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Ordres représentables par des sous-arborescences

Résumé : Nous introduisons la classe des ordres représentables par des sous-arborescences
d’une arborescence. Cette classe généralise la classe des ordres d’intervalles de maniére simi-
laire & la généralisation de la classe des graphes d’intervalles par celle des graphes triangulés.
Cette classe contient les ordres d’intervalles, ’ordre dual de tout ordre d’intervalles généra-
lisé et les ordres de hauteur un. Nous proposons une caractérisation par une famille infinie
de sous-ordres minimaux exclus tout en donnant un algorithme efficace de reconnaisssance.

Mots-clé : Ensembles ordonnés, ordres d’intervalles, sous-ordres minimaux exclus, algo-
rithme de reconnaissance.
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4 D. Kratsch and J.-X. Rampon

1 Introduction

The motivation of this work is to extend the class of interval orders in a fashion similar to
the extension of interval graphs to chordal graphs. For more details on these graph classes
we refer to [6]. Generalized interval orders, a class of orders extending the successor set
inclusion property of interval orders, has been introduced by Faigle, Schrader and Turfan
in [3]. A survey about two other generalizations of interval orders, one allowing intervals to
overlap with a given ratio and the second dealing with intervals of partial but no more total
order, has also been done by Bogart in [1].

We have chosen the characterization of chordal graphs as intersection graphs of subtrees
of a tree and the ‘visibility definition’ of interval orders for extending interval orders. The
combination of these two concepts leads to a class of partially ordered sets defined via
visibility in a rooted directed tree. By definition, the tree-visibility orders contain all interval
orders. Moreover, they also contain the dual order of any generalized interval order and they
contain all height one orders. Our major contributions are a characterization of tree-visibility
orders by an infinite family of minimal forbidden suborders and an O(nm) recognition
algorithm for tree-visibility orders, where n denotes the number of elements of the given
order P and m denotes the number of edges in the comparability graph of P.

2 Preliminaries

Most of the terminology on partially ordered sets (orders for short in the sequel), used in
this paper, can be found in the book of Trotter [8]. However, we choose for definition of the
height of an order the number of elements of a maximal sized chain minus one. For graph
theoretic notions we refer to [2].

We only mention some notions concerning characterizations by forbidden suborders. Let
P = (V,<p) be an order. The order P’ is a suborder of P if there is a subset A C V being
the ground set of P’ such that a <p/ b if and only if @ <p b for any a,b € A. We also say
that P’ is the suborder of P induced by A and we denote P’ by P[A]. Furthermore, P — A
denotes the suborder P[V \ A]. An order Q is contained (as a suborder) in the order P if
there is a suborder P’ of P which is isomorphic to Q.

A class P of orders is hereditary if P € P implies that any suborder P’ of P belongs to P.
Many interesting classes of orders are hereditary, as e.g. interval orders and two dimensional
orders. If a class P is hereditary then it can be characterized by the (possibly infinite) list
of all its minimal forbidden suborders, where @ is a minimal forbidden suborder of the class
P if @ € P but any proper suborder of @ belongs to P. Then an order P belongs to the
hereditary class P if and only if none of the minimal forbidden suborders of P is contained
as a suborder in P. This nice type of characterization is certainly a very powerful tool when
studying a class of orders. We are going to present an infinite list of minimal forbidden
tree-visibility orders.

INRIA
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3 Definition of tree-visibility orders

We introduce a new class of orders extending the class of interval orders. Notice that in a

rooted directed tree each edge is directed away from the root.

Definition 1 An order P = (V,<p) is a tree-visibility order if there ezists a rooted directed

tree T = (V(T),E(T)) and a one-to-one mapping from V to a multiset (I, v € V) of

directed rooted subtrees of T such that u <p v if and only if

(i) V(T) N V(T]) =0, and

(éi) there are z, € V(T;) and xz, € V(f;) such that there is a directed path from z, to x,
1.

The rooted directed tree T is said to be a visibility tree of P and the tuple (f, (T;, zeV))

s said to be a tree-visibility model of P.

Remark 1 Replacing the condition (ii) in the definition by the condition

— —

(ii’) there is a xy, € V(Ty) such that for any x, € V(Ty) there is a directed path from z,
to xy in f,

creates an equivalent definition of tree-visibility orders.

6

6 563

3 4 5 /\ ¢
3 4 5 543
L /N

15 23
1 2
(a) (b) (c)

Figure 1: In (a) a tree-visibility order P = (V,<p) is given. In (b) the forcing graph (see
Section 5) of P, that is not chordal, is depicted. In (¢) we give a visibility tree for P. The
nodes of T are labeled in such a way that for any @ € V the subtree T, is induced by all
nodes of T having label z.

Notice that several elements of a tree-visibility order P may be associated to the same
subtree of a visibility tree T of P. Clearly, a tree-visibility order may have several visibi-
lity trees and, moreover, a tree-visibility order P may have several tree-visibility models
(f, (T;, z € V)) for a fixed visibility tree T.

RR n 2683



6 D. Kratsch and J.-X. Rampon

4 Classes of tree-visibility orders

In this section we show that tree-visibility orders extend two well-studied classes of orders,
the height one orders and the interval orders. Despite the fact that our characterization of
tree-visibility orders given in Section 7 directly implies the inclusion of these two classes. We
give a direct proof here such that the reader becomes familiar with tree-visibility models.
We denote by z ||, y the fact that # and y are incomparable in P.

Theorem 1 Any height one order is a tree-vistbility order.

Proof: Let P = (V, <p) be an height one order. Let A = {a1,as,...a,}, r > 1, be the set
of minimal elements of P and let B = {b1,bs,...bs}, s > 0, be V \ A. Clearly any element
of B is a maximal element of P.

We construct a visibility tree 7' of P. The vertex set of 7' is V(T) = {u} U{v1, va, ... v,}.
The edge set of T is E(f) ={(u,v;) : i=1,2,...r}. The subtrees T., are induced subtrees
of T', hence it suffices to give their vertex sets. For any a; € A we take V(1},) = {v;} and
for any b; € B we take V(1};) = {u} U{v; : a; ||, b}

Finally the constructed tuple (f, (f;, z € V7)) is shown to be a tree-visibility model of P.
Clearly for any ¢ # j a; || a; by condition (ii) and b; ||, b; by condition (i) of Definition 1.
Now consider a pair a; € A and b; € B. By the construction of the subtrees T;, and T;j
condition (ii) is always fulfilled. By our construction of T;j we have V(Tzl) N V(T;j) # 0 if
and only if @; ||, b;. Hence P is a tree-visibility order. [ ]

Our definition is an extension of the ‘visibility definition’ of interval orders (see [8]). Thus
the following theorem is expected.

Theorem 2 Any interval order is a tree-visibility order.

Proof: Let P = (V,<p) be an interval order. The visibility tree T is a directed path for
which the vertices correspond to the endpoints of the intervals in the interval model of P.
The subtree T}, associated to the element z of P is a directed subpath and consists of all
vertices associated to interval endpoints r with a(z) < r < b(z), where a(z) (respectively
b(z)) denotes the left endpoint (respectively right endpoint) of the interval associated to .
It follows immediately from the definition of an interval order that the defined tuple is a
tree-visibility model of P. Hence P is a tree-visibility order. [ |

5 Chordal sandwich graphs

We start with an easy observation.

Property 1 The class of tree-visibility orders is hereditary,

INRIA
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Proof: Let (f, (T;, z € V)) be a tree-visibility model of an order P = (V, <p) and let P’
be a suborder of P induced by the set A C V. Then (f, (T;, z € A)) is a tree-visibility
model of P’. ]

Hence it would be desirable to characterize the class of tree-visibility orders by giving a
list of all minimal forbidden suborders. Next we present two interesting technical lemmata
on tree-visibility orders.

Lemma 1 Let P = (V,<p) be a tree-visibility order and (T _', <T;, z €V)) a tree-visibility
model ofP Then for any u € V the (unzque) directed path P(u) from the root of T to the
root ofT contains the root of the subtree T, for any v € V with u <p v.

Proof: Let u <p v. Then V(7, )ﬂ V(T, ) = 0 and there are z, € V( U) and z, € V(T )
such that there is a directed path from z, to Ty in 7. Hence Ty and the root of T are
vertices on the directed path from the root of T' to z,. Since V(Tu)N V(T ) = () the root of
T:, does not belong to V/{( U) and there is a directed path from the root of T, to the root of
T.,, i.e., the root of T}, is on the directed path P(u). ]

Corollary 1 Let P = (V,=<p) be a tree- visibility order and (T T, (T;, x € V)) a tree-visibility
model of P. Then u <p v if and only zf V(T )ﬁV(T ) =0 and the root of Ty, is an ancestor
of the root of Tu in the vistbility tree T for each pair u,v € V.

Lemma 2 Let P = (V,<p) be a tree-visibility order and (f, (T;, z €V)) a tree-visibility
model of P. Then V(Ty) NV (Ty) # 0 holds for any pair of incomparable elements z,y € V
having a common predecessor z.

Proof: Let x and y be two incomparable elements with a common predecessor z. By
Lemma 1 we have that the root of T and the root of 7T, occur on the unique directed

path P(z) from the root of T to the root of T; Hence there is either a directed path from
the root of T to the root of T, or vice versa. Hence z and y must be incomparable because

of V(Ty) NV (T,) # 0. [

The previous lemma leads to the following concept of a forcing graph which is helpful
when studying tree-visibility orders. It gives an easy tool for showing that a certain order is
not a tree-visibility order.

Definition 2 Let P = (V,<p) be an order. The undirected graph G = (V, E) with E =
Hz,y} : z||p y for which x and y have a common predecessor} is called the forcing graph

of P.

The forcing graph of an order is a subgraph of the cocomparability graph.

RR n 2683



8 D. Kratsch and J.-X. Rampon

Definition 3 Let P = (V,<p) be an order. The undirected graph G = (V, E) with E =
{{z,y} : 2 ||, y} is called the cocomparability graph of P.

We are going to show that the existence of a tree-visiblity model for an order P requires
that there exists a chordal sandwich graph between the forcing graph and the cocompara-
bility graph. The concept of a sandwich graph has been introduced and extensively studied
by Golumbic, Kaplan and Shamir [7].

Definition 4 A graph G is a spanning subgraph of the graph G’ if both graphs have the
same vertez set and G is a subgraph of G' (i.e. E(G) C E(G)).

Definition 5 Let G = (V, E) be a spanning subgraph of the graph G' = (V,E'). Then
H = (V,E(H)) is said to be a sandwich graph of (G,G") if G is a spanning subgraph of H
and H is a spanning subgraph of G' (i.e. E(G) C E(H) C E(G")).

Now we will point out the relation of tree-visibility orders and sandwich graphs.

Theorem 3 Let P = (V,<p) be an order, G its forcing graph and G' its cocomparability
graph. If P is a tree-visibility order then there exists a chordal sandwich graph H for (G,G").

Proof: Let P = (V,<p) be a tree-visibility order and (f, (T;, z € V)) a tree-visibility
model of P. Let T" be the underlying undirected graph of T and for any ¢ € V let T be
the underlying undirected graph of T.,. Hence (Ty : x € V) is a collection of subtrees
of the tree T'. Let H = (V, E(H)) be the (vertex) intersection graph of the subtrees T,
z €V, ie, u,v €V are adjacent in H if and only if V(T,) NV (Ty) # 0. H is a chordal
graph since it is the intersection graph of subtrees of a tree [5]. The forcing graph G of P
is a spanning subgraph of H, since {u,v} € E(G) implies V(T;) n V(T;) # 0 by Lemma 2,
hence {u,v} € F(H). H is a spanning subgraph of the cocomparability graph G’ of P since
{u,v} € F(H) implies V(T;) N V(T;) # 0 thus u || v, by Definition 1. Consequently, H is
a chordal sandwich graph for (G, G"). [ ]

6 Forbidden suborders

We present an infinite list of minimal forbidden suborders for the class of tree-visibility
orders.

Definition 6 Letk > 1. The order Qy, has groundset V = {a1,as,...,ar}U{b1,ba, ... bry1}U
{c1,c2}. Furthermore, a; <g, b; if and only if j € {i,i+1}, a; <g, ¢; foralli € {1,2,...k}
and j € {1,2}, b; <q, ¢1 fori € {1,2,...k} and b; <q, c2 fori € {2,3,...k + 1}. (See
Fig. 2.)

INRIA
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ai az as ag

Figure 2: The forbidden order Q.

Theorem 4 The order Q is a minimal forbidden suborder for the class of tree-visibility
orders for any k > 1.

Proof: First we show that for any ¥ > 1 the order @ is not a tree-visiblity order.
Assume that @ would be a tree-visibility order for some & > 1. We consider the for-
cing graph G of Qp. The graph G is not chordal, since it contains the chordless cycle
C = (by,ba,...br41,c1,c2,b1). By Theorem 3, there is a chordal sandwich graph H for the
pair (G, G") where G’ is the cocomparability graph of Q. Taking the vertices ¢; and cs of
the cycle C there is no vertex b;, j € {1,2,...,k+ 1}, in the cycle C adjacent to ¢; and c;
in H since the only neighbours of ¢; in G’ are ¢s and bg41 and the only neighbours of ¢4
in G’ are c¢; and b;. Take ¢; and c5 and the vertices of a shortest path between ¢; and ¢
in the graph obtained from H[C], the graph induced in H by the vertices of C, by deleting
the edge {¢1, c2}. This vertex set induces a chordless cycle of length at least 4 in H. Hence,
H is not chordal. Consequently, none of the order Qx, k > 1, is a tree-visibility order by
Theorem 3.

Finally it is a matter of routine to construct a tree-visibility model for any proper su-
border @ — {z}, + € V, of Qi and any k > 1 (see Figure 3 for a tree-visibility model of
Qs — {bs}). -

The following proposition is crucial for the correctness proof of our recognition algorithm
for tree-visibility orders. Moreover, it is a major step in showing that the order Q, k& > 1,
are exactly all minimal forbidden suborders for the class of tree-visibility orders.

We shall need some more technical concepts for the proof of the main theorem. Let
P = (V,<p) be an order. We denote the set of all maximal (respectively, minimal) elements
of P by MAX(P) (respectively, MIN(P)). Pred(z) :={y €V : y<p z} and Suce(z) :=

RR n 2683
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1 ¢
/\
by ¢a c1 bs
$ i
b1 b by bs
/\ /\
aq b1 as as by aq

Figure 3: The tree visibility model produced by the algorithm TREE-VISIBILITY of Section 7
for the order Q4 — {bs}.

{y € V : z <p y} are the predecessor set and successor set, respectively, of an element
xeV.

The following concept is important for the recognition algorithm. An element z €
MAX(P) is said to be universal if its predecessor set Pred(z) := {y € V : y <p z}
is equal to V(P) — M AX(P). Hence a maximal element x is universal if it is only incompa-
rable to all other maximal elements of P.

An order P = (V, <p) is said to be connected if its comparability graph G(P) is connec-
ted. Let u and v be elements of a connected order P. Then there is a shortest u,v-path
(v = xg,21,...,2, = v) in G(P) such that the internal vertices 1,...,2,_1 of the path
are alternately minimal and maximal elements of P. Such a u, v-path is said to be normali-
zed. To see that a normalized path exists for any pair u,v € V take any shortest u, v-path
(v = yo,¥1, ...,y = v) in G(P). Then either y;_1 <p y; and y;41 <p Yi, Or ¥; <p Yi—1
and y; <p yiy1 forany i € {1,...,r —1}. If y; & M AX(P) in the first case then replace it
by a maximal element y; that is a successor of y;. If y; & MIN(P) in the second case then
replace it by a minimal element y; that is a predecessor of y;. This leads to a normalized
path between u and v.

In the remainder of the paper we will only consider normalized paths
(v = zo,21,...,2, = v) between maximal elements of an order. Thus #; is a minimal
element if 7 is even and x; is a maximal element if ¢ is odd. Moreover, r is even.

Proposition 1 Let P = (V,<p) be a connected order, P— M AX(P) connected and assume
that P has no universal element in MAX(P). Then P contains ¢ Qi as a suborder for
suitable k > 1.

INRIA
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Proof: Let P be an order fulfilling the conditions of the theorem. We denote the connected
suborder P—M AX(P) by P’. We say that a maximal element « of P has a private predecessor
pg if pr <p 2z and p; ||, y for all y € (MAX(P) \ {z}).

Case 1: P has a maximal element x with a private predecessor p,.

W.l.o.g. p; is a maximal element of P’. Since x is not a universal element of P there are
elements u € MAX(P') with u ||, z. We choose t € MAX(P'YN{u : u ||, ¢} such that
the length of a shortest path between ¢ and p; in G(P’), is minimum among all elements
u € MAX(P') that are incomparable to z. Let (p, = xo,21,...,22s = t), s > 1, be a
normalized p;,t-path in P’. Clearly the set A = {p, = zo,z1,...,22; = t} induces a fence
in P’. Furthermore x5, € MAX(P') for all i € {0,1,...,s}. By the choice of ¢t we have
zo; <p v foralli e {0,1,...,s —1}.

Since t is not a maximal element of P there is a y € M AX(P) with t <p y. Furthermore
there is a j with 4 ||, y since p; is a private predecessor of # = zo implying « ||, y. Now
let j be the largest subscript such that zs; ||, y. Then the set {, z2;, £2j41, ..., 22, = ¢, y}
induces a Q,_; in P.

Case 2: No maximal element of P has a private predecessor.
We choose among all elements of M AX(P’) an element w having a successor set of minimum
cardinality. Then let R C M AX(P) be a subset of Succ(w) containing all but one of the
successors of w in P. Notice that R # 0. By the choice of R every maximal element of P’
belongs to P — R and has at least one successor in P — R. Thus, the maximal elements of the
order P— R are exactly the elements of M AX (P)\ R. Hence the order (P—R)—(MAX(P—
R)) is exactly P’ and hence connected. Furthermore, P — R has no universal element since
any universal element u € M AX (P — R) of P — R had to fulfil M AX(P’) C Pred(u) which
would imply that u is universal in P, a contradiction. Moreover w is private predecessor of
z that is the only successor of w in P not belonging to R.

Altogether, P — R fulfils the assumptions of Case 1. Hence, P — R has a @ for some
k > 1 as a suborder. Hence @y is also a suborder of P. [ |

7 Recognition algorithm

The aim of this section is to present an efficient algorithm recognizing tree-visibility or-
ders. Furthermore, if the given order P is indeed a tree-visibility order then the algorithm
constructs a somewhat compact tree-visibility model of P.

We have chosen to describe this algorithm in its natural recursive manner by giving
a subroutine TREE-VISIBILITY(K, N, INC). The algorithm TREE-VISIBILITY(P) is started
by calling TREE-VISIBILITY(P, R, §) where R is a reference variable pointing to the future
root of the eventual tree-visibility model of the given order P.

Moreover, the algorithm will compute a visibility-tree T of P, if there is one, assigning
to each node N of 7' a label set that is going to be the set of all those vertices u for which
ﬂ; contains the node N.

RR n 2683



12 D. Kratsch and J.-X. Rampon

SUBROUTINE TRrEE-VISIBILITY(K, N, INC)

K: /* Current order. */
N: /* Father of the root of the subtree representing K. */
INC:  /x Set of all elements of the label set of node N that x/

/* are incomparable to all elements of the order K. x/

Begin

Compute M AX(K);

Compute the connected components K, Kq,..., K, of K — MAX(K);
If K — MAX(K) has exactly one connected component

Then
Compute U(K) the set of all universal elements of K;
If U(K) =0
Then
EXIT; output “K is not a tree-visibility order.”
Else

Create a node C with father N and label set INC U M AX(K);
TREE-VISIBILITY(K — U(K); C; INC);
EndIf
Else
Create a node C with father N and label set INC U M AX(K);
For all connected components K; = (V(K;),<p) of K — MAX(K) Do
Compute M; := (Uer(K,) Succ(m)) NMAX(K);
Compute L; :={x € M; : V(K;)\ Pred(z) # 0};
TREE-VISIBILITY(K [V(K;) U L;[;C; INCU (MAX(K) \ M;));
EndFor
EndIf
End;

Theorem 5 Given an order P = (V,<p), the algorithm TREE-VISIBILITY(P) decides whe-
ther P is a tree-visibility order. If so, the algorithm computes a tree-visibility model of P.
The running time of the algorithm is O(nm), where n denotes the number of elements of P
and m denotes the number of edges in the comparability graph of P.

Proof: The algorithm TREE-VISIBILITY(P) terminates in two different ways. Either it out-
puts “P is not a tree-visibility order” since a recursive call of TREE-VISIBILITY(K, N, INC)
found a connected suborder K of P such that K — M AX(K) is connected and has no univer-
sal vertex. Hence K contains a suborder @j for some k > 1 by Proposition 1. Consequently
there is a @ that is a suborder of P, thus P is not a tree-visibility order by Theorem 4.
Otherwise the algorithm TREE-VISIBILITY(P) terminates successfully with the construc-
tion of a tree T such that the reference variable R points to the root of T'. This means that
any subroutine TREE-VISIBILITY(K, N, INC) recursively called during the execution of the

INRIA



Tree- Visibility Orders 13

algorithm either terminated by recursive calls of s > 1 subroutines where s is the number
of connected components of K — M AX(K) or by only creating a leaf of the final tree 7' if
V(K) is an antichain, i.e., V(K)\ MAX(K) = 0.

For proving the correctness of the algorithm it suffices to show that the tree 7" with
the label sets assigned to each node of T' constitutes a tree-visibility model of the given
order P. Consider T" as a directed tree T with the root specified by R. For any v € V the
corresponding subtree T, consists of those nodes of 7" that have a label set containing v.
Note that 7}, is a connected subgraph of T. Indeed, if v belongs to the label set of the father
of a node N but v does not belong to the label set of node N then v is not an element
of the order K, i.e., the current order when the node N is created. Moreover, since v does
not belong to the label set of NV, v does not belong to the current INC and hence v does
not belong to an INC for any recursive call creating a node with ancestor N. On the other
hand, if v belongs to the label set of a node N and never appears before on a node in the
path from the root of the tree to N, then v is a maximal element in one of the connected
components of K — MAX(I{’) where K is the current order when N’ the father node of
N has been created. This guarantees that v cannot belong to the current INC when N’
has been created, that v is not a maximal element of K, and that v is not an element of
any of the other order obtained when applying the subroutme to the remaining connected
components of K — MAX(A) Thus N is the root of 7.,.

It remains to show that the final tree indeed creates a tree-visibility model of P. This
follows immediately when noting that our algorithm guarantees that when calling the su-
broutine TREE-VISIBILITY(K; N; INC) the set INC is indeed the set of all elements of P
that belong to the label set of a node in the path from the root of the tree to N and that
are incomparable to all elements of K. This is ensured by the use of the auxiliary sets L;
and M; in the For loop.

Let u <p v. Consider the first subroutine TREE-VISIBILITY(K ; N; INC) executed during
the algorithm for which u € M AX(K) holds. Clearly v ¢ INC and v ¢ V(K). Hence v is
not in the label set of node N and T; and f; have no node in common. On the other hand,
there i1s a directed path from the root of T, to the node N, i.e., the root of u, since K is a
suborder of K, the current order when creating the root of T,.

Finally, consider the execution of TREE-VISIBILITY(K; N; INC) and suppose v € V is
not an element in the label set of node N but it appears in the label set of the father N’ of
N. Then v is an element that has all elements of the order K as successor. This is guaranteed
by the construction of the current orders for the recursive call.

It is not hard to implement the described algorithm such that the running time is O(nm).
The important fact to notice is that the tree T', which is isomorphic to the recursion tree of
the algorithm, has at most n vertices since each node has in its label set an element which
did not appear in the label set of any proper ancestor of the node. Indeed, if N/ is the father
of N then there is an element in the label set of N that belongs to the maximal elements
of the connected component of K — M AX(K) inducing the node N where K is the current
order when creating the node N’. Thus this element can appear only in the label set of
nodes of the subtree of T rooted in N. It is a matter of routine to see that one subroutine
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14 D. Kratsch and J.-X. Rampon

TREE-VISIBILITY(K; N; INC') can be executed in time O(m) using a linear time algorithm
for the computation of the connected components of a graph. [ |

From the proof of the Theorem 5, it appears that the algorithm TREE-VISIBILITY fails
to construct a tree-visibility model of the given order if and only if the order contains a Qy,
k > 1, as suborder. This leads to one of the major results of our paper, namely the already
announced characterization of the tree-visibility orders by an infinite family of forbidden
suborders of height two.

Theorem 6 An order P is a tree-visibility order if and only if it does not contain an order
Qr, k> 1, (see Figure 2) as a suborder.

This characterization immediately implies Theorem 1 and Theorem 2. Furthermore, in [3]
Faigle, Schrader and Turan introduced the generalized interval orders and a linear time
recognition algorithm for generalized interval orders has been given by Garbe in [4]. An
order P = (V,<p) is said to be a generalized interval order if for all z,y € V either
Suce(z)NSuce(y) = 0, Suce(z) C Suce(y) or Suce(y) C Suce(x). Since for any Qp, k > 1, we
have Pred(ci) N Pred(cs) # 0, and neither Pred(ci) C Pred(cs) nor Pred(cs) C Pred(c),
and since any height one order is a tree-visibility order, we get:

Corollary 2 The class of the duals of generalized interval orders s a proper subclass of
the tree-visibility orders.

8 Optimality of the tree-visibility model

The aim of this section is to demonstrate that the tree-visibility model constructed by our
algorithm is optimal in the following sense. The height of the directed tree computed by
the algorithm is minimal among the height of all visibility trees T of any tree-visibility
model (f, (T;, x € V). Since the number of nodes of the tree is bounded by the number of
elements of the given order this shows that the algorithm provides a compact tree-visibility
model.

In order to prove the minimality of the height of the tree, we need the following lemma
which also explains why the label set of the node created during the call of TREE-VISIBILITY
on an order K is chosen as M AX(K).

Lemma 3 Let P = (V,<p) be a tree-visibility order, then for any tree-visibility model

(f, (Ty, z € V) of P there is another tree-visibility model of P on the same visibility tree
T such that the label set of the root of T is MAX(P).

Proof: Let L(f) be the label set of the root of T'. Since L(f) C MAX(P) we assume w.l.o.g.
L(T)# MAX(P). For all e € MAX(P)\ L(T), let A(x) be the set of nodes of 7" which do

not belong to the maximal subtree of T rooted in the root of T... For any such z, the root
of T belongs to A(z) and since z is a maximal element of P any element of P belonging to
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Tree- Visibility Orders 15

the label set of a node in A(x) is incomparable to z in P. By adding # to the label set of
any node in A(z), for any 2 € MAX(P) \ L(f), we obtain a tree-visibility model fulfilling
the claimed property. [ |

Theorem 7 The visibility tree of the tree-visibility model computed by the algorithm TREE-
VISIBILITY is of minimal height.

Proof: We prove the minimality of the height of the visibility tree computed by the algorithm
TREE-VISIBILITY by induction on the number of elements of the given tree-visibility order
P = (V,<p). Note that if P is an antichain then the algorithm computes a tree with a unique
node whose label set is all the elements of P. This tree is obviously of minimal height. This
settle the case |V| = 1 and allow to consider orders of height greater or equal to one.

Assume that |V]| = n with n > 1 and let T be the visibility tree of the tree-visibility
model of P computed by the algorithm TREE-VISIBILITY. Let (g, (S_;c, z € V)) be a tree-
visibility model of P such that both S is of minimal height and the label set of its root is
MAX(P) Notice that such a model exists by Lemma 3.

Let R1 ’Rk be the maximal rooted subtrees of S obtained by deleting the root of S,
Hence k is the number of children of the root of S and k > 1. Let P, = (V(P;),<p) be any
connected component of P — M AX(P). Since MAX(P;) N MAX(P) = 0 the subtree S,
does not contain the root of S for every z € V(F;). Hence for any € V(F;) there exists a
unique j € {1,...,k} such that S, is a subtree of Ri.

We claim that there exists a j € {1,...,k} such that S, is a subtree of Ri for all
z € V(F). To prove the claim let us suppose there would be z,y € V(P;) such that S, is a
subtree of R4 and S is a subtree of R with a #b. Hence z and y are incomparable in P.
Take any z, y-path in G(F;). Then there must be adjacent vertices u; and ;41 in the path
such that the trees Su and Su .41 are subtrees of different R’ s, contradicting the fact that
u; and wu;41 are comparable in P; and P. This proves the claim.

Let H; = {y € MAX(P) . Pred(y) N V(P;) # 0 and V(P;) \ Pred(y) # 0}. Assume
that S, is a subtree of Ri for every x € V(P) Suppose there would exist a y € H not
belonging to the label set of the root of Ri. Hence S does not contain any node of Ri. S,
is a subtree of RJ for any z in M AX(P;), hence V(P;) C Pred(y), contradicting the ch01ce
of y € H;. Therefore H; is a subset of the label set of the root of Ri. .

Clearly (R_} (’Ré, x € V(P YU H;)), is a tree- visibility model of P[V(F;)U H;], where R

1s 8_;3 for z € V(P;) and R% 1s the subtree of S on ’RJ for x € H;. The correctness of the
algorithm TREE-VISIBILITY guarantees that Maxz(P) — H; # 0. By induction hypothesis
TREE-VISIBILITY( P[V(P;)U H,], R, 0) computes a tree-visibility model of P[V(F;)U H;] with
a visibility tree of minimal height. Thus the height of the visibility tree computed by the

algorithm on the input P[V(P;) U H;] is at most the height of Ri. The order P[V(P;)U H,)
is exactly the order given as parameter to the call of TREE-VISIBILITY corresponding to
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16 D. Kratsch and J.-X. Rampon

the connected component P; of P — M AX(P) (when there is only one component then
H;, = MAX(P)\ U(P)). Note that the set INC is never used for the construction of the
visibility tree but only for the label sets. Then for any maximal rooted tree T¢ of T obtained

by deleting the root of T there exists a maximal rooted tree R? of § whose height is at least
the height of 7%. Thus the minimality of the height of & implies the minimality of the height
for T ]

References

[1] K. P. Bogart, Intervals and Orders: What Comes After Interval Orders?, Proceedings
of the International Workshop on Orders and Algorithms ORDAL’9, Lecture Notes
in Computer Science, Volume 831, Springer-Verlag, Lyon, 1994, pp. 13-32.

[2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, New York,
1976.

[3] U. Faigle, R. Schrader, G. Tufan, The Communication Complezity of Interval Orders,
Discrete Applied Mathematics 40 (1992) 19 —28.

[4] R. Garbe, Algorithmic Aspects of Interval Orders, Ph.D. Thesis, University of Twente,
October 1994.

[5] F. Gavril The Intersection Graphs of Subtrees in Trees are Ezactly the Chordal Graphs,
Journal of Combinatorial Theory Serie B 16, 47-56 (1974).

[6] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New
York, 1980.

[7] M.C. Golumbic, H. Kaplan, R. Shamir, Algorithms and Complexity of Sandwich Pro-
blems in Graphs, Proceedings of the 19th International Workshop on Graph-Theoretic
Concepts in Computer Science WG’93, Lecture Notes in Computer Science, Volume
790, Springer-Verlag, Berlin, 1994, pp. 57-69.

[8] W.T. Trotter, Combinatorics and Partially Ordered Sets: Dimension Theory, The John
Hopkins University Press, Baltimore, Maryland, 1992.

INRIA



/¢

Unité derecherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unité derecherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité derecherche INRIA Rhone-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex 1
Unité derecherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité derechercheINRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
ISSN 0249-6399



