-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Yet Another O(n’) Recognition Algorithm for Mildly
Context-Sensitive Languages

Pierre Boullier

» To cite this version:

Pierre Boullier. Yet Another O(n%) Recognition Algorithm for Mildly Context-Sensitive Languages.
[Research Report] RR-2730, INRIA. 1995. inria-00073964

HAL Id: inria-00073964
https://hal.inria.fr /inria-00073964
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50450851?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00073964
https://hal.archives-ouvertes.fr

ISSN 0249-6399

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Yet Another O(n%) Recognition Algorithm
for Mildly Context-Sensitive Languages

Pierre Boullier

N° 2730
Novembre 1995

PROGRAMME 3

apport
derecherche

VAV 1 IN IN T A1

ROCQUENCOURT

Yet Another O(n’) Recognition Algorithm
for Mildly Context-Sensitive Languages

Pierre Boullier*

Programme 3 — Intelligence artificielle, systemes cognitifs et interaction homme-machine
Projet Atoll

Rapport de recherche n° 2730 — Novembre 1995 — 22 pages

Abstract: Vijay-Shanker and Weir have shown in [19] that Tree Adjoining Grammars and
Combinatory Categorial Grammars can be transformed into equivalent Linear Indexed Gram-
mars (LIGs) which can be recognized in O(n°) time using a Cocke-Kasami-Younger style algo-
rithm. This paper exhibits another recognition algorithm for LIGs, with the same upper-bound
complexity, but whose average case behaves much better. This algorithm works in two steps:
first a general context-free parsing algorithm (using the underlying context-free grammar) builds
a shared parse forest, and second, the LIG properties are checked on this forest. This check
is based upon the composition of simple relations and does not require any computation of
symbol stacks.

Key-words: context-sensitive parsing, ambiguity, parse tree, shared parse forest.

(Résumé : tsvp)

This research report is an extended version of [3].It benefits from discussions, especially with David Weir,
and amends the original algorithm.
*E-mail: Pierre.Boullier@inria.fr

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
Téléphone : (33 1) 39 63 55 11 — Télécopie : (33 1) 39 63 53 30

Un autre algorithme de reconnaissance en O(n’)
pour les langages modérément contextuels

Résumé : Vijay-Shanker et Weir ont montré dans [19] que les Grammaires d’Arbres Adjoints
et les Grammaires Catégorielles Combinatoires peuvent étre transformées en Grammaires In-
dexées Linéaires (LIG) équivalentes qui peuvent étre reconnues en temps O(n°) en utilisant un
algorithme a la Cocke-Kasami-Younger. Cet article propose un autre algorithme de reconnais-
sance pour les LIG, ayant la méme complexité maximale, mais dont le comportement moyen
est bien meilleur. Cet algorithme travaille en deux étapes: tout d’abord un analyseur non
contextuel général (qui utilise la grammaire non contextuelle sous-jacente) construit une forét
d’analyse partagée sur laquelle, dans une deuxieme phase, les propriétes des LIG sont vérifiées.
Cette vérification repose sur la composition de relations simples et ne nécessite aucun calcul de
piles de symboles.

Mots-clé : analyse contextuelle, ambiguité, arbre d’analyse, forét d’analyse partagée.

L 00 AROUCr AT) ILECOYILelcOne AtGOT L. . . J

1 Introduction

It is well known that natural language processing cannot be described by purely context-free
grammars (CFGs). On the other hand, general context-sensitive formalisms are powerful enough
but cannot be parsed in reasonable time. Therefore, various intermediate frameworks have been
investigated, the trade-off being between expressiveness power and computational tractability.
One of these formalism classes is the so-called mildly context-sensitive languages which can be
described by several equivalent grammar types. Among these types, Tree Adjoining Grammars
(TAGs) are attractive because they can express some natural language phenomena (see Abeillé
and Schabes [1]) and many systems are based upon this framework (see for example [11] and
[7]). Formal properties of TAGs have been studied (see Vijay-Shanker and Joshi [17], and
Vijay-Shanker [16]) and a recognizer for TAGs (see [19]), based upon a Cocke-Kasami-Younger
method ([5] and [20]), works in O(n®) worst time. Unfortunately, with such algorithms, this
complexity is always reached. More practical methods, which are usually based upon the Earley
parsing algorithm [4], have also been investigated (see for example Schabes [14] and Poller [12]).
Though the O(n®) worst-case time is not improved, for some inputs, the actual complexity may
be much better. However, the design of a better worst-case recognizer remains an open problem.

In [19], Vijay-Shanker and Weir have shown that mildly context-sensitive grammars have
the same formal power and that TAGs and Combinatory Categorial Grammars (CCGs) can be
transformed into equivalent Linear Indexed Grammars (LIGs).

An Indexed Grammar [2] is a CFG in which each object is a non-terminal associated with
a stack of symbols. The productions of this grammar class define on the one hand a derived
relation in the usual sense and, on the other hand, the way symbols are pushed or popped on
top of the stacks which are associated with each non-terminal. A restricted form of Indexed
Grammar called LIG allows only for the stack associated with the left-hand side (LHS) non-
terminal of a given production to be associated with at most one non-terminal in the right-hand
side (RHS).

This paper presents a new recognition algorithm for LIGs. It works in two main steps:

1. a CF-parsing algorithm, working on the underlying CF-grammar, builds a shared parse
forest;

2. the LIG conditions (see Section 3) are checked on that forest.

Since that second step does not depend on the way the shared parse forest is built, any
general CF-parsing algorithm can be used in the first step. As previously mentioned, CKY or
Earley parsing algorithms are candidates but others too. In particular, generalized LR parsing
methods (see Lang [8], Tomita [15], and Rekers [13]) are good challengers. In fact, the CF-
parsing algorithm of our prototype system upon which this paper ideas have been tested,
implements a non-deterministic LR (or LC at will) parsing algorithm using a graph-structured
stack. Under certain conditions, for a given input string of length n, the CF-parsing takes a time
O(r?) in the worst case and moreover the output shared parse forest of size O(r?) (in the worst
case) is such that each elementary tree can be seen as an occurrence (after some non-terminal
renaming) of a production in the underlying CFG. Following Lang [9], in Section 2, we stress
this analogy by defining a shared parse forest as a CFG.

Obviously, the checking of the LIG properties can be performed on a forest by computing
the stacks of symbols along paths, and in associating with each (shared) node a set of such
stacks. As in [19], in devising an elaborate sub-stack sharing mechanism, this check could be
RR n"2730

4 rerre boullier

performed in O(r®) time. In Section 4, we take a different approach: this check is performed
without the computation of any stack of symbols (and hence without having to design any sub-
stack sharing structure). Given a single tree of the (unfolded) shared parse forest, we identify
spines as being paths along which individual stack of symbols are evaluated. The origin of such
a spine corresponds to the birth of a stack which evolves according the LIG stack schemas
and which finally vanishes at the end of the spine. The checking of LIG conditions relies on
the simple observation that, for a given spine, the stack actions must be bracketed. Each time
a push or pop occurs at a node, there is a twin node where the opposite action, acting on
the same symbol at the same stack level, should take place. In a shared parse forest, different
spines may share nodes. In particular, a given couple of twin nodes may be shared among
several spines, with the corresponding check being done only once. In Section 5 we show that
this check sharing, expressed as relations between twin nodes, results in a worst case O(n®)-time
LIG recognition. Our algorithm is illustrated by an example in Section 6. Sections 7 and 8 show
that cyclic grammars are handled too. Since TAGs or CCGs can be transformed into equivalent
LIGs [19], this complexity extends over mildly context-sensitive languages.

2 Parse Tree and Shared Parse Forest

The goal of this section is to set up the vocabulary and to define our vision of shared parse
forests.

Let G = (Vy, Vr, P,S) be a CFG where:

e Vy is a non-empty finite set of non-terminal symbols.

o V7 is a finite set of terminal symbols; Vy and Vp are disjoint; V. = Vi U Vp is the
vocabulary.

e S is an element of Vy called the start symbol.

o P C Vy x V*is a finite set of productions. Each production is denoted by A — o or by
rp, 1 < p < |P|; such a production is called an A-production.

We adopt the convention that A, B, C' denote non-terminals, a, b, ¢ denote terminals, w, x denote
elements of V', X denotes elements of V', and 3,0 denote elements of V™.
On V* we define |P| disjoint binary relations named right' derive by B — 3 and denoted

by B:;;ﬁ (or simply P27 When @ is understood) as the set {(cBz,08z)| B — 5 € P}.
The relation derive denoted by = is defined by:

= = | =G
B—geP

Let o4,...,04,0i41,...,0; be strings in V* such that Ve,1 < < {,3r, € P,0; £ 0,41 then

. r
the sequence of strings (oy,...,0;,0i41,...,0) is called a derivation. Conversely, since = and

Tn the sequel the qualifier right will disappear since only right derivations, right sentential forms, etc ...
are introduced.

INRIA

L 00 AROUCr AT) ILECOYILelcOne AtGOT L. . . J

= are disjoint when p and ¢ are different, between any two consecutive strings o; and o;,; in

a derivation, the relation = whose (04, 0i41) is an element is uniquely known.

A o-derivation is a derivation starting with o. A o-derivation whose last element in the
sequence is [is called a o/B-derivation. The elements of a o-derivation are called o-phrases.
A o-phrase in Vj is a o-sentence. On the other hand an S-phrase is a sentential form and an
S-sentence is a sentence.

The language defined by G is the set of its sentences:

,C(G):{x|5%;>:ﬂ/\:0€vjf}

In an S/z-derivation, to accurately define the contribution of any symbol occurrence X (its
X-sentence) to the sentence z, we will define its range.

Let d* = (01,...,0ky ..., 0., Opm,...,0,) be an S/z-derivation (i.e. oy = S, 0, = x =
ay...an,and 1 <k <1< m < p). We define the range of (this occurrence of) X in o) as being
the couple (7, j) with (0 <: < j < n) such that:

o = pXp[}

o = [BXalal
Om = Proziay
_ W/
Op = T1T2T3%3
with
T = T1T2xhTy
1 = da1...04;
T2 = Qi41...05
o]
ThTY = ajpr...4a,

It follows that in any S/z-derivation, each occurrence of any symbol X can be decorated by
its range (¢,7) and becomes a ranged-symbol denoted by [X]]

! (or even [X], when the explicit

values of the range are not necessary). Moreover, the production used at each derivation step,
may be transformed into a ranged-production such that each non-terminal is changed by its
ranged counterpart.

The set of these ranged-productions defined (our vision of) a parse tree.

Definition 1 Let G = (Vy, Vi, P, S) be a CFG, © = ay...a, a sentence in L(G), and d* an
S/x-derivation. We call parse tree (w.r.t. G and d*) the CFG G* = (V& , VE, PY,5%) where:

o Ve={[BY |BEVNAO<i<j<n}
o Vi={a;|a; € Vr ANz =z0;25}.
o ST =[S];.

o P s the set of ranged-productions. [B]f — Y)...Y,...Y, is an element of P iff we
have the following conditions: there exist two consecutive strings oy = fBxs and o;41 =
BX1... Xp... Xpxs in d° such that (v,7) is the range of B in o; and for every 1 <k <p
we have if X, € Vr then Y, = X}, otherwise Y, = [Xk]fz if the range of Xy in ojqq is
(2ky Jk)-

RR n " 2730

0 rerre boullier

The main property of this parse tree grammar is that for each non-terminal symbol [X]Z in
VE there exists exactly one string w in VF* such that [X]

K3

aiy1--.a;. Applied to the start symbol [S]3, we have L(G?") = {z}.
fd*=(o1=25,...,06,...,0, = &) is an S/x-derivation, the sequence of strings ([d*] =

[o1] = [S15,- -5 [ok], - - -, [op] =) such that every [ok] is the string o} where each non-terminal

occurrence is changed into its ranged counterpart is called ranged-derivation. Of course [d”] is

an [S]7/z-derivation in G*. If (7 is not cyclic (i.e. AA, A %} A) it is the only one. Conversely,

=+ . . .
= w and moreover this string is
Gd

if G is cyclic, G*" can also be cyclic. If there is a cycle, our definition denotes, by a single parse
tree (grammar), the ambiguities showed by the unbounded number of (usual) trees when this
cycle is taken 1, 2, ... times.

The whole notion of ambiguity will be captured by the following definition of shared parse
forest.

Definition 2 Let G = (Vn,Vy, P,S) be a CFG, and © a sentence in L(G). The shared parse
forest for x (w.r.t. G) is the CFG, G* = (V3, V[, P*, S%) where:

o Vi={[B | X e VyAO<i<j<nl.
o Vi={a;|a eV AN =uaza,x5}.
o ST =[S]y.

o P% = Jpep: PY where D* is the set of all S/z-derivations, and P¥ is the production
set of the parse tree G¥ = (VE, VE, P S%) associated with any derivation d* in D*.

Of course we have
L(G7) = {z}

Any production r, = [B] — [Xi]...[X,] in P” is mapped by the unary operator ~ to its
associated production 7, = B — X; ... X, in P.

Note that, for a given sentence z of length n, the number of non-terminal symbols in V5 is
O(n?), and therefore the set P* is bounded, though D* can be unbounded when G is cyclic.
Without any restriction on G, the size of P” is O(n'*!) where [is the maximum number of non-
terminal symbols in the RHS of any production in P. If G is unambiguous, (or if the parsing
of x does not exhibit any ambiguity,) this size is linear in n.

This vision of a set of parse trees as a CFG has several formal and practical advantages
(thanks to [10], see also [18]). It exhibits a particular case of a general result: the intersection of
CF-languages (defined by (&) and regular languages (the input string) are CF-languages (the
resulting shared parse forest G*). G* can also be seen as a specialization of GG (productions in
G* are productions in ¢, up to some renaming), which only defines (in all the same possible
ways as (7) the string . This CFG allows to define an unbounded number of derivations (when
(# is cyclic) in a finite way. A context sharing occurs when there are several occurrences of the
same non-terminal in RHSs, while a sub-tree sharing occurs when there are several occurrences
of the same non-terminal in LHSs. This sharing may even be considered as optimal if we impose
(as done here) that productions (elementary trees) in a parse tree, have the same structure as
their corresponding production in (.

Given a sequential input x = ay ... a,, this regular language is defined by a non-deterministic
finite state automaton (FSA) M = (Q, %, qo, 6, F') where:

INRIA

L 00 AROUCr AT) ILECOYILelcOne AtGOT L. . . i

¢ Q=1{i|0<i<n)

o ¥=1{a|z=raz5}

¢ =0

o F={n}

o 6(i—1,a;) = {i} for each 0 < i < n and 8(i,) = {i} for each 0 < i < n.

The general case, (i.e. context-free languages are closed under intersection with regular
languages,) is also of interest in natural language processing since regular languages can express,
not only linear sentences, but also different phenomena like ill-formed or ambiguous inputs.
Below, we define a shared parse forest when the input is a FSA.

Definition 3 Let G = (Vn,Vp, P,S) be a CFG, G' = (Vw U{S'},Vpr, PU{S" — S},5) its
extended grammar, and M = (Q, %, qo, 6, F') be a FSA. The shared parse forest for M (w.r.t.
G) is the CFG, GM = (V{!, VM, PM_[S"]) where:

o VM ={[STTU{IXI| X e Vy Ai,j €Q}.
o VM={a|acVrnXl}.

o PM = {[9] — [S1if | ¢s € FYU{IXol] = e | Xo —» e € PAj € 6(i,e)} U{[Xolz —
VieoYe .V, | Xo—= Xq... X .. X, € PArg € QAVE L < k < pdrp € Qs. LY, =
[Xk]rk /\XkEVN\/X/;C:Xk/\XkEVTQZ/\(S(Tk_l,Xk):rk},

Tk—1

Of course this grammar described the intersection of G and M:
L(GM) = LIG) N L£(M)

and for each production r, € PM, there is an associated production 7, in P U {S’ — S}.

We call canonical shared parse forest the CFG whose production set P is the subset of
PM where all productions containing useless symbols? have been eliminated. In fact, any CFG
GM = (VM VM, PM SMYy st PM C PM C PM s called a shared parse forest.

It should be noticed that this definition is completely independent of the way (i.e left-to-
right, top-down, bottom-up, ...) the forest is built.

A “blind” implementation, simply based upon combinatorial considerations, which does not
rely upon dependencies from one production to the other, and which generates PM, leads to a
parser which may be qualified of global. The forest is built without any left-to-right, top-down
or bottom-up bias. In such a case unreachable and non-productive® symbols can be produced.

The bottom-up version, where a production is produced only when its RHS symbols have
already been computed leads to a parser in the CKY style. In this case, in the generated forest,
all symbols are productive but some of them can be unreachable.

The counterpart, where all the productions, having a given non-terminal in LHS, (and all
possible combination of symbols in RHS,) are produced only when this LHS non-terminal has

2A symbol X is useless if it does not appear in any sentential form.
3A symbol X is unreachable (from the start symbol) if there is no S/BXw-derivation, it is non-productive
if there is no X/a-derivation.

RR n"2730

3 rerre boullier

already been generated leads to a top-down parser. In this case, in the generated forest, all
symbols are reachable but some of them can be non-productive.

In all cases, the recognition problem is to decide whether the language of this parse forest
grammar is empty or equivalently whether the start symbol [S'] is useful.

In the sequel we will assume that only linear inputs are processed, but all results stay valid
when they are transposed to FSAs.

3 Linear Indexed Grammars (LIGs)

An indexed grammar is a CFG in which stack of symbols are associated with non-terminals.
The derive relation, in addition to its usual meaning, handles these stacks of symbols. LIGs
are a restricted form of indexed grammars in which the stack associated with the non-terminal
in the LHS of any production is associated with at most one non-terminal in the RHS. Other
non-terminals are associated with stacks of bounded size.

In fact, in a production, it is not a stack which is associated with a non-terminal, but rather a
stack schema expressing a way to compute a stack. Let V; denotes a finite set of (stack) symbols,
a stack is an element of V*. A stack schema is an element of V;, x V,* where V, = {e,..}. We
adopt the convention that o will denote members of V;*, = elements of V4, and ~ elements of
Vi. The stack schema (..«r) matches all the stacks whose prefix (bottom) part is left unspecified
and whose suffix (top) part is a. A stack may be considered as a stack schema whose first
component (the element of V;) is e.

A triple (A, e,) in Viy x V, x V/* is called a secondary object and is denoted by A(«) while a
triple (A, ..,) is called a primary object and is denoted by A(..cr). The disjoint sets of primary
and secondary objects are respectively denoted by V" and V5. The set of objects denoted Vo
is V& U V. The object A(wa), whose non-terminal component part is A, is called an A-object.
We use I' to denote strings in (Vo U Vp)*. A(..a) denotes an object whose stack suffix (stack
top) is o and with an arbitrary prefix (stack bottom). A() denotes that an empty stack schema
is associated with the non-terminal A. A(«) denotes that the stack « is associated with the
non-terminal A.

Following [19], we formally defined a LIG as follows:
Definition 4 A LIG, L is denoted by (Vi, Ve, Vi, Pr,S) where:

o Vy is a non-empty finite set of non-terminal symbols.

o Vi is a finite set of terminal symbols, Vy and Vi are disjoint, and V = Vy U Vp is the
vocabulary.

V) is a finite set of stack symbols.

Py, the production set, is a finite subset of Vo x (Vo U Vp)*.

o S € Vy is the start symbol.

Each production in Py, is denoted by A(ma) — T or r,()* where 1 < p < |Py|.
The general form of a production in a LIG is:

4The parentheses reminds us that we are in a LIG!

INRIA

L 00 AROUCr AT) ILECOYILelcOne AtGOT L. . . J

rp() = A(ra) = wiAr(ar) ... w1 Aicr (i1)wi A (mag) wipr Aiga (@igr) - wp Ay () wpgr

If the LHS object A(wa) is secondary (i.e. # = ¢), we observe that all the objects (if any)
in the RHS should also be secondary, while if A(xa) is primary (i.e. # = ..), there must be
exactly one primary object (here A;(we;)) in the RHS.

The above production is called an A-production. If this production is used, for any I'y,I'; €
(Vy x V¥)U Vp)* and o € V/*, we define the binary relation derive by r,() on LIGs by:

FlA(O/Oé)FQ T%(Q FlwlAl(al) . ’LUZ'_lAi_l(O[Z'_l)’LUZ'AZ'(QIO[Z')‘LUZ'+1AZ'+1(OQ'_|_1) . prp(ozp)prFg

when 7= .. Vo ==¢.
We observe that the stack o/« associated with the non-terminal A in the LHS and the stack
o' a; associated with the non-terminal A; in the RHS have the same prefix o'.
The language defined by L is the set:
+ * TP()
L(L)={z|S() ~ z ANz € VEA == Ur,0er, ?}

b

We define the CF-backbone of a LIG as being its underlying CFG.

Definition 5 Let L = (Vn,Vp, Vi, P, S) be a LIG, its CF-backbone is the CFG, G =
(W, Vr, Pg, S), or simply G when L is understood, where:

PG = {A — wlAl Ce 'wi_lAi_l'wiAinlAiH e 'prppr | A(ﬂ'a) —
wlAl(ozl) . 'wi—lAi—l(ai—l)u’iAi(ﬂ—ai)'wi—l—lAi—l—l(ai—l—l) A prp(ozp)pr € PL}

If there is a one to one mapping between P and Pg the LIG is said to be fair. It is not
very difficult to find an algorithm which transforms any LIG into an equivalent fair LIG. In the
sequel we will only consider fair LIGs.

Due to the one to one mapping between (fair) LIGs and their CF-backbones we assume
that iff r,() is a production in P, then r,, with the same index p, denotes the corresponding
production in its CF-backbone Fg.

Definition 6 Let L = (Vn,Vp, Vi, P, S) be a LIG, G = (Vy, Vr, Pg, S) its CF-backbone, z a
string in L(G), and G* = (V§, V[, P&, S%) its shared parse forest for x. We define the LIGed
forest for x as being the LIG L* = (V3, VF, Vi, PF, S*%) s.t. G* is its CF-backbone and each stack
schema (wpay) associated with the non-terminal [Ag], occurring at position k in production
ry() € Py is the stack schema of the object at position k in 7,() € Pr,. More formally we have:

Pr = {Tp() = [AO](WOQO) - [‘wl][Al](WlOfl) e [‘wk][Ak](Wkak) oo (W] | 'p = [Ao] —
[wi][Ad] ... [wi][Ax] . . - [wmta] € P& ATH() = Ao(moco) —
wiAr(mar) . wpAg(Trag) . Wngr € P}

By construction, any LIGed forest is fair and between a LIG L and its LIGed forest L* for
z, the following property holds:

reL(L) < zeL(L")

An object is said initial (resp. final) if it is secondary and occurs in the RHS (resp. LHS) of
a production. VZ (resp. VZ") denotes the set of initial (resp. final) objects.
RR n”’2730

rerre boullier

Definition 7 For a given LIGed forest for x, we call spine, any sequence of 2p (1 < p) objects
(01,02, ...,02i-1,02, 0241, .. .,09,) such that:

® 01 (resp. 09,) is an initial (resp. final) object.
e [nside objects o; (if any) (V5,1 < j < 2p) are primary.

o Vi,1 < i < p, two consecutive objects 0y;,_1 = X1(mian), and 0y = X(wa) are such that

X1 =X, and 0y—1 (resp. 03;) occurs in the RHS (resp. LHS) of a P} production.

This notion of spine is fundamental in LIG theory since it represents a path upon which
stacks of symbols are evaluated. For example, followed in the direct way (top-down), the spine
(01 = Xi(a1),00 = Xi(..0f), ... 0001 = Xi(w), 00 = Xi(..0f), ..., 00 = Xp(a})) indicates
that:

e a stack s is created and initialized with a; on the initial object oy;

o if o) is a suffix of s, then «f is popped from s on object 0y;

e the string of symbols «; is pushed on s on object 09;_1;

o if o! is a suffix of s, then o! is popped from s on object 0y;;

e on the final object 0y,, if o}, is a suffix of s, then o, is popped from s and the stack s is
checked for emptiness.

A spine is said to be valid if each check sketched above succeeds®.
More formally, these (valid) spines can be viewed as languages.

Definition 8 Let L* = (VI, Vi, Vi, PE,S”) be a LIGed forest for x. We define a valid spines
grammar as being the LIG L™ = (V& VE* Vi, P¥* (Z)) where:

o (7) is the start symbol.
o Vi ={([B]) | [B] € Vi} U {(Z)}
o VI =V, Vo is the set of objects.

o PL" = {{[A])(-.an) = [B](-.az)([B])(--e2) | [A](-.01) — T1[B](..a2)T2 € P} U {(Z)()
[B](e2){[B])(az) | [Al(mia1) — Th[B](az)ly € P} U {([A])(a1) — [Al(ar) | [A](en)
e PRy U{(Z)() = 570(5)0}

The elements of the LIG language L£(LY") are valid spines while the elements of its CF-
backbone are merely spines. Note that its CF-backbone is a regular grammar.

—
—

0f course it is possible to adopt the dual vision and to evaluate stacks along spines in the opposite (bottom-
up) way. A stack is created and initialized with o/ on the final object 05,. Elements are pushed on LHS objects
P P
while they are checked and popped on RHS objects, and finally «; is popped on 01 and the stack is checked for
emptiness.

INRIA

L 00 AROUCr AT) ILECOYILelcOne AtGOT L. . .

4 Our LIG Recognition Algorithm

In this paper we restrict our attention to LIGs with the following characteristics:

1. the RHS of a production contains at most two symbols;

2. the stack schema (7wa) of any object (primary or secondary) is such that 0 < |a] < 1.

Recall that our recognition algorithm works on shared parse forests. Therefore, it is assumed
that such a forest has been built by any general CF-parsing algorithm, working on the associated
CF-backbone grammar, with a string = as input.

The reason why we allow at most two symbols in the RHS of the CF-backbone is to build
the forest in time O(n?). Moreover, in such a case, the parameters of the shared parse forest are
kept within some suitable upper bounds: in particular the number of productions is O(n?), the

J

number of non-terminal symbols is O(n?), the number of X-productions for any given X = [A]

is O(n) and the number of occurrences of such a non-terminal symbol X in the RHSs is also
O(n).

The restriction on stack schemas, have been chosen only for pedagogic facilities. This restric-
tion does not change neither our algorithm principle nor its upper bound complexity. Moreover,
it is easy to see that this form of LIG constitutes a normal form.

In a first time, we will restrict our attention to non-cyclic CF-backbones. This restriction
will guarantee that in any parse (sub-)tree, internal nodes are different from the root node.
This restriction will be relaxed in Section 7.

Contrary to the previous section where we saw that a stack of symbols can be evaluated
along spines, we choose not to compute stacks explicitly. The idea of our algorithm is based
upon the remark that each time a symbol « is pushed on a stack at a given place, this very
symbol should be popped at some other place. The converse should also be true. The following
will exhibit a mean by which this property could be checked without explicitly computing
neither stacks nor spines.

We could remark that we are not interested in finding all the valid spines between any pair
of objects (o01,02), but only if there is at least one such valid spine. As a first consequence
we will only consider abridged spines (a-spine for short) (01,04, 04,...,09, 0242, ...,09,) which
summarize all the spines (01, 02, 03, 04, . . ., 09;, 02i41, 02i42, - - . , 02,) Where the RHSs (odd) objects
(except the initial one) have been erased.

The first purpose of our algorithm is to compute the relation valid spine which is the set of
all couples (01, 02) s.t. o1 is an initial object, o is a final object, and there is at least one valid
spine between o; and o0;.

In order to reach this goal, for a given LIGed forest for , we define on its objects Vo, 2|V|+1

binary relations noted (for some v in V}) L, ;, and <. These relations between objects indicate
the evolution of an imaginary stack between the first and the second object.
The element (01, 02) of Z (resp. Q) means that the stack associated with oy is built by

pushing v (resp. popping ~ if possible) on top of the stack associated with o,. The element
(01,02) of <= means that the stacks associated with o; and oy are identical.

Let [Xi](man) — T1[Xg|(mhay)y and [X3](meas) — T be two productions in PP with
[X)] = [X2]. Moreover, assume that o1, 0}, and oy respectively denotes the objects [Xi](71a1),
[X)](mhal), and [X3](waaz). The Table 1 indicates precisely the way these relations are defined.
All other couples of objects are non comparable.

RR n"2730

rerre boullier

T Ty T Conditions Relations
any & any oy = az 0y <~ 03
Y
any ¢ .. ay =7 Nag=¢ 0l < 03
any ol = ay 01 <> 09
Y
any aLb=yNag=¢ 01 < 09
Y
any ay=cNay=r 01 = 09
v oy ..
Table 1: <, =, and <~ definitions.

Our algorithm will simply compose the previous relations in order to relate an object where
a symbol is pushed to the object(s) where this very symbol is popped in order to finally answer
the question: is there at least one valid spine between o0; and o, where o; is initial and oy is
final?

Formally the valid spine relation, denoted by X, is defined by

l
X = {(01,02) |01 EVE ANos €V Aoy = 0y}

where ~, the valid sub-spine relation, is the smallest solution of the following recursive
equation

~y
-

&S

y
N o= <-U<

We will implement this computation as the limit of the composition of the L, <, and o~

relations and we will show that this algorithm has an O(nr®)-time upper bound complexity.

The laws governing this composition are shown in Table 2 where 0, and 03 are any objects
and o, always designates a primary object®.

These composition rules are applied until no more new element can be added to any of these
relations’.

If an initial object 0, and a final object 0y are such that o; X oy, this means that there
is (at least) one valid spine between these objects. Conversely if there are initial objects with
no corresponding final object (in X), or final objects with no initial object, this means that

there is no valid spine starting (or ending) at that object and that the productions where these

SIf unrestricted stack schemas have been used, for example, the composition of :1 and (;f would have led to

[e3
three possibilities, depending upon the stack suffixes a; and as, namely <~ if a1 = as, Jifag = ahag, and -

if &y = as.

"The algorithm in [3] computes all valid sub-spines of length k (k-spines) from k — l-spines and the initial
relations. This is wrong since the set of k-spines can be empty though the set of h-spines with h > k, can be
non empty. Moreover, k-spines can not always be composed from k — 1-spines and 1l-spines (or l-spines and
k — 1-spines).

INRIA

L 00 AROUCr AT) ILECOYILelcOne AtGOT L. . .

¥ ¥
01 < 09 and 09 < 03 = 01 < 03
¥ v
01 < 09 and 09 = 03 = 01 <> 03
¥ ¥
01 <= 09 and 02 < 03 - 01 < 03
01 <= 09 and 02 <> 03 - 01 <> 03
¥ ¥
01 <= 09 and 02 = 03 - 01 = 03
¥ ¥
01 > 09 and 09 < 03 = 01 = 03
Table 2: Valid Composition of relations.

objects occur are invalid w.r.t. the LIG conditions and therefore should be erased. This erasing
of productions in the LIGed forest L* for x, creates a new LIG say L”.

The string z is an element of the initial LIG L iff the language of the CF-backbone for L*
is non empty.

The procedure in Table 3 implements the definition of the initial relations given in Table 1.

(1) procedure init-relations ()

(2) R=29

(3) VS ={olo—Te P

(4) for each o' = [X](7'a’) in VH5 do

(5) for each o — I'y [X](m22)'; in PF U {S'() — 5%()} do
(6) if 7, = ¢ then o = [X]|(m) end if

(7) if a; = o then R = RU {(0,<~,0")}

(8) else if a; = v and a’zathenR:RU{(o,L,o’)}
(9) else if a; = ¢ and o/:’ythenR:RU{(o,Q,o’)}
(10) end if

(11) end do

(12) end do

(13) end procedure

Table 3: The initial relations R :l U ; U <.

At line (2) , R,which will hold all the initial relations, is initialized to the empty set.
Line (3) collects in VZ#5 the LHS objects. The loop at lines (4-12) examines each such LHS
object o' which is supposed to be an [X]-object. The embedded loop at lines (5-11) selects the
productions with an [X]-object in RHS. Note that we have added a new production S'() — S%()
which introduces a new initial object S%() called the start object. This augmented LIG and
its start object allow us to handle spines whose initial object non-terminal symbol is the LIG
start symbol. The first member of a relation is a LHS object o, except when the RHS object
[X](720) is secondary (and therefore initial), this case is processed at line (6). The choice of the

RR n"2730

rerre boullier

relations is governed by the relative values of the stack schemas (73a2) and (7'a’). Lines (7-10)
select the appropriate initial relation. The case where o = v, o/ = 4/, and v # ' (push of v
immediately followed by a pop of 4') is erroneous.

An other view is to consider R as defining a FSA (Q, ¥, go, 6, F') in the following way:

Q= Vo U{X*(), 50}
e X =() x & where S is the set of 2|V}| + 1 relation symbols.

e ¢ =15).
o F=VF
o (0,1,0) € R = o € 6(0,(d),7)) and 0 € VU {5°()} = 0 € (qu, (o, <-)

We can easily see that the strings in its language (01,71)...(0;,7i)...(0,,7p) are such that
01...0;...0, are the spines in definition 8 and that they are valid when the sequence of relation
symbols ry ...7;...7r, can be composed into the only relation <~. This FSA can be related with

the one denoted Mg, and defined in [18].
The procedure in Table 4 describes the way these initial relations are augmented in using
the composition rules of Table 2. The parameters oy, r and o3 of this procedure are such that r

is any relation symbol l, ;, or <~ and that (02,7, 03) is an element of R. U is the subset of R

whose elements have not yet been composed. This procedure tries to compose (03,7, 03) to its
left (resp. right) at lines (2-7) (resp. lines (8-13)) with an element (01,71, 02) (resp. (03,71,04))
of R when this composition ry or (resp. rory) is valid w.r.t. the rules of Table 2. If the resulting
element (01,7, 03) (resp. (02,7, 04)) is new, it is added to both R (it’s a new element) and U
(it should be composed latter on). We see at lines (2) and (8) that both a left and a right

compositions are tried. These left and right compositions are mandatories since the laws in
oy o Ya MW M
Table 2 are not associative. For example look at the composition of 0; < 0, < 03 > 04.

procedure compose (03,7,03)
for each (0y,71,02) in R do
ifrior=r"Ao1,7",03) € R then
R=RU{(01,7",03)}
U=UU{(0o1,7",03)}
end if
end do
for each (03,71,04) in R do
ifrory =71 A(oz2,7",04) € R then
R =RU{(02,7",04)}
U=UU{(02,7" 04)}
end if
end do

end procedure

— = == = O 00 =T O O W N

e~~~ o o p— p— — —
RO Y

Table 4: The compose procedure.

INRIA

L 00 AROUCr AT) ILECOYILelcOne AtGOT L. . .

function recognize (L, z) return boolean
let L = (VN, VT, V[, PL, S)
create G = (Vy, Vp, Pg, S) /* its CF-backbone */
create G* = (Vy§, Vf, P&, S%) /* its shared parse forest for « */
if £L(G*) = () then return false end if
create L” = (V§, Vi, Vi, Pf,S%) /* its LIGed forest */

TN TN TN TN N N
S O = W N —
e e e e e e

call init-relations ()
U=TR
for each (o0y,7,02) in U do
U=U—-{(01,7,02)}
call compose (01,1, 07)
end do
M= {(01,02) | (01,=<=,02) E R Noy € VENo, e VI}
I ={o1] (01,02) €X}
F ={o0y] (01,0) €M}

— = = = = = O 00~

e, o, o, —
R N N

if S*() not in / then return false end if
for each r,() = 0p — I'1o,Iy in P¥ do
if 0y In V(jg and oy not in F or
o, in V5 and o, not in [then
erase r, In PE
end if
end do
return useless-symbol-elimination(P%) # ()
end function

o G G Gy N Y

[N)

= W N — O © o -1

e e e e e e e e e

2

Table 5: The Recognition Algorithm.

The main function which describes our recognizing algorithm is in Table 5.

Its parameters are a LIG L and an input string x. At line (3), G denotes its CF-backbone.
The shared parse forest G* at line (4) is supposed to have been computed by any general
CF-parsing algorithm. If @ ¢ L£(G), it will not be in £(L) either (line (5)). At line (6), L”
denotes the corresponding LIGed forest. The set ¢, whose initial value is set at line (8), holds
at each time the subset of R which has not yet been composed. The loop at lines (9-12) tries to
compose each new element. The ultimate goal is the computation of the valid spine relation X
at line (13). The set [line (14) (resp. F line (15)) contains all initial (resp. final) objects starting
(resp. ending) a valid spine. When the start object S¥() is not an element of /, this means that
there is no valid spine starting at the root and therefore the recognizer failed (line (16)).

Since G is the CF-backbone of L*, each time a production r,() in P{ contains a non valid
initial or final object, its corresponding production r, in P% is erased (see lines (17-22)). At
line (23) we assume that a classical algorithm eliminates from PZ all useless symbols. If the
resulting production set is not empty, it contains a production of the form [S]§ — ... which

RR n"2730

rerre boullier

shows that x is a sentence of that reduced production set and therefore that = is an element of
L% and hence an element of L.

5 Its Complexity

Recall that the complexity of this algorithm is evaluated on binary form grammars (i.e. the
length of their RHSs is at most two). The influence of this restriction is discussed at the end
of this section.

Objects in LIGed forests are of the form [A]!(ra). The maximum number of ranged-symbols
[A]} is O(n?) where n is the length of the input string. All other parameters (non-terminals and
stack schemas) are constant for a given LIG L. Therefore, the size of any set which contains
objects has an O(n?) upper bound, especially I, F', and VZ#% while the maximum size of the
relations (sets of couples) is O(n?*). Moreover, we assume that it takes a constant time to test

or to add any element in a set.

5.1 Complexity of the init-relations procedure

In Table 3, we have:

line (3) A single pass over P§ computes VIS whose size is O(n?), in time O(n?).

lines (6—10) Each activation of this body is performed in constant time.

lines (5—11) For a given ranged-non-terminal [X] there are at most O(n) occurrences of [X]
in the RHSs of Pf. Therefore, each activation of this loop takes O(n) time.

lines (4-12) That loop is executed O(n?) times so it takes O(r?) time.

lines (1-13) At the end the time complexity of init-relations is O(n®).

Since the body part (lines (7-10)) where the initial relations are computed is executed
at most O(n®) times, the initial size of R is O(n®). When the grammar is in binary form, the
number of [X]!-productions and the number of productions where the non-terminal [X]} occurs
in RHS is O(n). This means that the number of triples (o,r,0’) or (¢',r,0) in R where a given
object o occurs as first or last member is at most O(n).

5.2 Complexity of the compose procedure

In Table 4, we have:

lines (3—6) and (9-12) Each of these loop bodies takes a constant time.

lines (2—-7) (resp. (8-13)) For any object 0y (resp. o3) this loop is executed O(n?) times.

Therefore, in the worst case, the time complexity of each call of the compose procedure is

O(n?).

INRIA

L 00 AROUCr AT) ILECOYILelcOne AtGOT L. . .

5.3 Complexity of the Recognition Algorithm

In Table 5, we have:

line (4) Can take O(n®) with the appropriate CF-parsing algorithm since the length of the
longest RHS is two.

line (6) The LIGed forest is almost simply a copy of the shared parse forest and therefore
takes O(n?).

line (7) Takes O(n®) (see 5.1).

lines (9—12) The cardinality of & is O(n*) and each element is examined only once, this loop
is executed O(n?) times and since each call to compose takes O(n?) (see 5.2), the overall
time is at most O(n®).

lines (13—15) These sets could be computed as a by product of the init-relations or compose
procedures, here they are extracted in O(n?) time.

lines (17-22) Takes O(rn®).

line (23) A classical algorithm for the elimination of useless symbol is performed in time linear
with the size of the grammar, so in our case it will take O(n?).

Therefore, in the worst case, for a non cyclic grammar in binary form, the time complexity
of our recognition algorithm is O(n®). Its space complexity is O(n?) since it essentially handles
on one side a LIGed forest whose size is O(r®) and on the other side relations whose size is
O(n*) since they are mainly couples of objects.

We can wonder whether a lower upper bound can be reached for some sub-classes of LIGs.
When the relations are such that their cardinality is in O(n?) and each object could be related
with at most O(n) other objects, it is not difficult to see that our recognizer has an O(n*) worst
time bound, but unfortunately we are not aware of any grammatical characterization of such a
sub-class!

Of course, this recognizer should only be considered as a principle algorithm which must be
improved in practical implementations. One of its defaults is shown by the following example.

Assume that five objects are related by 0; <~ 0, l 03 <> 04 ; 05, we easily see that the element
01 <~ 05 can be got after only three compositions though our algorithm will perform fourteen

compositions! It can be modified to introduce a composition order to avoid the construction
of elements in multiple ways. Though the worst upper bound is not modified, this improved
algorithm can for example check the LIG conditions in linear time when the CF-backbone is
unambiguous. In such a case we know that the shared parse forest is a simple (parse) tree
whose size is O(n) which can be built in time O(r?) by an Earley or generalized LR parsing
algorithm (see [6]). Therefore, for unambiguous grammars, a total recognition time of O(n?)
can be reached.

This shows that our algorithm closely depends upon the actual number of elements in the
relations, and that the complexity decreases with these values. Since the)(rn?) maximum size
seems seldom found in practice, the average behavior of our recognizer is better than its worst
case.

RR n"2730

rerre boullier

It should be pointed out that our algorithm is valid, even without restricting the maximum
length [of the RHSs. The only consequence is that the recognizing time can be increased since
the CF-parsing time (and the size of the shared parse forest) can be of the order O(n'*1). With
this hypothesis, the time taken by the init-relations procedure becomes O(n'*!). However,
the cardinalities of the R and U relations stay in O(n*) and therefore the checking of the
LIG conditions stays in time O(n®). Finally, without restriction, a fair non cyclic LIG can be
recognized by our algorithm in time max(Q(n'*1), O(n®)) and space max(O(n'*1), O(n?)).

6 An Example

In this section, we illustrate our algorithm with a LIG L = ({S,T'},{«a,b, ¢}, {Va, V6,7 }, Pr, S)
where Pj, contains the following productions:

S(..) = S(v)a S(.)—= SCw)b S(..)— S(A)ec S()—=T(.)
T(.v.) — aT(..) T(y) = bT(..) T(y.) = cT(.) T()— ¢

It is easy to see that its CF-backbone (G, whose production set Fg is:

S—Sa S—=S5b S—Se S—=T
T —=al T—-I'T—-cT T-—=c

defines the language L£(G) = {wew' | w,w’ € {a,b,c}"}. We remark that the stacks of
symbols in L constrain the string w’ to be equal to w and therefore the language L£(L) is
{wew | w € {a,b,c}"}.

We note that in L the key part is played by the middle ¢, introduced by the last production
T() — ¢, and that this grammar is non ambiguous, while in G the symbol ¢, introduced by
the last production T" — ¢, is only a separator between w and w’ and that this grammar is
ambiguous (any occurrence of ¢ may be this separator).

Let & = cec be an input string, we wish to know whether z is an element of £(L).

Since x is an element of L((), its shared parse forest G* is not empty. Its production set

Pg is:

[5T6 = [STee [STo — [T1o [S16 — [Sac
(516 = [T15 [STo — [T]o [TT5 — [TT3
[T]3 = o[T]; [T = [T]5— TN
[Tli—e [Tlh—c

We can observe that this shared parse forest denotes in fact three different parse trees. Each
one corresponding to a different cutting out of @ = wew’ (i.e. w = ¢ and w' = ¢¢, or w = ¢ and
w' = ¢, or w=ccand W =¢).

The corresponding LIGed forest whose start symbol is S* = [S]3 and production set P¥ is:

[S15(-) = [S15(-ve)e [STo(-) = [TTo(-) [STo(-) = [STo(-7e)e
[STo(-) = [T05(-) — [STo(-) = [TTo(-) [T15(-7e) — €[TT;(-.)
[TT3(-7e) = [TT5(-) [T15() — ¢ [T13(-7e) — €[TT(-)
[TTi() — ¢ [T]o() — ¢

In this LIGed forest there are three a-spines which are shown below with their objects
separated by the appropriate initial relations:
INRIA

L 00 AROUCr AT) ILECOYILelcOne AtGOT L. . .

Though these a-spines are not computed by our algorithm, it is easier to see what happens
directly on them. In particular we can see that the first and last a-spine are not valid since

there is < (or li) without corresponding - (or E) and that only the middle a-spine is valid.

In fact the init-relations procedure computes the initial relations (shown within the a-spines),
and the calls to compose add to R the following elements:

[S130 2 1S3 [SI30) 2 (TR0 [S13() == [T13(-e)

Ye

(SR = TR0 [SBO = [TR(A) (TR = [T
[STo0) = [T15(-7e) - [ST3(-) == TTHO [STo0) =<~ [TTR0)

The valid-spine relation M is {([S]3(),[T]3())} and we have I = {[S]3()} and F = {[T]3()}.

Since the start object [S]3() is in I, the execution of lines (17-22) in Table 5 leads to erase
the productions [T']} — ¢, and [T]; — ¢ in P%. The useless-symbol-elimination function called
at line (23) returns the following (non empty) production set:

[STo = [S1oe (Sl — [T5 (715 — [T]; [T — ¢

which shows that ccc € L(L).

We can remark that, with that example, our recognition algorithm is in fact a parsing
algorithm (i.e. all resulting a-spines are valid). This is not always the case. Assume a LIGed
forest with the following four a-spines: s; = (o01,...,03), s2 = (01,...,04), $3 = (02,...,03),
and sy = (02,...,04). Moreover assume that the only valid a-spines are s; and s4, therefore,
the algorithm will consider that o; and o0y are valid initial objects and that o3 and o4 are valid
final objects and that no production elimination should take place. Therefore, the LIGed forest
is left unchanged but could not be considered as a representation of the shared parse forest for
the initial LIG since there are a-spines sy and s3 which are not valid.

7 The Case of Cyclic Grammars

In this section, we examine the case of cyclic grammars.

When the CF-backbone of a LIG is cyclic, two objects 0; and o; can be identical in some a-
spines (01,...,0i,...,04,...,02,). In fact, if such a cyclic a-spine exists, there is an unbounded
number of a-spines in which the cycle (o;,...,0;) is repeated 1, 2, ... times. The question
being, whether there is among these a-spines, at least one along which a stack of symbols may
be correctly evaluated (i.e. is there a valid a-spine)?

We could check that our recognizer is valid even when the grammar is cyclic, except that
it is possible to avoid the storing of elements like (0, <, 0). If an object o is such that o <> o,
this means that if a stack of symbols is @ when reaching the object o, this stack is still @ when
leaving o, after being modified along the loop summarized by o <~ o. Therefore, as long as LIG
RR n " 2730

rerre boullier

conditions are considered, this case does not need to be registered. We note that an element
o <~ o will appear in R only if there is a loop around o along which the composition of the

relations leads to r. Therefore, the space and time complexity is not changed.
This shows that our recognition algorithm has a time complexity of O(n®) and a space
complexity of O(n?) in all cases, even when the grammar is cyclic.

8 A Cyclic LIG Example

The following LIG, where A is the start symbol:
A(.) = A(.va) A(.)— B(..) B(.7v.) — B(..) B() —a

is cyclic (we have A £ Aand B = Bin its CF-backbone), and the stack schemas in production

A(..) — A(..7,) indicate that an unbounded number of push 5, actions could take place,
while production B(..7,) — B(..) indicates an unbounded number of pops. Its CF-backbone is
unbounded ambiguous and therefore, the number of parse trees for the input string * = a is not
bounded. However its shared parse forest (which is itself a cyclic CFG) and the corresponding
LIGed forest can be computed. Let 0;—0g be denotations for the following objects:

o =[Alg() oa=[Alp(-.) o3 =[A(-7a)
04 = [Blg(..) o5 = [Blg(-7a) 06 = [Blo()

For x = a, the start object of its LIGed forest is o; and its production set is:

0 —> 03 032 — 04 O5 — 04 0Og — a

The initial relations extracted from this LIG by the algorithm in Table 3 are:

R = {(01,<~,02),(02,<~,06), (05, <, 06)}
U {(02,%,0)}
Ya Ya

U {(027 - 05)7 (057 = 05)}
Below we find the elements added by the call to compose.

(01,<~,05) (01,=<-,06) (02,<>,05)
Ya Ya Ya Ya Ya
(0174702) (017{705) (017'<706) (027<705) (027{706)

Ya Ya Ya Ya

(017>'705) (017>'706) (027>'706) (057}706)

The extraction of the valid-spine relation and of the sets I and F' gives:

M= {(o1,06)}
I {o1}
F = {06}

Since the only initial object is 01, and the only final object is 05, no production is erased
at lines (17-22) in Table 5 and therefore the output of useless-symbol-elimination is the initial
shared parse forest itself. This shows that the string a is an element of the given cyclic LIG.

INRIA

L 00 AROUCr AT) ILECOYILelcOne AtGOT L. . .

9 Conclusion

In this paper we have presented a new recognition algorithm which works for the class of mildly
context-sensitive languages. Though its worst case complexity does not improve over previous
ones (i.e. a O(n®) time and O(n*) space are achieved), the recognizer behaves in practice much
faster than its worst case.

The advantages of this algorithm can mainly be summarized as follows:

e parsing of the input string with the underlying CFG and checking of the LIG conditions
are split into separate phases;

e LIG conditions checking relies upon a very simple principle which can be expressed by
binary relations;

e the recognition test is simply performed by composition of the previous relations;
e therefore, no symbol stack computation is needed;
e it can be applied to unrestricted fair LIGs (though the O(n®) limit can then be exceeded).

We can wonder whether the first point is really an advantage since it can be retorted that
illegal paths should be aborted as soon as possible. Our argument is that it wastes time to
compute symbol stacks in O(n®) along paths which can be discovered as syntactically illegal in
O(n?).

This algorithm is implemented in a prototype system which is part of an ongoing effort to
get a set of parsers for various NL formalisms.

References

[1] ABEILLE, A., and SCHABES, Y. 1989. Parsing idioms in lexicalized TAGs. Proceedings of
the fourth conference of the ACL.

[2] AHO, A. V. 1968. Indexed grammars—An extension to context free grammars. J. ACM,
Vol. 15, pp. 647-671.

[3] BOULLIER, P. 1995. Yet another O(n®) recognition algorithm for mildly context-sensitive
languages. Proceedings of the fourth international workshop on parsing technologies, pp 34-

47.

[4] EARLEY, Jay C. 1968. An efficient context-free parsing algorithm. Ph.D. thesis, Carnegie-
Mellon University, Pittsburgh, PA.

[5] Kasami, T. 1965. An efficient recognition and syntax algorithm for context-free languages.
Technical Report AF-CRL-65-758, Air Force Cambridge Research Laboratory, Bedford, MA.

[6] Kipps, J. R. 1989. Analysis of Tomita’s algorithm for general context-free parsing. Interna-
tional Parsing Workshop’89, pp. 193-202.

[7] KILGER, A., and FINKLER, W. 1993. TAG-based incremental generation. German Research
Center for Artificial Intelligence (DFKI), Technical Report, Saarbriicken (Germany).

RR n"2730

rerre boullier

[8] LANG, B. 1974. Deterministic techniques for efficient non-deterministic parsers. Auto-
mata, Languages and Programming, 2nd Colloquium, Lectures Notes in Computer Science,

Springer-Verlag, Vol. 14, pp. 255-269.

[9] LANG, B. 1991. Towards a uniform formal framework for parsing. Current Issues in Parsing
Technology, edited by M. Tomita, Kluwer Academic Publishers, pp. 153-171.

[10] LANG, B. 1994. Recognition can be harder than parsing. Computational Intelligence, Vol.
10, No. 4, pp. 486-494.

[11] PAROUBEK, P., SCHABES, Y., and JosHI, A. K. 1992. XTAG-a graphical workbench for
developing tree-adjoining grammars. Third Conference on Applied Natural Language Pro-
cessing, Trento (Italy).

[12] POLLER, P. 1994. Incremental parsing with LD/TLP-TAGs. Computational Intelligence,
Vol. 10, No. 4, pp. 549-562.

[13] REKERS, J. 1992. Parser generation for interactive environments. Ph.D. thesis, University
of Amsterdam.

[14] ScHABES, Y. 1994. Left to right parsing of lexicalized tree-adjoining grammars. Compu-
tational Intelligence, Vol. 10, No. 4, pp. 506-524.

[15] TomrTa, M. 1987. An efficient augmented context-free parsing algorithm. Computational
Linguistics, Vol. 13, pp. 31-46.

[16] VIJAY-SHANKER, K. 1987. A study of tree adjoining grammars. PhD. thesis, University
of Pennsylvania.

[17] VIJAY-SHANKER, K., and JosHI, A. K. 1985. Some computational properties of tree ad-
joining grammars. 23rd Meeting of the Association for Computational Linguistics, Chicago,

pp- 82-93.

[18] VIJAY-SHANKER, K., and WEIR D. J. 1993. The Used of Shared Forests in Tree Ad-
joining Grammar Parsing. Proceedings of the 6th Conference of the FEuropean Chapter of
the Association for Computational Linguistics (EACL’93), Utrecht, The Netherlands, pp.
384-393.

[19] VIJAY-SHANKER, K., and WEIR D. J. 1994. Parsing some constrained grammar formal-
isms. ACL Computational Linguistics, Vol. 19, No. 4, pp. 591-636.

[20] YOUNGER, D. H. 1965. Recognition and parsing of context-free languages in time n®.

Information and Control, Vol. 10, No. 2, pp. 189-208.

INRIA

/¢

Unité de recherche INRIA Lorraine, Technopble de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhone-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex 1
Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
ISSN 0249-6399

