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Abstract: We introduce a new method for concurrent mark-and-sweep garbage collection in object-
oriented databases. For this purpose, we define a cut of a database to be a collection containing one
or more copies of every page in the database; the copies may have been made at different times
during the operation of the database. We define a class of cuts called GC-consistent cuts, and prove
formally that a garbage collector can correctly determine which objects to delete by examining a
GC-consistent cut of a database instead of the database itself. We show that GC-consistent cuts can
synchronize the concurrent collector with the mutator, i.e. perform the task usually assigned to a
write barrier: while a database is in operation, a GC-consistent cut of it can be built in an efficient
and inobtrusive way, and, while still under construction, can be used by a garbage collector.

We investigate other fundamental properties of GC-consistent cuts. We compare their consistency
properties with those of causal cuts of distributed systems. We show that although the reachability
of objects in a GC-consistent cut is inherited from the underlying database, many other interesting
properties of the cut are unrelated to those of the database; this weak consistency is related to the
low cost of building GC-consistent cuts.
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write barrier, distributed system.
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Coupes de bases de données cohérentes pour les ramasse-miettes

Résumé : Nous introduisons une nouvelle méthode de ramassage concurrent de miettes dans des
bases de données a objets. Pour cela, nous introduisons la notion de coupe d’une base de données, qui
est une collection contenant une ou plusieurs copies de chaque page de la base ; les copies peuvent
avoir été faites & des instants différents durant le fonctionnement de la base. Nous introduisons
les coupes cohérentes pour les ramasse-miettes, ou coupes GC-cohérentes, et nous démontrons
gu’un ramasse-miettes peut déterminer correctement quels objets d’une base de données doivent étre
détruits en examinant une coupe GC-cohérente de la base a la place de la base elle-méme. Nous
expliquons comment les coupes GC-cohérentes peuvent servir a synchroniser le ramasse-miettes
concurrent avec le mutateur, c’est-a-dire accomplir la tache habituellement assignée aux barrieres
d’écriture. Pendant qu’une base de données fonctionne, une coupe GC-cohérente de cette base peut
étre construite efficacement et, durant sa construction, étre utilisée par un ramasse-miettes.

Nous décrivons d’autres propriétés fondamentales des coupes GC-cohérentes. Nous comparons
leur propriétés de cohérence avec celles des coupes causales de systemes répartis. Nous montrons
que dans une coupe GC-cohérente seule I’atteignabilité des objets est héritée de la base de données
correspondante, tandis que les autres propriétés sont, pour la plupart, indépendantes des propriétés de
la base ; cette cohérence faible est liée au fait que les coupes GC-cohérentes peuvent étre construites
a faible co(t.

Mots-clé : ramassage de miettes concurrent, base de données a objets, coupe causale, coupe GC-
cohérente, barriére d’écriture, systéme réparti.
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1 Introduction

Automatic garbage collection is widely recognized as a fundamental mechanism which needs to
be provided to the developpers of application software. Garbage collection is usually provided by
system software, i.e. by the operating system, by the database management system (DBMS) or by the
runtime environment of a programming language. Unfortunately, garbage collectors (GCs) tend to be
highly obtrusive: their operation is resource-consuming and imposes inconvenient synchronization
requirements upon the rest of the system. This report addresses the question of garbage collection in
databases. It describes a new method for solving the synchronization problems which appear in this
context.

In this work, we assume that the garbage collector does not modify the system in a way observable
by the mutator (the term mutator, introduced by Dijkstra et al. [9] and now widely accepted, represents
all the activities in the system except the GC). This assumption is in agreement with the purpose of
garbage collection, which is to delete garbage objects, that is, objects to which the mutator does not
have access; other objects are not supposed to be modified or moved by a GC, at least in principle.
The assumption is actually satisfied by marking and sweeping, a garbage collection mechanism
well suited for database systems; a description of marking and sweeping, and a concise comparison
between this and other garbage collection mechanisms, are given later on (Section 2.5).

Under our assumption, there is no need to protect the mutator from the modifications introduced
into the system by the collector. But the converse is not true. In order to decide which objects are
garbage, the GC needs to examine the system in its entirety, and if the system is arbitrarily modified
during this examination, incorrect decisions may result. The GC must impose synchronization
requirements sufficiently strong to suppress this problem. With unsophisticated garbage collectors,
these requirements are extreme: for the time of a complete execution of the GC, the mutator is
blocked. In some systems, e.g. in huge databases, an execution of the GC may last up to several
hours. It is annoying, if at all acceptable, to have the system blocked for such an amount of time.

Unsophisticated GCs block all other activities because they are built upon the simplistic idea that
in order to view the system consistently, we must prevent it from being modified while we examine
it. The modern, more sophisticated GCs can execute concurrently with the mutator. This implies
that the system may be modified at any time while the GC is analyzing it. The classical principle
for maintaining correctness despite of this is known as write barriers.® According to this principle,
the GC makes no effort to obtain a consistent view of the system: each object is seen in the state in
which it happens to be when the GC looks at it. Instead, the mutator notifies the GC of every pointer
modification performed while the GC is running. For this purpose, the mutator code is instrumented,
or virtual memory mechanisms are used to detect writes, or, in systems with logging, the log is made
available to the GC and analyzed by it.

1The first algorithm based on write barriers was introduced by Dijkstra et al. [9]. A comprehensive survey of concurrent
garbage collection techniques by Wilson [20] includes a detailed discussion of write barriers. Yong et al. [21] measure the
performance of several classical garbage collection schemes in the context of a persistent store. Hosking et al. [14] measure
the performance of several implementation of write barriers. Concurrent GCs which use write barriers to collect persistent
objects include [3, 18, 2, 15]. See also a barrier-based GC by Doligez and Gonthier [10].
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4 Marcin Skubiszewski and Nicolas Porteix

The notifications are used by the GC to build a list of objects which were reachable at some point
during the garbage detection process, yet which might be improperly seen as unreachable. The GC
considers all objects in the list as reachable; this is sufficient to ensure correctness.

Unfortunately, this form of mutator-collector communication is undesirable in many systems. Let
us mention here its two most important drawbacks. First, the implementations where mutator code
is instrumented are incompatible with existing executable code. In many systems, even user code
needs to be compiled in a special, GC-compatible way. Second, the mutator-collector communication
seriously increases the cost of every pointer update performed by the mutator. In fact, the commu-
nication is more resource-consuming than the update itself, which amounts to an ordinary memory
write. Some overhead remains even while the GC is not running (and thus no actual communication
occurs). The latter fact is obvious in the implementations where user code is instrumented: whenever
a pointer is modified, the instrumented code needs at least to check whether a GC is running. It is
nonobvious, but still real, in the other implementations [3, 18].

These drawbacks lead us to consider a new principle for concurrent garbage collection. We build
a static view of the system which contains no false garbage: an object is seen as garbage in the
view only if it remains constantly garbage in the real system. The GC examines the view instead of
examining the real, ever-changing system. This eliminates the need for the GC to receive corrective
information, and thus allows us to get rid of mutator-collector communication, which is expensive
and complicated.

The key problem lies in building such a static view while the mutator is running. This report
solves the problem in the case of databases. We introduce a category of views of databases called
GC-consistent cuts. GC-consistent cuts contain no false garbage, and can be built concurrently, while
the mutator is running.

GC-consistent cuts are a way to view a database consistently, yet without observing all parts
of it at the same time. They are therefore similar to causal cuts,? which serve the same purpose in
the world of asynchronous distributed systems. There is, however, an important difference between
these concepts. Causal cuts are intended to represent the correct way to observe an asynchronous
distributed system, for all reasonable purposes. GC-consistent cuts, on the other hand, only represent
the proper way to observe a database for the purposes of garbage collection. For other purposes, other
kinds of cuts are expected to be used. In this report, besides the GC-consistent cuts, we introduce
two other kinds of cuts, called respectively GC-consistent simple cuts and causal cuts of databases;
we compare the properties of the three categories of cuts.

The report is organized as follows. In Section 2, we recall basic facts about databases, introduce
the key concepts used in the report, and state the consistency properties which a cut must satisfy in
order to be useful for garbage collection. In Section 3, we define GC-consistent cuts and we state that
they satisfy the previously-defined consistency properties; the proof of this statement is deferred to
Appendix A. In Section 4, we explain how GC-consistent cuts can be used in practice; among others,
we explain how they can be built cheaply and concurrently. Section 5 deals with theoretical aspects
of GC-consistent cuts, and introduces the two other above-mentionned kinds of cuts. It compares the

2Chandy and Lamport [8] introduced a “global-state recording algorithm” which implements one kind of causal cut; then,
Mattern [17] defined causal cuts in the general case. Babaoglu and Marzullo [5] describe causal cuts in detail.

INRIA
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properties of GC-consistent cuts with those of causal cuts. Section 6 summarizes our contribution.
Appendix A contains proofs.

2 Fundamental definitions and assumptions

In this section we recall some concepts related to databases and to garbage collection. We introduce a
graphical notation for describing executions of databases; this notation is similar to the one generally
used for describing causality in distributed systems. We define cuts.

2.1 Transactionsand their properties

An execution (that is, a sequence of operations performed on a database) is divided into chunks called
transactions. Each transaction locks the data to which it has access. A lock permits a transaction
either only to read or both to read and to write specified data. By monitoring locks, an observer
can know which data are read or modified by any given transaction. This knowledge is an essential
prerequisite for building GC-consistent cuts of a database.

We assume atomicity: every transaction either commits or aborts. The effects of a committed
transaction are fully taken into account. An aborted transactions has no effect; if some effects of
it have been taken into account by the system before the abort, these effects are fully undone at
abort time. In our model, only comitted transactions are taken into account; aborted transactions are
entirely disregarded.

We assume that transactions are serialisable, i.e. that everything happens as if they were executed
sequentially, in some specified order. In reality, transactions may be executed concurrently, and
serialisability is implemented by the locking mechanism, which permits concurrent execution only
when it is indistinguishable from a sequential one. Serialisability, and the resulting apparent lack
of concurrency, allows us to depict each transaction as an atomic (thus, null-duration) event, which
takes place at the time when the actual transaction commits.

2.2 Partsand addresses

We view data in a database as being partitioned into parts numbered 0, ...,n — 1. Each object
belongs to exactly one part, noted P(z). We assume that by looking at the address of z (i.e. at the
value of a pointer to z), one can determine to which part z belongs. Usually, parts are database pages,
but alternatively their réle can be played by objects (in this case, P(z) = ) or by other entities.

In our model, objects do not migrate: for every z, P(z) remains constant over time. Similarly,
the address of z, i.e. the physical representation of pointers to x, does not change over time. This
assumption does not actually prohibit a database from migrating objects, it just forces us to represent
the migration in a specific way: if in the real system object 2 migrates, then in our model two objects
x1 and z, represent x, respectively before and after the migration. The migration itself is represented
by the destruction of z; and by the creation of z2.

If two or more objects successively exist at the same address (the first object is deleted, and later
the second one is created), we consider them as being the same object. This convention implies that

RR n°2681
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Figure 1: Example execution of a database.

we accept the possibility that an object gets successively created and deleted many times. With this
convention, for every pointer value p, the object pointed to by p (noted xp) is uniquely defined, even
if we do not know at what time p exists. This is essential for keeping our reasonings and proofs
simple.

2.3 Graphical notation

Let us explain how we graphically represent executions of database systems. Figure 1 gives an
example. Time flows from left to right. Each part is represented by a thin horizontal line. Each
transaction is considered as a null-duration event and represented by a thick black vertical line. If a
transaction reads a part, the corresponding lines cross; if it also writes the part, an arrow is drawn at
the crossing. If a transaction does not access a part, the corresponding lines do not cross; if, however,
they must cross for graphical reasons, a little half-circle is drawn at the crossing. For example, the
rightmost transaction on the figure reads and writes parts 2 and 5, reads part 3, and does not access
any other parts.

When talking about a database execution, we use a special real-valued global clock called the
transaction clock. This clock takes value 0 at some time before the first transaction, then, in an
execution including n transactions, it takes each integer value ¢ € [1..n — 1] at some time between
the ¢-th and the ¢ + 1-th transaction. Value n is taken at some time after the n-th transaction. For
every t, during the ¢-th transaction the value of the clock is strictly included between ¢ — 1 and t.

INRIA
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We use the transaction clock exclusively for the purpose of conveniently describing executions
of database systems. We do not assume that transactions have access to this clock, or to any clock at
all.

For now, two elements in Fig. 1 are left unexplained: cameras and very thick gray lines; their
meaning is explained in Sections 2.6 and 3, respectively.

2.4 Rulesabout reachability

We use the model of reachability which corresponds with navigational and object-oriented databases.
This means that in order to access an object, a transaction must first have access to a pointer to it.
Pointers are created, handled and used according to the following rules.

1. There s a fixed set of indestructible objects called roots. Pointers to roots are system constants,
to which transactions always have access. Transactions always have access to the special pointer
value 0, which points nowhere.

2. When a new object is created by a transaction, the transaction gains access to a pointer to it.

3. If a transaction has access to a pointer, it can gain access to the pointed-to object, either for
reading only or for reading and writing. Before gaining access to the object, the transaction
must lock the part to which the object belongs. Access to an object includes access to the
pointer fields in it (read access to fields implies that, recursively, the transaction may gain
access to objects pointed to by the fields).

4. When a new object is created, all its pointer fields are set to 0.

5. A pointer field in an object can be written by a transaction which has write access to the object;
the value stored is a pointer to which the transaction has access according to rules 1-3.

6. The destruction of an object is considered as a special case of access for writing, i.e. can only
take place in a transaction which has access to the object and which locks for writing the part
to which the object belongs.

This list exhaustively enumerates the operations which can be performed on pointers. For
example, we do not allow a transaction to use pointers inherited from another transaction which
was executed previously in the same context. We do not allow pointer values created by pointer
arithmetic (e.g. by adding offsets to pointers as this is frequently done in C programs), pointers to
fields inside objects, or pointers stored in the database in places other than pointer fields of objects.
These restrictions are necessary for the garbage collection to operate correctly. They are usually
enforced in object-oriented DBMS.

Rule 6 expresses the fact that our model permits user code to explicitly delete objects. It opens
the way for an anomaly: a pointer may be dangling, i.e. may point to a location at which there is no
object; whenever a reachable objects is deleted, pointers to it become dangling.

An object is said to be reachable iff it exists and transactions can access it:

RR n°2681



8 Marcin Skubiszewski and Nicolas Porteix

Definition 1 (reachability in executions) An object is reachable in execution E at time ¢ iff it exists
at time ¢ and rules 1-6 allow the next transaction which takes place after time ¢ to access z.

This definition can be equivalently expressed as follows.

Definition 2 (reachability in executions) The reachable objects in execution E at time ¢ form the
smallest set such that

1. roots are reachable

2. and if at time ¢ object =’ is reachable and object z exists and z’ contains a pointer to z, then
x is reachable at time ¢.

The equivalence between Definitions 1 and 2 directly results from rules 1-6. Definition 2 can, in
turn, be translated into the following non-recursive form.

Definition 3 (reachability in executions) Object z is reachable in execution E at time ¢ iff there
exists an integer d > 0 and objects xo, ..., x4 Which at time ¢ exist in E and satisfy the following
conditions: zg is a root; x4 = x; and for every integer 4 satisfying 0 < i < d, object x; contains a
pointer to x;41.

The simple proof of equivalence between Definitions 2 and 3 is left out.

An object which exists but is not reachable is called garbage. Rules 1-6 imply that once an
object is garbage, it is guaranteed to stay garbage forever: a garbage object cannot be destroyed by
the system because the hypotheses to apply rule 6 are not satisfied. Garbage objects may (and, to
avoid wasting memory, should) be destroyed by the garbage collector.

2.5 Assumptions about garbage collection

The garbage collector is not bound by rules 1-6 above; otherwise, it would be unable discover and
destroy unreachable objects.

We assume that every object contains information sufficient to locate pointers in it. This property
is required by most, if not all, GCs described so far. It holds in object-oriented database systems (see
e.g. Oz [7] and ObjectStore [16]).

We consider mark-and-sweep garbage collectors, which divide their work into two clearly distinct
phases, respectively called marking and sweeping. While marking, the GC determines which objects
are reachable. The name “marking” is used because some GCs actually mark (by setting a bit inside)
the objects as they are found to be reachable.® With the possible exception of setting marks in
objects, the marking phase involves no modifications in the underlying system; for example, objects
are not moved, and garbage objects are not destroyed. Marking is done by a direct application of the
recursive definition of reachability: the GC marks as reachable all the roots, then, recursively, all the
objects pointed to from within objects previously marked as reachable.

3In the context of databases, it is more efficient to keep a separate list of reachable objects rather than to set marks inside
objects.

INRIA
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During the sweeping phase, the collector destroys the objects which have been classified as
garbage by the marking phase. Reachable objects are left intact.

When studying GC-consistent cuts, we assume that they are used by a mark-and-sweep collector.
Marking is performed in the cut. Sweeping is performed in the actual system, concurrently with
the mutator’s activity; the latter is possible because sweeping, unlike marking, has only minimal
synchronization requirements; this question is discussed in detail in Section 4.

We choose to only consider mark-and-sweep GCs, because we believe that they are the best choice
for databases. Two other garbage collection methods might be considered: reference counting, and
copying collection. With reference counting, each non-root object has an associated counter, which
stores the number of pointers currently referencing the object. The object is declared garbage and
destroyed when the counter becomes null.

Reference counting is incomplete, i.e. does not guarantee the destruction of all garbage objects.
For example, if two garbage objects contain pointers to each other, the corresponding counters are
non-null, and the objects are not eligible for destruction. This lack of completeness is a fundamental
drawback of the method. Another drawback consists in the obligation for the mutator to update a
counter in the pointed-to object whenever a pointer is updated.

Because of these drawbacks, the use of reference counting is limited to situations where other
methods are especially hard to implement. As far as we know, such situations only arise in distributed
systems, in connection with objects susceptible of being referenced remotely. Techniques derived
from reference counting are indeed often used in distributed garbage collection; see the survey by
Plainfossé and Shapiro [19].

Copying garbage collectors [13, 6, 4], also called scavengers, use two memory regions, respec-
tively called from-space and to-space. The from-space is the memory which is already in use by the
system when the GC begins its operation. The to-space is initially empty; pages in this space are
allocated progressively, during the operation of the GC.

The reachable objects are copied from the from-space to the to-space. Once the copying is
complete, all the pages composing the from-space are deallocated. Garbage objects are not processed
in any specific way: their destruction is implicit, it results from the facts that they are not copied to
the to-space, and that all the pages in the from-space are deallocated.

In many contexts, scavenging is a valuable garbage collection technique, because by copying
reachable objects, the scavenger can diminish fragmentation of empty areas in memory, and im-
prove locality. Moreover, since scavengers only process reachable objects, and avoid the burden
of individually deleting garbage objects, they exhibit good performance whenever garbage objects
significantly outnumber reachable objects.

We believe, hovever, that scavengers are generally inappropriate for databases. The first reason
for this is that most database management systems implement sophisticated policies for placing
objects. These policies solve the problem of memory fragmentation, and ensure good locality. In this
context, by copying objects a scavenger would not accomplish anything useful, but instead would
interfere with these policies. The second reason is that garbage objects in a database are usually much
less numerous than reachable objects. We expect that scavenging, which avoids processing garbage
objects at the cost of applying a costly operation (namely, a copy) to every reachable object, would
perform poorly in these conditions.

RR n°2681
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2.6 Cuts

When the contents of part 4 at time ¢ is recorded for the needs of garbage collection, the recording is
called a snapshot and denoted (4, t). Since we consider transactions as atomic events, we only take
into account the possibility of taking snapshots between transactions, i.e. at integer times: for (¢, t) to
be a snapshot, ¢ must be an integer. On figures, snapshots are represented by cameras. For example,
Fig. 1 shows several snapshots, among which the snapshot of part 3 at time 2 is pointed by an arrow.

A set of snapshots containing at least one snapshot of each part is called a cut.* A cut is called
simple iff it contains one and only one shapshot of each part; otherwise, it is called multiple.

We define the time interval of a cut to be the interval from the time when the first snapshot in the
cut is taken, to the time when the last snapshot is taken, inclusively. If an event happens during the
time interval of a cut C, we simply say that it happens during C.

In order to mark (i.e. to verify the reachability of objects in) a simple cut, we proceed exactly as
if the cut was a current state of the system at some time ¢. In other words, to define reachability in a
simple cut, we substitute in Definitions 2 and 3 the words “at time ¢” with words “in cut C.”

When the cut is not guaranteed to be simple, it can contain several copies of a given object, and
these copies need not be identical. Moreover, for a given object x, the cut can contain copies of
P(z) such that z is present in some of them and absent from others. Therefore, in the general case
the definition of reachability in cuts needs to be somewhat more complicated. We use the following
definition.

Definition 4 (presence; inconsistent presence; reachability in cuts) Let C be a cut. An object z
is present in C iff C contains a snapshot of P(z) where z is present, i.e. which contains a copy of
x; otherwise, z is absent from C. z is inconsistently present in C' iff C' contains both a snapshot of
P(z) where z is present and a snapshot of P(z) from which z is absent.

Objects reachable in C form the smallest set such that

1. roots are reachable in C
2. objects inconsistently present in C' are reachable in C.

3. if object z is reachable in C and a copy of x present in C' contains a pointer to object y and y
is present in C, then y is reachable in C.

Note that in a simple cut, no object can be inconsistently present.

Definition 5 (garbage in cuts) An object x is garbage in cut C iff it is present in C and is not
reachable in C.

4This definition of the term cut is significantly different from the one used in the context of distributed systems and of
their causal cuts. A cut of a distributed system contains, besides the states of the processes, copies of messages which were in
transit when the cut was being taken. A cut of a database execution, as defined here, contains only the contents of parts (which
correspond with processes in a distributed system), but not the information exchanged between parts during transactions (this
would correspond to messages). Moreover, we allow a cut of a database to contain many snapshots of a given part, while a
cut of a distributed system may contain only one state per process.

INRIA



GC-consistent Cuts of Databases 11

Snapshot (0,0) Snapshot (0,1)

Figure 2: An example explaining rule 3 in Definition 4.
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Figure 3: An example explaining rule 2 in Definition 4.

Fig. 2 illustrates rule 3 in Definition 4: objects Y and Z are both reachable in the cut because X is
reachable, and copies of X point respectively to Y and to Z (object R is a root).

Rule 2 in Definition 4 says that if an object z is inconsistently present in a cut C, then x is
reachable in C. This rule may seem strange. To explain its rationale, let us observe that in order to be
inconsistently present in C', z needs to have been created or deleted during C. This, in turn, implies
that some transaction had access to z during C. z was therefore reachable at some time during C.
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Figure 4: An example inconsistent cut

Therefore, for C to be a faithful representation of what happened in the actual system, x should be
reachable in C.

In order to understand the rule better, consider the example cut in Figure 3. Object X and,
indirectly, object Y are reachable in the cut because of rule 2 (R is a root object). In the actual
system, Y is constantly reachable and X is never garbage (it is initially nonexistent, and later
reachable). It is therefore better to declare these two objects reachable in the cut, as we do by
applying rule 2, than to declare them garbage, as we would do without the rule.

Like Definition 2, Definition 4 can be rewritten non-recursively.

Definition 6 (reachability in cuts) Object z is reachable in cut C iff there exists an integer d > 0
and objects zo, ..., 4 Such that: zq is a root or is inconsistently present in C'; and z4 = z; and for
every integer s satisfying 0 < i < d, a copy of z; is present in C' and, except for i = d, contains a
pointer to x;41.

Definitions 4 and 6 are equivalent. The simple proof of this fact is left out.

2.7 Consistency criteriafor cuts

An object which remains constantly reachable in an execution may appear as garbage in a cut. Fig. 4
shows an example of this anomaly. Let us define a category of cuts in which this anomaly cannot
happen.

Definition 7 (cuts containing no false garbage) A cut C of database execution E contains no false
garbage iff every object which, in E, is never garbage during C, is not garbage in C.

Instantaneous cuts, i.e. cuts in which all the snapshots are taken simultaneously, contain no false
garbage, because every instantaneous cut is a faithful copy of the state in which the system was when
the cut was taken. On the other hand, the example cut in Fig. 4 contains false garbage (namely, object
X).

Let us explain why this consistency criterion is important. As we already mentionned in Sec-
tion 2.4, we assume that cuts are used for garbage collection, in the following way: the collector
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marks for destruction the objects which are garbage in a cut C' of some system, then deletes the
marked objects from the system. If C' contains no false garbage, then every object 2 which is garbage
in C'is guaranteed to have been garbage in the execution at some time during C'. Then, according to
remarks we made in Section 2.4, z is still garbage when it gets deleted by the collector. The absence
of false garbage in a cut causes therefore the garbage collector to be safe, i.e. to delete only garbage.

Similarly, we define a consistency criterion which, if met, ensures that every object which is
garbage when the collection starts, will be deleted by the collector. In other words, the criterion
ensures the completeness of garbage collection.

Definition 8 (cuts exhibiting all garbage) A cut C of E exhibits all garbage iff every object which,
in £, remains constantly garbage during C, is garbage in C.

3 GC-consistent cuts: definition and fundamental properties

In this section we introduce GC-consistent cuts. We state two theorems which imply that such cuts
can be used for detecting garbage in a concurrent garbage collector; the proofs of these theorems are
deferred to Appendix A.

Definition 9 (path) Let E be an execution of a database, comprising n transactions; we assume
that the database contains m parts. A path in E is a function H which goes from the set of integer
times of the transaction clock to the set of parts

H : {0,.,n}—{0,..,m—-1}
and which satisfies, for every ¢t > 0 belonging to its domain, one of the following conditions:
1. Ht)=H(t—1)

2. or the transaction which takes place between times ¢ — 1 and ¢ reads part H (¢t — 1) and writes
part H(t).

A path represents the way in which a pointer present at time n in some part ¢ may have been
successively copied during E in order to reach this part. According to the definition, H(¢ — 1) and
H () either are equal (this corresponds with a situation where a pointer value is not copied) or are
chosen so that the transaction which happens between times ¢ — 1 and ¢ has the possibility to copy
a pointer from part H(t — 1) to part H(t). The latter means that the transaction locks part H (¢t — 1)
for reading or writing, and part H(t) for writing.

In Figure 1, two example paths are represented by very thick gray lines (note that many other
paths exist in this execution, we just chose to graphically represent two of them). The upper one is
straight. This corresponds with a trivial path, which stays in the same part during the whole execution.
The lower one shows that a pointer value located in part 5 at time 4 might be there because between
times 3 and 4 it was copied there from part 3, after being copied from part 4 to part 3 between times
land 2.
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Definition 10 (GC-consistent cut) Let E be an execution of a database. A cut C of E is GC-
consistent iff it crosses every path, i.e. iff for each path H of E there exists some time ¢ satisfying
(H(t),t) € C.

Theorem 1 Cuts of databases exhibit all garbage.

This theorem implies that arbitrary cuts can be used for garbage collection, and the resulting
garbage collector is complete (although not necessarily safe).

The theorem is remarkable in that it states a consistency property of all cuts, rather than of
GC-consistent cuts only or of any other specific class. It implies that a counterexample converse of
the one in Fig. 4 does not exist.

Theorem 2 GC-consistent cuts contain no false garbage.

Theorems 1 and 2 imply together that a garbage collector which uses GC-consistent cuts can be
both safe and complete. The theorems are established in Appendix A.

4 Building and using GC-consistent cuts

The objective of this section is to show that GC-consistent cuts can be built at low cost, and be used
as an efficient means of synchronization between the mutator and a concurrent garbage collector.
To prove our point, we describe the principles of operation of a garbage collector based on GC-
consistent cuts. Our collector builds a GC-consistent cut of the database, and simultaneously checks
which objects are garbage in the cut. Then, the objects which are garbage in the cut are deleted from
the system. The collector contains three elements: the cutting agent which builds the cut, the marking
agent which assesses the reachability of objects, and the sweeping agent which deletes garbage. The
cutting agent and the marking agent run concurrently with each other and with the mutator. The
sweeping agent begins its operation once the two other agents have finished; it runs concurrently
with the mutator.

The agents are described in Sections 4.1-4.3. Section 4.4 discusses selected questions related to
performance. Section 4.5 summarizes the results.

4.1 The marking agent
4.1.1 The rules

In order to determine which objects are garbage in the cut, the agent performs the marking phase of the
mark-and-sweep algorithm, described in Section 2.5 (page 8). It proceeds according to Definition 4,
from which the following rules result.

1. Roots are reachable;

2. objects inconsistently present in the cut are reachable (objects can be inconsistently present
only in a multiple cut; if the cut is known to be simple, this rule does not need to be taken into
account);
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3. if some copy present in the cut of a reachable object z contains a pointer to object y, then y is
not garbage, i.e. it is either reachable or absent from the cut;

4. the objects which are present in the cut, yet cannot be proven not to be garbage by a recursive
application of the three rules above, are garbage.

4.1.2 Three color marking

Rule 3 implies that the agent must visit all the reachable objects in order to discover pointers inside.
To determine which objects need to be visited, the agent uses a method based on three color marking,
a principle introduced by Dijkstra et al. [9]. According to Dijkstra’s principle, at any time during
the marking phase, every object has one and only one of three colors, which have the following
semantics.

black The object is known to be reachable and has already been visited.

gray The object is known to be reachable (and therefore needs to be visited), but has not been visited
yet.

white We do not know whether the object is reachable.

Classically, the tables of black and gray objects are implemented as hashtables, and there is no
explicit representation of the set of white objects: every object which is present in the system and is
not gray or black, is white. In our scheme, however, there is an explicit table of white objects. Unlike
Dijkstra, we allow objects either to have one color, or to have no color at all, i.e. to be absent from
all three color-related tables.

The rationale for explicitly distinguishing between white objects, which are garbage, and colorless
objects, which are absent from the cut and thus not garbage, is that the sweeping agent is expected to
delete only the former. And this agent cannot directly verify which objects are absent from the cut,
because when it operates, the cut may no longer exist (let us recall that the sweeping agent operates
once the two other agents have finished).

On the other hand, for objects known not to be garbage, we do not need to store information
saying whether they are reachable or absent from the cut.

These remarks lead us to depart somewhat from Dijkstra’s initial scheme, and to attach the
following semantics to colors.

black The object is known not to be garbage and has been visited.
gray The object is known not to be garbage and has not been visited yet.
white The object is present in the cut and is not known to be reachable.

colorless The object does not satisfy the conditions to have any of the three colors, i.e. it is not known
to be present in the cut or not to be garbage.
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Once the marking agent has terminated, all objects which needed to be visited have been, and all
objects non-garbage (respectively, present) in the cut have been discovered as such. Therefore, after
the termination of the agent no gray objects remain, and the following semantics are attached to the
other colors.

black The object is not garbage.
white The object is garbage, and, as such, should be deleted by the sweeping agent.

colorless The object is absent from the cut.

4.1.3 Remarks about the implementation of rules 1-4

Since the cutting agent and the marking agent run concurrently, the marking agent determines which
objects are garbage in a cut while this cut is in the process of being built. This leads to two difficulties.

First, the marking agent may need to examine the contents of a part which does not yet have a
snapshot. To solve this difficulty, we implement a simple mechanism for communication between
the marking agent and the cutting agent. Before visiting a part ¢, the marking agent sends a request
to the cutting agent, asking which snapshots of ¢ have been taken so far. The cutting agent responds
with a list of snapshots; if no snapshots of ¢ exist yet, the cutting agent first takes a snapshot, and
only then responds. The marking agent is blocked while awaiting the response.

The second difficulty only appears if the cut is multiple (cuts are simple or multiple, depending
on the policy used by the cutting agent). In this case, the marking agent has no way to know what
snapshots are going to be added to the cut in the future. Thus, when the agent needs to examine the
contents of a part, it cannot wait until it gets sure that all snapshots of the part already exist. Instead,
it examines the part progressively: at an arbitrarily chosen time it examines all snapshots which exist
at that time, then whenever an extra snapshot is taken, it makes a complementary examination of this
snapshot.

Keeping in mind these remarks and the semantics which we chose for the colors, let us describe
how rules 1-4 are implemented. To implement rule 1, the marking agent colors roots in gray when
it starts. Rule 2 causes the agent to enumerate the objects which have to be declared non-garbage
because they are inconsistently present in the cut: every object which becomes inconsistently present
and is currently white or colorless, i.e. not yet declared not to be garbage, must be marked gray.
This implies no specific action when the first snapshot of a part is taken, because a part with only
one snapshot cannot contain inconsistently present objects. When a subsequent snapshot of a part
1 is taken, the agent declares non-garbage all the objects in ¢ which become inconsistently present
because of this snapshot, i.e. which either are present in all the previously-taken snapshots of ¢ and
are absent from this snapshot, or on the contrary are absent from all the previous snapshots, and are
present in this one. In terms of colors, the agent behaves as follows: whenever a subsequent snapshot
of a given part 4 is taken, the agent colors in gray all the previously white objects in ¢ absent from
the new snapshot, and all the previously colorless objects in ¢ present in the snapshot.

To implement rule 3, the agent must visit all reachable objects. In fact, all gray objects are visited
(remember that a gray object is not necessarily reachable, it may instead be absent from the cut).
There is no harm in visiting the gray objects which are absent form the cut, because visiting such
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objects has no effect: the only effect of visiting an object z consists in changing the color of objects
pointed from within copies of z; if z is absent from the cut, it has no copies, and visiting z will not
result in changing the color of any object.

A gray object can be visited at any time. When visiting object z, the agent processes all the
currently existing copies of z, and colors gray the objects which are pointed to from within these
copies, and are currently white or colorless. z is then marked black.

It may happen that when an object z is already black, i.e. has already been visited, an extra
snapshot of P(z), containing an extra copy of z, is taken. In order to correctly implement rule 3, the
marking agent must take into account the pointers contained in this copy. For this purpose, the agent
acts as follows: whenever a new snapshot is created, for every copy of a black object present in the
new snapshot, the copy is visited, and white or colorless objects pointed to from within it are marked
gray.

In order to implement rule 4, the agent needs to know which objects are present in the cut. For
this purpose, when the first snapshot of a part is taken, the agent colors in white all the objects which
are present in this snapshot and which are currently colorless. No action is taken for the objects
which are already gray or black, because those objects are not garbage, and in order to apply rule 4
the agent does not need to know whether they are present in the cut.

Rule 4 requires no special action when a subsequent snapshot of a part is taken. To understand
this, it suffices to observe that if, based on the first snapshot of P(x), an object « is declared present
in the cut, then adding a second or subsequent snapshot of P(z) cannot cause this presence to be lost.
If, on the other hand, z is declared absent because it is absent from the first snapshot of P(z), then
either z is also absent from all subsequent snapshots of P(z), or not. In both cases, no specific action
is needed: either the initial assessment of presence remains true, or the object becomes inconsistently
present, and as such is properly treated, i.e. marked gray, by the procedure which implements rule 2.

4.1.4 The algorithm

According to remarks made in sections 4.1.1-4.1.3, the marking agent operates as follows.

1. Initially, roots are gray and all other objects are colorless.

2. When the first snapshot of a part is taken, all the objects present in this snapshot and currently
colorless are colored in white.

This operation must be performed for every part in the system. To ensure this, the marking
agent may request the cutting agent to make snapshots of parts which currently do not have
one; this can be done in any order and at any time, provided that at the end, every part has at
least one snapshot.

3. (thisrule only applies if the cut is multiple) When a subsequent snapshot of a part 4 is taken, the
agent marks gray all currently colorless objects present in the snapshot and all currently white
objects which are absent from the snapshot and which, according to their addresses, belong to
i

4. Atany time, the agent may visit a gray object , i.e.
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e Examine all currently existing copies of 2 and for each pointer p contained in one of
these copies, if the pointed-to object *p is white or colorless, mark p gray.

e Color z black.

All gray objects must be visited; they can be visited at any time and in any order. We expect the
marking agent to choose a policy which minimizes swapping. The most obvious optimization
consists in always choosing to visit objects which are currently in central memory; objects
currently out of memory are visited, and swapping occurs, only when there are no gray objects
in central memory.

5. (this rule only applies if the cut is multiple) Whenever a subsequent snapshot of a part i is
created, the agent enumerates all the black objects in 4. The new copies of these objects are
visited, and objects pointed from within these copies are marked gray if they are currently
white or colorless.

6. The marking agent terminates when nothing is left to be done, i.e. when

o there are no gray objects;
e and every part has at least one snapshot (this requirement results from rule 2);

¢ and the cutting agent declares that the currently existing set of snapshots is a GC-
consistent cut (otherwise, the set has to be augmented with more snapshots so as to
become a GC-consistent cut).

When the marking agent terminates, it causes the sweeping agent to begin operation. The table
of white objects, i.e. of the objects to be deleted, is sent to the sweeping agent. The cut and the
two other color-related tables are deleted.

4.2 The sweeping agent

The sweeping agent begins its work immediately after the end of the operation of the marking agent,
i.e. once the table of white objects is complete. The agent deletes objects directly from the system,
not from the cut. Unlike marking, sweeping can be done directly in the system, concurrently with
the mutator, because the sweeping agent operates exclusively on unreachable objects, to which the
mutator has no access.

In our scheme, sweeping does not involve a complete scan of the system. The sweeping agent
only needs to access white objects, which need to be destroyed. Parts which contain no such objects
are not accessed. This is important since we believe that in database applications, only a minority of
parts contains garbage to be destroyed by any given run of the GC. We believe that this solution is
significantly more efficient than the classical marking and sweeping, which requires every page to
be examined at sweep time, and thus to be swapped in at least twice (at least once for marking, and
once for sweeping).
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4.3 The cutting agent

The cutting agent acts as an interface between the system and the marking agent. Its role consists
in taking snapshots which, together, form a GC-consistent cut of the system, and in allowing the
marking agent to use this cut. In this section, we discuss two issues: the mechanisms for taking
snapshots, and the choice of the times at which snapshots are taken. The first issue is dealt with in
Section 4.3.1. The second issue is split between Section 4.3.2, where we introduce general methods,
and Sections 4.3.3 and 4.3.4, where we describe example policies which follow these methods.

4.3.1 Mechanisms for taking snapshots

In this section, we make three assumptions. First, we consider that the database is divided into pages;
this assumption is true in most, if not all, database systems. Second, we assume that the GC considers
each page as one part (in the general case, a part can be bigger or smaller than a page, as long as no
object needs to be split between parts). Third, we assume that the state of the database, as contained
in stable storage, takes into account all the changes brought by already committed transactions, and
no other changes. In other words, changes brought by a transaction are written to disk when the
transaction commits, but no sooner; changes made by a transaction which aborts are never written.
This assumption is consistent with the model defined in Section 2.1 and used throughout this report.
It is satisfied by many, but not all, database management systems. For example, it is satisfied by
system O3 [7], on the top of which the authors are currently implementing GC-consistent cuts.

Under these assumptions, taking a snapshot of a part amounts to taking a copy of the corresponding
page, as stored in stable storage. In practice, the copy is virtual: instead of actually copying the page,
we just raise a “copy on write” flag on it. An actual copy is later made if the flagged page is about
to be modified by a transaction. Usually, the number of pages modified by the mutator during the
marking phase is very small compared to the total number of pages. Most virtual copies made by the
cutting agent are therefore never transformed into actual copies, and the whole process is efficient.

Some database management systems, e.g. EXODUS [12, 11], break our third assumption, and
write into stable storage changes made by non-committed transactions. If a page incorporates such
changes, it is called dirty. Since a snapshot should take into account only the effects of already-
committed transactions, taking the snapshot of a dirty page involves two steps: first, we copy the
page out of stable storage, then, using the log, we undo in the copy all the changes brought to the
page by transactions not committed yet.

4.3.2 Mechanisms for determining when to take snapshots
To determine when to take snapshots, we use the notion of captured part.

Definition 11 (captured part) Let C' be a set of snapshots in some execution E. We say that C
captures part 4 at time ¢ iff for every path H in E such that H(t) = 4, for some time ¢’ < ¢ we have
(H(t"),t") e C.

This definition means that C' captures part 7 at time ¢ iff C' contains a snapshot, taken at time ¢ or
before, of every path H such that H goes through part ¢ at time ¢. Intuitively speaking, C' captures
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part ¢ at time ¢ iff every pointer which is present in 4 at time ¢ is recorded in some snapshot in C
taken at time ¢ or before (pointers to roots and pointers to newly created objects are excluded from
this rule).

For example, on Fig. 1 (section 2.3, page 6), part 3 is trivially captured at time 2 since snapshot
(3,2) belongs to the cut. Part 1 is captured at time O for the same reason, but is not captured at time
1 since at times 0 and 1, no snapshots are taken of the path {(0,0), (1, 1), (1,2), (1,3), (1,4)}.

The following lemma explains how the notion of captured part can be used to characterize
GC-consistent cuts:

Lemma 1 A set of snapshots C in execution E is a GC-consistent cut of E iff C' captures all the
parts of E at its end, i.e. at the time when the last snapshot in C is taken.

The lemma directly results from Definitions 9, 10 and 11. O

As we explain below (Section 4.3.3), the cutting agent monitors in real time which parts are
currently captured, and which are not. This information is used in order to decide when to take a
snapshot of any given page. The following definition can be used by the agent in order to determine
which parts are captured.

Definition 12 (captured part) Let C' be a set of snapshots in some execution E. We say that C
captures part ¢ at time ¢ iff one or more among the following conditions hold

(i) (i,t) e C;

or (ii) ¢ > 0, and no transaction writes part 7 between times ¢ — 1 and ¢, and C' captures part  at
timet¢ — 1;

or (iii) ¢ > 0, and a transaction 7" writes part 7 between times ¢ — 1 and ¢, and for every part i’ read
by T', C captures i’ at time ¢ — 1.

Definitions 11 and 12 are equivalent. The equivalence results from the definition of path (Definition 9);
the simple proof is left out. O

Definition 12 can be translated into an algorithm which allows the cutting agent to determine
at any time ¢ which parts are currently captured by a set of snapshots C. The algorithm maintains
a variable called captured, which is a table of booleans indexed on parts. All elements in captured
are initialized to false. For every integer value ¢ of the transaction clock, including 0, the algorithm
updates captured. After such an update, captured|i] expresses the fact that part 7 is or is not captured
at time ¢. The update at time ¢ is done as follows:

(a) if a transaction T' takes place between times ¢ — 1 and ¢, and there exists a part 7’ read by T
such that
captured[i'] = false

then for every part 7 written by 7', perform

captured[i] := false
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(b) for every part 7 which has a snapshot taken at time ¢, perform

captured[i] := true

For every t, step (b) must be performed after (a), so that if both steps update an entry in captured,
the update performed by (b) persists.

Thisalgorithm is evidently cheap. The proof that it accurately determines which parts are captured,
i.e. that it faithfully implements Definition 12, is left out because it is purely technical (there are no
real difficulties) and we judge it uninteresting.

4.3.3 A policy for building GC-consistent simple cuts

Let us describe a policy which directs the cutting agent to generate a GC-consistent simple cut. The
general idea is that snapshots are taken when necessary, but no sooner. This idea leads the agent to
take snapshots in two situations: when the snapshot is needed by the marking agent (this is expressed
by rule 2 below), and when it must be included in the cut in order for the cut to be GC-consistent
(rule 3 below). The policy consists in the following rules.

1. Initially, no snapshots exist.

2. When the marking agent requests access to a part which does not have a snapshot, take a
snapshot of this part.

3. If a transaction which writes a captured part is going to commit, then immediately before it
commits, take a snapshot of every noncaptured part read by it.

4. When all parts are captured, notify the marking agent that the snapshots existing now form a
GC-consistent cut, and halt (the notification is needed by rule 6 in Section 4.1.4).

Let us show that under this policy the cutting agent halts and that it builds a GC-consistent simple
cut. First, observe that while the policy is in force, a captured part cannot become noncaptured. This
results from rule 3 in the policy and from Definition 12. The definition implies that a part 4 which is
captured at time ¢ — 1 may be noncaptured at time ¢ only if the transaction which occurs between
t — 1 and ¢ reads a noncaptured part and writes i. The rule precludes this situation.

To show that the cutting agent halts, we use the fact that, according to rule 2 in Section 4.1.4
and to rule 2 above, the marking agent causes all parts to have snapshots. By Definition 12, a part is
captured at the time when a snapshot of it is taken. Every page in the database is therefore captured
at some time. Since a captured part cannot become noncaptured again, at some point all parts are
captured and, by rule 4 above, the cutting agent halts.

The set of snapshots generated by this policy is a cut because every part has a snapshot taken at
some time. To show that this cut is GC-consistent, it suffices to observe that when the last snapshot
is taken, all parts are captured, and to use Lemma 1. To prove that the cut is simple, it suffices to
show that the policy, and specifically rules 2 and 3, do not provide for taking a snapshot of a part
which already has a snapshot. For rule 2, this immedately follows from its text. Rule 3 is restricted
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Figure 5: Comparison between a simple and a multiple GC-consistent cut.

to taking snapshots of noncaptured parts. Since, according to Definition 12, a part becomes captured
when a snapshot of it is taken, and, as we have already shown, cannot become noncaptured again,
rule 3 only provides for taking snapshots of parts which do not yet have a snapshot. O

4.3.4 Building GC-consistent multiple cuts

In this section, we exhibit a simple example showing that GC-consistent multiple cuts are useful, at
least in some situations. Then, we quote a set of rules which can be used by the cutting agent in order
to build such a cut.

Consider the execution in Figure 5, which comprises one transaction (the execution is shown
twice: once in the left part of the figure, and once in the right part). We assume that before the
transaction, i.e. at time 0, the marking agent wants to examine part 0. The cutting agent is therefore
required to take a snapshot of part 0 at time 0. Then, if the cutting agent builds a GC-consistent
simple cut, the only cut we can obtain is the one shown in the left part of the figure, where every
part has one snapshot, taken at time 0; the straightforward proof of this fact is left out. This cut is
expensive to build because the transaction modifies all parts between times 0 and 1, forcing all the
snapshots to be implemented as physical, rather than virtual, copies of pages.

If, on the other hand, the cutting agent is allowed to take a GC-consistent multiple cut, it can take
the cut shown on the right of the figure. Although this cut looks similar to the previous one, it is much
less expensive to build: with one exception, all the snapshots in it are taken after the transaction, and
can therefore be implemented by virtual, and not physical, copies.

In order to obtain a GC-consistent cut which is not necessarily simple, we can use the following
rules.

1. Initially, no snapshots exist.

2. When the marking agent requests access to a part which does not have a snapshot, take a
snapshot of this part.

3. If atransaction writes a captured part, then either
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(a) immediately before the transaction commits, take a snapshot of every noncaptured part
read by this transaction;

(b) or immediately after the transaction commits, take a snapshot of every part written by
the transaction.

4. When all parts are captured, notify the marking agent that the snapshots existing now form a
GC-consistent cut, and halt.

Except for rule 3, these rules are identical to the policy described in Section 4.3.3 above. We do
not call these rules a policy because they do not say precisely what the cutting agent is supposed to
do: rule 3 is nondeterministic, and allows the agent to apply either rule 3a or rule 3b. In order to
transform this set of rules into an actual policy, we would need to specify a deterministic criterion
according to which the agent has to choose between rules 3a and 3b.

If rule 3a is always chosen, the rules become identical to the policy from Section 4.3.3. For
example, the simple cut in the left part of Fig. 5 can be obtained in this way. On the other hand, the
multiple cut in the right part of Fig. 5 is obtained by choosing rule 3b.

This set of rules always causes the cutting agent to build a GC-consistent cut, then to halt. In
Section 4.3.3 above, we have proven this fact under the policy defined there. Since our set of rules is
identical to that policy, except for rule 3, the proof remains valid here, except that we need to prove
again the facts which, in the original proof, are established using rule 3. This is the case for only
one fact, namely for the fact that once a part is captured, it cannot become noncaptured again. To
establish this, we assume on the contrary that part ¢ is captured at time ¢ — 1 and noncaptured at time
t. According to Definition 12, this can only be the case if two conditions are met: (i) a transaction
T, which occurs between ¢t — 1 and ¢, reads a noncaptured part and writes ¢, and (ii) a snapshot of i
is not taken at time ¢. Condition (i) cannot be met if rule 3a is applied to 7"; condition (ii) cannot be
met if rule 3b is applied instead. Since either rule 3a or rule 3b is applied to 7', the two conditions
cannot both be met. O

4.4 Remarksabout performance

The GC described here is in the process of being implemented as part of O, an industrial object-
oriented DBMS [7]. We plan to benchmark the GC on realistic datasets, but currently we have no
experimental results. We chose not to develop a simplified, fast-to-complete prototype, because we
believe that such a prototype would not be capable of running with realistic applications, and would
therefore not yield information interesting enough to justify the extra effort.

Since there is no implementation, we do not include here a full discussion of performance.
Instead, we only describe three properties which do not depend on the details of the implementation,
and which imply that our GC has no serious detrimental effect on the rest of the system. The first
property is that a user process cannot be significantly delayed while waiting for a lock held by the
GC. In systems where the granularity of locks is the object (e.g. O, version 5.0 and later), this
directly results from the fact that the mutator only locks reachable objects, while the sweeping agent
only locks garbage and the other agents in the GC do not lock anything. In systems with page-level
locking, like EXODUS [12, 11], ObjectStore [16] or the older versions of O, [7], a lock contention
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between the sweeping agent and the mutator may occur for a page containing both reachable and
garbage objects. Such a conflict cannot, however, significantly delay the mutator because a page is
locked by the sweeping agent only for the time necessary to delete garbage in it. This time is short;
most notably, while the sweeping agent locks a page, it does not await other locks, and therefore
does not risk being blocked.

The two other properties are that the existence of our GC has no effect upon the performance of
the system while the GC is not running, and that the GC does not require user code to be compiled in
a special way or instrumented. These properties may seem obvious, but in fact they are not satisfied
by most concurrent GCs. The reason for this is that most concurrent GCs require user code to be
instrumented in order for the write barrier to work: extra code which sends a message to the GC is
inserted either before or after every instruction in the mutator that modifies a pointer. For example,
with the simplest variant of the write barrier, known as snapshot at beginning,® while the GC is in
operation, the user instruction

obj->p = q;

may only be executed once the old value of ob j—>p has been sent to the GC. Thus, the instruction
is replaced with the following code.

if (markinglnProgress)
notifyGC (obj->p);
obj->p = q;

where the boolean markingInProgress is true while the GC is marking and false otherwise,
and the function notifyGC sends its argument to the GC.

The need to instrument user code mandates the use of GC-specific compilers, and makes the GC
hard to integrate with existing systems. Moreover, the instrumented code is slower than ordinary
code, even while the GC is not in operation.

There exist alternative ways to implement write barriers, which do not require user code to be
instrumented. For example, the GC can be warned about writes by the virtual memory management
hardware [14]. In a database system, the information about pointer modifications is in the log, and
the GC can implement a write barrier by reading it from there; this eliminates the need for user code
to be instrumented or, more generally, to cooperate with the GC in any specific way. This approach is
used by Amsaleg et al. [3] and by O’Toole et al. [18]. But even with this approach, the existence of
the GC has some negative impact on the performance of the system while the GC is not in operation,
because the log needs to be examined all the time, not just while the GC is running. Measurements
performed in various setups by Amsaleg et al. show an overhead of 0.6 % to 5.8%. O’Toole et al.
note that the introduction of a garbage collector requires the log to be more complete than it used to
be in the previous version of the system (and therefore more costly to maintain); they do not measure
the extra cost.

5Snapshot at beginning was initially introduced by Abraham and Pattel [1], and is described in detail by Wilson [20].
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45 Summary

We have described the design of a concurrent garbage collector for databases, based on GC-consistent
cuts. The two key elements are the algorithm which concurrently builds GC-consistent cuts, either
simple or multiple, and the method for examining a cut which is in the process of being built.

Our GC works in presence of ordinary user code, which does not need to be instrumented. While
it is not running, its presence has no effect on the performance of the system. While it runs, it does
not lock pages or objects in a way which could block the users for significant amounts of time.

5 A theoretical study of GC-consistent cuts

So far, our approach of GC-consistent cuts was mainly practical: we have explained how and under
which assumptions such cuts can be used for garbage collection. In this section, we complete the
study by a theoretical analysis of the consistency properties of GC-consistent cuts: we investigate
what an observer can learn about an execution by examining a GC-consistent cut of it.

We compare the consistency properties of three classes of cuts: the two classes described so far,
namely GC-consistent cuts and GC-consistent simple cuts, and causal cuts of databases, introduced
below.

To study the consistency of cuts, we use two example questions which can be asked by an
observer about a database execution:

— do dangling pointers ever appear during the execution?
— what is the total balance of a group of bank accounts stored in the database?

For each question and for each class of cuts, we verify whether and under which conditions the
question can be answered by an observer who looks at a cut of this class instead of looking at the
real system.

The section is organized as follows. In Section 5.1, we discuss causal cuts: we recall how
causal cuts of distributed systems are defined in previous publications (Section 5.1.1), we exhibit an
analogy between distributed systems and databases (Section 5.1.2), and finally we define causal cuts
of database executions (Section 5.1.3). In Section 5.2, we state formally the two questions quoted
above, and we use them to investigate the consistency of cuts. Section 5.3 summarizes the results.

5.1 Causal cuts
5.1.1 Causal precedence and causal cuts in distributed systems

In this section, we recall the generally accepted definition of causal cuts.® Causal cuts are defined
in the context of distributed systems. A distributed system is a finite set of processes p1, ..., Pn
which communicate with each other through messages: for every ordered pair of processes (p;, p;),
a communication channel ¢;; exists and can transmit messages from p; to p;. Channels are reliable,

6Footnote 2 on page 4 cites bibliographic references.
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i.e. messages are not corrupted, lost or duplicated; we do not care whether channels may or may not
deliver messages out of order. The transmission of each message takes a finite, non-null amount of
time. We assume that processes do not communicate with each other by means other than messages;
they do not communicate at all with the outside world.

The causal precedence is a relation defined between the events which happen in processes
belonging to a distributed system. Notation

e1 — e
means that e; causally precedes e,. Causal precedence is the smallest partial order such that

1. If e; and e are two events occurring in the same process and, according to a physical clock,
ey occurs before ey, then e; — e (we assume that two events cannot occur simultaneously in
a given process).

2. If e is the transmission of a message and e is the reception of this message, then e; — e.

Causal precedence is similar to the ordinary notion of time: using the ordinary time, we say that
ez happens after e; iff e; may have influenced e, or, to put things differently, iff e, takes place in a
context in which information generated by e; may be present. Similarly, causal precedence is related
to the flow of information in a system: e; — e, means that there exists a chain of messages through
which the process where e, occurs has, at the time of e, access to information generated by e;.
Conversely, the fact that e; and e, are incomparable means that each event takes place in a process
which currently holds no information coming from the other event.

A cut of a distributed system is defined to be a set containing, for every process p;, one and only
one recorded state s; of this process, called snapshot, and for every channel ¢;;, a channel state s;;
containing a copy of each message which was sent from p; before the recording of s;, and which
was not received in p; before the recording of s;. The recording of s; can be considered as an event
occurring in p; (of course, this event does not change the state of p;). We say that a cut C'is causal
iff the events s; are incomparable with each other by causal precedence.

Causal cuts are highly consistent because from many points of view, they resemble instantaneous
cuts. Intuitively, this results from the resemblance which exists between time and causal precedence:
having the events s; incomparable by causal precedence is like having them simultaneous. It is
beyond the scope of this report to describe the exact extent to which causal cuts are consistent, or to
explain in a better-than-intuitive way why they are consistent; see [5].

5.1.2 Causal precedence in databases

We consider parts in a database as analogous to processes in a distributed system. The contents of a
part corresponds with the state of a process. We define causal precedence in a database execution to
be a relation between snapshots, i.e. between observable states of parts.

A transaction modifies the contents of the parts to which it has write access. The modifications
depend on the previous contents of all the parts to which the transaction has read access. This means
that if transaction 7" writes part ¢, the snapshot of part ¢ taken immediately after 7" causally depends
on the snapshots of all parts read by 7', taken just before the beginning of T'.
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These remarks lead us to define causal precedence in databases as follows.

Definition 13 (causal precedence in a database execution) Let E be a database execution. The
causal precedence in E is the smallest partial order between snapshots in £ such that

1. for every part < and for every two integer times ¢ and ¢', relation ¢ < ¢' implies (¢,t) — (4,t)

2. if atransaction taking place between integer times ¢ and ¢ + 1 reads part ¢ and writes part 7',
then (i,t) — (¢',t + 1)

This definition poses a problem, due to an important difference which exists between databases,
as defined in this report, and distributed systems. In a distributed system, processes are allowed to
exchange information only through messages. An analysis of the messages is therefore sufficient
for determining if a given event causally precedes another one. In a database execution, information
is exchanged between parts during transactions, but this is not all: except for pointers, which must
follow the rules listed in Section 2.4, transactions are free to exchange information between each other
and with the outside world. For example, transaction 7" may represent a bank employee checking
how much stock you own, and 7" may represent the same employee granting you a credit. In this
case, the amount of credit granted (represented by data in some part ') may depend on the amount
of stock you own (represented by data in part z), even though no transaction accesses both 4 and 7',
and, according to Definition 13, snapshots of 7 are not causally related to snapshots of 7'.

The problem described above implies that Definition 13 makes much less sense than the definition
of causal precedence in distributed systems. Note, however, that the problem disappears if we assume
that transactions do not exchange information between each other or with the outside world. In this
case, every execution of a database can be implemented by an execution of a distributed system, and
the causal precedence in the database execution will match the causal precedence in the implementing
distributed system. We do not quote a complete proof of this, but we affirm that such a proof exists,
and is constructive.

5.1.3 Causal cuts in databases
Our definition of causal cuts in databases is based on causal precedence as introduced by Definition 13.
Definition 14 (causal cuts of in databases) A cut C' of a database execution E is causal iff

1. any two different snapshots (i,¢) and (i’,¢') belonging to C are causally incomparable

2. if a transaction which takes place between times o and o + 1 reads part ¢ and writes part i/,
then at least one of the following holds

(a) the snapshot of 7 in C'is taken at or before time #g
(b) or the snapshot of i’ in C' is taken at or after time ¢ + 1.

Condition 1 in the definition implies that every causal cut is simple. This, in turn, implies that
expression “the snapshot of 4 in C,” used in condition 2, determines a unique snapshot.
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This definition is to a large extent analogous to the definition of causal cuts in distributed systems.
At first sight, there are two problems with the analogy. First, a causal cut of a distributed system
includes channel states, which seem to have no counterpart in the causal cuts defined here. Second,
condition 2 in our definition appears to be a restriction bearing no analogy with causal cuts in
distributed systems. In reality, condition 2 and the absence of channel states are related: the former
compensates for the later.

To explain this, let us recall that channel states contain all the messages sent from a process before
the state of this process is recorded, and received in another process after the state of that process
is recorded. In the context of databases, there are no messages. Instead, information is exchanged
between parts by transactions. A transaction which reads part 4 and writes part 4’ is assumed to
transmit information from i to 4’. To have a counterpart to channel states, for every causal cut C' we
would therefore need to implement the following rule:

If a transaction which takes place between times ¢o and o + 1 reads part ¢ and writes
part ', and the snapshot of part 4 in C' is taken at time o + 1 or later, and the snapshot of
part ¢’ in C'is taken at time ¢ or before, then information transmitted by the transaction
from 4 to 4" must be recorded as part of C.

This rule requires us to examine information transmitted from one part to another during a transaction.
But our approach precludes this: we consider transactions as atomic events, and refuse to examine
what happens inside. Fortunately, there is a special way of implementing the rule without looking
inside transactions. Instead of recording information transmitted, we simply outlaw the situations in
which the recording needs to be made. This amounts to imposing an extra requirement on the times
at which snapshots in C are taken. This is what does condition 2 in Definition 14.

Causal cuts in databases can be characterized as follows.

Theorem 3 A cut C' of a database execution E is causal iff it crosses every path H of E in exactly
one point, i.e. iff for every path H, there is one and only one time ¢ such that (H (¢),t) € C.

The proof of this theorem is deferred to Section A.6.

5.2 Theconsistency of the three classes of cuts

In this section, we discuss the classes of cuts of databases introduced above: causal cuts, GC-
consistent simple cuts, and GC-consistent cuts. We investigate their consistency properties with
respect to the two questions introduced in the beginning of Section 5.

Every causal cut is also a GC-consistent simple cut (this results from Definition 10 and Theo-
rem 3). Therefore, causal cuts satisfy at least all the consistency properties satisfied by GC-consistent
simple cuts. An important question is whether causal cuts are “strictly more consistent” than GC-
consistent simple cuts in any meaningful way. This question is addressed in Section 5.2.1. Similarly,
every GC-consistent simple cut is also a GC-consistent cut, and therefore GC-consistent simple cuts
are at least as consistent as GC-consistent cuts. We want to know whether GC-consistent simple cuts
are strictly more consistent than GC-consistent cuts; Section 5.2.2 deals with this question.
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Figure 6: A pointer is dangling in a GC-consistent simple cut although it is not dangling at any time
in the underlying execution.

5.2.1 The detection of dangling pointers

Let us recall that in a database execution, a pointer is dangling when it points to an object which cur-
rently does not exist. The existence of dangling pointers is usually considered to be an inconsistency
in the system. An observer may want to know whether dangling pointers appear during an execution.
Ina cut C, a pointer is considered as dangling iff it is present in C, but the pointed-to object is not
present in C.

A GC-consistent simple cut may contain a dangling pointer even if such pointers never appear
in the underlying execution, and even if no objects are destroyed during the execution (to undestand
why we quote the latter condition, compare this sentence with Theorem 4 below). An example of
this possibility is shown on Fig. 6. In this figure, object X is created in part 0 between times 0 and
1, and a pointer to X is copied to part 1 between times 1 and 2. The cut contains a dangling pointer
to X because it includes a snapshot of part 0 taken when X does not exist yet and a snapshot of part
1 taken when this part already contains a pointer to X. Since the cut in Fig. 6 is GC-consistent and
simple, and no objects are destroyed in the corresponding execution, this example proves our point.

The following theorem implies that an inconsistency similar to the one from Fig. 6 cannot happen
with a causal cut.
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Theorem 4 Let E be a database execution in which no pointer is ever dangling and during which
no objects are destroyed. Then, no pointer is dangling in a causal cut of E.

The proof is deferred to Section A.7.

This theorem implies that in a system which does not destroy objects, we can use causal cuts
to try to detect dangling pointers in an execution: the detection may be incomplete (i.e. dangling
pointers may remain undetected), but it does not issue false alarms.

It results from the example and from the theorem that GC-consistent simple cuts are strictly less
consistent than causal cuts.

5.2.2 Total balance of several bank accounts

Let v be a variable in the system. We assume that v constantly exists during a given execution E.
The value of v at time ¢ is noted v*. The value of v in the simple cut C'is noted v To define v*, we
observe that C' contains one and only one snapshot of P(v) (the part containing v), and we say that
v© is equal to the value of v as seen in this snapshot. We do not define v in the case where C is a
multiple cut.

Consider an execution E of a database containing integer variables vy, ..., v;. We consider that
each variable represents a bank account. Money can be transferred between the accounts, but the
total balance is assumed to remain constant: the value

does not depend on ¢. The following theorem implies that S can be computed in a straightforward
manner using a GC-consistent simple cut of E.

Theorem 5 (sum of bank accounts) Let E be an execution of a database which contains several
integer variables vy, ..., v;. We assume that the sum of the variables remains constant, i.e. that there
exists an integer S such that the statement

holds for every integer time ¢. Let C' be a GC-consistent simple cut of E. Then,

S=> f (1)

J=0

The proof of this theorem is quoted in Section A.5.

There is no equivalent of this theorem for GC-consistent cuts, i.e. there is no general method
to compute the value S using a GC-consistent cut of E. To prove this, we use the following
counterexample. We define £ and F' to be two executions, which are identical except for the values
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Figure 7: Two executions have different sums of variables, but their GC-consistent cuts are identical.

taken by their respective variables. Each execution operates on a system comprising three parts and
containing one variable per part (for i = 0,1, 2, part ¢ contains variable v;). In each execution, the
sum of the three variables remains constant; it is equal to 3 in E andto 2 in F'.

Fig. 7 represents the executions. It contains slash-separated pairs of numbers. Each pair cor-
responds with an integer time and with a part. The two numbers represent the value taken at the
corresponding time by the variable contained in the corresponding part, in £ and in F' respectively (in
this order). For example, at the crossing between the line representing part 2 and the one representing
time O, we have the pair “1/0,” which means that v, takes, at time 0, value 1 in E and value O in F'.

A GC-consistent cut of £ or F is represented on the figure (it makes sense to talk about a cut of
“E or F” because E and F' are almost identical). The snapshots in the cut (especially, the values of
the variables, represented in the right part of the figure) are the same regardless of whether the cut is
taken for E or for F'. Thus, by examining the cut we cannot decide whether it is a cut of E or a cut
of F. Since the sums of variables in £ and in F are different, this proves our point. O

These results show that GC-consistent simple cuts can be used to compute the total balance
of a sum of bank accounts, assuming that the sum does not change while the cut is being taken.
GC-consistent cuts cannot generally be used for this purpose. These facts imply that GC-consistent
cuts are less consistent that GC-consistent simple cuts.

5.3 Summary of results about consistency

We have introduced a new class of cuts, the causal cuts of databases. These cuts are analogous
to causal cuts of distributed systems. We have compared the consistency properties of causal cuts
(defined in the context of databases), of GC-consistent simple cuts, and of GC-consistent cuts. For this
purpose, we have used two consistency criteria. The first criterion requires that for every execution
E inwhich no dangling pointers appear and no objects are destroyed, a cut of E contains no dangling
pointers (Section 5.2.1). The second criterion requires that if bank accounts are stored in a database
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Preservation Absence of Sum of Dangling
of garbage false garbage  bank accounts  pointers
Defined in Sec. 2.7, Def. 8  Sec. 2.7, Def. 7 Sec.5.2.2 Sec.5.2.1
Causal cuts X X X X
GC-consistent simple cuts X X X
GC-consistent cuts X X
Arbitrary cuts X

Table 1: Consistency criteria and classes of cuts.

and the total balance of these accounts remains constant during an execution, then this balance can
be deduced from a cut of the execution (Section 5.2.2).

Table 1 summarizes the results about consistency of cuts defined in this report, and quoted in
Sections 2.7, 3 and 5.2. The table compares the three classes of cuts discussed in this section, and
arbitrary cuts. It says which criteria are met by which classes of cuts. A cross in the table means that
we have established that all the cuts in a class meet a criterion. Conversely, for every cross missing,
we have exhibited a counterexample which shows that not all cuts in the class meet the criterion.

Every causal cut is also a GC-consistent simple cut; this results from Theorem 3 in Section 5.1.3.
Similarly, every GC-consistent simple cut is also a GC-consistent cut. These facts and the results
summarized in the table allow us to state that GC-consistent cuts exhibit strictly weaker consistency
properties than GC-consistent simple cuts, which in turn are strictly less consistent than causal cuts
of databases.

6 General summary

We have defined GC-consistent cuts of databases. The essential fact about GC-consistent cuts is that
they can be used to synchronize the mutator and a mark-and-sweep garbage collector, i.e. to allow the
mutator and the collector to run concurrently. We have discussed and established the properties of
GC-consistent cuts which imply this fact. First, we have shown that a garbage collector can correctly
determine which objects should be deleted from the database by examining a GC-consistent cut of the
database, and without examining the database itself; this property is stated and discussed in Section 3,
and established in Appendix A. Second, in Section 4 we have explained how a GC-consistent cut of
a database can be built concurrently (i.e. while the database is in operation, without stopping it) and
cheaply, and can be used by a GC while it is being built.

We have analyzed the consistency properties of GC-consistent cuts from a theoretical point of
view (Section 5). This analysis is based on a comparison between the properties of GC-consistent
cuts and those of other kinds of cuts: causal cuts of distributed systems, and two kinds of cuts defined
in this article.
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A Proofs

This section contains proofs of Theorems 1, 2, 5, 3 and 4, in this order. In Section A.1, we introduce
the notation used in all our proofs. Section A.2 contains the relatively simple proof of Theorem 1.

The proof of Theorem 2 is done in Sections A.3 and A.4. Although exclusively based on
elementary concepts, the proof is complicated. Let us describe its structure. First, we introduce
several concepts and facts necessary for understanding the behavior of GC-consistent cuts. We then
proceed by a double induction. The first induction is done on the duration of a cut, i.e. on the length
of its time interval. In order to prove that a given cut C satisfies the theorem, we first observe that C
trivially satisfies the theorem if it is an instantaneous cut; then, assuming that C' is not instantaneous,
we build a cut C" which is similar to C, but has a shorter time interval. We prove that if C' satisfies
the theorem, then so does C'. For this purpose, we take an arbitrary object 2 which remains constantly
reachable in E during C, and we prove that z is reachable in C. This proof is done by induction on the
reachability index of z in C', i.e. on the number of pointers which an observer needs to successively
dereference in C' in order to reach z, starting from a root or from an inconsistently present object;
this distance is finite since the induction hypothesis implies that z is reachable in C".

Section A.5 contains a proof of Theorem 5. This proof is relatively short. It borrows heavily from
the proof of Theorem 2: it is based on definitions and facts introduced in Section A.3, and uses an
induction on the duration of GC-consistent cuts, similar to one of the inductions in Section A.4.

Theorems 3 and 4 are established in Sections A.6 and A.7, respectively. These proofs are relatively
simple, and are not related to Sections A.2—-A.5.

A.1 Notation

We assume that E is an execution which contains n transactions and takes place in a system
comprising m parts numbered 0, ..., m — 1. All the cuts mentioned in the appendix are cuts of E.
Similarly, all sets of snapshots mentionned are sets of snapshots taken in E. All the paths” mentioned
are paths in E. The term “clock” is used for the transaction clock of £.8

Symbols ¢, ¢’ and ¢, (for any index a) represent integer values of the clock. This implies that,
whenever one of these is used, we silently assume that it represents an integer value in the interval
[0..n]. For example, the expression “for every ¢” should be understood as meaning “for every ¢
representing a legal integer value of the transaction clock of E” or, which is equivalent, “for every
integer ¢ satisfying0 < ¢ <n.”

Symbol 4, as well as derived symbols like ¢’ and 7, (for any index a), represents the index of
some part and is assumed to always be an integer satisfying 0 < i < m.

Let us define the reachability index of an object in a cut. The proof of Theorem 1 (Section A.2)
and the second induction in the proof of Theorem 2 (Section A.4) are based on this concept.

Definition 15 (reachability index) Let C be a cut and let 2 be an object reachable in C. We define
the reachability index of z in C to be the smallest positive integer d for which there exist objects

"Paths are introduced by Definition 9 in Section 3.
8The transaction clock is introduced in Section 2.3.
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Zo, ..., a4 SUch that xo is a root or is inconsistently present in C; and x4 = «; and for every integer
j €1[0..d—1],acopy of z; present in C contains a pointer to 1.

Definition 6 implies that this definition is sound, i.e. that the reachability index in a cut C' is
defined for every object reachable in C'.

A.2 Proof of Theorem 1

Theorem 1 says that cuts of databases exhibit all garbage. To establish the theorem, it suffices to
prove that every object which remains constantly garbage in E during C is garbage in C, i.e. (i)
is present in C and (ii) is not reachable in C. To prove (i), it suffices to observe that if an object
z is constantly garbage during C, then it also remains constantly existent, and is present in every
snapshot of P(z) containted in C’; since C contains a snapshot of P(x), object z is present in C' and
(i) holds.

We establish (ii) by contradiction: we assume that the set S of objects which are constantly
garbage in E during C, yet reachable in C, is nonempty. Let then d be the smallest reachability index
of an object in S. Let z be an element of .S with reachability index equal to d. We have d = 0 iff =
is a root or is inconsistently present in C'. These two conditions are not met because z is constantly
garbage. For the first condition, the reasoning is trivial; for the second one, it suffices to observe that
being constantly garbage in E during C, z is constantly existent in E during C, and therefore is
present in all snapshots of P(z) belongingto C.

We thus have d > 1. There exists then an object =’ such that some copy of z' present in C
contains a pointer to z, and =’ is reachable in C' with reachability index d — 1; the proof of existence
of ' is easy, it is based on Definition 15; we omit it. Then, by definition of d, we have 2’ ¢ S. The
definition of S and the fact that z’ is reachable in C' imply that z’ is not constantly garbage in E
during C. Since being garbage is a stable property, this in turn implies that z' is not garbage at the
beginning of the time interval of C.

Since a copy of =’ present in C contains a pointer to z, we know that at some time during C, =’
exists and contains a pointer to x. Let ¢o be the earliest time during C when this is the case. Consider
two cases, depending on whether t is the beginning of the time interval of C' or not. In the first case
(i.e. if to is the beginning), at time ¢ object =’ exists and is not garbage (and, thus, is reachable) in E,
and contains a pointer to z. By Definition 4, and because z exists at time ¢, z is therefore reachable
in E at time ¢o. This is in contradiction with the fact that z € S.

Consider the remaining case. Then, o — 1 belongs to the time interval of C. By definition of ¢,
object ' exists and contains a pointer to z at time o, and does not contain such a pointer at time
to — 1. This means that the transaction which takes place between times o — 1 and #o has access to a
pointer to z. This, and the fact that z exists at time ¢ — 1 allow us to use Definition 1 and state that
z is reachable at time to — 1. This is in contradiction with the fact that z € S. O

A.3 Concepts and facts about GC-consistent cuts

First, let us state a simple property of paths.
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Lemma 2 Let H' and H" be two paths satisfying H'(to) = H" (to). Then, the function
H : {0,..,n}—>{0,...m—1}
defined as follows
1. fort <to, H(t) = H'(t)
2. fort > to, H(t) = H"(t)
is a path.

The lemma results directly from Definition 9. O

Now, let us quote two definitions and one lemma which will be used later in order to transform a
GC-consistent cut C' into a cut C' similar to C, but having a shorter duration. This transformation is
an essential element of the inductive proofs in Sections A.4 and A.5.

Definition 16 (temporal restriction of a set of snapshots) Let C' be a set of snapshots. We call
temporal restriction after o of C' the set C’ of snapshots built according to the following rules.

1. forevery i and every t < to, we have (i,t) ¢ C’
2. for every i and every t > to, we have (i,t) € C" iff (i,t) € C
3. for every i, we have (i, to) € C" iff C captures® part i at time to.

Lemma 3 Let C be a GC-consistent cut. The temporal restriction after ¢, of C, called C’, is a
GC-consistent cut.

Proofoflemma3 Under the lemma’s hypotheses, C' is a set of snapshots. We need to prove that C’
is a GC-consistent cut. According to Definition 10, this reduces to proving two facts: (i) C’ contains
at least one snapshot of every part and (ii) C’ crosses every path. We first show that (ii) implies (i),
then we establish (ii). To prove the implication, we define for every ¢ the constant function H; such
that for every ¢, H;(t) = i. It results from Definition 9 that H; is a path. This implies that if (ii) holds,
then C’ crosses each H;. This, in turn, implies that for each i, there exists a ¢ such that (i,t) € C’,
and that (i) holds. Thus, (ii) implies (i).

Now, let us prove by contradiction that (ii) holds. We assume on the contrary that C’ does not
cross some path called H', and under this assumption we will show the existence of a path H
which does not cross C. The existence of such a path is in contradiction with the fact that C' is a
GC-consistent cut.

Since H' does not cross C", snapshot (H'(to), to) does not belong to C'. From this, from rule 3
in Definition 16 and from Definition 11, we deduce that there exists a path H" such that

H"(to) = H'(to)
foreveryt <to, (H"(t),t) ¢ C

9This word is introduced in Definition 11, Section 4.3.2.
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We define path H as follows:

for ¢ < to, H(t) = H"(t)
for t > to, H(t)= H'(t)

Lemma 2 implies that H is indeed a well-formed path. Let us prove that H does not cross C, i.e.
that for every ¢, we have (H(t),t) ¢ C. This relation holds for ¢ < tg since for such values of ¢ we
have (H"(¢),t) ¢ C and H(t) = H'"(t). For t > to, it holds since we have (H'(t),t) ¢ C' and
H(t) = H'(t) and, by Definition 16, C' and C' coincide for times ¢ > o. O

Finally, let us introduce two lemmas which enumerate the conditions under which a transaction
can gain access to objects and pointers.

Lemma 4 Let T be atransaction which occurs in E between times¢ and ¢t + 1, and let p be a pointer
value. We assume that p points to a non-root object xp which either exists at time ¢ or is not created
by 7.2 T can gain access to p only if there exist an integer d,, > 0 and objects z5, ..., xﬂp such that

1. zf is root;
2. for every integer j € [0..d, — 1], at time ¢ object mf exists and contains a pointer to m§+l;
3. attime ¢, object xﬁp exists and contains a copy of p;

4. for every integer j € [0..d,], T locks P(z¥).

Proof The proof is done by contradiction: we assume that transaction 7" takes place between times
t and ¢ + 1, and has access to one or more pointers which violate the lemma. In this proof, instead
of viewing T as an atomic event, we consider its execution as a finite-time suite of events, which
can be observed with the help of a real-time clock. Rules in Section 2.4 enumerate the situations in
which 7' can have access to a pointer: 7' has access to pointers to roots (rule 1) and can progressively
gain access to some other pointers according to rules 2 and 3.

Let p represent, among the pointers which violate the lemma, one to which 7' gains access first.
Note that p may not be uniquely defined as T' can simultaneously get access to several pointers,
making several pointers “first ex aequo.” In order to violate the lemma, p must satisfy its hypotheses:
it must point to a non-root object which either exists before the beginning of 7" or is not created by
T'. Let us show that T initially gets access to p through rule 3 in Section 2.4 (a priori, rules 1, 2 or 3
could be used). T' cannot get access to p according to rule 1 because *p is not root. Access through
rule 2 is impossible if xp is not created by T'. Otherwise (i.e. if xp is created by T'), rule 2 can only be
applied when T creates xp. And, by hypothesis, in this case xp exists at time ¢. Therefore, before xp
can be created by T', it must first be destroyed by T'. By rule 6, this implies that 7" must have access to
p before the creation of *p, i.e. before the time when rule 2 applies. The rule cannot, therefore, give
T its initial access to p. This initial access is therefore acquired through rule 3, i.e. as part of gaining

10As explained in Section 2.2, we consider that a given object can be succcessively created and deleted many times. For
example, z may exist at time ¢, and between times ¢ and ¢ + 1, transaction 7" may delete then create z.
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initial access to some object  which contains a copy of p. We consider three cases: x is either (i) a
root or (ii) a non-root object created by 7" or (iii) a non-root object not created by T'.

In case (i), we set d, = 0 and zf = z. This causes conditions 1-4 in the lemma to be satisfied
(the trivial verification of this is left out), which implies that p does not violate the lemma. Thus
contradiction.

Case (ii) is impossible: when T initially gains access to an object created by T itself, p cannot be
present in the object as all the pointer fields in it are equal to O; this results from rule 4.

In case (iii), we observe that before accessing x, 7" must have had access to a pointer g to z. Since
T had access to ¢ before gaining access to p, the definition of p entitles us to assume that ¢ does not
violate the lemma. Since q satisfies the lemma’s hypotheses (this directly results from the hypotheses
for case (iii)), we can use the lemma and say that there exist an integer d, > 0 and objects z{, ..., xgq
satisfying conditions 1-4 in the lemma.

We are now ready to obtain a contradiction by proving that p satisfies the lemma. For this purpose,
we define the integer d,, and objects z5, .. xfl asfollows: d, = dy +1,2% = =} forj € [0..d, — 1]
and x4, = z. This definition causes condltlons 1-4 to be met; the verlflcatlon of this fact is left
out as |t is somewhat long, yet easy and boring. Therefore, p does not violate the lemma. Thus
contradiction. |

A.4 Proof of Theorem 2

Theorem 2 says that GC-consistent cuts contain no false garbage. First, observe that if a cut C
contains a snapshot (P(z), t) from which z is absent, then z is either absent from C or, by line 2 in
Definition 4, is reachable in C; in either case, z is not garbage in C.

Let C be an arbitrary GC-consistent cut. To establish the theorem, it is sufficient to prove that
every object which is never garbage in £ during C' is not garbage in C. We call ¢; and ¢, the times
when, respectively, the first and the last snapshot in C is taken. The proof is done by induction on the
duration of C, i.e. on the value ¢, — ¢1. The case t2 — t1 = QO is easy: if t1 = t», then C only contains
snapshots taken at time ¢1 = ¢, and is therefore an instantaneous cut, which faithfully represents the
state of F at time t; = t,. This implies that the lemma holds for C in this case.

The rest of the proof deals with the case ¢; < t,. We define C' to be the temporal restriction of
C after t1 + 1. By Lemma 3, C’ is a GC-consistent cut. C' contains no snapshots taken before time
t1 + 1 or after time ¢, (the easy proof of this sentence is omitted). This fact implies that the duration
of C’ is strictly less than ¢, — t; and, by the induction hypothesis, C’ can be assumed to satisfy
Theorem 2. The fact also implies that the time interval of C' is included in the time interval of C.
Therefore, every object = which is never garbage in E during C' is not garbage in C'. To complete
the proof of the theorem, it is therefore sufficient to establish the following proposition.

Proposition 1 Let = be an object which is not garbage in C'. Then, z is not garbage in C.

In order to establish proposition 1, we need to state and prove the following proposition.

Proposition 2 Let 2 be an object and let ¢ be a time such that (P(z),t) € C' and z does not exist
at time ¢. Then, z is not garbage in C'.
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Proof of proposition 2 Consider an object 2 and a time ¢ which satisfy the hypotheses of the
proposition. To simplify notation, we define

i = P(x)
Let us show that z is not garbage in C. We are in one of the following cases.
Casel: t>t1+1
Case2: t=t;+1land (i,t) € C
Case 3: t =t1+ 1and (i,t) ¢ C and at time ¢4, object z does not exist in E
Case 4: t =t;+ 1and (4,t) ¢ C and at time ¢4, object z exists in E

Let us successively deal with cases 1-4. In case 1, we have (i,t) € C because t > ¢; + 1, and
therefore C and C’ coincide at time ¢. In case 2, we have (4,t) € C by hypothesis. Since 2 does not
exist at time ¢, in these two cases C contains a snapshot of 4 from which z is absent. According to
the remark made at the beginning of this subsection, z is then not garbage in C.

In case 3, we use the fact that, since (4,1 + 1) € C’, cut C crosses at time t; + 1 or before every
path H such that H(¢t; + 1) = . More precisely, since C' contains no snapshots taken before time
t; and because of the assumption that (i,t; + 1) ¢ C, cut C crosses every such path at time ¢5. In
particular, C' crosses at time ¢, the constant path H; such that for every ¢, H;(t) = 4. This means
that (4,t1) € C. Since, by hypothesis, 2 does not exist at time ¢4, « is absent from (4, 1), and is not
garbage in C.

Now, let us reason about case 4. We call T the transaction which takes place between times ¢4
and t; + 1. Since z exists at time ¢4 but not at time ¢, + 1, transaction 7" deletes z. By rule 6 in
Section 2.4, T has therefore access to . Let us show that the initial access of T" to z is obtained
according to rule 3 in Section 2.4. A priori, this access may be obtained through any of rules 1, 2 or
3. But in fact, rule 1 cannot apply because z does not exist at time ¢1 + 1, and thus is not root. Rule
2 cannot apply because x can only be created by T once T has access to z: x exists when T" begins,
and therefore T' can create x only after destroying it; the destruction, in turn, is only possible once T
has access to z.

Since z is accessed by T through rule 3, T" has access to a pointer value p such that = *p. By
lemma 4, there exists then an integer d,, > 0 and objects z&, ..., xﬁp such that

Al: z{ is root;
A2: for every integer j € [0..d, — 1], at time ¢; object :c? exists and contains a pointer to x§+l;
A3: at time ¢, object mgp exists and contains a copy of p;

A4: for every integer j € [0..d,], transaction T locks part P(z?).

We define the integer e = d,, + 1, and objects zo, ..., z, such that ; = :vg’ for j € [0..dp] and
xz. = x. Then, according to Definition 6, in order to prove that z is reachable in C, it suffices to
establish the following statements.
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S1: xzgisaroot;
S2. z, =z

S3: for every integer j € [0..¢e], some snapshot in C' contains a copy of z; which, except for
J = e, contains a pointer to ;1.

Statement S1 is equivalent to Al. Statement S2 is one of our hypotheses. Let us establish S3. To
prove that the statement holds for any given j € [0.. ], it is sufficient to prove that the two following
facts hold for this j:

§3.1: snapshot (P(x;),t1) contains a copy of z; which, except for j = e, points to 1.
83.2: (P(z;),t1) € C,;

For j = e, statement S3.1 directly results from the hypotheses for case 4 (by definition, z. = x); for
j = e— 1, itresults from statement A3; for j < e — 1, it results from A2. To prove S3.2, we use path
H defined as follows:

fort < t1, H(t) = P(z;)
fort > t1, H(t)

i

According to Definition 9, for j = e, H is indeed a path because in this case P(z;) = ¢ and H is
a constant function. For j < e, to show that H is indeed a path, we just need to prove that T" locks
P(z;) for reading or writing, and locks ¢ for writing. The former results from statement A4. The
latter results from the fact that z is deleted by T'.

Since (4,t1 + 1) € C', part i is captured in C at time ¢1 + 1. Since H (t1 + 1) = 4, reasoning as
in case 3 we obtain (H (t1),t1) € C, i.e. (z;,t1) € C, and S3.2 holds. This completes the proof of
statement S3, and of the fact that « is not garbage in C' in case 4. O

Proof of proposition 1  Let us take an arbitrary object = which is not garbage in C', and prove that
z is not garbage in C. We are in one of the two following cases.

Case 1: C' contains no copies of .
Case 2: z is reachablein C’.

In case 1, it suffices to observe that since C’ is a cut, a time ¢ such that (P(z),t) € C' exists. Since
C' contains no copies of z, object z does not exist at time ¢. The hypotheses of proposition 2 are
therefore met; by applying the proposition, we deduce that z is not garbage in C. This terminates the
proof for case 1.

Consider now case 2. Let d represent the reachability index of  in C'. We reason by induction
on d. In order to prove that z is not garbage for d = 0, it suffices to observe that by Definition 15,
either z is a root, or C' contains a snapshot (P(z),t) in which z is nonexistent. In the first case, z is
trivially reachable in C; in the second case, it is not garbage in C' by proposition 2.
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Now, assume that d > 0. There exists then an object ' such that some copy of =’ present in C’
contains a pointer to z, and that =’ is reachable in C” with reachability index d — 1; the existence of
z' results from Definition 15 (easy proof omitted). We define

i = P(z)
i’ = P()

Let ¢ be a time such that snapshot (i’,¢) belongs to C' and contains a copy of =’ which points to z.
The induction hypothesis allows us to assume that z’ is not garbage in C..
We are in one of the following cases.

Casel: t>t1+1
Case2: t=t;+1land (¢,t) € C
Case 3: t=1t;+ 1and (i',t) ¢ C and at time ¢4, object 2’ exists and contains a pointer to

Case4: t =t;+ 1land (i,t) ¢ C and at time ¢1, object =’ does not contain a pointer to z (=’ may
or may not exist at time ;)

The rest of the proof is done for each case separately. For cases 1 and 2, we have (i',¢t) € C.
Thus, a copy of z' present in C' contains a pointer to z. Since ' is not garbage in C, this implies that
z is reachable in C.

In case 3, reasoning as in the proof of Proposition 2, case 3, we obtain (i',¢1) € C. This, together
with the hypotheses for case 3 and with the fact that 2’ is not garbage in C, implies that z is reachable
inC.

Now, consider case 4. We call T the transaction which takes place between times ¢4 and ¢1 + 1.
Let us consider two subcases. In the first subcase, we assume that z does not exist at time ¢, and 7'
creates . We consider then path H, defined as follows:

fort < 4, H(t)
fort > t1, H(t) =14

1

Since T creates z and writes a pointer into z’, T' locks for writing parts 4 and 7’. According to
Definition 9, H is therefore indeed a path.

Since (i',t1 + 1) € C’, part ¢’ is captured in C' at time ¢1 + 1. Since, by hypothesis, (H (1 +
1),t1 + 1) ¢ C, and no snapshot taken before time ¢, belongs to C, we have (H (t1),t1) € C, i.e.
(i,t1) € C. Given that, by hypothesis, 2 does not exist at time ¢1, C contains therefore a snapshot in
which z is nonexistent, and z is not garbage in C.

Consider now the remaining subcase, i.e. the situation where z exists at time ¢1 or 7' does not
create z. If z is absent from C, then z is not garbage in C'. When proving that z is not garbage in C,
we can therefore assume without loss of generality that a copy of z is present in C'.

Let us call p the pointer value which points to z. According to the hypotheses for this case, T’
writes p into ', and therefore has access to p. Since p points to a non-root object which exists at time

INRIA



GC-consistent Cuts of Databases 41

t1 or is not created by 7', we can use lemma 4, and say that there exists an integer d,, > 0 and objects
zh, .. xg which satisfy the conditions quoted under labels A1-A4 in the proof of proposition 2.

The rést of the proof is identical to the part of the proof of proposition 2 which follows conditions
Al1-A4, with the two following differences. First, in our case the statements S3.1 and S3.2 do not
necessarily hold for j = e. Therefore, to prove that S3 holds for j = e, instead of S3.1-S3.2 we use
the assumption made above that C' contains a copy of z.

Second, for j < e the proof of statement S3.2 is slightly different: we use index ' instead of s.
The modified proof is as follows. We define path H' as follows:

fort <t,, H'(t) = P(z;)
fort > t1, H'(t) =14

To show that H' is indeed a path, we just need to prove that T" locks P(z ;) for reading or writing,
and locks 7' for writing. The former results from statement A4. The latter results from the fact that,
by hypothesis, 2’ is modified by 7.

Since (i’,t1 + 1) € C’, part ¢’ is captured in C at time ¢1 + 1. Since H'(¢1 + 1) = 4’, we obtain
(H(t1),t1) € C,i.e. (P(z;),t1) € C, and S3.2 holds. O

A.5 Proof of Theorem 5 (sum of bank accounts)

Let us first show two lemmas.

Lemma5 Let C be a GC-consistent simple cut. Let C’ be the temporal restriction after ¢o of C. For
every 4, we define ¢ be the time such that (¢,¢) € C. Then,

1. ift > to, then (i,¢) € C' and forany t' # ¢, (i,t") ¢ C';
2. otherwise, (i,t0) € C' and for any ¢’ # to, (i,t') ¢ C';

Proof LetC,to, C',%andt be defined as in the lemma. Consider the two cases t < tgandt > tg. In
the first case, we recall that after ¢o, C and C"’ coincide. This implies that C' contains no snapshots of
part : taken after ¢o. Since C’ contains no snapshots taken before #o, we deduce that C’ may contain
only one snapshot of part ¢, namely (%o,%). Since, by lemma 3, C" is a cut and therefore contains at
least one snapshot of 4, we have (i, tg) € C'. These considerations imply that the lemma holds for
those values ¢ for which ¢ < tg.

Now, consider the case ¢ > to. We define the constant path H such that H(¢) = i for every ¢.
Path H does not cross C' at time tq or earlier. This implies that part 4 is not captured by C' at time
to. Thus, (¢,t0) ¢ C'. This and the fact that C' contains no snapshots taken before ¢, allow us to say
that C' may only contain snapshots of part 7 taken at times ¢’ > #,. And since C and C' coincide for
all such times, one and only one snapshot of i taken after to may exist in C’, namely (i, t). O

Lemma 6 Let T be the transaction which takes place in E between times to and to + 1. Let W be
the set of indices 4 such that part 4 is locked for writing by T'. Let C be a GC-consistent simple cut.
Then, at least one of the two following statements holds
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1. for every i € W, the snapshot of 4 in C is taken at time ¢ or before;

2. or for every i € W, the snapshot of 7 in C'is taken at time ¢o + 1 or after.

Proof We prove the lemma by contradiction. Assume on the contrary that, under the lemma’s
hypotheses, both statements are false. Since C' contains one and only one snapshot of every part, this
is equivalent to the following two lines:

o forsomei € W, we have (i,t) € C foravaluet > to + 1
e and for some i’ € W, we have (i',t') € C foravalue t’ < to

Under this assumption, we introduce path H, defined as follows:

fort < to, H(t)=1i
fort > to, Ht) =1

Since between times to and to + 1 parts 4 and 4’ are both locked for reading and writing, H is indeed a
path. H does not cross C (the simple proof of this fact is left out). Therefore, C is not a GC-consistent
cut. Thus contradiction. |
Now, let us use lemmas 5 and 6 to establish Theorem 5. The proof is done by an induction similar
to the first induction in Section A.4. We assume that E satisfies the hypotheses of Theorem 5 and that
C'is a GC-consistent simple cut of E. To establish Theorem 5, it is sufficient to prove that relation (1)
in the theorem holds under these hypotheses. For this purpose, we introduce notation ¢, and ¢, for the
times when, respectively, the first and the last snapshot in C is taken. Our proof is done by induction
on the duration of C', which is equal to ¢, — ¢1. We omit the very simple proof for null durations. For
non-null durations, we define C’ to be the temporal restriction of C after ¢; + 1. Lemmas 3 and 5
imply that C" is a GC-consistent simple cut. Reasoning as in Section A.4, we observe that C' only
contains snapshots taken between times ¢; + 1 and ¢,. Its duration is therefore strictly less than the
duration of C. This allows us to apply the induction hypothesis and to assume the following

S = Z ’UjCl 2

Given this relation, all we have to prove is

I !

S8 =3 ©

j=0 7=0

Let us call T' the transaction which occurs between times ¢1 and ¢1 + 1. We call W the set of
indices which correspond with parts locked by T' for writing. We call W’ the set of indices j € [0..1]
such that P(v;) € W. In other words, W' is the set of indices j such that 7' has the possibility to
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modify v;. Consider the following statements:

forevery j € [0..1] satisfying j ¢ W', o =of ()

dou= v ®)
jew! JEW!
These two statements trivially imply (3). The rest of this proof consists in establishing them. To
establish (4), we consider an arbitrary index j ¢ W', and we prove that vf = vJC Let ¢ be the time
such that (P(v;), t) € C. \We consider two cases: eithert > ¢1+1ort = ¢1. Fort > ¢4+ 1, lemmab
implies that (P(v;), t) € C'. Accordingly, the values vf and vf' both represent the integer vg-,
and are therefore equal. For t = t1, lemma 5 implies that (P(v;), t1 + 1) € C'. We have therefore
vf = v§1 and v]C' = v§1+1. Since j ¢ W', transaction T" does not modify the part containing v, and
we have vt = v/+**. This implies that v§" = v¢, and completes the proof of (4).
Now, let us establish (5). According to lemma 6, we are in one of the two following cases:

1. foreveryi e W, (i,t) € C forsomet >t +1
2. orforeveryi e W, (i,t1) € C

In the first case, lemma 5 implies that for every j € W', simple cuts C and C' contain the same
snapshot of P(v;). This implies that for every j € W', the values vjc and ij' represent the same
number. This, in turn, implies (5).

In the second case, observe that for j ¢ W', variable v; remains constant between times ¢, and
t1 + 1. Therefore, the following equalities hold:

dovt o= ) ot (6)

Jgw’ jew’
b t41
S— Dyt = 8-> v
Jgw’ jgw’
t t1+1
Z vt = Z Uj1+ ")
jewr jew

To establish equality (5), it is now sufficient to show that each side of (5) is equal to the corresponding
side of (7). The left sides are equal because we are in the case in which for every i € W, (i,t1) € C,
and thus for every j € W', we have ch = vjl. For the right hand sides, the proof is analogous,

except that lemma 5 is used to state that ch' = vj.l“ forevery j € W', O

A.6 Proof of Theorem 3 (characterization of causal cuts)
We use the following lemma, which directly results from Definitions 9 and 13.
Lemma 7 Forevery i, ¢, tandt, relation
(i,t) = (¢',1")
holds iff ¢ < ' and there exists a path H in E such that H(t) =i and H(t') = 4'.
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Theorem 3 says that in any given execution E, a cut C' is causal iff it crosses every path H in E
in exactly one point. To establish the theorem, we first assume that C' crosses every path in exactly
one point, and we prove that it is causal, i.e. that it satisfies conditions 1 and 2 in Definition 14.

To show that C satisfies condition 1, we proceed by contradiction: we assume on the contrary that
there are two different snapshots (i,t) € C and (i',¢') € C satisfying (i,t) — (¢’,t"). By lemma 7,
there exists then a path H such that H(¢) =i and H(¢t') = 4'. C crosses H at two points, namely
(i,t) and (¢, ¢"). Thus contradiction.

To show that C satisfies condition 2, we observe that if a transaction occurring between times tq
and o + 1 reads part < and writes part ', then a path H can be defined as follows.

fort <to, H(t) =1
fort >to+ 1, H(t) =4

Now, let us proceed by contradiction. We assume that condition 2 in Definition 14 does not hold, i.e.
that conditions 2a and 2b are both false. Then,

no value ¢ < t satisfies the condition (i,t) € C
and no value ¢ > to + 1 satisfies the condition (i’,t) € C

This and the definition of H imply that we do not have (H(t),t) € C for any value ¢. This means
that H does not cross C'. Thus contradiction. This completes the proof that a cut which crosses every
path in exactly one point is causal.

Now, let us show the converse: we assume that C' is a causal cut of E, and we prove that it crosses
every path in E in exactly one point. First, observe that C' does not cross any path in more than one
point: by lemma 7, two snapshots belonging to the same path cannot be causally incomparable, and
thus cannot both belong to C'.

We still need to prove that C' crosses every path H. We proceed by induction on the number
v(H), defined to be the number of values ¢ such that ¢ and ¢ + 1 are integer clock values and
H(t) # H(t+1). Forv(H) = 0, H is a constant path, and C crosses H because it contains at least
one snapshot of every part.

For v(H) > 0, we define o to be the largest integer such that ¢ and ¢o + 1 are integer clock
values, and H (to) # H(to + 1). We define path H', which satisfies v(H') = v(H) — 1, as follows:

fort <to, H'(t) = H(t)
fort > to+ 1, H'(t) = H(to)

(We omit the easy proof that H' is indeed a path and that v(H') = v(H) — 1.) The induction
hypothesis allows us to say that for some ¢', we have (H'(t'),t') € C. In the case ¢’ < to, the proof
is extremely simple: we have H(t') = H'(t'), thus H crosses C at snapshot (H (t'),t').

The proof is more complicated in the remaining case, i.e. if ' > to + 1. First, we recall that
H(to+ 1) # H(to). From this fact and from the definition of paths (Definition 9), we deduce that
between times ¢ and to + 1, a transaction reads part H (o) and writes part H(to + 1). Condition 2
in Definition 14 implies therefore that at least one of the following holds.
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(i) The snapshot of part H(to) in C' is taken at or before time ¢,
(i) or the snapshot of part H(to + 1) in C is taken at or after time o + 1.

From the fact that (H'(¢'),t') € C and from equality H'(t') = H(to), we can deduce that
(H (to),t') € C. This and the facts that ¢’ > to and that C'is a simple cut imply that (i) is false. (ii)
is therefore true, and for some " > to, we have (H(to + 1),t") € C. Since H(t") = H(to + 1),
this means that H crosses C. m|

A.7 Proof of Theorem 4 (detection of dangling pointers)
In order to prove the theorem, we introduce the following lemma:

Lemma 8 Assume that object x is created exactly once in execution E, and the creation occurs in
transaction 7', which takes place between times ¢ and to + 1. Assume also that no pointers to z exist
at time 0. Let

1o = P(.’L‘)

Then, pointers to = can only be present in those snapshots (4, t) which satisfy (io,t0) — (¢,t). No
pointers to x are present in (ig, to).

Instead of the full proof of the lemma, which is technical and boring, we give an informal description.
When z is created, a pointer to z is created by the system and made accessible to T'. Then, T' can
store the pointer in all the pages to which it has write access. All the pointers to = present in the
system are obtained by successively copying this pointer (this results from the rules about pointers in
Section 2.4, and from the fact that at the beginning, the system contains no pointers to z). A snapshot
(,t) may therefore contain a pointer to x only if there is a path going from (io, to) to (i,t), i.e.
if (40, t0) causally precedes (4,t). Snapshot (i, o) cannot contain pointers to z because it is taken
before the execution of 7. O

Now, let us consider a causal cut C' of E. We assume that no objects are destroyed and no dangling
pointers ever exist in E. To prove Theorem 4, it is sufficient to show under these assumptions that C
contains no dangling pointers, i.e. that for every pointer p present in C, an object pointed to by p is
also present in C.

Since no pointer in E is ever dangling and p, being present in C, is also present at some time
in E, we know that an object z pointed to by p exists in E at some time. Let us call 7o the part
containing z.

We consider two cases, depending on whether z exists at time 0. If z exists at time 0, the facts
that z exists all the time during E (because it cannot be destroyed), and that C' contains a snapshot
of part ig imply that C contains a copy of z. Therefore, p is not dangling in C.

In the remaining case, i.e. if = is created after time 0, we define ¢ to be the time such that z is
created between times ¢ and #o + 1 (= cannot be created more than once because we assume that no
object is destroyed during E). We proceed by contradiction: we assume that a copy of p is present in
some snapshot (i1,t1) € C, yet z is absent from C. Let ¢, be the time such that (io, t2) € C. Since
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x is not present in C and is present in part ¢ from time o + 1 to the end of the execution, we know
that ¢, < to. This implies the following causal precedence

(fo,t2) —  (io, o) (8)

Since no dangling pointers appear in E, the non-existence of z at time 0 implies that no pointer to
x exists in F at time 0. We are therefore entitled to use lemma 8, which allows us to deduce the
following relations

(io,t0) — (i1, t1) ©)
(io,t0) # (i1,t1) (10)
From relations (8-10) and from the fact that causal precedence is a partial order, we deduce that
(io, tz) — (il, tl) (11)
(io,t2) # (i1, t1) (12)
Lemma 7 and relations (11-12) imply that C' contains two different snapshots belonging to the same
path. By Theorem 3, this implies that C' is not a causal cut. Thus contradiction. O
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