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ON UNRELATED MACHINE SCHEDULING
WITH PRECEDENCE CONSTRAINTS

Jeffrey HERRMANN®, Jean-Marie PROTH* and ** Nathalie SAUER**

ABSTRACT:

In this paper, we consider the problem of scheduling tasks on unrelated parallel machines. Precedence
constraints exist between the tasks, but their number is limited compared with the number of tasks. We
propose a number of heuristics in order to find near-optimal solutions to the problem. Empirical results
show that the heuristics are able to find very good approximate solutions.

KEYWORDS: Parallel resources, Scheduling, Makespan.
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1. Introduction

The problem to be solved can be formulated as follows. A finite set of tasks needs to be performed by
a set of workers, and certain tasks cannot begin until the others are completed. The time required to
perform each task varies from worker to worker. We are interested in assigning the tasks to each worker
and scheduling the tasks in such a way that the time needed to finish all of the work is minimized. In
other words, we wish to minimize the maximal tasks completion time, also called the makespan.

Such a problem typically occurs in an office or project management environment, where the resources
are people who have different skills: it is why the problem at hand is often called the Office Scheduling
Problem (OSP for short). Due to the various skills available in an office the time necessary to complete a
task can greatly vary from worker (resource) to worker. The tasks are the work that needs to be done
during a specific period (a day for instance). Minimizing the makespan ensures that all of the tasks are
done as soon as possible, and hopefully by the end of the assigned period. Furthermore, reducing the
makespan leads to working periods which are not too different from worker to worker.

The precedence constraints reflect the fact that some of the tasks are related, although the number of
such relationships may be quite small compared to the total number of tasks.

This problem is one of the unrelated machines scheduling. Even without precedence constraints,
minimizing the makespan is a NP-complete problem. However, a number of researchers have proposed
an analyzed heuristics for this problem.

Potts (1985) usés a linear programming relaxation of the assignment problem formulation. This
problem can be solved to assign most of the tasks to machines. However, the solution has up to m-1
tasks divided between machines. Given the partial solution from the LP, the heuristic uses an
exponential-time exhaustive search to determine the best assignment of these tasks. The worst-case
relative performance of the heuristic is 2. If m = 2, an O(n) heuristic is presented; this heuristic has
worst-case relative performance of 1.5.

Ibarra and Kim (1977) present a number of greedy heuristics similar to list scheduling. The worst-

case relative performance of these heuristics is m, but the heuristics are polynomial. If m = 2, the worst-

case performance is (W5+1) /2.



Davis and Jaffe (1981) order on each machine all of the tasks by their efficiency, which is defined as
the minimum processing time for the task divided by the processing time of this worker. Their heuristic
schedules on the next available machine the most efficient task until the efficiency for all remaining tasks

on the machine is too low. The effort of the heuristic is O(mn log n). The worst-case relative

performance is 2.5vm .

Lenstra, Shmoys and Tardos (1990) use a sequence of linear programs to find the smallest deadline
for which the linear programming relaxation has a feasible schedule. In the second phase, a bipartite
matching problem is solved to assign the unscheduled jobs to machines. The worst-case relative
performance of this polynomial-time-heuristic is 2.

Hariri and Potts (1991) compare a number of heuristics for the problem. They consider two-phase
heuristics which start with an LP relaxation and then apply a matching or the earliest éompletion time
heuristic (ECT) to assign the unscheduled jobs. They also consider the ECT procedure itself, proving
that its worst-case relative performance is 1 + logz n. Finally, they consider reassignment and
interchange heuristics to improve a schedule constructed by one of the above heuristics. They conclude
that the use of improvement techniques with the ECT heuristic gives satisfactory solutions, though
slightly better results can be achieved by using the two-phase heuristics with the improvement
techniques.

Van de Velde (1993) uses a surrogate relaxation problem to derive a lower-bound. The search for the
best lower boﬁnd is an ascent direction algorithm. An approximation algorithm based on the dual
problem is presented and compared to solutions found with a branch-and-bound and other heuristics. A
branch-and-bound 'over the job assignment is able to solve some quite large problems using less than
100 000 nodes.

In conclusion, it appears that the ECT heuristic with improvements provides simple but good
approximation for the problem. If better solutions are required, the duality-based algorithm would be
preferred, since it does not required an enumeration or a sequence of linear programs.

The research on problems with precedence constraints has been restricted largely to identical parallel
machines. Ullman (1975) proves that even if all the jobs have length one, the problem is NP-complete,

although the problem can be solved in polynomial time if the precedence constraints form a tree (Hu,
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1961). - Graham (1966) considers the worst-case performance of list scheduling in the presence of
precedence constraints, which is 2 - 1/m. Du, Leung and Young (1989) show that the two-machine
problem with arbitrary processing times and tree precedence constraints is strongly NP-complete. Cheng
and Sin (1990) review a number of results on the worst-case performance of list scheduling and highest-
level-first approximation algorithms for minimizing makespan on identical parallel machines. Hoitmont
et al. (1990) present a Lagrangian relaxation technique for the problem of minimizing total weighted
quadratic tardiness on idenﬁcal machines with precedence constraints. Qutside of these approaches,
however, few approximation algorithms have been proposed, and none consider non-identical machines.

In this paper, we address the lack of heuristics for parallel resources scheduling with precedence
constraints, the resources being different.

The problem is presented in section 2. In section 3, we propose a straightforward heuristic which
assigns tasks to resources and schedules the tasks simultaneously. Section 4 is devoted to twofold
heuristics: the first step consists of assigning tasks to resources, and the second step schedules the tasks
on the resources, taking into account the precedencé constraints. Two approaches are proposed to
perform the second step of the heuristic. In section 5, we propose several numerical examples and

evaluate the performances of the algorithms proposed in this paper. Section 6 is the conclusion.

2. Problem formulation

The problerﬁ can be formulated as follows. There exists a set of m workers Wj, j = 1,...,m, and a set
of n tasks Tj, i = 1,...,n. Task Tj requires time p;; when performed by W;. We denote by O(T) the
task, if any, whicﬁ is the immediate successor to T;. Similarly, we denote by O-1(Tj) the task, if any,
which is the immediate predecessor to Tj. O(T;) cannot begin until T is completed. O2(T;) = O(O(TY)),
and O4(T;) is similarly defined for q > 2. Each task must be performed by someone, and each worker
performs at most one task at a time. A worker which begins a task should finish it, without a break. If

C; is the completion time of task Tj, the goal is to find a schedule such that J”{{,ux }Ci is minimal.
1€il,...,n



3. Heuristic H1

This heuristic assigns the tasks to the resources and defines the schedule simultancously. The basic

principle of this heuristic is very simple: it consists of scheduling at each iteration the task which could

lead to a late schedule of some tasks in the future.
Assuming that the predecessors of T; (if any) have been scheduled with possibly other tasks, we

denote by W j the smallest real such that:
0 fO(T)=02
() MjjZ{Hi*j* +Pixj Where T = o! (T;) and Wjs« is the worker to whom T« has
been assigned
i) [ui,j. 1ij + pi,;] is an idle period for Wj.

Hi,j is the earliest time when Wj can start task T;.

Note that {jj + pjj may be smaller than the completion time of the tasks which have already been
scheduled for Wj.
The following notations will also be used:
Ti(q) = O(T;) with i(0) =i
Wij(q) is the worker to which Ti(q) has been assigned
Let Ex be the set of unscheduled ‘tasks at the beginning of the k-th iteration, and F,  Ey the set of
tasks belonging to Ex and which are not successors of a task of Eg.
For each Tj € Fx, we apply the algorithm presented hereafter.
1. Forj=1...m:

1.1. Assign task Tj to Wi and choose Hi; as the starting time of T;. Note that i(0) = i and

i) =j.
1.2. Set 6;; = pij + Wij.

1.3. Let N be the number of successors of Tj.



1.3.1. If N=0, goto 2.
1.3.2. If N>0, forg=1...,N:

1.3.2.1. Select j* such that pj(q) j* + Hi(q),j* = Tlin }[Pi(q),k + “i(q),k]

ke(l,...,m
1.3.2.2  Setj(q) =j*.
1.3.3. Set 6; ; = Hi(N),j(N) * Pi(N),j(N)-
2. Compute j(i) such that:

B = Ju i &

We consider that the task which could lead to a late schedule of some tasks in the future is Tj*, where
i* is such that:

Bix j(i*) = ’”igl’;k" 8i,i(i) )

We assign Tj« to Wj(+) and fix its starting time at Hi* ji*). We then start the next iteration. We stop

when Fy = &.

Let us consider the following example which concerns two workers and seven tasks.

Example
The processing times are given in Table 1.

" Table 1: Processing times

Ty T T3 T4 Ts Te T7

Wi 3 4 8 2 S {1 9 3

W2 9 5 2 6 10 4 8

Furthermore we have to consider the following partial order:

O(Ty) =T3; O(T3) = T7; O(T2) = T



Thus:
F1 = {T1, T2, T4, Ts}

We obtain, according to (1):
01,1 =8;012=14; and thus j1 = 1 and 0y j; = 8
02,1=8;022=9;and thus j, = 1 and 625, = 8
84,1 = 2; 042 = 6; and thus j4 = 1 and 04,j, = 2
05,1 =5;052=10; and thus js =1 and B5 5 =5

We thus assign T) to W at the earliest. Ty starts on W at time 0 and is completed at time 3.

We then start the second iteration with Fy = {T», T3, T4, Ts}.
82,1 =11;622=9; and thus j =2 and 62§, =9
03,1 =14;032 =8; and thus j3=2 and 83, = 8
04,1 =5;842=6; and thus j4=1and 64, =5
85,1 = 8; 05,2 = 10; and thus j5 = 1 and 855 = 8

We assign Tp to W3, Tp will start at time 0 and will be completed at time 5.

The third iteration starts with F3 = {T3, Ty, Ts, T).
83,1 = 14; 833 = 10; and thus j3 = 2 and 833 = 10
04,1=5;042 = 11; and thus j4 = 1 and B4, = 5
85,1 =8; 85,2 = 15; and thus js = 1 and 85 j5 = 8
86,1 = 14; 86,2 = 9; and thus j6 = 2 and 66 ;5 =9

We assign T3 to W3. T3 will start at time 5 and will end at time 7.

The fourth iteration starts with F4 = {Ty4, Ts, Tg, T7}.

84,1 = 5; 042 = 13; and thus j4 = 1 and B444=35



65,1 = 8; 852 = 17; and thus js = 1 and Bs s = 8
66,1 = 14; 862 = 11; and thus jg = 2 and B¢ jg = 11

87,1 = 10; 67,2 = 15; and thus j7 = 1 and 67, = 10

We assign Tg to W2. Tg starts at time 7 and ends at time 11.

The fifth iteration starts with Fs = {T4, Ts, T7}.

04,1 = 15; 842 = 17; and thus j4 = 1 and B4j4 = 5
85,1 =8; 0852 =21; and thus js = 1 and 65 j5 =8

87,1 =10; 672 = 19; and thus j7 =1 and 67, = 10

We assign T7 to Wj. T7 starts at time 7 and ends at time 10.

The sixth iteration starts with Fg = {T4, Ts}.

84,1 =5;,642=17;and thus jg=1and 645, =5

85,1 = 15; 652 = 21; and thus js = 1 and 8535 = 15
We assign Ts to W1. Ts starts at time 10 and ends at time 15.
The last iteration starts with F7 = {T4}.
84,1=95;042=17;and thus j4= 1 and 84 j, = 5

We assign T4 to W1. T starts at time 3 and ends at time 5.

The schedule is represented in Figure 1 and the makespan is 15.

T Ty T, Ts
Al 1 ! | ! ! e
5 10 15 Time
T, T, T,
W, | r | . H| } -
5 10 15 Time

Fig. 1: Schedule when applying H1
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4. Twofold heuristics

In this section, we present two twofold heuristics. In the first part of both heuristics, a branch-and-
bound approach is used to assign tasks to workers. Two different approaches are used in the second
part. The first one consists of applying H1 (see section 3) while keeping the assignment of tasks to
workers as computed in the first part of the algorithm. The second approach consists of improving
locally a feasible schedule by reducing the length of a critical path. Both algorithms take advantage of

simulated annealing to improve the solution given as the result of the second part.

4.1. Part 1: Assignment of tasks to workers (Algorithm ASS)
At this level, we do not consider the precedence constraints. The objective is to minimize the

makespan, i.. to minimize .Tg«ux}ci. To reach this goal, we utilize a branch-and-bound (B&B)
ie{tl,....,n

approach. In the B&B tree, the descendants of a node represent the assignment of an unassigned task to

the different workers. Thus, each node has m descendant nodes. The tasks are taken into account in the

m

decreasing order of Zpi, j- More precisely, the tasks which are taken into account first are those having
=1

the greatest average processing time. Let us assume that the order obtained is Tj;, ..., Ti,. The

corresponding B&B tree is showed in Figure 2.

level 0

level 1

level 2

level 3

Fig. 2: The branch-and-bound tree
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In this approach, we compute a lower bound of the objective function at each node. If the lower
bound is greater than the current upper bound, then we stop generating descendants of this node, since
we know that such descendants cannot lead to an optimal solution. Otherwise, we compute a new upper
bound and continue the construction of the B&B tree.

Note that we refresh the upper bound at each node, if the node may lead to an optimal solution.

We will now explain how to compute the lower and upper bounds. Note that the closer the lower

bound to the upper bound, the more efficient the B&B approach.

a. Computation of the lower bound
The lower bound is derived from the solution of the following linear programming (LP) problem.

Let E be the set of tasks which are not yet assigned to a worker when considering a node. We denote
by yj the ending time of the last task assigned to Wj for j = 1,...,m. Initially, 4j = 0. The task
corresponding to the node under consideration is supposed to be assigned, and thus does not belong to
E.

Let, for any Tj € E:

1 if T; is assigned to W;
X:: ==
" 10 otherwise

In that case, the makespan, knowing the tasks which are already assigned, is given by:
jE{l,. . ..m}[ J i/’%eEl’J l,]}

under the constraints:

m
in,j =1 foranyisuchthatT,€E 4)
J=1

xij€ {0,1} foranyisuchthat Tje Eandforj=1,...,m (5)
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The problem consists of minimizing (3), which represents the time when all the workers are completed
their work. Constraints (4) are introduced to make sure that each task is assigned to one and only one
worker.

This problem can be rewritten as:

Min z (6
s.t.
zzp;+ in,jpi,j forj=1,...,m )]
i/T,eE
m
ZXi,j =1 foranyisuchthatTi€E (8)
j=1
xij € {0,1} for any i such that Tje Eand forj=1,...,m )

This is a mix LP problem.
Let us relax constraints (9) by replacing them by xjj 2 0. Then the problem becomes a real LP
problem, and its solution is a lower bound of the solutions corresponding to the node under

consideration. It is the lowest bound we use at each node of the B&B tree.

b. Computation of the upper bound
Two upper bounds are computed, and we keep the smallest one.
b1. Upper bound derived from the solution of an LP problem

We consider the solution of problem (6-9) where constraints (9) have been relaxed by replacing them

by xi; 2 0. Let x: ; be the solution of this real LP problem.

If, for each i such that T; € E:

. * %®
(i) Wecompute x; j» = Max x;

je(t,..m}

(i) Weset:

Zi,j* =1



12

zij=0forj#j*
then (see criterion (3)):
Jlax }[uj + i/%;i,j Pi,jJ
is an upper bound knowing the tasks already assigned at the node under consideration.
bz. Upper bound obtained using a heuristic
This heuristic is heuristic H1, except that we do not consider the precedence constraints and we only

take into account the tasks which are not yet been assigned, i.e. the set of tasks E. We denote by

W, j = 1,..., m, the earliest time at which worker Wj completes the tasks which have been assigned to it
previously (including the tasks corresponding to the node under consideration).

The algorithm applied to obtain the upper bound can be summarized as follows.

Algorithm UB

Let Ex be the set of tasks which have not been scheduled at the beginning of the k-th iteration. We set

E; =E.

1. ForeachisuchthatTje Ex
1.1. Forj=1tom,set8jj=;+pij
1.2. Compﬁte j@) such that:

ei,j(i)= Min 6

je{1,...,m} )

2. We consider task Tj*, where i * is such that:

Ois. i1 = N1A% By i)
1

We assign T j* to Wj(i») and fix its starting time at [ jj+). We then start the next jteration. We stop

when Ex = .
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The upper bound corresponding to the node under consideration is:

0% = TlGX}{l.li,j(i) + Pi,j(i)}

i€{l,...,n
The new upper bound will be the minimum value among the previous upper bound (if any, that is if
the node under consideration is not the root of the B&B tree), and the two upper bounds computed in

subsections by and by. Note that the upper bound presented in by takes advantage of the computation of

the lower bound, and that algorithm UB, which computes the second upper bound, is very fast.

4.2. Part 2: Scheduling the tasks on the resources

As we mentioned previously, two approaches are used to schedule the tasks on the resources. The
first one, which is referred to as H2, consists of applying algorithm H1, modified in order to keep the
assignment of tasks to workers as computed in part 1 of the algorithm. The second one is referred to as

CP. It consists of improving step by step an initial solution which can be generated at random.

4.2.1. Approach H2

This approach consists of scheduling the tasks to be performed by the workers by giving the priority
to the tasks which could lead to a late schedﬁle' of some tasks in the future. We know the assignment of
the tasks to the workers, and we denote by Wij(j) the worker to which task Tj is assigned. The other

notations are those used previously.

1. SetE={Ty,...,Tn}.

2. SetF={Tj/Tie Eand 3 Ty € E s.t. Tj = O(Tyx)}.
3. ForallisuchthatT; € F:
3.1. Let pjjGi) be the earliest time when Wjg) can start performing T; (see definition in section 3).

3.2. Compute 8; = Wi ;i) + Pij)-
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3.3. Let N be the number of successors of Tj. 6; = Hi(N) ;i) is computed using HiN-1),j(i(N-1))

which, in turn, is computed using Hi(N-2)j(i(N-2))» and so on until [Ny jaavy) which is

derived from the state of the system, assuming that Tj is scheduled.
4. Endofloopi.
5. Compute i* such that:

Bi* =Max ei
i/T;eF

6. Schedule Tj* on Wj(+) and fix its starting time at p;# ji*).
7. SetE=E\ {Tjs}.

8. IfE=, goto 2, else stop.

4.2.2. Approach CP
This approach is more complex than the previous one. In this section, we use the notations introduced
previously.

We also denote by S; the starting time of Tj and by C; the completion time of T;.

a. The critical path
The set {T,...Ty) .of tasks being scheduled, we call critical path for this schedule a sequence:
U =<Tj, ..., Tig >
of tasks (s < n) such that:
1. §;; =0
2. Cjy=Sjj, forj=1,....5-1

3. G

ig

= Max C; (makespan)
ie{l...,n}

Ci, is the makespan, also called the length of the critical path. It is clear that a necessary (but not

sufficient!) condition to reduce the makespan is to reduce the length of the critical path. This leads to the

concept of degree of freedom introduced hereafter.
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b. Degree of freedom
We call degree of freedom of task Tj, and we denote it by D(Tj), the time T; which can be delayed
withoﬁt increasing the makespan. Formally:
D(T;) = Min (C;, - C;, D(Tiy)+ Siqty ~ Cis D(T4 )+ 5,4 ~C; (10)
where:
Si(1) is the starting time of O(T}), if its exists,
Tj+ is the task, if it exists, which is performed just after Tj by the same worker Wj),
Si+ is the starting time of Tij+,
D(Tiq)) + Si1) - Ci vanishes from (10) if (Tj1)) does not exist.
D(Tj+) + Si+ - C; vanishes from (10) if Ti+ does not exist, that is if Tj is the last task performed by
Wii)-
The degrees of freedom are computed recursively, from the last tasks performed by the same worker

to the first ones and, inside this order, from the last tasks to the first ones in the same sequence. They are

used to select the tasks which should be permuted to reduce the makespan.

c. Specification of the tasks to be perm;lte'd

Two tasks Tj and Tj can be permuted without increasing the makespan if:

@ T belongé to the cﬁﬁqal path’,

(i)  Tjis performed by the same worker Wj() as Tj, and immediately before Tj,

(i) it is possible to permute Tj and T; without violating the precedence constraints,

() Cj <en (D(Tya))+ Sjay. DT+ )+ 5,4 | (11)
where:
C} is the. completion time of Tj after permuting Tj and Tj and starting them at the earliest;
Ti«+ is the task which follows immediately Tj in the schedule of the tasks assigned to Wjj) before

permuting T; and Tj;

Si+ is its starting time.
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If O(Tj) = D, then D(Tjq1y) + Sj(1) vanishes in the second member of (11). If Ti+ does not exist, then

D(Tj+) + Si+ vanishes in the second member of (11). If both elements vanish, then (11) holds whatever

C} ; in this case, we can consider that the second member of (11) is equal to makespan.

If several pairs of tasks satisfy these conditions, then we select the pair {Tj, Tj} which minimizes:

cl-Min (D(Tj))+Si. DT )+5,4) (12)

If several pairs lead to the minimal value of (12), we select one of these pairs at random.

Finally, the algorithm used to reduce iteratively the makespan is as follows.

Algorithm CP

1.

Generate a feasible solution to the problem.

We proceed iteratively. At each iteration, we schedule at random, for each worker, the tasks
which do not have unscheduled predecessors. The tasks are scheduled at the earliest.
Computation of the critical path.

Obvious if we consider the definition given in 4.2.2.a. We start by identifying the task whose
completion time is the makespan, then the task whose completion time is the beginning time of the
previous one, and so on until we réach a task which does not have a predecessor.

Computation of the degree of freedom of the tasks.

As mentioned before, this computation is conducted by applying recursively relation (10). At

each iteration, we compute the degrees of freedom of D(T;) such that:

e cither Tj(;) does not exist or D(T;+) has been previously computed,
and:

o cither (T;+) does not exist or D(T;+) has been previously computed.

Selection of the pair of tasks to be permuted.

This is done as explained in 4.2.2.c.

4.1. If such a pair exists, permute the tasks and return to 2.

4.2. Otherwise, stop the algorithm.

g
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4.3. Refinement step

This step consists of starting from the previous solution, i.e. from the solution obtained by applying
H2 or CP, and of applying a classical simulated annealing approach to further reduce the makespan.
Information about simulated annealing can be found in Darema et al. (1987), Johnson et al. (1989) and
Kirkpatrick et al. (1983). ‘

At each iteration of the simulated annealing process, we:

(i) choosea worke; Wj at random,

(ii) choose at random two tasks Tj and Ty which are performed by w;,

(i) check if Tj and Tk can be permuted without violating the precedence constraints. If the answer

is negative, we go back to (1), otherwise, the schedule obtained after permuting T; and Ty is the

neighbor of the previous schedule.

5. Numerical examples and evaluation of the algorithms

Two types of criteria are important to evaluate heuristic approaches, that is the computation times, and
the values of the objective functions when using the heuristic approaches compared to the optimal values
of the objective functions. The time criteria are easy to obtain, but the comparison of the criteria values is
usually impossible since the optimal solutions of problems of reasonable size cannot be reached. In this
case, one usually tries to find a lower bound to the optimal criterion. The difference between the value of
the objective fuﬁction obtained by using the heuristic and the lower bound is an upper bound of the
difference between the value obtained from the heuristic and the optimal value.

In this paper, we'propose three lower bound denoted by LB1, LB2 and LB3. LB1 and LB2 are two

lower bounds to the global problem, while LB3 is a lower bound to the problem where tasks are already

assigned to workers.

5.1. Lower bound LBl

This lower bound is given by relation (13).
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N;
LBl =Max Min pia); 13
i/TieE{(FO je{l...,m}p‘(Q)"} (13)

where:

E={i/ie (1,...,n} and OI(T}) = D},

i(0) =1, i(q) / Tiq) = 04Ty if g2 1,
N;j is the number of successors of Tj € E.
This lower bound is of good quality if a "chain" of tasks, i.e. a sequence of successors of a task

T; € E, dominates all the other chains in terms of time required to perform all the tasks of the chain,

assuming that their processing times are the lowest possible.

5.2. Lower bound LB2

This lower bound is given by relation (14).

n
LB2= Min p;;|/m (14)
[g‘) je(l...,m) I'JJ/

It is the sum of the minimal processing times distributed among the workers. It should be noticed that
this lower bound is always worse than the makespan obtained by applying ASS. But LB2 is useful

when the size of the ;;roblem is too important to apply ASS.

5.3. Lower bound LB3
This lower bound has been developed to evaluate the efficiency of algorithms H2 and PC. In this

case, it is assumed that tasks have already been assigned to workers. LB3 is given by relation (15).

LB3= Max Y p;j (15)
je{l...,m} i/j()=j

where j(i) is such that Tj is assigned to Wig).



5.4. Numerical examples

Several numerical examples are given in the following tables.
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NC is the number of precedence

constraints, SA denotes the simulated annealing, M is the makespan, MW is the makespan without

precedence constraints, and CT is the computation time. The other notations are those used in the

previous sections. The values in bold characters are optimal makespan.

Table 1: Small-sized numerical examples

Example # 1 2 3 4 S 6 7 8 9 10 11
n 14 28 16 17 27 16 12 11 19 15 29

m 8 7 8 4 4 5 6 4 6 6 4

NC 5 8 6 7 1 7 2 3 7 7 7

H1 M 23 37 22 54 | 92 32 26 40 43 | 34 | 88
CT 1" 3" 1" 1" 2" 0" 0" 0" 1" 1" 2"

ASS | MW 16 23 12 43 53 23 15 32 28 19 63
CT 7" 116" 9" 30" [1'42" | 16" 7" 2" [1'43"] 6" 18"

H2 M 30 27 20 | 56 54 25 1 19 40 51 42 73
641 0" 0" o | o 0" 0" 0" 0" 0" 0" 0"

SA M 30 23 | 17 54 | 3 | 25 | 19 40 51 42 | 63
CT | 19" { 22" | 17" | 21" | 16" | 18" | 17" | 15" 0" 18" | 20"
CP M 30 23 | 17 54 | 83 26 19 44 51 42 | 63
cT | o 0" 0" 0" 0" 0" 0" 0" 0" 0" 0"
SA M 30 23 | 17 54 | 3 | 25 | 19 40 51 42 | 63
Cr | 20" | O 0" 21" | 0" 1" 15" | 15" { 19" | 18" | 0"

LB1 16 17 17 40 22 25 19 32 43 34 30

LB2 9,25 20 | 9,25 3825} 49 | 19,4 110,33] 26 |22,67] 15,5(57,75

LB3 30 19 17 43 22 25 19 40 51 42 34
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Table 2: Medium-sized numerical examples

Example# | 1 2 3 4 | s 6 7 8 9 | 10| 11
n 35 | 28 | 32 | 35 | 37 | 27 [ 29| 36 | so | 44 | 26

m 6| o 6| w| 8t 711w0] 6| 9] 9|7
NC 10| 6 | 2 g8 | 7 || 3| 14] 16| 15] 6
HI | M | 51| 23| 48| 27| 45 | 36 | 30| 57| 43| 45 | 31
ct | a | a4 | a6 [ 5| 2n | 4| a4 10| 7| 2

Ass | Mw | 36 | 16 | 30 | 18| 26 [ 26 | 14| 35| 28 | 26 | 21
ct | 6% | 805 | 310 | 20| 2@ | 10822 | 475 | 312 | 2054 Hor4r| 28

H2 | M | 46 | 17 | 30| 20 | 28 | 34 | 40 | 40 | 33 | 32 | 28
ct Jo o fo o Jo o fo ] 1] o | o | o

sA | M | 36| 17{ 30| 18|26 34| 4 | 35| 28] 27| 21
CT | 24" | 23" | 30" | 25" | 22 [ 23" | 26" | 25" | 30" | 27 | 22

cP | M | 38| 24|30 25| 20|34 |40 | 36| 38| 3] 2
ct o [fo o fo o Jo [o o |o ]| o |0

sSA | M | 36| 17|30 18] 26| 34 ) 4| 35] 28] 28] 21
ct | 7 {23 | o | ur | 7 |23 | 26" | 7 | 15t | 26" | 6

LBI 20 12| 14| 16| 18 (33|30 22 24| 18] 17
LB2 32,5 [ 12,44 27 | 14,2 [23,75|22,43| 11 |31,33]25,11{23.89] 18,43
LB3 2| 17| 14| 18| 19|34 | 4|31} 24| 18] 17

As we can see, heuristic H1 is very fast and sometimes provides the optimal makespan. Furthermore,
H1 can be applied whatever the size of the problem. Unfortunately, in some circumstances, the solution
provided by H1 is far away from the optimal one. This justifies the introduction of heuristics (ASS + H2
+ SA) and (ASS + CP + SA). The problem which arises when using these heuristics is the computation

time, mainly due to ASS.
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6. Conclusion

We developed three heuristic algorithms which take advantage of the fact that the number of
precedence constraints in a set of office tasks is low compared to the number of tasks. This fact justifies
the approach which consists of solving the problem after relaxing the precedence constraints (i.e.
assigning tasks to workers), and then scheduling the tasks taking into account the precedence constraints.
Further researches will consist of developing new heuristics in which tasks are assigned to workers and

scheduled simultaneously, taking into account the fact that the number of precedence constraints is small.
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