of
method is very efficient with a very constrained model (compatible with the
data of course), such as for example a straight line or a conic. In such cases,
the computation of a derivative at one point of the edge takes advantage of
all the data points that belong to the edge; this gives rise to very precise de-
rivatives (at least up to order 2). Unfortunately, an a priori model is seldom
known. The technique that is used consequently is to fit a very flexible model
such as a spline. Yet, this leads to a global model but with a much larger
number of parameters. The main problem in this case becomes the control
of the balance between the flexibility of the model and the smoothing that
we want to occur in order to obtain good derivatives. Again, derivatives can
be computed from the global model [BD92, GA92], but they usually tend to
be less accurate than in the previous case. Actually, splines fitting can be
considered as lying inbetween the pure global method (line or conic fitting for
example) and pure local methods as described hereafter.

Local methods: When no model is known about the observed curve, another me-

thod used to compute derivatives is to look at the edge only locally at a point.
Namely, this means looking in a neighborhood of each edge point, and compu-
ting the derivatives given the data (here again data can be either intensities or
edge points) that are in this neighborhood. Here there is no global informa-
tion that is conveyed from one point (outside of the neighborhood) to another.
Usually these methods give results that are quite noisy, but we show here that,
provided that the curve is well enough sampled, it is possible to recover quite
good derivative values using them.

In what follows, focus is made on local methods. There are three main reasons

for this choice:

e First, the method used to recover the 3D motion of a rigid curve involves an

equation defined at each point of the observed edge. It is thus more natural
to work locally around each point than to use a global method.

e The second reason is that since we do not generally have a constraining model

of the observed curve, a very flexible global model would have had been to
have used. As mentioned above, these global models are not very different
from local ones. For example, splines can be considered as local models pasted
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together with some continuity conditions. By using pure local models, we
get rid of these extra conditions that are not needed in our application thus
obtaining more local freedom to control the approximation.

e The third reason is more philosophic: derivatives are inherently local measures
of a curve behaviour thus it seems more natural to use local methods.

In the remainder of this part, we suppose the following situation: suppose that
we have a continuous sequence of images in which there is a smooth curve tracked
over time. Smoothness and continuity here mean that the image curve varies slowly
with respect to space and time: this ensures that all the image curves are smooth
and vary slowly. As a consequence, it allows us to consider high frequency variations
as noise. Given this set of images, by using standard edge detectors it is possible to
obtain a set of points that belong to the spatio-temporal surface swept out by the
curve. Although we focus on algorithms that work on the set of the extracted points,
some of the methods we present (mostly for comparison purposes) rely directly on
image intensities. In the remainder of this part, unless otherwise specified, the word
edge must be taken as “generalized edge”. This means that an edge is not necessarily
a curve, it can as well be a spatio-temporal surface which is nothing else but the
spatio-temporal equivalent of an edge.

In the next chapters, several methods for computing derivatives are reviewed
and compared. The first chapter describes the general outline of the method as well
as the experimental protocol that was used to test the quality of our estimators.
The chapter which follows shows how this general method is applied to compute the
quantities we are interested in, gives the obtained results, and discusses both the
merit of the different methods and the importance of some stages of the computa-
tion. A significant part of the discussion is devoted to the accuracy of the results
for orientation and curvature measures. This is because much attention has been
paid to these two quantities in the literature. Some conclusions about what makes
derivatives difficult to compute from images are drawn from these examples.
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Chapter 5

Sketching the Method

This chapter discusses the general choices that have been made in the design of
our derivative estimation method. For the reasons explained in the introduction of
this part, we have resolutely focussed on a method that does not appeal to a global
representation of the observed curve. Basically, the looked-for method must fulfill
the following goals:

e The values of the computed derivatives must be quantitatively good. As we

are planning to use these values in some equations, it is very important to
have accurate values and not only good qualitative estimates. This differs
from some of the computer vision algorithms that, for robustness reasons, rely
only on some global characteristics of the differential quantities such like the
extrema or the zero crossings.

The method must be totally general. This means that, apart from the smooth-
ness needed for defining the differentiation operation, the algorithm must not
depend on any geometric constraint imposed to the observed curves. In gene-
ral, our input is an ordered set of points and the algorithm must give a value
for the derivative for each point of the curve (except may be for those that are
on the sides of the edge).
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e Finally, but this is very important, we prefer methods that work with non
uniformly sampled data points. This constraint arises from the fact that the
data points corresponding to a curve extracted on a regularly sampled image
are not regular samples on the curve! This phenomenon is amplified by the
fact that our parameters are defined only in normalized image coordinates:
the affine transform that relates image and normalized coordinates generally
involves two different scale factors for the two axes spanning the retina so that
usually any uniform sampling is destroyed by this transform.

These constraints are quite important. On another side, in the tradeoff between
speed and accuracy, we have clearly opted for accuracy so that the speed of the
algorithm is not that important (for example, no attempt was made to make the
program work in real time). Furthermore, in order to reach the fixed goals, we
assume that the observed curve is sampled well enough so that the looked-for infor-
mation is present in the data points. Throughout this work, there is the underlying
assumption that the image data are just a discretized view of some continuous phy-
sical situation. When we say that we deal with smooth curves, the word “smooth”
clearly applies to the latter situation!.

This chapter is organized in four sections. First a short review of local methods
is made. Then, the general description of the one we have chosen to follow is given.
The details of the fitting procedure used with this method are given in the third
section. Finally, the last section deals with the experimental protocol we have used
to validate the estimators.

5.1 Local Methods

Even when focusing on local methods, there are many different ways to compute
derivatives. Basically, we can split them in two classes: image based methods and
point based ones. In this section, we briefly describe these two classes and justify the
choice we have made. Although most of the matter presented in this section can be
applied to the computation of any differential quantity, the example of curvature is
principally taken. This is because, contrarily to the other quantities (except for the

Tt is much more difficult to deal with discrete data than with continuous ones. Actually, as soon
as dicretization occurs, there is a non-obvious relation between the scale of the details we want to
observe and the sampling of the data. The same phenomenon appears with derivative computation.
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orientation and the normal flow but these are only first order derivatives), curvature
have received a lot of attention in the literature.

5.1.1 Image based methods

These are methods that compute the derivatives directly from image intensities: for
these methods, the image intensities are considered as a function I(z,y, 7). For each
edge extraction algorithm, it is possible to characterizes edges by some differential
properties of this function. This constraint can always be stated as a function f rela-
ting I and its derivatives (usually up to the second order): f(I, Iy, Iy, Ir, Iva, Loy, Iyy) =
0. Doing so defines an edge as an implicit function in the unknowns «, y and 7, and,
as shown for example for curvature in section 2.4, it is possible to express any deri-
vative measured on the spatio-temporal surface in terms of f and of its derivatives
with respect to z, y and 7 (the formulae for all the quantities we want to measure
are given in chapter 10). Practically, this yields expressions depending on the image
derivatives. These can be computed using standard filtering techniques and directly
combined to obtain the desired quantity at each edge pixel.

The simplest example of this technique is also the most frequently used one: it
consist in assimilating edges with isointensity curves. Then, intensity derivatives
and edge derivatives match exactly along the edge and the formulae of chapter 10
for implicit curves works directly with image derivatives. The computational scheme
is thus:

1. Compute the image intensity derivatives.

2. Combine all these derivatives with the formulae of chapter 10 to obtain the
desired quantity.

This technique has been used extensively in computer vision to estimate many
kinds of differential properties of edges (see [HS81, Nag92, KKvD93] for example).
In the next chapter, curvatures obtained with this method and the one described
hereafter will be compared.

More details about the generalization of this scheme to different edge criteria are

given in [FP93]. A full description of the method with some results can be found in
[SFP94]. Notice however that the higher the derivative order used in the function
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f, the higher will be the derivation order needed to express the result. Taking
curvature as example, second order derivatives with respect to the space coordinates
are sufficient when assimilating edges with isointensity curves whereas fourth order
spatial derivatives are needed with the models used in the Canny-Deriche or the
Marr-Hildreth edge detectors.

A very nice refinement of this kind of method is to compute the intensity de-
rivatives at several different scales, and then to look for the desired quantities in
this “scale space”. Unfortunately, until now, there is no well established method
to decide at which scale we have to search for the desired value. This is all the
more annoying as, in general, different parts of a curve must be looked at different
scales (we will try to demonstrate this later). Notice, however, that these last years
have seen the emergence of a neat axiomatisation of the ideas of scale space: see
for example [AGLM92, FtKV92, KKvD93]. A generalization of these ideas to image
sequences is presented in [Gui94].

One of the main advantages of this kind of method is that it is quite easy to
implement once the image derivatives have been obtained. However, if accuracy is
needed, one has to be very careful of how to select the pixel values at which to pick
the derivative values (actually, sometimes the signal around a pixel is varying so fast
that interpolating between two pixel given a subpixelic edge position is a necessity).
Apart from this one, there are two main drawbacks with this kind of method:

e They are computationally intensive especially if the scale space paradigm is
used.

e Standard filters that compute derivatives (usually for edge detection purposes)
are not always normalized. This means that they compute derivatives only up
to a scale factor, so if one want to combine together different types of deriva-
tives, this normalization factor must be recovered. Notice also the problems
arising from photometric effects (see chapter 3) and especially those implicated
by automatic gain control if it is used during the sequence acquisition.

Finally, a slightly different approach is described in [VF94]. In this approach,
the image derivatives are not computed directly from the image intensities but me-
rely from a model (a polynomial model for example) fitted on the intensity. The
underlying assumption is that, locally, edges are isointensity curves.
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5.1.2 Point based methods

Point based methods use the edge point coordinates obtained after edge detection.
Many different variants of these can be designed. For example, for the curvature
computation problem, Worring and Smeulders [WS93| claim that there are essen-
tially three equivalent formulations of curvatures (methods based on orientation,
methods based on paths and those based on the osculating circle) which give rise to
five different implementations (basically the article proposes three different ways of
estimating the orientation). Theoretically, all these methods should give the same
results but the quality of the practical results show errors ranging from 1% to 1000%!
Among these methods, those based on the orientation and on the osculating circle
are very specific to curvatures and are quite difficult to generalize to other quanti-
ties. Moreover, path and orientation based methods can be reformulated in such a
way that they appear to be very close.

e Path based methods [MM86, Low88, MM92| are based on the recovery from
image data of a local parametric representation (z(s),y(s)) of the edge. Once
this representation has been computed, the standard formula for curvature of
parametric curves (see chapter 2.4) is used. In the following discussion, we
use a slightly more general definition of this kind of method in which we allow
ourselves to start with any set of quantities defined on the curve: z and y
are two such quantities used in the previous description, but now any other
quantity defined along the curve (such as orientation, curvature or normal
flow) can be used.

e Orientation based methods are based on the following formula for curvature:

dp
ds’

K

where 0 is the local orientation of the curve and s is the arclength. A typical
example of such a method is given in [AB86]. Provided that care is taken, this
kind of methods yields the best curvature estimates according to [WS93|. It
is, however, important to notice that the three different methods reviewed in
this paper differ mainly in the way that the orientation is estimated and in
how the differentiation step is performed. The only constraints that seems to
have been followed is that there is only one smoothing operation. By relaxing
this constraint it is very easy to see that if we use a our generalized definition
of path based method twice (once for the orientation estimation and once
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for the computation of the derivative of @), then the only difference between
orientation based methods reformulated in this way and path based methods
is in the way the derivation and smoothing steps are combined.

As path based methods have the full generality we are looking for, whilst keeping
the possibility of expressing the derivative computation in the way that gives the
best results for curvature (orientation based methods), it is the kind of method we
have chosen to use.

5.2 General Outline of the Method

We now give a more precise description of our slightly modified path based method.

Suppose that some quantity ® is defined along the edge (for example, the edge
point coordinates or the edge orientation). These quantities define, along with the
ordered set of points that represent the edge, a function along the edge. This
function can be parameterized, and in theory, any parameterization can be used
as the formula we will use for computing the derivative values are invariant to re-
parameterization. Practically, however, two special kind of parameterizations play
an important role and the quality of the results strongly depend on the chosen
parameter [SA85, WS93]. The first way to define such a quantity is to use the
index of the point in the edge as the parameter (this is used frequently as it is
very easy to compute). The second kind of parameterizations are those based on
an estimation of an arclength (this parameterization can be an Euclidean, an affine
or a projective arclength: there is not yet much experience on how to compute the
last two quantities, and so we adopt Euclidean arclength for the remaining of the
discussion). The importance of a proper estimation of the arclength must not be
overlooked as such a quantity defines how the 2D Euclidean structure of the image
is mapped onto the curve (but we delay this discussion till the next chapter). For
now, let us just assume that a parameter s is associated to each of the points of the
curve.

Around each of the edge points m (except perhaps around the points that lie on
the sides), it is possible to define a set Vi, of neighboring points. This can be done
in many different ways, three examples are:
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e Taking a given number of points on each side of m along the curve (i.e. in
the order defined by the edge). This parameterization is important as it gives
neighborhoods that contain a fixed number of points: this privileges the num-
ber of samples over the uniformity of the size of the neighborhoods along the

curve.

e Taking the points that are within a disc of fixed radius and centered at m.
This sampling scheme respects the uniformity of the size of the neighborhoods
but makes no use of the curve structure.

e Using the parameter s as a distance function along the curve and selecting the
points that are within a certain distance of m. In contrast to the first parame-
terizing scheme, this privileges the uniformity of the size of the neighborhoods
along the curve over the sampling of the curve.

Notice that varying the size of the neighborhoods allows some kind of scale space
computation. Such an implementation may be more difficult to implement but it
results in better computational times, since only one-dimensional data sets are used.
The exact relation of such “scale space” computation with the standard scale space
is, however, not obvious.

Independently, in each neighborhood Vy,, a local model is fitted to the data ®
considered as a smooth function of s. This yields a continuous estimate CiD(s) of ® in
the neighborhood Vy,. This local model can then be differentiated in order to obtain
estimates of ®,, ®,,, ...of the derivatives of ® with respect to s. These define new
quantities along the curve that can be combined to obtain the looked for derivatives
(see for example the formulae given in section 2.4). Eventually, these new quantities
can again be differentiated using the above method.

The computational scheme can thus be summarized as:
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1. Compute a parameterization s along the curve. Any origin can be taken.
2. Choose a quantity ® defined along the curve that has to be differentiated.
3. Select a neighborhood Vy, around each point m of the edge.

4. Considering ® as a smooth function of s in the neighborhood Vy,, fit a smooth
function ®(s) to the data points (s, ®) that are in Viy.

5. Take the derivative of & at sp (the parameter value corresponding to m).
This defines a new quantity defined along the curve that can be combined
with other ones. The result of such a combination can, in turn, be differen-
tiated starting at step 1.

Remark 5.1 It s important to notice that the derivative procedure described in
this section leads to completely independent computations for the different points
along the curve. Thus, if speed is an important factor all the steps involved in this
computation (except maybe for the neighborhood computation) can be implemented
very efficiently on a SIMD parallel machine. This is not the case for some standard
filtering techniques such as recursive filtering.

Notice that, till now, we have not specified the exact fitting procedure because
such a choice is not relevant for the general description and any fitting procedure
gives rise to an estimator (with varying accuracies however). The following section
presents the technique we have chosen to use for this procedure. An attempt to
explain why this choice is better suited for derivative computation is presented.

5.3 Chebyshev Polynomials

The purpose of this section is to describe a method that allows the fitting of po-
lynomial curves to data in a simple and efficient way. It is based on Chebyshev
polynomials: these polynomials have a lot of very interesting properties described in
the mathematical literature. Only the relevant details for our discussion are given

here, most of the details can be found in [PFTV88| and [FP68].
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Figure 5.1: Chebyshev polynomials Ty through Ts. Notice how T}, has exactly n real
zeros that are all in the interval [—1,1] and how at all maxima T),(z) = 1, while at
all the minima 7T;,(z) = —1, so that the T}, polynomial is bounded between =+1.

5.3.1 Mathematical Properties
The Chebyshev polynomials constitute a family of polynomials that can be indexed

by their degree. The Chebyshev polynomial of degree n is denoted T;, and is defined
in the interval [—1, 1] by the formula:

T, (z) = cos (n cos_l(m)> .

Although, it does not look like a polynomial, it is actually one. The T}, family can
be defined by the recurrence formulae:

To(z) = 1,
j_zlb+1(a:) = 2$Tn($)—Tn,1($) .

Figure 5.1 displays the graph of the first 6 Chebyshev polynomials.

Moreover, Chebyshev polynomials constitute an orthogonal polynomial basis
with respect to the special scalar product:
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[ s,
1 V1—22

There is also a discrete analogue of this scalar product:

m 0 i F ]
S Ty Ty(en) =4 mj2 i=j 40 (5.1)
k=1 m 1=35=0

n

T
where the zj, (k = 1...m) are the m zeros of the polynomial T,, (z} = cos <M) ).
It is easy to verify that this formula yields the following theorem:

Theorem 5.1 Suppose that f(z) is an arbitrary function defined in the interval
[-1,1]. Defining the N coefficients ¢; (1 =0...N —1) by:

9 N

Then, the approzimation formula

1 N
fz) ~ —3¢ + Z cxTr(z) , (5.2)

k=1

is exact for z being equal to the N zeros of Ty ().

For a fixed N, equation 5.2 provides a polynomial approximation of f. Once such a
set of coefficient ¢; have been computed, it is easy to evaluate the polynomial at a
point using the Clenshaw’s recurrence formula [PFTV88|. Similarly, the derivative of
the approximation can be obtained very simply. If ¢, are the Chebyshev coefficients
of the derivative, we have:

/ /
Cmn = cm—lzoa
a4 = c;_i_l-l—ZCifori:m—l...l.
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5.3.2 Using Chebyshev Polynomials in a Fitting Procedure

What makes the particular approximation method based on theorem 5.1 attractive
is that it is possible to show that truncating the sum appearing in equation 5.2 to
an order m < N yields a polynomial of degree m that is very close to the minmax
polynomial which approximates the data?. This minmax polynomial is defined as
the polynomial of some given degree that minimizes the maximum error between the
model and the data points. This minimization of the maximum error is an interesting
property as it looks pretty much like the mathematical notion of uniform convergence
which is of great interest when it comes to differentiation. An algorithm exists for
the computation of this minmax polynomial (the Remez algorithm), but it is very
expensive. So, we keep the cheap approximation based on Chebyshev polynomials
as the results obtained by the two different methods are very close. Another way
to look at this truncation operation is that there is a close relation between the
Chebyshev polynomials and the discrete Fourier transform. Keeping the coefficients
of lower degree (up to the bound m) is somehow equivalent to smoothing out high
frequency components.

This is the main reason for using this method rather than any other standard
filtering technique. Two other reasons are:

e Because the weighting function give more importance to the sides than to the
center of the data set, there are far fewer side effects when using Chebyshev
polynomials than when using standard (i.e. exponential filtering). Since in
our case, we will deal with small sets of data (typically from 5 to 80 points)
and since we will smooth then quite a lot, standard filtering techniques will
usually lead to significant side effects that will at least partially invalidate the
results.

e We want a method that is able to work with non uniform samples. Of course,
this still can be done with the standard filtering techniques but it involves a
re-sampling of the data.

The main problem which arises when implementing the previous scheme is that
we need to be able to compute values at the points zj, for the function we want to

2This result is mainly based on the fact that Chebyshev polynomials are bounded between +1 as
this property allows for a computation of an upper bound on the error made with the approximation
when ignoring some terms of the sum (see [FP68] a complete proof of this property). [PFTV88|
gives an interesting discussion about Chebyshev polynomial approximation.
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approximate. Since the sampling is usually fixed, there is no control on the abscissa
of the measured data. The solution we have adopted is simply to use the piecewise
linear function that goes through all the measures as input. A standard mathema-
tical result shows that when the resolution increases, doing such an approximation
converges towards the curve. Notice however that, in doing so, the parameter defined
on the curve plays an important role.

Remark 5.2 In all the subsequent uses of the method described in this section, the
parameter m has been fized to 5 and the only tuning parameter is the size of the
netghborhood. This value has been established by experience but it is interesting to
notice that two independent tunings of this parameter have led to this same value as
“the best optimum”.

5.4 Methodology

Testing the quality of the computed values for the spatio-temporal parameters is
not an easy task. Since we plan to use these values quantitatively in a minimization
scheme, there is a strong need for having a precise quantitative measure of the errors.
On the other hand, we need to test the quality of the results in a situation that is as
close as possible to the “real” set-up that will be used in the final application. Two
different experimental protocols, each of which having strengths and weaknesses,
are proposed in the following sections. The goal of each of these is to provide some
reference values that will be compared with those that we obtain. Such reference
values must be either theoretical values or else good approximation of them obtained,
for example, by using a robust method involving some a priori knowledge about the
observed curve.

5.4.1 Experimental Protocol 1

In computer vision, just like in many other fields, certain models are assumed which
allow us to study a given problem in a precise and quantitative way. Such models
include the pinhole camera or the step-edge models. Just like in any other science,
we must be aware of the fact that these models are only approximations and that
the results hold as long as the models are accurate enough for the situation that we
are looking at. Most of the models which are used are mathematically well founded,
there are however some phenomena that are more difficult to model: the quantization
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of input data and the errors introduced in some of the treatments that are applied
to the images (such as edge extraction) are particularly difficult from that point
of view. The noise introduced by these steps is however quite important and it is
necessary to have a tool which estimates the effects it has on a given computation.

One obvious way to generate data corrupted by these noise effects is to work
with synthetic images. However, the problem we have to face with is slightly more
complex due to the dynamical nature of sequences of images: it is necessary thus
to have a 3D mathematical model that is moved from one frame to an another and
projected, using computer algebra, onto a camera for each of these. The obtained
formulae are then used to:

e Generate the quantized image of the curve for each time instant. Noise can,
eventually, be added to the intensities. All the images constitute a sequence
representing the motion of the 3D curve.

e Compute the theoretical values of the spatio-temporal parameters as functions
of time and of a spatial parameter describing the position of a point onto the
curve.

The edges are extracted using standard methods from the images , the spatio-
temporal parameters are computed, and the results obtained are compared to the
theoretical values computed using the theoretical data. Figure 5.2 schematizes the
whole process.

Remark 5.3 The theoretical formula obtained for the spatio-temporal derivatives
are huge! Thus, we have used automatic tools to generate the C code (complete
C functions) corresponding to the previous formula from the description available
under the computer algebra system. These tools involve a C code generator that we
have adapted from the one of Maple (see appendiz F for a complete description) and
many small hand-made tools that simplify the result by detecting the common sub-
expressions in the formulae. If such an approach had not been used, the size of the
resulting file would have been 44 Kbytes. This allows us to appreciate the amount of
work that would have been necessary if we had not made use of the software tools.
Moreover, such an approach simplifies the testing process as it virtually suppresses
the possibility of a coding error while transcribing the formulae.
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3D spatio-temporal
model of the 3D curve

'

Model of the 2D spatio-temporal
spatio-temporal model of the projected
surface curve

l

[ Synthetic images ]

[ Computed derivatives J

A A

Figure 5.2: Experimental protocol 1: a 3D model of the curve is used to compute a
sequence of images as well as the theoretical spatio-temporal parameters associated
to it.

Y
[ Theoretical derivatives ]
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The scheme described here models quite well the problems of discretization,
intensity noise and edge detector generated noise. Figure 5.3 shows four images
excerpted from such a sequence.

5.4.2 Experimental Protocol 2

The main problem with the previous approach is that it is difficult to model some
non-linear behaviors and some noise effects that may affect a real acquisition system.
For example, lens distortion and digital-analogic conversions of the video signal are
sources of noise that are not easy to cope with. Moreover, some of these may vary
with the hardware used or with time. The process of image generation is actually
a very complex one and it is difficult to model it without obtaining an intractable
result. Thus, without an huge effort of modelization (which is not the topic here),
the best way to obtain such data is to use real images. Since there is no easy means
to obtain some mathematical results directly in this case, the best that can be done is
to use some a priori knowledge about the observed curve to estimate some very good
measured values. We have made use of the fact that the image of a 3D conic is always
a conic (up to non-linear distortions that we will neglect in first approximation but
that may very well have an influence on the results). It is then possible to fit, at
each time instant, globally to the data points of the curve a conic model and then
to use this model to measure the spatial derivatives. As it was stated previously,
such a global method leads to very good estimates of the derivatives. Of course,
it is possible to choose other types of 3D curves such as lines or cubics, but conics
are the simplest model for which the derivatives we are interested in are non-trivial.
The fitting procedure we have used is based on the minimization of the Euclidean
distance of the data points to the conic model. Thus for each time instant, we have
the set of the six coefficients of the quadratic form defining the conic.

Coping with time derivatives is slightly more difficult since we know nothing
about the image curve motion. Actually the 3D curve plane is on the top of a
rotating table and thus the 3D motion is known. It is however quite difficult, with the
used experimental set-up, to have an accurate estimate of the relative position of the
camera to the curve. To get rid of this problem, we have used the estimator described
in the previous sections (actually the method was first designed for this particular
task): the idea is to consider each coefficient of the quadratic form defining the conic
as a function of time, for each of these functions the method can be applied and yields
values for the first and second order time derivatives of the corresponding coefficient.
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Figure 5.3: From left to right and from top to bottom: images excerpted from a
synthetic sequence at times 0, 10, 20 and 30. A Gaussian noise of signal-to-noise
ratio of 20% has been added on the intensity values.
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Model of the
observed curve

[ Model estimation }4 [Real images]
[ Robust derivatives ] [ Computed derivatives

B

Figure 5.4: Experimental protocol 2: a 3D curve is chosen such that the type of
its observed projection is known. This model allows an accurate estimation of the
spatial derivatives whereas the temporal ones are more prone to errors since there
is no model for time deformation of the observed curve.

These values, along with the original coefficient and the # and y coordinates of a
point belonging to the edge, can then be used to compute the derivatives that
interest us all along the edge (the formula that express the values of the derivatives
in terms of the time and space partial derivatives of the quadratic form are given
in chapter 10). Note again that, the reference model of the spatio-temporal surface
depends on 2 parameters: a spatial one and a temporal one. Figure 5.4 summarizes
the whole set-up. Figure 5.5 show four images excerpted from such a real sequence
of conics.

Remark 5.4
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Figure 5.5: From left to right and from top to bottom: images excerpted from a real

sequence of conics at times 0, 10, 20 and 29.
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e There is obviously an experimental protocol 0 that takes perfect data as in-
put. Obtaining such data, in our case, 1s eastly done using the tools developed
for experimental protocol 1. Sometimes, such a step is so trivial that it can
be ignored (this is indeed quite the case for the spatio-temporal derivative cal-
culation), however, obtaining a method that works even with perfect data is
not always an easy task. This step is then a good choice to start with. For
example, it has proved to be very useful with the motion computation described
wn part I11.

e Fuven if the two proposed methods provide a very effective way to estimate the
quality of the results, they either fail to model some of the noises that corrupt
tmages or they do not provide very reliable second order temporal derivatives.
It would certainly be very interesting to develop, if possible, a very complete
model of tmage formation that will allow to generate more realistic images (the
term realistic means that the tmages would have the same noise corruption as
real images), since this will give images for which ezact theoretical values are
known and for which it will be possible to isolate and quantify the effects of
each nowse source separately.

e Approaches related to the ones proposed here have been used for estimating
the accuracy of optical flow methods (mainly for point based methods). See
[BFB94] and [ON94].

5.4.3 Comparing References and Measured Values
Matching the Edge Points and the Model

In order to be able to compare the reference values against the measured ones, one
problem that remains to be solved with these two methods is: given some measured
point on the spatio-temporal surface, find the corresponding point in the reference
model (i.e. the spatial and temporal parameters giving that point). Finding the time
parameter is easy since we suppose that the images in the sequence are sampled
regularly in time (even with real acquisition systems, this seems to be a sensible
hypothesis).

The spatial parameter is slightly more difficult to obtain. However, assuming

that the measured point is not far from the theoretical curve, that the parameter
describes the curve quite uniformly (this means that the derivative of the arclength
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with respect to the spatial parameter does not vary too much along the curve), and
that the scale of the curve is known a priori, it is possible to design an efficient
method that works quite well in practice. Suppose that the curve is parameterized
at a given time instant by the parameter p. Let us call D the range in which this
parameter must vary to describe all the points of the image curve and mg the edge
point that we try to locate.

1. The curve is cut out into N pieces by dividing the range D into N intervals

of equal length. N is determined such that, in each piece, the curve does
not have many details i.e. behaves grossly like a straight line. The scale and
the uniformity hypothesis ensure that this can be done. Practically, for the
images shown in this chapter the value N = 50 have always been sufficient.

. For each piece of curve, the distance of the point mg to the border points is
computed. The two pieces of curve that are limited by the border point for
which this distance is minimal constitute a gross estimate of the location of
mg onto the model.

. This estimate is then refined by using a dichotomic method for which the
size of the piece of the curve is divided by two at each step. The process is
stopped when this size decreased below some fixed threshold that controls
the accuracy of the localization onto the model or when the distance has
reached a minimum value. Provided that N is big enough and that my is
close enough to the model curve (which is always the case in the experiments
proposed here) this dichotomic scheme converges towards the point of the
model curve that is the closest to my.

Remark 5.5 Of course, the algorithm we have described would be untrue if any
of the hypotheses we have made are false and especially if the point mg s too far
from the model. Fortunately, as the model we have s already quite accurate, this
does not happen with our setup. Moreover, since it 1s used only for the validation of
the algorithm, we can afford to spend some time for tuning the parameters of this
localization in order to get the best possible mapping between the edge points and the
model.
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Error Measurements

In the forthcoming chapter, we present results obtained with various methods that
compute derivatives. These results are systematically compared to the best reference
values that we have access to in a quantitative way. However, apart from the error
curves that will be shown, it is interesting to be able to characterize the quality
of an approach globally (for all the curve), using a small number of quantitative
parameters. Noting z(s) the reference value function for the estimated quantity
and e(s) the error function corresponding to the estimation, we define two such
quantities.

e Mathematically, the most common way to define the distance between two
curves is to take the maximum over all the points of the absolute value of the
error. This leads to the criterion:

ETTO maz = MATqyer all the points of the curvel®l -

e The main fault with this first criterion is that it is well-known that in most
cases a relative error is better suited to appreciate the quality of an estimator
than an absolute one. Unfortunately, this error is not defined when an estimate
corresponds to a zero value. Most most of the derivative curves that will be
shown exhibit zero crossings at which the relative error will go to infinity. So,
taking the maximum value over all the points of the curve of the absolute
value of the relative error is not a good measure to adopt. To obtain a relative
global measure of the quality of an estimator, we have thus divided the mean
over all the points of the absolute value of the error by the mean value of the
absolute value of the model values. This gives us a second criterion that we
call the global error:

Meangyer all the points of the curvelel

ETTOT glob =

MEeANgyer all the points of the curve®|

5.5 Conclusion

In this chapter, we have presented the method that we propose to use for estimating
the derivatives and defined the experimental protocols we have used to validate it.
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These methods will also be used to compare the method we propose to some others
that can be found in the literature or that we have tried before ending with the one
that is proposed in this chapter.

From the theoretical point of view, the main strengths of the tools proposed in
this chapter are:

For the derivative estimator:

e The method is very general and is not restricted to the computation of
some particular derivatives (as for example most of the methods described
in [WS93]).

e It can be used with non uniformly sampled data.

o If speed is needed, it can be implemented quite easily on a parallel com-
puter.

For the methodology:

e Very good reference values have been obtained with synthetic images.
These allow for an accurate measurement of the errors arising from dis-
cretization and edge extraction.

e Real images have been used to obtain reference values. However, the
temporal derivatives obtained with these might suffer from the difficulty
to establish a temporal model of the evolution of the template curve. Yet,
we believe that the reference values obtained this way are good enough
to characterize the quality of the computed derivatives.

The main drawbacks are of course the speed of the computation of the derivatives
(it is certainly not real time yet) and the lack of a more accurate way to obtain
reference values with real images.

The details of the practical implementation and the accuracy of the obtained
results are discussed in the next chapter.
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Chapter 6

Experimental Results and
Comments

This chapter gives all the details of our implementation of the derivative estimators
we have used and presents the results that have been obtained with these. Em-
phasis is placed on the comparison of the obtained results with the reference values
calculated as described in the previous chapter. However, in the case of curvature,
we also compare our results with a standard image based approach. This chapter
is organized as follows: first, we discuss the proper coordinate system in which the
computation must be realized, then the problems of arclength estimation and of the
construction of an efficient spatio-temporal structure allowing an easy retrieval of
the neighbors of a given point. Then, the results that have been obtained for the
different quantities are presented and a brief comment is made about the importance
of starting with subpixelic edge coordinates.

Hereafter, we suppose that images are taken in such a rapid succession that
the temporal continuity from image to image is approximately equal to the spatial
continuity in an individual image [BBM87, BB89]. The basic underlying idea is that
there is no reason to treat the spatial and temporal dimensions differently as far as
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the estimation of only derivatives is concerned. For this reason, we have made the
choice of working with long sequences of images.

6.1 Image Coordinates Versus Normalized Coordinates

As noted in chapter 3, the image and normalized coordinate systems defined on
the retina are not equivalent for our purpose because they are related by an affine
transform and since we are looking at Euclidean properties of the image. As shown
in that chapter, even the most basic measure we need — the normal flow field
— is not well defined in the image coordinate system since orthogonality is not an
affine property.

Moreover, it is not possible to compute the values we are looking for in the
normalized coordinate system from those measured in the image coordinate system.
Actually, such a transfer can be done only for m, n, # and . It is not possible
to achieve such a computation with g—f and On,B. The easiest way to convince
oneself of this is to write the formulae relating the partial derivatives of an implicit
function computed in the normalized coordinate system to those computed in the
image coordinate system. From these formulae, it is possible to express all the
quantities we are interested in terms of the partial derivatives obtained in the image
coordinate system (these formulae can be found in section 10.1). Let us call m,,, n,,
By Kn, %gn and On, B, the values obtained for the spatio-temporal derivatives in the
normalized coordinate system (n stands for normalized). Now, it is also possible to
compute these quantities in the image coordinate system. This yields the quantities
m;, n;, Gi, K, Z‘_fz and Oy, 3; (i for image). These quantities are in general different
from their normalized correspondencies.

The dilemma is now the following: the image measures are easier to compute but
it is the normalized ones that are of interest. Thus, it is natural to wonder whether it
is possible to express the latter in terms of the former. Using the formulae described
above, this is equivalent to eliminating the image partial derivatives appearing in
the normalized quantities using the equations giving the image quantities in terms
of the same image partial derivatives. Doing so proves that:

e m, can be expressed as a function of m;. This is just the affine transform
between image and normalized coordinates introduced in chapter 3:

T = h1u+h2v+h3,

RR n° 2779



110 Théo Papadopoulo

Yy = h4'U+h5.

¢ n, can be expressed as a function of n;:

0 — tan-l (_ hin;, + thlm)

h4n'iu
_ cos(0,)
Bn = l sin(6,) ]

e (3, can be expressed as a function of ; and n;

ds;

ds, ’

ﬂn = _ﬂi

ds; hihg

where —

dsn \/(hlnw — hong,)? + hing?

e K, can be expressed as a function of k; and n;,.

K ( ds; )3
KRpn = 75795 .
h2h3 \ds,

e The two other quantities (g—fn and Oy, [,) cannot be expressed as functions of

the parameters m;, n;, G;, &, %gi and On, 3.

This result has led us to working directly with normalized coordinates. In the
remainder of this chapter (and hence in all the subsequent chapters), edge point
coordinates have been expressed in the normalized coordinate system prior to any
derivative computation.

Remark 6.1 FEzperiments have been run in which B = B, was computed from the
values of B; and n;. This has shown that such a method does not exhibit the same
error properties as the one proposed hereafter. The best obtainable quality is about
the same but the amount of smoothing used to get it is different. This is not so
surprising as the method we have sketched is not affine tnvariant.
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6.2 Computing the Arclength Parameter

As remarked in the previous chapter one of the main difficulties that arises with path
methods is that it is firstly necessary to parameterize the curve in order to be able
to define the concept of a quantity defined along the curve. As explained, we chose
to parameterize the 2D curves by their Euclidean arclength. This is because such
a parameterization defines a distance along the curve that preserves the Kuclidean
properties of the retina. Why have we chosen to preserve specifically these Euclidean
properties? The answer is twofold:

¢ Euclidean arclength is much simpler to compute than affine or projective ar-
clength. Yet, we show here that this quantity is not so easy to compute, and
that care has to be taken in order to obtain good estimates for it.

e Our study of the properties of the spatio-temporal surface has been done in
a Euclidean framework so that adopting Fuclidean arclength is fully coherent
with this study. Doing so is natural and suppresses more potential troubles
than it introduces.

In full generality, since we want to cope with spatio-temporal surfaces, we should
have worked with surfaces in the 3D spatio-temporal space which is considered as
Euclidean. This would have led us to a two degree of freedom parameterization of
the spatio-temporal surface. However, the study of chapter 4 has shown that a valid
parameterization is (s, 7), where s denotes the Euclidean arclength, and 7 denotes
time. Adopting this special parameterization, we will show that, for the task of
computing the spatio-temporal derivatives that interest us, it is always possible to
restrict ourselves to 2D edges (i.e. curves).

The standard method for computing Euclidean arclength is to fix the arclength
value of some arbitrary point of the curve and then, starting with this point as origin,
accumulate the distance ds between successive points along the curve. However, such
a method leads to significant biases even when the curve is a straight line. Taking
points with integral coordinates lying on such a line, it is easy to see that the actual
arclength is grossly over-estimated using this technique (see figure 6.1). A complete
discussion about the estimation of line length can be found in [DS87]. Moreover, the
bias that occurs is non uniform at small scales: the error between the computed ds
and the true underlying value is not constant. With lines and at high scales, this bias

RR n"2779



112 Théo Papadopoulo

Figure 6.1: Comparison between continuous and discrete ds: the dashed line is the
real line that has been approximated by the plain curve. The error we obtain here
is 0.8 pixels for any length computed by taking five consecutive pixels.

becomes uniform, but there is no reason for this to be true when dealing with curves
(basically the bias depends on the orientation of the line, and so as the orientation
along a curve varies the bias becomes unpredictable). A nice way to see this effect
is just by looking at the lengths of the curves: the result of this estimation gives
overestimated results with a relative error of 10%. It is very interesting to notice
that the theoretical bias with this method for straight lines is asymptotically equal
to 6.6% [DS87]. Since this error is not uniform along the curve, there is no easy
way to dispose of the bias. By plotting the error between the theoretic ds and the
estimated one, it is possible to show that there is more error in highly curved parts
than in parts that are almost straight lines.

Actually, digitization is the main source of noise that is responsible for this
overestimation. So there are two ways to improve the estimation of the curvilinear
abscissa:

e Use the curve-scale space a la [MM92] to smooth out the discretization effect.
Figure 6.2 shows the evolution of the length of one curve from the synthetic
sequence over scale space. As we can see, the length decreases rapidly at first,
and then stabilizes to a value that is not far away from the real value (relative
error of approximately 0.1%). Computing the scale space is slow, but the
resulting accuracy is worthwhile. Moreover, computing the error between the
theoretical ds and the estimated one after each scale-step computation, shows
that the errors in ds is indeed decreasing.

e Another way to get rid of discretization effects is to obtain point coordinates
that take real values. It is actually possible to obtain from discrete images
edge points that are of subpixel accuracy ([TM84] for example). Figure 6.3
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Figure 6.2: The evolution of the Euclidean length of a curve along scale space.

shows the quality of the computed arclength. It is interesting to note that
our experimental setup shows that the accuracy of edge points is of about a
fifth of a pixel with synthetic images and about half a pixel with real ones
(see figure 6.4). Computing the length of the curve with these subpixel data
as input gives estimates that are very close to the real results (at most a
few hundredth of percent). This method will be preferred here since it gives
comparable results at a low cost.

Remark 6.2

e Note that if we combine these two results i.e. 1f we apply the scale space method
with subpizel points as input, it should be possible to tmprove further the quality
of the computed arclength but usually it s not worth the added cost.

e Since we will use formulae that are tnvariant to re-parameterization, one might
ask why 1s 1t so tmportant to have a good arclength parameter. This is because
the standard mathematical expressions are not invartant with respect to all
the re-parameterizations, but merely only to the ones that are related by a
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Figure 6.3: This plot shows the values of ds computed along the curve using our
derivative computation. If this method and the computed arclength were perfect,

the curve would have been constant and equal to one. The maximum error is thus
of about 0.6%. This curve was obtained with the synthetic sequence.
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Figure 6.4: Top: the x (left) and y (right) functions along the synthetic curve.
These two curves are actually the superpositions of a plain curves corresponding to
the model and of a set of crosses representing the measured points: the matching
between these two curve is so good that it is difficult to see the difference between
these curves! Bottom: the error curves between the model and the measured values.
Each error curve corresponds to the plot just above it. Notice that these plots are
made in normalized coordinates. The worst error corresponds to an edge extraction
accurate to a fifth of a pixel.
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diffeomorphism. From this point of view, the most obvious parameterization,
which is to index the points by their rank in the edge, is generally not equivalent
to the Euclidean arclength. This has been shown for the example of circles in

[WS93]

6.3 Representing and Building the Spatio-Temporal Sur-
face

6.3.1 A Data Structure for the Spatio-Temporal Surface

In order to obtain good computation timings, it is necessary to gather the points
constituting the spatio-temporal surface in a data structure that allows a fast re-
trieval of the neighbors of a given point. Moreover, looking carefully at the kind of
neighbors we need to extract, we see that one is exclusively concerned with purely
spatial neighbors (i.e. neighbor points along the observed curve at a given time ins-
tant) and with neighbors along the direction ng in the tangent plane that we will call
time neighbors in the sequel. To provide easy access, for each point we just stored
the four “nearest” neighbors: two spatial and two temporal ones. “Nearest” spatial
neighbors are easily inherited from the edge chains obtained after edge linking, for
each point one of the pointer points to the previous point in the chain whereas the
other one points to the subsequent point in the chain. If the pixel chain is open, null
pointers are used for the undefined pointers in the first and the last point. Thus,
the two spatial pointers organize each observed curve as a doubly linked list. Tem-
poral neighbors are slightly more complex to obtain (especially when working with
discrete data): since the direction ng is not discrete, there is no unique solution for
the “nearest” pixel in a given way along this direction. However, so long as our
algorithms do not rely on such uniqueness, and use this “nearest” pixel approach as
an easy access to time neighbors, it is possible to make the time “nearest” neighbor
pointers to point to one of the nearest pixels for each way along direction ng. Thus,
the structure of the time chains is not as simple as a doubly linked list: for example,
due to inconsistencies in the normal vector n the time linking might not be reflexive.
Figure 6.5 shows an example for the links associated with a point.

To obtain a complete spatio-temporal structure, we add to this set of four poin-
ters an array of floating point values: there is one such value for each per-point
quantity of interest; i.e. all the spatio-temporal parameters, but also some “admi-
nistrative” quantities like the time ¢, the arclength s with some fixed origin, and
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