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Abstract: Object-oriented databases enforce behavioral schema consistency rules to guarantee type
safety, i.e., that no run-time type error can occur. When the schema must evolve, some schema up-
dates may violate these rules. In order to maintain behavioral schema consistency, traditional solu-
tions require significant changes to the types, the type hierarchy and the code of existing methods.
Such operations are very expensive in a database context. To ease schema evolution, we propose
to support exceptions to the behavioral consistency rules without sacrificing type safety. The basic
idea is to detect unsafe statements in a method code at compile-time and check them at run-time.
The run-time check is performed by a specific clause that is automatically inserted around unsafe
statements. This check clause warns the programmer of the safety problem and lets him provide
exception-handling code. Schema updates can therefore be performed with only minor changes to
the code of methods.
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Relachement des règles de cohérence de schéma avec typage sûr
pour une modélisation souple dans les SGBDOO

Résumé : Les bases de données à objets imposent aux schémas des règles de cohérence qui ga-
rantissent la sûreté de typage, c’est-à-dire qu’aucune erreur de type ne peut survenir à l’exécution.
Lorsque le schéma doit évoluer, certaines mises à jour peuvent violer ces règles. Pour conserver la
cohérence comportementale du schéma, les solutions traditionnelles nécessitent des modifications
significatives des types, de leur hiérarchie ainsi que du code des méthodes pré-existantes. Ces opé-
rations sont très coûteuses pour une base de donnée. Afin de faciliter l’évolution de schéma, nous
proposons de supporter des exceptions à ces règles de cohérence, sans sacrifier la sûreté de typage
pour autant. L’idée essentielle est de détecter les instructions non sûres à la compilation, et de les
vérifier à l’exécution. La vérification est effectuée grace à une opération particulière qui entoure au-
tomatiquement toute instruction non sûre. Cette opération avertit le programmeur du problème de
sûreté, et lui permet de fournir le code de traitement de l’exception. Les mises à jour du schéma
peuvent ainsi être effectuées, avec seulement des modifications mineures du code des méthodes.

Mots-clé : Bases de données orientées-objet, évolution de schéma, typage sùr, covariance, contra-
variance.
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1 Introduction

An object-oriented database schema contains the description of the types � , type hierarchy, and me-
thods used by all application programs. Types and method interfaces allow to model the complex
objects coming from conceptual design, while method code and type representation define the imple-
mentation of objects. As a consequence, object-oriented databases must meet requirements arising
from both a conceptual data modelling and a programming perspective.

From a programming point of view, it is highly desirable to guarantee type safety, for instance
in order to protect the database against data corruption caused by type errors. To ensure type safety,
object-oriented systems typically enforce that a schema satisfies three behavioral consistency rules.
These rules are sufficient conditions that guarantee that no type error can occur during the execution
of a method code. The substitutability rule says that if a type

���
is a subtype of a type

�
� then

whenever an instance of
�
� is expected in a variable assignment or a function invocation, it must be

allowed to pass an instance of
���

. The covariance and contravariance rules impose constraints when
a method is redefined for more specialized types. The covariance rule says that the return type must
also be specialized. The contravariance rule says that the types of arguments that are not used for late
binding must be more general. If a database schema satisfies these rules, it is said to be behaviorally
consistent.

However, from a database modelling perspective, the schema must evolve in order to accommo-
date evolutions of the real world. As argued in [Bor88], this is particularly important in databases
“where it is in general impossible or undesirable to anticipate all possible states of the world du-
ring schema design”. The problem is that some schema updates may violate the behavioral consis-
tency rules. For example, consider a database schema that contains a type ���	��
����� having an at-
tribute �	��������� of type ��������
���
��	� . Suppose that we define a new type, called  "!#�$�%�&��!'
�� , as a sub-
type of ���	��
��(��� and such that the attribute �)��������� inherited from ���	��
����� is redefined to be of type
���(�*������!#��+	
��(� . Since a ���(�*���&��!,��+-
��(� is (usually) not a �������(
���
��	� , the method that retrieves the
�	��������� attribute value of an alcoholic violates the covariance rule and the method that updates the
�	��������� attribute value of an alcoholic violates the contravariance rule.

There are also specific situations that are part of the (real-life) application that constitute viola-
tions of the behavioral consistency rules. For instance, in an hospital database, one may say that am-
bulatory patients are exactly like patients (i.e.,  /.10324!#�	������� 5&�	��
������ is a subtype of ���	��
��(��� ) except
that they have no hospital ward. This leads to violate the substitutability rule because the method that
retrieves a 6"�	��� attribute value is not applicable to an instance of  /.10327!,�	������� 54�	��
����� .

Existing systems have two attitudes with respect to this problem. One is to encourage the pro-
grammer to follow the rules but not actually force him to do so (e.g., C++, or O

�
for the contravariance

rule). Inconsistent schemas are allowed and it is the programmer’s responsibility to control what the
program does and avoid run-time type errors. The second attitude is to prevent the user from viola-
ting the rules. In this case there are several well-known solutions that lead to either change the type
hierarchy and introduce “fake” types, or break the type hierarchy and loose the advantages of poly-
morphism. These solutions may require significant changes to the code of methods. Both attitudes

8
We intentionally avoid to talk about classes, which are viewed as types in some systems and as type extensions in others.

RR n ˚ 2638



4 E. Amiel, M.-J. Bellosta, E. Dujardin & E. Simon

are clearly not satisfactory since they result in either unsafe code or substantial and artificial revisions
to the schema.

The starting point of our research is that exceptions to the behavioral consistency rules should be
supported to ease schema evolution and modelling. However, they should be checked at run-time
to avoid type errors. In this report, we propose to process every method source code and (i) deter-
mine whether a statement is unsafe, i.e., may result in a run-time type error, (ii) automatically in-
sert a “check” clause around every unsafe statement in the source code, and (iii) let the user provide
exception-handling code. The check clause is merely an if-then-else statement where the if-part per-
forms a safety run-time check, the then-part contains the original statement, and the else-part contains
the exception-handling code

�
. The insertion of check clauses warns the user about possible run-time

type errors. The safety condition in the if-part of the “check” clause is expressed intensionally, the-
reby avoiding to reformulate the condition when the schema changes. Our tool can also automatically
generate some default exception-handling code. However, if the programmer provides his/her own
exception-handling code then it has to be inspected by our tool.

Our proposed approach facilitates schema evolution by supporting exceptions while guaranteeing
that no run-time type error will occur. We focus on the motivations for such an approach and the type
checking of statements in the presence of exceptions to behavioral consistency. Our results apply to
object-oriented databases that support run-time method selection using either a single method’s ar-
gument (mono-methods) or all method’s arguments (multi-methods) as in recent systems like CLOS
[BDG � 88], Polyglot [ADL91], and Cecil [Cha92].

The report is organized as follows. Section 2 introduces preliminary definitions about single and
multi-targeted methods, and defines the notion of consistent schema. Section 3 gives an overview
of the problem whereas Section 4 sketches the proposed solution. Section 5 introduces the material
necessary to present our type system. Section 6 describes the type checking process allowing to dis-
tinguish between safe and unsafe statements. Section 7 describes how this process can be optimized.
Section 8 establishes the relationships between the notions of consistency and safety. Section 9 re-
lates our work with existing work, and Section 10 concludes the report.

2 Schema Consistency

In this section, we introduce our notations for the types and methods of a schema, mostly defined
in [ADL91]. Then, we define the behavioral consistency rules and how they impact on structural
consistency through encapsulation. Note that our notion of consistency is only concerned with typing,
and not with semantics. It does not include issues such as integrity constraints (e.g., as in [FM94])
or business rules.

2.1 Notations

We assume the existence of a partial ordering between types, called subtyping ordering, denoted by�
. Given two types

�
� and

���
, if

��� � �
� , we say that

� �
is a subtype of

�
� and

�
� is a supertype

of
���

. As in [ZM89, Bru93, DS92], subtyping is a declared relationship between types, which is
decoupled from implementation decisions, and used solely to reflect operational similarities between
different types.

To each generic function . corresponds a set of methods .���� � ����	�	�
��� ������� � � , where
���

is the type of the i ��� formal argument, and where � � is the type of the result. We call the list of
�
We do not focus on the issue of designing specific language primitives for handling exceptions that can be harmoniously

integrated with existing OO programming languages.

INRIA



Type-Safe Relaxing of Schema Consistency Rules for Flexible Modelling in OODBMS. 5

arguments � � �� �	�
�	�	� � ���� of method . � the signature of . � . An invocation of a generic function .
is denoted . � � � �	� � � �

� � � , where � � � �
�	�
�	�
� � � is the signature of the invocation, and the

� � ’s represent
the types of the expressions passed as arguments. We shall use uppercase letters to denote type names,
and lowercase letters to denote type instances, generic functions, methods and method invocations.

In traditional object-oriented systems, functions have a specially designated argument, the target,
whose run-time type is used to select the method to execute (method resolution). Multi-methods, first
introduced in CommonLoops [BKK � 86] and CLOS [BDG � 88], provide a generalization of single-
targeted methods by making all arguments targets. Multi-methods are now a key feature of seve-
ral systems such as Polyglot [DCL � 93], Kea [MHH91], Cecil [Cha92], Dylan [App94] and SQL3
[Mel94]. Henceforth, we consider that methods are targeted on either one or all arguments. For the
sake of uniformity, we shall assume that the 5 first arguments of a function (where 5 ��� or 5 � � )
are the target arguments. In the examples, we underline the target arguments in the signatures.

Figure 1: A simple schema

������%�(��� ����24�-! � ( ����������� , �����%����� )

� ��24�	�����
����24�-! � ( � ��27�)����� , � ��27�)����� )

Example 2.1 : Consider the type hierarchy of Figure 1, and suppose we wish to define a generic func-
tion ����27�-! on people and students. Since equality is defined differently for people and students, two
methods ����27�-! ( �����%�(��� , �����%����� ) and ����27�-! ( � ��24�	����� , � ��27�)����� ) are needed to implement the gene-
ric function and we respectively denote them ����27�-! � and ����24�-! � . Their signatures, given on Figure
1, show that these methods have a single target argument. On invocation ����27�-! �#����������� ,

� ��27�)����� � ,
the run-time method dispatcher will select method ����27�-! � based on the first target argument. 	

Given a generic function invocation, the selection of the corresponding method follows a two-
step process : first, based on the types of the target arguments, a set of applicable methods is found
and second, a precedence relationship between applicable methods is used to select what is called
the Most Specific Applicable method (MSA). Intuitively, a precedence relationship determines which
applicable method most closely matches a function invocation. Given a signature � � � � � �
�	�
���

� � �
and a function invocation . � � � , if . � and .�
 are applicable to . �#� � and, according to a particular
method precedence ordering, . � is more specific than .�
 for � , noted . ���� .�
 , then . � is a closer
match for the invocation. When the method precedence ordering does not depend on signatures, i.e.� � . �  � . 
 , we just write . �  . 
 .

In the rest of this report, we assume that for any function invocation . � � � �
�	�
�	�
� � � , if there is

an applicable method, then there always exists a Most Specific Applicable (henceforth, MSA) me-
thod and this method is unique. We call this the Unique Most Specific Applicable (UMSA) property.
[ADL91] examines different possible method precedence orderings, and focuses on global type pre-
cedence and inheritance order precedence, which enforce the UMSA property in case of multiple
inheritance and multiple targets. However, we insist that our results do not depend on the means by
which the UMSA property is enforced.

Types can be represented using different data structures such as set, tuple and list. We assume that
the system enforces the encapsulation of the representation of types. Each type has a set of built-in
representation operations that enable to manipulate (i.e., access and update) the state of instances of
that type. For our purpose, we consider a subset of the operations defined in the ODMG object model
[Cat94]. Representation methods perform built-in operations on each type. The table in Figure 2
summarizes the signatures of their representation methods. Moreover, it is possible to iterate over
the elements of a collection, i.e. a set or a list, by using a �7�������-��� statement.

RR n ˚ 2638



6 E. Amiel, M.-J. Bellosta, E. Dujardin & E. Simon

Figure 2: Signatures of Representation Methods

Representation of type � Update Access

���������
	����������������������������� � ����� ���� � �����!� ���" �#�%$&���
���'�������� 8 � (*)+���-,-� �-	���./��)
�� � �0� 8 � ��.1�2��3�4� �#�5$&687�79	�����)

,:��.;7�<=� �-	���./��)
�� � ��� 8 �
���>	?(0������ 8 � (*)+���-,-� �-	���./��)
�� � �0� 8 � ��.1�2��3�4� �#�5$&687�79	�����)

,:��.;7�<=� �-	���./��)
�� � ��� 8 � ,9����,�(!�-<=� �-	���./��)
� ���� � ��@�)A����B��-,:�5$C� 8

Example 2.2 : As shown in Figure 3, both a Person and a Student have several income resources
used to compute taxes. The total amount of their financial resources is also divided between a bank
account and a life insurance. Additionally,

� ��27�)����� � have a cardID. The following invocation allows
to insert a new resource � in the resources list of a person 5 : 
 ��������� ��!,��. �������,��������24������� � 5 � � � � .
	

Figure 3: Representation of Types

�����%�����ED ��2)54!,� �'� �	. �FD � ����
�7+ � � ��24�	�����GD%��2	5&!#� �'� �	. �FD � ����
�7+ �
���IH �	��J* �$�$��24���GD�K�!#���	� � ���IH �	��J* �$�$��24���#D�K�!#���	� �

�IL 
 �7��M ���(24���)� ���ND�K�!,���	� � 
�IL 
 �7��M ���(24���	� �$�1D�K�!#���	� �
�����(��24���$���OD�L 
������ � ������24���$��� � � ��������24���$���PD�L 
������ � ������24���$��� ���

�$�	����M2QRD � ����
�7+ �

2.2 Behavioral Consistency Rules

Object-oriented typing theory defines three consistency rules to guarantee that no type error can occur
during the execution of a method code. The first two rules impose constraints on the types returned by
methods and the types of methods arguments. The third rule relaxes the condition of type equality on
substitution operations (variable assignment or parameter passing) to take into account the subtyping
relationship. The three rules are :

S Covariance rule : Given two methods . � � � �� �	�
�	�	� � �� � � � � and .�
 � � �
 �	�
�	��� � �
 � � � 
 ,
where, for some signature � , . � �� .�
 , then � � � � 
 .

S Contravariance rule : Given two single-targeted methods (5 ��� ), . � � � �� �	�
�	�	� � �� � � � �
and .�
 � � �
 � �
�	�
� � �
 � � � 
 , where, for some signature � , . � �� .�
 , then

� JUTWV ,
� �
 � � �� .

S Substitutability rule : Given two types
�
� and

���
, an instance of

� �
can be substituted to an

instance of
�
� if and only if

� � � �
� (substitutability condition).

The covariance rule is called consistency in [ADL91]. The contravariance rule was originally
developed for subtyping of functions [Car84], and has been extended to subtyping on partially tar-
geted methods in [McK92, Dan90]. The substitutability rule is the basis of inclusion polymorphism
[CW85].

2.3 Structural Consistency Rules

As shown in [KM94], the behavioral consistency rules on representation methods imply structural
consistency rules on the representation because of encapsulation. These rules state that the repre-

INRIA
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sentation of the supertypes must be included in the representation of their subtypes, and disallow the
redefinition of attribute types of tuples and element types of collections. Let

� � and
� 
 be two types,

such that
� � � � 
 , we have :

S Tuple Subtyping Rule: If the representation of
� 
 is ��2	5&!#� �#���
 D � �
 �
�	�
��� �

���

 D � ���
 � , then the

representation of
� � is ��2	5&!#� �,���� D � �� �
�	�	�
� � ���� D � ���� � , with

� ���� �
�	�
��� � �������� � ���
 �	�
�	�
� �
� �

 � ,

and for all J 

	 � 
 , all J � 	 � � , � � �
 � � � ���� � � �
 � � � �� .

S Set Subtyping Rule: If the representation of
� 
 is ������� � �
 � , then the representation of

� � is
�(����� � �� � , with

� �� � � �
 .

S List Subtyping Rule: If the representation of
� 
 is !,
������ � �
 � , then the representation of

� � is
!'
��(��� � �� � , with

� �� � � �
 .

These rules restrict the rules of structural subtyping defined by [CW85], that also appear in
[BKKK87]. The rules in [BKKK87] state that a tuple-structured type

� �
is a subtype of

�
� iff

���
has all the attributes of

�
� , and if the types of common attributes in

���
are subtypes of those in

�
� .

Thus, representation methods available on
�
� instances are also available on

���
instances. Howerver,

as noted in [KM94], the update operations do not respect the contravariance rule. [ZM89] genera-
lizes this problem to the redefinition of method parameters with subtypes, called specialization via
constraints. They show that specialization via constraints leads to run-time type errors that cannot
be handled by type checking at compile-time.

3 Problem Overview

In this section, we first define exceptions to behavioral consistency and give several examples of each
kind of exceptions. Next, we relate the violations of structural consistency rules to behavioral excep-
tions. We then summarize the type errors possibly induced by these exceptions. Finally, we present
solutions recommended by object-oriented design methods to avoid exceptions to consistency.

3.1 Exceptions to Behavioral Consistency

We define a behavioral exception as the violation of one of the three behavioral consistency rules.
The non-respect of the covariance rule yields return-exceptions while the non-respect of the contra-
variance rule yields argument-exceptions. Violations of the substitutability rule yields two kinds of
exceptions. The first one is when a signature is disallowed for a generic function, although the sub-
stitutability condition for parameter passing is satisfied. The second one is when the substitutability
condition is violated during assignment or parameter passing. These exceptions are respectively cal-
led disallowed signature and illegal substitution.

In the following, we only consider return-exceptions, argument-exceptions, and disallowed si-
gnatures as possible exceptions to the behavioral consistency rules. Indeed, illegal substitutions have
more far-reaching consequences on static type checking than the three other kinds of exceptions.

3.1.1 Return-exceptions

Method . � is a return-exception to method . 
 iff . � �� .�
 for some signature � , and the return
type of . � is not a subtype of the return type of . 
 .

Imposing covariance on the result ensures that whatever method is selected at run-time, its result
is a subtype of the type expected by the context of the invocation.

RR n ˚ 2638



8 E. Amiel, M.-J. Bellosta, E. Dujardin & E. Simon

Example 3.1 : Consider the schema in Figure 4, which respects the structural consistency rules.
Consider the generic function ��������
����	� that searches a document database according to the profile
of the library user and his topic of interest. A person receives a survey, while a student is presented
the course book relevant to his level. Thus, the method ��������
���-� � is a return-exception to ��������
���-� � ,
capable of yielding type errors. For instance, suppose that a generic function 0324
�!,� �-0��������-��� uses
pattern matching to extract the abstract of a paper and course books have no abstract. The statement
0�2&
�!,� �-0��������-�����,��������
����	� �,�-�����%����� � “ �)�	���*0��*��� �(��������.1� ” � � leads to a run-time error if �-���(�%����� re-
fers to a student at run-time, as there is no applicable 0324
�!,� �*0$�(�����-��� method. 	

Figure 4: Document Hierarchy

� � ���

�
��� �

����5&���

Q ����24. �����

� 24���	���

� ��2&�%����H ���=J
�

� ��27�	�(���

�����%����� ��������
����	� � � �����%�(��� ,
� ����
�7+ � � � 24���	���

��������
����	� � � � ��27�)����� , � ����
�7+ ��� � ��2&�%����H ���=J
032&
�!#� �*0$�(�����	�$��� ����5&��� ���  0��������-���

Return-exceptions can also cause illegal substitutions which can then lead to run-time type errors.

Example 3.2 : Consider the following assignment of a variable . � � 24���-��� of type
� 2&���-��� :

. � � 24���-���
	 ��������
���-� �'. �-�����%����� ��� �)�	���*0��*��� �(���(���(.1��  � . If . �-�����%����� refers to a student at
run-time, a course book is assigned to . � � 2&���-�(� , which constitutes an illegal substitution. The in-
vocation 0324
�!,� �*0$�(�����-������. � � 24���	��� � has no applicable method, thereby causing a run-time type
error. 	

3.1.2 Argument-exceptions

Method . � is an argument-exception to method . 
 iff . �  � . 
 for some signature � , and there
exists a non-target argument

� �� of . � which is not a supertype of
� �
 .

Argument-exceptions only occur in systems with single-targeted functions where run-time me-
thod selection does not check that the non-target arguments of an invocation are subtypes of the non-
target formal arguments of the selected method. This may result in illegal substitutions when the
actual arguments are assigned to the formal arguments. However, the possibility to specialize any
argument of a method is clearly needed in practice and for this reason, most object oriented systems
do not actually enforce the contravariance constraint (see [CCPLZ93], [Mey92], [CM92], [O

�
92]).

Example 3.3 : Consider the schema of Figure 1 where
� ��27�)����� is a subtype of �����%����� . The in-

vocation ����24�-! �,. �*�����%����� � � . �*�����%����� � � leads to the selection of ����24�-! � if the target argument,
. �*����������� � , refers to a student at run-time. But if the type of . �*�����%����� � refers to a person, an
illegal substitution occurs between the formal argument of type

� ��27�)����� and . �*����������� � . Then, in
the body of ����27�	! � , applying on this argument a function that is only defined for

� ��24�	����� (e.g. to
access the �$�	����M2Q attribute) causes a run-time error as there is no applicable method. Note that the
representation of types

� ��27�	�(��� and �����%����� conform to the structural subtyping rules. 	

3.1.3 Disallowed Signatures

Signature � is a disallowed signature of . iff invoking . on � is forbidden, although there exists
an MSA method for . �#� � .

INRIA
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Example 3.3 shows that some signatures should be disallowed because they imply illegal substi-
tutions between non-target actual and formal arguments. We refer to these signatures as implicitly
disallowed signatures as they can be inferred from argument-exceptions. However, some disallowed
signatures cannot be inferred and must be explicitly given by the user as part of the semantics of the
application. We call these signatures explicitly disallowed signatures. Following [Bor88], they are
defined as excuses on the generic function : ���&��2���� . ��� � � ,..., ��� .

Figure 5: Disallowed signature

�

�
�
� � �

�
�� �

�
�� �

�
� � �
� ��27�	�(��� � �-!,�	���

� ������2&���$�

� ��� �7���������

�����%�����

� ���-����
�7+ -  ���(
��(���	��� � ���	���

Example 3.4 : Consider the schema of Figure 5 where � ��� �7��������� and
� ���-����
�7+ -  ���(
��(���	��� have

the same structure as �����%�(��� with an additional attribute Dept. Moreover,
� ���-����
 �7+ -  ����
��(���	���

also has a �$�	���2M)� attribute, like
� ��24�	����� . Suppose we update the schema by adding a function

�-!,!#���$�	��� that updates the ��������24������� attribute, and manages the financial resources by distributing
money between the bank account and the life insurance, depending on a complex criterion. This func-
tion has two methods �-!,!#���$�	��� � � ����������� , � ������2&���$� ) and �-!,!#���$�	��� � � � ��� �7��������� ,

� �-!,�	��� ). A profes-
sor receives a salary and some grants are allocated for his research projects. A student can also receive
a salary and/or a grant. A teaching-assistant can only receive a salary. Thus, the method �-!,!,�����)��� � is
not applicable to signature � � ���-����
�7+ -  ���(
������	��� , � ���	��� ), which is disallowed. Finally, the specia-
lization of the second argument induces two implicitly disallowed signatures ( � ��� �7��������� , � ������24���$� )
and (

� ���-����
�7+ -  ���(
��(���)��� , � ������2&���$� ). All other signatures are allowed. 	

3.2 Exceptions to Structural Consistency

Because of encapsulation, exceptions to structural consistency entail exceptions to the behavioral
consistency rules. There are two kinds of exceptions to structural consistency: data structure mis-
match and component type redefinition. A data structure mismatch arises in two cases: (i) when dif-
ferent data structures are used to build the representation, and (ii) in the case of inapplicable attri-
butes, i.e., attributes of the supertype that do not appear in the subtype (see e.g. [Bor88]). A com-
ponent type redefinition arises when a subtype has the same data structure as its supertype. This re-
definition focuses on the types of tuples’ attributes and collections’ elements.

3.2.1 Data Structure Mismatch

In the case of a data structure mismatch, some or all of the representation methods of the supertype
cannot be applied to objects of the subtypes. This corresponds to explicitly disallowed signatures.
Figure 6 summarizes these disallowed signatures in the case of different

data structures between a type
�
� and its subtype

� �
. Finally, disallowed signatures due to an inap-

plicable attribute � � D � �� of a type
�
� with respect to its subtype

� �
are � � � � and � � � � � �� � respectively

for � � and ���(� � � .
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Figure 6: Explicitly Disallowed Signatures for Tuples, Sets and Lists

Representation of supertype
�
� built-in methods explicitly disallowed signatures�

� � ��2)54!,� � �
�	� � � � D � �� �
�	�	� � �(��� � � � ��� � � �� �� � � ��� ��
� � �(����� � � 
��������� ��!#��. ����� � � � � � �

����. ���	� ��!,��. ����� � � � � � �
��. 5&����� � � � ��

� � !'
��(��� � � 
��������� ��!#��. ����� � ��� � � �
����. ���	� ��!,��. ����� � ��� � � �

��. 5&����� � ��� �
���(����
����	� ��!,��. ����� �	� � �7� � M)�����(+-��� �

Example 3.5 : Consider the schema of Figure 7, borrowed from [DS92]. A data structure mismatch
occurs between ����!'�	+*��� and

� ��27�	��� , because a square is obviously a kind of polygon, but the data
structure of these types differ. Hence the representation methods of ����!'�	+*��� are not applicable to
squares. 	

Figure 7: Data Structure Mismatch

�����!'�	+-���

� ��24�	���

����
 ���
����!'�	+-��� � !,
��(���#����
 ��� �� ��24�	��� � ��2)54!,� �

����
 ��� � ��2	5&!#� � � D�M)������+*��� � � D2M �����(+*�(� �

2	5 54��� !#� �4� �$����� ���;D)����
��� �
�(
��	� !#���7+	� � D�M)�����(+-��� �

Example 3.6 : Suppose we are given a schema where  ". 0327!,�	������� ���)��
������ � ���	��
������ and we
want to update the schema by adding an attribute 6"�	��� for ���)��
������ . This attribute is irrelevant to
subtype  /.10327!,�	������� ���	��
������ . Thus, accessing or updating the ward of an  /.10327!,�	������� ���	��
������
should not be allowed. Then, �, ". 0�24!#�)������� ���	��
����� � and �, ". 0327!,�	������� ���)��
������ ��� �	��� � are res-
pectively disallowed signatures for methods 6"�	��� �#���)��
������ � � � �	��� and ����� 6 �)��� �,���	��
������ �
� �	��� � ��� �	��� . 	

3.2.2 Component Type Redefinition

As shown in [KM94, Coo89, CMM91, DS92], a component type redefinition between a type
�
� and

its subtype
� �

leads to one of the following exceptions :

S a return-exception of the access methods if the type appearing in
� �

is not a subtype of the
corresponding type in

�
� .

S an argument-exception of the update methods if the type appearing in
� �

is not a supertype of
the corresponding type in

�
� .

Example 3.7 : Suppose that ���	��
��(��� is a type with an attribute �	��������� of type �������(
���
��	� . Suppose
we want to add a new type  !,�$�%�&��!'
�� to the schema as a subtype of ���	��
������ , where attribute �)���$�����
is of type ���(�*������!#��+	
��(� . The updated schema is shown on Figure 8. As ���(�*���&��!,��+-
���� is not a sub-
type of �����*�(
���
��	� , the method �	��������� � is a return-exception to method �	��������� � . This exception can
cause type errors as shown below. Consider the method ��� �424� � � � �%� 5�
���-! , Q ��!#!,�	� � that refunds the
expenses of a patient to the hospital he was treated in, and the function ��� �42&� �)
�7+ that refunds a set
of patients using method ��� �424� � .
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Figure 8: Doctor and Patient hierarchy

���%� 5&
 ���-! � ( �������(
���
��	� ) � � �%� 5�
���-!
���(� �	��������� � (  "!,���%����!,
� , �����*���&��!,��+-
��(� �

�)���$����� � (  "!#�$�%�&��!'
�� ) � �����*���&��!,��+-
��(�
�)���$����� � ( ���	��
��(��� ) � �����*�(
���
��	�

���(� �	��������� � ( ���)��
������ , �����*�(
���
��	� ���� �� � ��� �

�����*�(
���
��	� ���(�*������!#��+	
��(�  "!#�$�%����!,
��

Q ��������� ���	��
�����

refunding(patients : PatientSet)�
foreach p in patients do

refund(hospital(doctor(p)),bill(p));
end do �

As Psychologists are not affiliated to an hospital, unlike Physicians, the invocation
�&�%� 5&
���	! �,�	��������� �7. �*���	��
������ � � causes an error if . �*���	��
��(��� refers to an alcoholic at run-time as
there is no applicable method for invocation �&�%� 5�
���-! �#�����*���&��!,��+-
��(� � . 	

Figure 9: Argument-Exception in Component Type Redefinition

� ������%�(���

� ��27�)�����

�����%�(���IL 
����

� ��27�)�����"L 
��(�

�����%�����IL 
��(� � !'
��(���,�����%����� �� ��24�	�����"L 
��(� � !,
������ � ��27�)����� �

Example 3.8 : Consider the types in Figure 9. The two representation methods 
��������� ��!,��. ����� � ������%�(���IL 
���� , �����%����� � and 
��������� ��!#��. ����� � � � ��27�)�����"L 
��(� , � ��24�	����� � constitute an argument-exception.
	

3.2.3 Structural Consistency and Behavioral Consistency

Figure 10 summarizes the relationships between the two kinds of exceptions to structural consistency
and the three kinds of exceptions to behavioral consistency. An arrow from the structural exception
� to the behavioral exception � means that � leads to � . For the rest of the report, we only consider
exceptions to behavioral consistency, as they also capture exceptions to structural consistency. We
define a database schema to be consistent iff every method satisfies the behavioral consistency rules.

Figure 10: Subtyping Rules Violations and Exceptions

Exception
Argument-

�

�
�
�
�
�
��� �

Return-Exception

Type Redefinition Data Structure Mismatch

Explicitly Disallowed
Signature

3.3 Exceptions to Consistency and Type Safety

A program is type safe if, during the execution of every statement, no error can occur due to the ab-
sence of an MSA for a method invocation. The purpose of static type checking is to verify at compile-
time that a program is type safe. To this end, for each statement of a method code, the declared types
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12 E. Amiel, M.-J. Bellosta, E. Dujardin & E. Simon

are used to check that (i) every invocation has an MSA, and (ii) no illegal substitution may occur. If
the two above conditions are satisfied, a statement is correct. Otherwise, it is incorrect and there is a
type error.

The central problem introduced by exceptions to behavioral consistency is that a correct state-
ment may be unsafe, i.e., yield a type error at run-time. Thus, in presence of exceptions to behavioral
consistency, type checking must further partition correct statements into safe and unsafe statements.

Figure 11: Exceptions to Consistency and Type Errors

Absence
of MSA

Invocation with an
Explicitly Disallowed

Signature

Signature
Explicitly Disallowed

�
�

��

�
�
�
�
�
� ���

Argument-
Exception

Return-Exception

Illegal
Substitution

Figure 11 summarizes the relationships between the three different kinds of exceptions to beha-
vioral consistency (bottom of figure) and the three kinds of type errors at run-time (top of figure) : an
arrow from � to � means that an exception of kind � may lead to a type error of kind � at run-time.

3.4 Solutions to Avoid Exceptions to Consistency

Object-oriented design offers several solutions to the problems of consistency set by some schema up-
dates. They consist in modifying the type hierarchy and the code of methods or introducing new me-
thods. These solutions avoid return-exceptionsand explicitly disallowed signatures, but not argument-
exceptions. However, they involve important modifications of the type hierarchy or the code of me-
thods. In a database context, this can be expensive since changes to the types must be propagated to
the persistent instances. Most importantly, the burden of implementing these solutions is left to the
programmer. We examine four of these solutions on Example 3.7.

The first solution eludes the problem by renouncing to make  "!#�$�%����!,
�� a subtype of ���)��
������ .
Thus, the advantages of polymorphism are lost : alcoholics and patients must be stored in different
sets and they must be handled separately, by different methods, despite their similarities.

Figure 12: Intermediate Supertype Creation

��� �� � ���

���	��
������ �������	����� 03� �����*�(
���
��	�

���	��
�����

 "!#�$�%����!,
��
� � ��� ��� �

���	��
����� �

 !,�$�%�&��!'
�����	��
�����
�	��������� � ( ���)��
������ �������	����� 0�� �������(
�$
�	� ) � �������(
�$
�	�
�	��������� � (  "!,���%����!,
� ) � ���(�*������!#��+	
��(� �	��������� � (  !,�$�%�&��!'
�� ) � ���(�*������!#��+	
��(�

�	��������� � ( ���	��
������ ) � �������(
�$
�	�

The second solution retains the advantages of polymorphism for the methods that use only the
similarities between  !,�$�%�&��!'
�� and ���	��
����� . This solution involves a new intermediate type to re-
present the common part, in our case ���	��
��(��� without attribute �	��������� . This can be achieved in two
ways, illustrated in Figure 12 : (i) modify ���	��
������ by removing attribute �	��������� and create a subtype
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���	��
��(��� �������	����� 03� �������(
���
��	� , or (ii) create ���	��
������ �
as a supertype of ���)��
������ , to represent pa-

tient without attribute �	��������� . In both cases,  !,�$�%�&��!'
�� is made a subtype of the intermediate type.
In methods that do not use the difference between alcoholics and regular patients and that do not call
methods using this difference, patients and alcoholics can be manipulated as being of the intermediate
type.

The first problem with this solution is the multiplication of artificial intermediate types, like
���	��
��(��� �

, which is combinatorial in nature (see [Bor88]) as they represent objects with a subset of
the attributes of ���	��
����� . The second problem is that retaining polymorphism through the use of an
intermediate type only works for some methods. In our previous example, every method that calls
��� �42&� �)
�7+ cannot pass a heterogeneous set containing both regular patients and alcoholics. This is
a major disadvantage in a database context, where applications are collection-oriented. In this case,
solution (ii) is preferable because it only requires to modify methods but not existing instances.

The third solution consists in re-conciliating physicians and psychologists by declaring a method
�&�%� 5&
���	! on Q ��������� . This method is defined as simply returning a NULL reference to indicate that
doctors who are psychologists are affiliated to no hospital. This way, invocation �&�%� 5�
���-! �,�	��������� � 5 � �
is not an error even if 5 refers to an alcoholic at run-time. The problem with this solution is the defini-
tion of artificial methods, like ���%� 5�
���-! � Q ��������� ), which seems to indicate that a function is available
on a certain type while it is actually not. Moreover, it is the responsibility of the programmer to know
that �&�%� 5�
���-! invoked with a doctor may return a NULL reference and that the result of the function
must be tested. In our example, ��� �424� � 
�7+ must be rewritten as :

refunding(patients:PatientSet)�
foreach p in patients do

if hospital(doctor(p)) <> NULL
refund(hospital(doctor(p)),

bill(p));
end do �

A last solution consists in defining two intermediate methods �7��� ( ���	��
������ ) and �7��� (  "!,���%����!,
�(� ).
The first encapsulates the original statement refunding the hospital, the second defines what must be
done in the case of an alcoholic. Method ��� �424� � 
�7+ is then rewritten to call �7��� on patients :

refunding(patients : PatientSet)�
foreach p in patients do

foo(p);
end do �

foo(p:Patient)�
refund(hospital(doctor(p)),bill(p)); �

foo(p:Alcoholic)�
/* handles the case of alcoholics */ �

The problem with this solution is the multiplication of artificial switching methods.

In conclusion, the painful aspects of these solutions are either the creation of new intermediate
types, the addition of new artificial methods, the renunciation of polymorphism by not declaring a
type as a subtype of another one, or the intervention of the programmer to test the result of methods
that may return NULL values. These modifications are costly in a schema evolution context. Fur-
thermore, they are defined by the user on an ad-hoc basis.
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4 The Proposed Solution

Our solution aims at allowing subtyping with exceptions to consistency, while enforcing type safety.
In this section, we introduce the check statements, that allow to accept unsafe statements due to ex-
ceptions while guaranteeing that no type error can occur at run-time. We then show the impact of
schema evolution on these check statements. We finally sketch the steps of the type-checking pro-
cess.

4.1 Check Statements

Check statements embed every statement identified as unsafe at compile-time, as shown in Figure 13.
The condition part checks at run-time that the unsafe statement is correct and if it is, the statement
is executed. Otherwise, an exception-handling code is executed. Check statements enable to warn
the user about the possibility of run-time failure, let the user provide exception handling code, and
perform dynamic type checking of the unsafe statement.

Figure 13: Check Statements
CHECK <condition>

<unsafe statement>
ELSE

<exception-handling code>
END

Throughout this report, we consider statements that are either function invocations or variable
assignments, as shown in Figure 14. Dynamic type checking involves evaluating their arguments,
which may be invocations of functions. Verifying the correctness leads to execute twice these func-
tions, in the condition and unsafe statement parts. In case of functions with side-effects, the second
execution is undesirable. To overcome this limitation, sub-expressions of the arguments can be bound
to variables local to the CHECK. These variables are untyped (as “void” variables in [KM94] or “dy-
namics” in [ACPP89]), and can be used both in the unsafe statement part of the CHECK and its
exceptional-handling code instead of the original invocations with side-effects, so that these invo-
cations are not evaluated twice � .

Figure 14: Pseudo-EBNF Grammar of Statements

�(���	���(. ����� D D � �*����
 +-��. ������� 
���-���$�	��
���
�*���(
 +-��. ����� D D � �-�)��
��*0�!,� 	 � �)5���������
����

 ���-���$�	��
���� D D � �424� ����
���� � �	. � �,��� 5&�������(
������ �
��� 5&�������(
���� D D � �-�)��
��*0�!,��� �����������	����� 
���-���$�	��
���

The condition part is intensionally mentionned in the sense that the types for which the exception
occurs are not explicitly given. Evaluating the correctness condition involves taking the run-time
type of the expressions composing the statement and verifying that the statement is correct with these
types, which amounts to query the schema at run-time. Depending on the statement, two expressions
of the condition are defined, as shown in Figure 15.

Example 4.1 : In Example 3.1, invocation 032&
�!#� �*0$�(�����	�$���'��������
����-� �,. �*�����%����� � � �	�	���*0��*�(�
�(���(����. � ” � � is unsafe because . �*�����%����� may contain a student. Thus, this statement must be sur-
rounded by a CHECK. Let us assume that the generic function ��������
�� �-� has a side-effect, e.g. it

8
In the following sections, we assume that only functions without side-effect are used as invocation’s arguments of unsafe

statements.
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Figure 15: Expression of CHECK Conditions

Unsafe Statement Condition Part

Invocation . �,� � �	�
�	�
� � � � . IS CORRECT ON �#� � �	�
�	�
� � � �
Assignment � 	 � � MAY BE ASSIGNED TO �

increments a counter of users. In order to prevent the increment from happening twice, we shall use
a �7��� variable that stores the result of ��������
����-� in the CHECK condition. Then, variable �7��� is used
in both the unsafe statement and the exception-handling code, as shown in Figure 16. 	

Figure 16: CHECK of an Invocation
CHECK build abstract IS CORRECT

ON foo:=retrieve(myPerson,"database systems")
build abstract(foo) ;

ELSE
introduction(foo) ;

END

Some schema evolution operations require to re-evaluate existing programs, which possibly leads
to add or delete CHECK statements. Additions are due to newly unsafe statements, and deletions are
due to previously unsafe statements became safe. The intensional form spares to reformulate existing
CHECK statements retained by the new evaluation.

Example 4.2 : In Example 3.7, suppose that a new type of physician, K��	. 
!,�*� ���-����
��
���� ��� , is
introduced, on which �&�%� 5�
���-! is not applicable (i.e., an explicitly disallowed signature). As our cor-
rection test is intensional, the check does not need to be reformulated as shown in Figure 17. 	

Figure 17: Schema Evolution without Generation of a New Check
CHECK �&�%� 5�
���-! IS CORRECT ON �#�)���$����� � 5 � �

��� �42&� � �#�&�%� 5�
���-! �,�	��������� � 5 � ��� 03
�!,! � 5 � �
ELSE

/* exceptional statement to be provided by the user */
END

Example 4.3 : Suppose that a new type of patient,
� 270$�(����27!,�	� , is introduced, whose expenses

are expressed in Swiss francs (
� K ). As 03
�!,! � 5 � may return Swiss francs, and hospitals may only be

refunded Dollars, there exists a signature � � �%� 5&
 ���-! � � K � for which no ��� �42&� � method is applicable.
Thus ��� �424� � � ���%� 5�
���-! �#�)���$����� � 5 � � � 0�
!#! � 5 � � is unsafe, even when ���%� 5�
���-! �#�)���$����� � 5 � � is safe. As
shown in Figure 18, a nested check statement must be generated. 	

4.2 Type Checking Process

For every statement, the proposed type checking process works as follows :

1 Determine whether the statement is incorrect, unsafe or safe.

2 If the statement is incorrect, report the type error.
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3 If the statement is unsafe, generate the appropriate check statements.

4 Prompt the user for exception-handling code.

5 Type check the statements of the exception-handling code.

In the first step, determining if a statement is correct uses the types known at compile time, while
determining if it is safe relies on the potential types at run time. In the third step, the generation of
the check statement must consider that several subexpressions of a statement may be unsafe. In such
cases, check statements must be nested. The main problem with nested checks is to avoid unnecessary
checks: indeed, when unsafe subexpressions share some variables or some subexpressions, checks
may become redundant. The basic idea to minimize the number of checks is to have the type checker
infer the possible run-time types of sub-expressions along a chain of nested checks (equivalent to a
chain of conditionals). The fourth step is deferred until all the program has been type-checked, so
that the user can give, at the same time, the exception-handling code for all unsafe statements. In the
fifth step, the types inferred along the checks are used to type-check the exception-handling code in
place of the types known at compile time. Because of space limitations, we only describe the first
step of this process.

Figure 18: Schema Evolution with Generation of a New Check

CHECK �&�%� 5�
���-! IS CORRECT ON �#�)��������� � 5 � �
CHECK ��� �42&� � IS CORRECT ON � ���%� 5�
���-! �#�)���$����� � 5 � � � 0�
!#! � 5 � �

��� �424� � � ���%� 5&
 ���-! �,�	��������� � 5 � � � 03
�!,! � 5 � �
ELSE

/* exceptional statement to be provided by the user */
END

ELSE
/* exceptional statement to be provided by the user */

END

5 Basic Definitions

In this section, we introduce the notions of method applicability, exact type, cover of a signature, and
range and disallowed signature of a method.

Total Match and Target Match. Let . � � � �� �	�
�	��� � �� � and . � � � �	�
�	�
�
� � � be respectively a method

and a function invocation for a generic function . . Then, . � is said to be a total match for the
invocation iff

� 
�� � � �	�
�	� � � � , � � � ��� , and . � is said to be a target match for the invocation iff� 
�� � � �
�	�
��� 5 � , � � � � �� (5 is the number of target arguments).

By extension, we talk about a method as being a total or target match for a signature. Note that
in multi-targeted systems, the two notions merge, i.e., every target match is a total match.

Method Applicability. A method . � � � �� �	�	�
�	���� � is applicable to a function invocation . � � � �	�
�	���
� � � if and only if . � is a target match for the

invocation.

Consider again Figure 1 and suppose that ����24�-! is invoked with ����24�-! � � ��27�)����� � ���(�%����� � . Both
methods ����27�-! � and ����27�	! � are applicable because they are both target match to this invocation. Ho-
wever, ����27�-! � ( ���(�%����� , �����%����� � is a total match for the invocation and ����27�-! � ( � ��27�)����� , � ��27�	�(��� �
is not a total match.
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In the following, we use a function � �  which, given an invocation . � � � �	�	�
�	�
� � � , returns the

most specific applicable method . � for this invocation if any, and a specific method “ .�� ” otherwise.
The method .�� uses a specific “impossible” type, noted

� � , as the type of its arguments and result.� � is in strict supertype relation with all other types, i.e.,
� � � ��� � � . This special method is defined

for every generic function. � �  is used at run-time as the method dispatcher.

We now introduce the notion of exact type of an expression. The type of a constant � declared
of type

�
is exactly

�
and not any type

�

� �

. Similarly, the object resulting from an explicit
“new” creation instruction is exactly the type given as argument to “new”. Thus, a variable that gets
assigned the result of a “new” instruction is also of an exact type. Exact typing applies to expressions
that appear as actual arguments of invocations or as right-hand side of assignments.

Exact Typing. At compile-time, an expression � is said to be of an exact type
�

, denoted �WD � , iff
any object referenced by � at run-time is of type

�
and not of any type

�
 such that

�

� �

.

Note that, by default, any expression � is of free type
�

, denoted � D � , i.e., � may yield at run-
time an object of any type

�

� �

. We shall use letter � to indifferently refer to
�

and
�

when typing
an expression.

Signature of Expressions. The signature of a tuple of expressions �#� � D�� � �
�	�
�	� � � D�� � � is the
tuple ��� � �	�	�
��� � � � . The signature of a method . � � � �� �
�	�	�
� � ���� � � � is the signature of its formal
arguments, i.e., � � �� �	�
�	�
� � �� � . The signature of an invocation . �#� � �	�
�	�
� � � � with � � D	� � �
�	�	�
�� � D
� � is the signature of its actual arguments, i.e., ��� � �	�
�	�	� � � � . Abusively, we shall call signature
any tuple of free or exact types ��� � �	�
�	��� � � � , and omit their associated expressions.

Cover of a Signature. Let � be a signature ��� � �
� � � � � � � . The cover of � , denoted by �$���-��� �#� � is
defined as :

�$���	��� �#� � � � �� � �	�
�	��� � � � � � 
�� � � �	�	�
��� � �
� � � � � � if � � � � � ( � � is free)� � � � � if � � � � � ( � � is exact)

�

By extension, we also define the cover of a method . � as the cover of its signature. Note that
�$���-��� �,. � � is the set of signatures for which . � is a total match.

Figure 19: Example Schema

��� � � � ����
�

� . ���  ��  ��. � � H�� H��
. �  . �

Example 5.1 Using the type hierarchy in Figure 19, we have :

�$���-�(� �# �  � � � �# �  � � � � �  � �
�$���-�(� �,. � � � �$���	��� �, �  � � � �, �  ��� �# � � ��� � � �  ��� � � � � � �
�$���-�(� �,. � � � �$���	��� �!H � H � � � �!H � H ��� �0H � � ��� � � � H ��� � � � � � � 	

Well-typed signatures. The well-typed signatures of a generic function . , denoted 6"��!,! - ����5&��� �'. � ,
is the union of the covers of all the methods associated with . :

6"��!#! - ����54��� �'. � � �! � �$���	��� �'. � �
Example 5.2 Considering the example of Figure 19, we have :
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6 ��!#! - ����54��� �'. � � � �, �  ��� �# � � ��� � � �  ��� � � � � � � � � � H � � �!H � H ��� �0H � � � �
Intuitively, 6 ��!#! - ����5&��� �,. � represents the set of invocation’s signatures of . for which there exists

a method . � that is a total match. 	
Range of a method. Let . � be a method for a generic function of arity � , and . a function invoca-
tion. The range of . � , noted ���	�7+-� �,. � � , is the set of signatures for which . � is the MSA method :

range �'. � � � � � � � �	�
�	�
�
� � � � 6 ��!#! - ����54��� �,. � � MSA �'. � � � �	�
�	���

� � � � � . � �

Example 5.3 Considering the example of Figure 19, we have :

S ���)�7+*� �'. � � �
� �# �  � � �, � � � �

S ���)�7+*� �'. � � � � �0H � H � � �!H � � � � � � �  � � � � � � ��� � � � H � �
As the applicability of a method relies on a target match, we take for . � (resp. . �

), all signatures
� � � �  � in 6"��!,! - ����5&��� �,. � such that

� �  (resp.
� � H ). Observe that for signatures � � �  � ,

� � � � � , and � � � H � , . � and . �
are both applicable but since . �  . � , these signatures belong

to the range of . �
. Finally, note that � � �  � � ���	�7+-� �,. �

) but � � �  ���� �$���-��� �,. � � . This is a
consequence of single-targeting. 	
Explicitly Disallowed Signatures of a Method. The set of explicitly disallowed signatures of a
method . � , noted ��� 54!'
���
���'. � � , is the set of explicitly disallowed signatures of . that belong to the
range of . � .

These signatures are both in the range and the cover of . � , as they correspond to the user’s wish
to forbid some otherwise type correct invocations. Thus,

��� 54!'
���
���'. � � � �$���-�(� �,. � � �

Example 5.4 Let us reconsider the schema introduced in Example 3.4, but for brevity, let the types be
� for ���(�%����� , � � for � ��� �7��������� ,

�
for
� ��27�)����� , �  for

� ���-����
�7+��� ���(
������	��� , � for � ���(��24���$� ,� � for
� �-!,�	��� and � for � ���)��� . Consider the method �-!,!#���$�	��� � . We have :

���	�7+*� �#�-!,!,�����)��� � � � � �#� � � � � � �,� � � �  � � �,� � � � � � � � � � ��� � � � � � � � � � � � � � � � � � ��� � � � � � ��� � � � � � �
and �$���-��� �,�-!,!#���$�	��� � � � � �,� � � � � � � �,� � � � ��� � � � � � ��� � � � � � � .
Finally, we can see that ���)5&!'
���
���#�	!#!,���$�	��� � � � � � � � � � � is included in �$���	��� �,�-!#!,���$�	��� � � 	
Implicitly Disallowed Signatures of a Method. The set of implicitly disallowed signatures of a
method . � , noted 
. 5&!'
���
���,. � � is given by :


. 5&!'
���
���,. � � � � � � � �	�
�	�	�
� � � � ���	�7+-� �,. � � � ��� � � �
�	�
���

� ��� � � � �� �	�	�
�	� � �� �
The implicitly disallowed signatures belong to the range of the method but are not covered by it.

For invocations with such signatures, the MSA . � is not a total match. Thus, we also have :


 . 5&!,
���
���'. � � � ���)�7+*� �'. � � � �$���-��� �,. � �� � � � � �	�
�	���
� � � � 6"��!#! - ����54��� � � � �$. � � � �  �,. � � � �	�
�	�	�

� � � � and . � is not
a total match for . � � � �
�	�
�	�

� � � �

When all arguments are targetted (i.e., 5 � � ), the range of a method . � is a subset of the signa-
tures covered by . � . Thus, we have:

Fact 5.1 If a function . is targetted on all arguments, then 
. 54!'
���
���'. � � �	� for all of its methods.
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Example 5.5 Consider again the method �-!,!#���$�	��� � . We have : 
. 5&!'
���
���#�	!#!,���$�	��� � � � � �,� � � � � � � � �
� � � and we can see that it is equal to ���)�7+*� �,�-!,!#���$�	��� � � � �����	��� �,�-!,!#���$�	��� � � 	
As the explicitly disallowed signatures of a method are in its cover, on the contrary to its implicitly
disallowed signatures, we have the following fact :

Fact 5.2
� . � � 
. 5&!,
�$
 ���,. � ��� ���)5&!'
���
���,. � � � �

Disallowed Signatures of a Method. The set of disallowed signatures of a method . � , noted
�)
����-!,!#��6"��� �,. � � , is defined as :

� . � � �)
��(�-!#!,��6"��� �'. � � � � �)5&!,
�$
 ���,. � ��� 
 . 5&!,
���
���'. � �

Example 5.6 Applying the above definition to �-!#!,���$�	��� � , we have �)
����	!#!,��6"��� �,�-!,!#���$�	��� � � � � � � �
� � � �,� � � � ��� � � � � � � . One can verify in the same way that � 
����-!,!#��6"��� �#�	!#!,���$�	��� � � � � 	

6 Type Checking with Exceptions

In this section, we consider the type checking of statements in the presence of exceptions to consis-
tency. To specify type checking we use a generic function called ���&����J . It has four methods to res-
pectively handle constants, variables, assignments of the form � 	 � � and invocations of the form
. �,� � �
�	�	�
� � � � , where each � � is an expression. The result of each ��������J method is either incorrect,
safe or unsafe. As trivial cases, the result for constants and variables is ��� �7� .

The last two methods (i.e., for assignments and invocations) proceed in two steps. The first step
evaluates the safety of the statement using the types of the expressions � � known at compile time,
also called the static types. If the statement is found to be safe, then its safety is further evaluated in
the second step. This step uses the potential types, at run-time, of the expressions � � composing the
statement. These types are called the dynamic types.

The distinction between the static and dynamic types is required in the presence of return-
exceptions. When covariance of the result types is respected, the type of an invocation known at
compile-time is the unique most general type that the invocation may have at run-time. This is not
true when a method is allowed to return a type that is not a subtype of the types returned by more
general methods. Going back to Example 3.7, the invocation �	��������� �'. �*���)��
������ � has �������(
���
��	�
for its static return type. However, due to the return-exception �	��������� � , its possible types at run-time
are not only the subtypes of its static type �������(
���
��	� , but also the subtypes of ���(�*������!#��+	
��(� . Thus,
its dynamic types are �����	��� �,��������
���
��	� ��� �$���-�(� �#�����*���&��!,��+-
��(� � .

This section is organized as follows. First we detail the type checking algorithms for assignments
and invocations. They are based on the type checking of reduced statements, i.e. statements where
the expressions � � of the input statements are replaced by their static or dynamic types. We then spe-
cify the type-checking of a reduced statement. Finally, we define the static and dynamic types of
expressions.

6.1 Static Type Checking of Assignments

To type check an assignment � 	 � , the first step replaces � and � by their static types which are com-
puted by function �����	��
�� . The resulting reduced statement is then checked using function ���&����J�� . If
it is incorrect or unsafe, i.e., not safe, then � 	 � is respectively incorrect or unsafe. Otherwise, its
safety must be further probed using the dynamic types of the right-hand side, � . An assignment can
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be unsafe for two reasons : (i) � is not safe, or (ii) � may return, at run-time, a type that is not a sub-
type of the type of � . The set of most general types that � may evaluate to at run-time is computed
using function � �-� �	. 
�(� .

��� � ���  <�� ��� /* check for assignments */

input: an assignment <�� �
output: (*) � 79,�,9� � ���%����� � or � )+����� �
Step 1:/* Safety w.r.t static types : replace < and � by their static type using ��������( � */

reducedAssignment � ( �����=��( �  <��	� ��������( � *��� ) ;

result � �
� � ����� ( reducedAssignment );

if result is not safe

return result ;

Step 2:/* Safety w.r.t dynamic types*/

if �
� � ��� *�9� is not safe

return unsafe ;

/* Replace the right-hand side by each of its most general dynamic types using �3=)A��. ( � � */

for each �����3=)A��. ( � ��*��� do

reducedAssignment � ( ��������( �  <����C� ) ;

if ��� � ��� � ( reducedAssignment) is not safe

return unsafe ;

end do ;

return safe ;

end check

6.2 Static Type Checking of Invocations

To type check an invocation . �#� � �	�	�
�	� � � � , the first step replaces its arguments which are computed
by their static types. The resulting reduced invocation is then checked using function ��������J � . If it is
incorrect or unsafe, i.e., not safe, then . �,� � �
�	�	�
� � � � is respectively incorrect or unsafe. Otherwise
the invocation is statically correct and its safety must be further evaluated in the second step. At this
step, the invocation may be unsafe for two reasons : (i) there exists an unsafe argument � � or (ii) for
some signature at run-time, the invocation is not safe. Otherwise, the invocation is safe. Function
�(
 +-� �)��24����� computes the set of most general signatures that may appear as arguments of a method
invocation at run-time.

��� � ���  . *� 8 ���������"������� /* check for invocations */

input: an invocation . *� 8 ���������"� � �
output: (*) � 79,�,9� � ���%����� � or � )+����� �
Step 1:/* Safety with respect to static types : replace arguments by their static type using ��������( � */

reducedInvocation � ( . !��������( � *� 8 � ��������� ��������( � *������� ) ;

result � �
� � ��� � (reducedInvocation) ;
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if result is not safe

return result ;

Step 2:/* Safety with respect to dynamic types */

for each argument � � do

if ��� � �
� *�-�0� is not safe

return unsafe ;

end do ;

/* Using ��( B=)A�=��� ,9�9� , replace the arguments by each of the most general signatures at run-time */

for each � � ��( B=)A����� ,9���� . *� 8 ���������"� � ��� do

reducedInvocation � . !�-� ;

if ��� � �
��� (reducedInvocation) is not safe

return unsafe ;

end do ;

return safe ;

end check

6.3 Type Checking Reduced Statements

A reduced assignment is an expression of the form
�
� 	 � � while a reduced invocation is an ex-

pression of the form . � � � � . ��� � �
�	�
�	� � � � . The type checking of reduced assignments is defined
as follows.

���&����J � � � � 	 � � � �
�� � safe if � � � �

�
unsafe if � � � � � �$���-��� ��� � �
incorrect otherwise

�(������J � �'. �#� � � � incorrect if

�� � � �  �'. �#� � � � . � or� �  �'. �#� � � is not a total match for . �#� � , or
� is explicitly disallowed for .

Note that we allow assignments where the static type of the right-hand side is a supertype of the
type of the left-hand side variable. Such unsafe assignments are similar to the reverse assignment of
Eiffel [Mey92] or the dynamic downward cast of C++ [Laj93].

The safety of a reduced invocation is defined as follows :

���&���9J � �'. �#� � � ��� safe iff
� �  � �����	��� �#� � ���&����J � �,. � �  � � �� incorrect

unsafe otherwise

We now give the algorithm to type-check reduced invocations :

��� � �
���  . !�-���
input: a reduced invocation . !�-�
output: (*) � 7�,9,9� � ���%��� � � or �2) ����� �
./��� ���	��
N . !�-��� ;

Step 1 : /* Check the correctness */

if . ���N�>.� or ./��� is not a total match or � �;�����
	?( � (*�� . �����
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return incorrect ;

Step 2 : /* Check the safety */

for each ��� � � 79<=��,�!��� do

./����� � � � 
8 . !��� ��� ;

if . ����� ��. � or . ����� is not a total match or ��� �/� �:�
	?( � ( �� ./����� �
return unsafe ;

end do ;

return safe ;

end check

6.4 Static and Dynamic Types of an Expression

The static type of an expression can now be defined as shown on Figure 20.

Figure 20: Static Type of Expressions

Constant � �(���	��
�� �,� � � �

Variable � �(���	��
�� � � � � �

Reduced Invocation . � � � �(���)��
�� �,. � � � � �
�
��
�

� � � if ���&����J �'. �#� � � � incorrect

return type of . � � � �  �'. �#� � � otherwise

Invocation . �,� � �	�
�	�
� � � � �(���	��
� �'. �,� � �	�
�	�
� � � � � � �(���)��
�� �,. � �(���)��
�� �#� � � �
�	�	�
� �(���	��
�� �,� � � � �

Example 6.1: Consider again the types and methods of Figure 8 in Section 3. Let ��� �42&� � � � �%� 5&
���	! ,
Q ��!,!,�	� ) be the method used in Example 3.7 to refund the expenses of patients to hospitals. The first
step in the type-checking of invocation ��� �42&� � �#�&�%� 5�
���-! � �	��������� � 5 � ��� �	. ��24��� ), where 5 is a va-
riable of type ���)��
������ and �	. ��24��� a variable of type Q ��!#!,�	� , consists of computing the static types
of the arguments ���%� 5�
���-! �#�)���$����� � 5 � � and �	. ��2&��� as follows :

�(���	��
�� �#�&�%� 5�
���-! �#�)��������� � 5 � � � �
�(���	��
� �#�&�%� 5&
���	! �#�(���	��
�� �,�	��������� � 5 � � � � �

�����	��
�� � ���%� 5�
���-! � �(���)��
�� �#�)���$����� � �(���)��
�� � 5 � � � � � �
�(���	��
�� �#�&�%� 5�
���-! �#�(���	��
�� �,�	��������� �,���	��
������ � � � � �

�(���	��
�� �#�&�%� 5�
���-! �,�������(
�$
�	� � � � � �%� 5�
���-!
and �(���	��
� �,�	. ��24��� � � Q ��!,!,�	�

As ���&����J �,��� �424� � � � �%� 5�
���-! � Q ��!,!#�)� � � �� incorrect, invocation ��� �424� � � ���%� 5&
 ���-! �,�	��������� � 5 � � �
�	. ��2&��� � is correct. 	

We now formally define the dynamic types of an expression as shown on Figure 21. The set of
dynamic types of a reduced invocation contains only the highest types that can be returned by the
invocation at run-time. By highest, we mean types that are not subtypes of any other type in the set
(we use operator . � ��� to obtain the highest types in a set of types).

The definition of the dynamic types of a reduced invocation . � � � relies on the notion of run-time
correct methods. They represent the methods that can be selected at run-time for correct invocations
covered by . �#� � .
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Figure 21: Dynamic Types of an Expression

Constant � � �-� �	. 
�(� �#� � � � � �
Variable � �)�	� �	. 
���� � � � � � � �
Reduced Invocation . � � � �)�-� �	. 
���� �'. �#� � � � . � � � � � � �(. � � � � � �,. � � � � �
Invocation . �#� � �	�	�
�	� � � � � �-� �	. 
���� �,. �#� � �	�	�
�	� � � � � � . � � � � �

� � � ��� ��� � ���
	 ���
!
� 	��������� � 	������
� �-� �	. 
���� �,. � � � � �

Run-Time Correct Methods. Let . �#� � be a reduced invocation.

� � � �'. �#� � � � � � �  �'. �#�  � ��� �  � �$���-��� � � � �����&����J �,. � �  � � �� incorrect �

The definition of the dynamic types of an invocation . �,� � �	�
�	��� � � � relies on the set of signa-
tures that may appear at run-time as arguments of the invocation. As usual, this set contains only
the highest signatures, all the signatures in their cover being implicitly included. This set is denoted
signatures �'. �,� � �
�	�	�
� � � � � and consists of the cross product of the dynamic types of the invocation’s
arguments :

Signatures of an Invocation. The set of highest signatures that may appear at run-time for an invo-
cation is :

�(
 +	� �	��24����� �,. �#� � �	�	�
�	� � � � � �
��
��� �

� �-� �	. 
���� �#� � �

Example 6.2 : The second step in the type-checking of invocation ��� �42&� � �#�&�%� 5�
���-! ���	��������� � 5 � � �
�	. ��24��� ) starts by type checking ���%� 5&
 ���-! �,�	��������� � 5 � � and �	. ��24��� . First, ���%� 5&
 ���-! �#�(���	��
� �,�	��������� � 5 � � �
= ���%� 5�
���-! �#�������(
���
��	� � is neither incorrect or unsafe. Thus the safety of �&�%� 5�
���-! �	�)��������� � 5 � � must
be checked. To this end, the algorithm determines the signatures of �&�%� 5�
���-! �#�)��������� � 5 � � .
�(
 +	� �	��24����� �#�&�%� 5�
���-! �#�)��������� � 5 � � � � � � � � � � � �)�-� �). 
���� �,�	��������� � 5 � � �� � �#�������(
���
��)� ��� �#�����*���&��!,��+-
��(� � �

One of the signatures of �&�%� 5�
���-! �,�	��������� � 5 � � , namely Psychologist, makes the invocation incor-
rect as there is no MSA. Thus �&�%� 5�
���-! �,�	��������� � 5 � � is unsafe. So finally, as one of its arguments is
unsafe, ��� �42&� � �4�&�%� 5�
���-! �#�)��������� � 5 � ��� �	. ��2&��� � is unsafe.

7 Optimizing the Type Checking of Reduced Invocations

In this section, we propose an optimization of the type-checking of reduced invocations. The algo-
rithm for ��������J � presented in section 6.3 is expensive because it requires to compute the MSA for
every signature in the cover of the reduced invocation. Optimizing ��������J � is particularly important
as it is called several times by ���&����J to type check a general invocation. The idea of the optimization
is the following. Given a reduced invocation, if no signature in its cover, i.e. the run-time signatures,
is a disallowed signature of some method, then the invocation is safe. To evaluate this condition, one
computes the set of disallowed signatures of the methods that are more specific than the MSA of the
reduced invocation. This set is called the potential disallowed signatures of the MSA. If a method
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has no potential disallowed signatures, then all invocations for which it is the MSA are safe. Such a
property of a method is called static safety and constitutes a cheap sufficient condition for the safety
of a reduced invocation.

In the following, we first give the optimized algorithm, and then present the two safety conditions
that it uses.

7.1 Optimized Algorithm for the Static Type Checking of Reduced Invoca-

tions

The first step of the optimized algorithm checks the correctness of a reduced invocation, following
the same criteria as in 6.3 on the MSA of the invocation. Steps 2 and 3 check the safety. Step 2 checks
whether the MSA of the invocation is static safe. If it is not, step 3 verifies that no run-time signature,
i.e. no signature covered by the invocation, is a potential disallowed signature of the MSA.

��� � ��� �  . !�-���
input: a reduced invocation . !�-�
output: (*) � 79,�,9� � ���%����� � or � )+����� �
. ����� � ��
N . !�-��� ;

Step 1 :

if ./���N��. � or . ��� is not a total match or � �;� �:�
	?( � ( �� ./���2�
return incorrect ;

Step 2 :

if ./��� is static safe

return safe ;

Step 3 :

if no signature in � 79<=��,� . !�-��� is a potential disallowed signature of . ���
return safe ;

return unsafe ;

end check

7.2 Safety and Potential Disallowed Signatures

The third step of the algorithm relies on Proposition 1 below, that gives a necessary and sufficient
condition for the safety of a correct reduced invocation.

Potential Disallowed Signatures of a Method. The set of potential disallowed signatures of a me-
thod . � , noted 5&����������
��-! � 
����-!,!#��6"��� �,. � � , is defined as :

5&����������
��-! �)
����-!,!#��6"��� �,. � � � �!
�����
!
� � �����	� 	�� �

!
� �

�)
����	!#!,��6"��� �'.�
 �

Proposition 1 A correct reduced invocation . �#� � is safe iff

54�����(����
��-! �)
����-!,!#��6"��� �� �  �,. � � � � � � �$���-��� �#� � � �
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Proof : see Appendix A. 	
Example 7.1 Consider the hierarchy and methods of Figure 22. The potential disallowed signa-
ture of . � is � � �  � , and there is no potential disallowed signature for . �

. Invocation . �, �  � is
declared unsafe, because the signature � � �  � is covered by it. 	

Figure 22: Safety Conditions

��� � � � ���A

C

B

���)5&!'
���
���,. � � = �
� �  �

. �  . �
. � (  ,  )
. �

( H , H )

7.3 Static Safety of a Method

The second step of the algorithm relies on Proposition 2 below, that gives a sufficient condition for the
safety of a correct reduced invocation. It uses the notion of static safety of a method. This property
is invocation-independent and may be computed once for each method, at compile-time.

Static safety of methods. A method . � is static safe iff

54����������
�-! �)
��(�-!#!,��6"��� �'. � ��� �$���-��� �,. � � � �

As
� � � �$���-��� � � � � �����	��� � � �  �'. �#� � � � , we have :

Proposition 2 � �  �'. �#� � � is static safe � . � � � is safe.

Proof : As �$���-�(� � � ��� �$���	��� � � �  �'. �#� � � � , we have 54����������
�-! �)
����	!#!,��6"��� � � �  �'. �#� � � � �
�$���-��� �� �  �,. � � � � � � � � 5&����������
��-! � 
����-!,!#��6"��� �� �  �,. � � � � � � �$���	��� �#� � � � , which implies
the safety from Proposition 1. 	
Example 7.2 In Figure 22, the method . �

has no potential disallowed signature, thus it is static
safe. The invocation . �# � � � is safe even though its MSA, . � , is not static safe, and . �0H � � � is
safe. 	

8 Safety and Consistency

In this section, we establish the relation between safety and consistency, introducing the notion of
trespassing method. A method . � trespasses on method . 
 , if . � may be selected at run-time for in-
vocations whose MSA at compile-time is . 
 . We show that argument-exceptions and return-
exceptions cause safety problems only if they are coupled with trespassing. If . � is an argument-
or return-exception to . 
 , but may not be selected for invocations whose MSA at compile-time is
. 
 , then no run-time type error may occur.

Example 8.1 Consider the schema of Figure 23 with method �7��� � ��� � � � . The MSA of invo-
cation . �,� � � � is . � . As method . �

is both a return-exception and an argument-exception to . � , a
run-time type error could occur if . �

was selected at run-time. For example, . �#� � � � could return a
Q and there would not be any �7��� method applicable to the invocation �7��� �,. �#� � � � � . However, all
invocations for which both . � and . �

are applicable, namely . � � � Q � and . � � � � � , have .
	 as
their MSA. And .�	 is consistent w.r.t. . � and . �

. Thus, the inconsistency of . �
w.r.t. . � cannot

lead to any safety problem, because . �
never trespasses on . � . 	
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Figure 23: Consistent Schema
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We first give the definition of a trespassing method, then a proposition that states the relationship
between trespassing, consistency and safety.

Trespassing. A method . � trespasses on method . 
 iff:

���	�7+*� �'. � ��� �$���-��� �,. 
 � �� �
Example 8.2 In the example of Figure 24, � � �  � and � � � � � are both in ���	�7+-� �,. � � and in �$���	��� �'. � � .
Thus, . �

trespasses on method . � . 	

Figure 24: Trespassing

��� � � � ����
�

� . ���  �  ��. � � H � H��
. �  . �

Proposition 3 If . � is a return- and/or argument-exception to . 
 , then a run-time type error may

occur only if . � trespasses on . 
 .
Proof : see Appendix B. 	
Example 8.3 Going back to Figure 23, we see that there is no method . � that is both an argument-
exception to some method . 
 and trespasses on it : . �

is an argument-exception to . � , but does
not trespass on it, while . 	 trespasses on both . � and . �

, but is not an argument-exception to them.
Thus, 
. 54!'
���
���'. � � � � for all . � . Note that removing . 	 makes . �

trespassing on . � , so that

. 5&!,
�$
 ���,. � � � � � � � Q � � .

Moreover, there is no method . � that is both a return-exception to some method . 
 and tres-
passes on it : . �

is a return-exception to . � , but does not trespass on it, while .
	 trespasses on
both . � and . �

, but is not a return-exception to them. Thus, the type returned at run-time by any
well-typed invocation . �#� � is guaranteed to be a subtype of the static type of . �#� � . 	

It must be noted that although the covariance and contravariance rules are too pessimistic, they
are adopted in most systems because they are simpler to check and offer a better support for schema
evolution. Indeed, adding or removing a method that abides to the covariance and contravariance
rules with respect to all other methods, has no consequences on safety. As we showed in the above
examples, this is not the case when trespassing is taken into account.

9 Final Steps

The last two steps of the type checking process are the generation of check statements and the type
checking of the exception-handling code provided by the user. These two issues are out of the scope
of this report. In this section, we just give an idea of the problems and sketch the solution.
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9.1 Generation of Check Statements

As invocations may appear as arguments of other invocations, a single statement may contain several
unsafe subexpressions. This naturally leads to nest the check statements.

Example 9.1: We reuse the methods and types of Figure 8 and assume there exists the following me-
thods : 03
�!,! �,���	��
������ ��� Q ��!#!,�	� , to get the expenses of a patient and ��� �42&� � � � �%� 5�
���-! � Q ��!,!#�)� �
to refund hospitals the expenses of their patients. Moreover, we assume that alcoholics are not billed
for their treatment, i.e.,  "!#�$�%�&��!'
�� is an explicitly disallowed signature of 0�
!#! �#���)��
������ � . Consider
statement ��� �42&� � �#�&�%� 5�
���-! �,�	��������� � 5 � ��� 03
�!,! � 5 � � . A naive approach to check generation examines
each subexpressions of a statement in a left to right, depth first order and generates a check sta-
tement whenever an unsafe subexpression is encountered. Thus, after type checking 5 , �	��������� � 5 � ,
�&�%� 5&
���	! �,�	��������� � 5 � � , 5 , 0�
!#! � 5 � , the following nested check statements have been generated :

CHECK �&�%� 5&
���	! IS CORRECT ON �,�	��������� � 5 � �
CHECK 03
�!,! IS CORRECT ON 5
ELSE
END

ELSE
END

However, the check on 03
�!,! � 5 � is redundant. Indeed, if ���%� 5&
 ���-! �,�	��������� � 5 � � is correct, then
�	��������� � 5 � is a �������(
���
��	� and 5 is not an  "!,���%����!,
� . Thus, 03
�!,! � 5 � is safe. 	

To correctly generate check statements, the idea is to provide the type checker with the ability to
infer the run-time types of sub-expressions like �	��������� � 5 � and 5 , based on the previously generated
checks. The inferred types are then used to bind the remaining subexpressions, using what can be
called type closures. These bindings are then used by the type checker.

9.2 Type Checking the Exception-Handling Code

Type checking the exception-handling code provided by the user differs from the type checking we
defined in the two previous sections. To give an idea of the problem, consider the following example :

Example 9.2: Going back to the doctor and patient hierarchy of Figure 8, assume there exists a me-
thod 5����-����
��$� �,���(�*���&��!,��+-
��(� � ��� � �4
��$� to access the practice of psychologists and two methods
�-�)�)������� � � �%� 5�
���-! � �  "�	�)������� and �	�	�)������� � � � �4
��$� � �  "�	�)������� to get the addresses. Consider
the exception-handling code of the following check statement :

�-�)�)� D  "�	� ������� ;
CHECK �&�%� 5&
���	! IS CORRECT ON �,�	��������� � 5 � �

�-�)�)� 	 �	�	�)������� �#�&�%� 5�
���-! �,�	��������� � 5 � � ���
ELSE

�-�)�)� 	 �	�	�)������� � 5&���-����
��$� �#�)��������� � 5 � � ���
END

In the ELSE part, one can infer that �)��������� � 5 � is of type ���(�-�(����!#��+	
��(� . This allows to write
a modified version of the original statement using 5&���	�$��
��� instead of ���%� 5&
 ���-! . However, note that
the ELSE statement is not correct according to standard static type-checking, as �(���	��
�� �,�	��������� � 5 � � �
�����*�(
���
��	� and 5����-����
��$� is not applicable to ��������
���
��	� . 	

As for the generation of check statements, the solution is to provide the type checker with the
ability to infer the run-time types of subexpressions like �	��������� � 5 � based on the previously generated
checks.

RR n ˚ 2638



28 E. Amiel, M.-J. Bellosta, E. Dujardin & E. Simon

10 Related Work

The problems due to maintaining consistency rules have been recognized by many researchers, each
focusing on a particular rule, but to our knowledge,considering these problems in a single framework
has never been proposed.

[Coo89, McK92, DS92] forbid argument-exceptions. Hence, subtyping between generic collec-
tions (list of ���(�%����� and list of

� ��27�)����� ) and attribute type redefinition are also disallowed.

Esse [CPLZ91, CCPLZ93] and Eiffel [Mey92] use data flow analysis to detect unsafe invoca-
tions due to argument-exceptions : the set of types to which a variable may refer (called type set in
[CPLZ91, CCPLZ93] and dynamic class set in [Mey92]), is maintained during type checking and
evaluated after every statement. Using this “type flow” technique, a slightly larger class of programs
are statically determined to be safe as exact types may be used to replace constant objects or variables
that have just been assigned a newly created object. Although this approach provides more accurate
type checking, two problems remain. First, statements that cannot be proved to be safe are rejected
(pessimistic option). Second, this approach is less applicable to a database context where applications
use collections. Indeed, a variable iterating over a collection of

�
may refer to objects of any subtype

of
�

with no way of knowing the exact subset of types present in the collection. Our approach can
be used as a complement to “type flow” techniques, taking over when they have failed to prove the
safety of a statement.

Using a special construct called reverse assignment, Eiffel [Mey92] allows a certain kind of illegal
substitution : the assignment of an expression with static type

�
� to a variable of type

� �
, although�

� is a supertype of
� �

. The assignment is checked at run-time to ensure that the dynamic type of
the expression is actually

� �
or a subtype of

� �
. Otherwise, a NULL reference is assigned to the

variable. It is the responsibility of the programmer to check that the variable is not NULL after the
reverse assignment. A similar construct, the dynamic cast [Laj93], is being incorporated into C++ to
check at run-time the correctness of a down-ward cast (assertion by the programmer that an object
of static type

�
� is actually of type

� �
with

�
� supertype of

� �
).

Bounded type quantification, first introduced in [CW85], appears in several proposals [CM92,
CCHO89, KM94] to extend the flexibility of statically typed object languages. As explained in [KM94],
it enables “polymorphic operations [.. .] to deal with objects of different types that do not necessarily
lie on the same branch of the super/subtype relationship”. [CM92] uses bounded type quantification,
restricting the application of subtyping to enforce the composition integrity constraint on construc-
ted types. Bounded universal quantification allows substitutability only when passing parameters to
a function. All other assignments must involve objects of the same type. Bounded existential quan-
tification extends substitutability to assignments in the called function. In all cases, bounded quanti-
fication requires the exact types of actual parameters to be known statically. It is this knowledge that
allows static type checking of covariant code. In particular, this prevents passing bounded parame-
ters to another function. Finally, F-bounded quantification [CCHO89] allows to support recursively
defined types, like ���(�%����� and

� ��27�	�(��� in Figure 1.

In the works on method schemas [AKW90, Wal91], no consistency rules are imposed on the
schema and the return type of user-defined methods is not specified. Consistency is defined as type
safety, i.e., absence of run-time type errors. Proving type safety involves simulating the execution
of methods from a typing point of view. This is shown to be impossible in the general case,i.e., with
multi-targeted methods and recursion. Covariant updates are shown to maintain consistency.

[MMMP90] recognizes the conflict that arises from the use of the type system both “as a means for
representing concepts in the application domain and for detecting [.. .] type errors”. They show that
the subtyping of “virtual classes” (i.e., classes with a type parameter) introduces type holes, similar
to component type redefinition. They conclude that a combination of compile-time and run-time type
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checks, as implemented in Beta, gives a good balance of flexibility and type safety. All operations on
virtual classes involve run-time type checking. Furthermore, an error occurs if a statement in a Beta
program is not correct at run-time.

Our approach is very similar to [Bor88] in that it aims at detecting unsafety at compile-time,
using dynamic type checking when necessary and allowing the user to write exception handling code.
[Bor88] addresses the problem of inapplicable attributes and return-exceptions due to attribute do-
main redefinition. The notion of excuses serves to distinguish between desired exceptions and errors.
A type system that supports these excuses is formally defined in [Bor89], along with an efficient al-
gorithm to statically detect unsafe statements. Check clauses are provided by the user. He/she for-
mulates the correction condition in an extensional way, testing the run-time type of expressions. The
type system verifies that the correction condition implies the safety of the checked statement and of
the exception-handling code. We extend this work in two directions. First, we address the problem
of exceptions on single- and multi-targeted methods. Second, we provide an intensional formulation
of the correction condition, allowing this condition to remain invariant when the type hierarchy is
modified and/or new exceptions are introduced.

11 Conclusion

In this report, we proposed to facilitate schema evolution in object-oriented databases by supporting
exceptions to behavioral schema consistency while at the same time guaranteeing type safety. After
presenting the three consistency rules of covariance, contravariance and substitutability, we defined
a typology of exceptions. We gave examples of schema updates that naturally yield exceptions to the
consistency rules, and we showed that existing solutions that seek for preserving schema consistency
lead to expensive modifications of the type hierarchy and method codes. We then proposed a new
type checking process whereby exceptions to consistency can be safely tolerated. To guarantee type
safety, every statement is first analyzed to determine if it is correct or not and then further analyzed
to determine if it is safe or not. Then, every unsafe statement is surrounded by a check clause. This
clause is merely an if-then-else statement where the if-part performs a run-time type checking, the
then-part contains the original statement, and the else-part contains some exception-handling code
(user-defined or system-generated).

Unlike traditional solutions offered by object-oriented design, our approach enables to handle
schema updates that do not preserve schema consistency without creating artificial types and methods
or modifying the type hierarchy. Schema updates can only yield the additions of check clauses in
the code of existing methods. Another advantage of our solution is that conditions in the check are
specified intensionally, thereby avoiding to reformulate them when the type hierarchy is modified or
when exceptions are introduced or removed. We believe our approach provides a useful complement
to existing sophisticated techniques for static type checking. Indeed, our proposed system relieves
these techniques when they fail to prove the safety of a statement. Finally, we are not aware of any
other work in the field of object-oriented systems and languages that considered exceptions to schema
consistency in the general framework of mono and multi-targeted functions.

All the steps of the proposed type checking process have now been specified (see [Ami94]). Fu-
ture work involves providing the user with means to express explicitly disallowed signatures, and
developing efficient algorithms to implement our type checking. Finally, an environment to help
programming with exceptions is being designed. Such an environment addresses important issues
such as providing the user with explanations about why some statements are unsafe and assistance in
writing exception-handling code.
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12 Appendices

A Proof of Proposition 1

We first introduce he following lemma :

Lemma 12.1
� � � �� � �  � �����	��� �#� � � � �  �'. �#�� � � 	 ��� � �  �,. � � � �

Proof : As �  � � , � �  �'. �#� � � is applicable to �  . As � �  �'. �#�  � � is the most specific method
applicable to �� w.r.t. the ordering of �  , � �  �,. � �� � � is more specific or equal to � �  �'. �#� � � . 	

We prove that a necessary and sufficient condition of safety on . �#� � is that
54����������
�-! �)
��(�-!#!,��6"��� � � �  �'. �#� � � � � �����	��� �#� � �	� . This amounts to the following equivalence :

. � � � is correct and � �!
� � � � � ����� �

!
� � ��� � � � � ����� � 	�� � ����� �

!
� � � �

� 
����-!,!,��6 ��� �'. � � ��� �$���-�(� � � � � � (1)

equivalent to

� �  �1�$���-��� � � � � � �  �,. � �  � � �� .�� and (2)� �  �'. �#�  � � is a total match for . �#�  � and �  �� ���)5&!'
���
���� �  �,. � �  � � �
Using the definition of the correctness of a reduced invocation, (1) can be written :

� �  �'. �#� � � �� . � and � �  �,. � � � � is a total match for . �#� � and (3)� �  �1�$���-��� �#� � � � �   � �$���	��� � � �  �'. �#� � � � � � . � 	 ��� � � �  �'. �#� � ��� �  ��1�)
����-!,!#��6"��� �,. � �
To rewrite (2) we use the following equivalence, that comes from the definition of 
. 54!'
���
���'. � � :� �  �'. �#�  � � is a total match for � 	� �  �� 
. 5&!'
���
���� �  �,. � �  � � �
Thus (2) can be written :

� �  �1�$���-�(� � � ��� � �  �,. � �  � � �� .�� and �  �� � 
����-!,!#��6"��� �� �  �,. � �  � � � (4)

Let us prove now that (3) � (4). We assume that (3) is true for . and � . � �  �'. �#� � � �� . �
implies

� �  � �����	��� �#� � � � �  �'. �#�  � � �� . � . Thus the first conjunct of (4) is established.

We also prove that
� �  � �$���	��� �#� ��� �  �� � 
����-!,!#��6"��� �� �  �,. � �  � � � , applying the second

conjunct of (3). From lemma 12.1, we have � �  �,. � �  � � 	 � � � �  �,. � � � � , and �  � �$���	��� �#� �
implies �  � �����	��� � � �  �'. �#� � � � . Thus �  �� �)
����-!,!#��6"��� �� �  �,. � �  � � � . This concludes the first
part of our proof.

Let us prove now that (4) � (3). We assume that (4) is true for . and � . As � � �$���-��� � � � , we
have that � �  �'. �#� � � �� .�� . As � �� 
. 54!'
���
��� � �  �'. �#� � � � , � �  �,. � � � � is a total match for
. �#� � .

Now let �� � �$���-��� �#� � , ��  � �$���-��� � � �  �'. �#� � � � , and . � 	 �
� � � �  �,. � � � � . If . � �� �  �'. �#�  � � , from (4) we have �  �� � 
����-!,!#��6"��� �,. � � . If . � �� � �  �'. �#�  � � , from the defini-
tion of 
. 54!'
���
���'. � � and ��� 54!'
���
���'. � � , � 
����-!,!,��6 ��� �'. � � � ���	�7+*� �,. � � , thus �  �� �)
����	!#!,��6"��� �'. � � .
This concludes our proof of proposition 1.
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B Proof of Proposition 3

We prove that a run-time type error due to a method . � being a return- or an argument-exception to a
method .�
 , may occur only if . � trespasses on .�
 . We first consider the case of return-exceptions,
then of argument-exceptions.

A run-time type error may occur due to a method . � being a return-exception to a method . 
 ,
iff for some static signature � � 6"��!,! - ����5&��� �'. � , . � � � � � �'. �#� � � and . 
 � � �  �'. �#� � � . We
have to prove that in this case, . � trespasses on . 
 .

As . � � � � � �,. � � � � , there exists �  � �$���-��� � � � such that . � � � �  �'. �#�  � � . As � �
�$���-��� �,.�
 � , we have ���� �$���-��� �'.�
 � , and ���� ���)�7+*� �'. � � , thus ���	�7+-� �'. � � � �$���-��� �'.�
 � �� � .
This concludes the first part of our proof.

Let us now consider the case of argument-exceptions. The general static safety condition is :

54����������
�-! ���&��� 5&��
������ �,. � � ��� �$���-��� �,. � � �	�
Using the decomposition of exceptions into implicit and explicit exceptions, we can rewrite the

condition as :

� � �! � � ! � 
 . 5&!,
���
���'. 
 � ��� � �! � � ! � ��� 54!'
���
���'. 
 � � ��� �$���	��� �'. � � � � �

� �! � � ! � 
. 5&!,
�$
 ���,.�
 � � � �$���	��� �'. � � � � , and � �! � � ! � � �)5&!,
�$
 ���,.�
 � � � �$���-�(� �,. � � �	�

Static safety w.r.t. implicit exception corresponds to the first part of the conjunction. As the im-
plicit exceptions of methods are due to argument exceptions, let us see what conditions must hold on
. � and the . 
  . � .

As 
 . 5&!,
���
���'. � � � �����	��� �'. � � � �,���)�7+*� �'. � � � �$���-��� �,. � � � � �����	��� �'. � � � � , the first conjunc-
tive term can be written as: �!

���
!
� 
 . 5&!,
���
���'. 
 ��� �$���-��� �,. � � �	� (5)

Let us prove that if (5) is false, then :
� . 
  . � such that . 
 is an argument-exception to . � and trespasses on . �

For this, we show that if either (A) . 
 is not an argument-exception to . � , or (B) . 
 does not
trespass on . � , then (C) 
. 5&!'
���
���,.�
 ��� �����	��� �'. � � � � .

Let us first prove (A) � (C). (A) means that :

� � � �
 �	�	�
�	� � �
�� � � � �� �
�	�	�
� � �� (6)

For all
� � �
�	�
��� � � in 
. 5&!,
�$
 ���,.�
 � , we have :

� � � � �	�	�
�	� � � �� � � � �
 �
�	�	�
� � �
 (7)

(6) and (7) imply :
� � � � �	�	�
�	� � � �� � � � �� �
�	�	�
� � ��

And thus :

. 
 not argument-exception to . � � 
. 54!'
���
���'. 
 � � �����	��� �'. � � � �
Let us now prove (B) � (C). We have that 
. 54!'
���
���'. 
 � � ���	�7+*� �'. 
 � � �$���-��� �'. 
 � and (B)

means that ���)�7+*� �'. 
 � � �����	��� �'. � � � � . Thus, 
. 5&!'
���
���,. 
 � � �����	��� �'. � � � � . This concludes
the proof.
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Unité de recherche INRIA Lorraine, Technopôle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LÈS NANCY
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Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
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