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Abstract: The so-called synthesis problem consists in deciding for a class of nets
whether a given graph is isomorphic to the case graph of some net and then con-
structing the net. This problem has been solved for various classes of nets, ranging
from elementary nets to Petri nets. The general principle is to compute regionsin the
graph, i.e. subsets of nodes liable to represent extensions of places of an associated
net. The naive method of synthesis which relies on this principle leads to exponen-
tial algorithms for an arbitrary class of nets. In an earlier study, we gave algorithms
that solve the synthesis problem in polynomial time for the class of bounded Petri
nets. We show here that in contrast the synthesis problem is indeed NP-complete for
the class of elementary nets. This result is independent from the results of Kunihiko
Hiraishi, showing that both problems of separation and inhibition by regions at a
given node of the graph are NP-complete.
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La syntheése de réseaux élémentaires est NP-complete

Résumé : Le probleme de synthése consiste a décider, pour une classe de réseaux,
si un graphe donné est isomorphe au graphe des marquages d’un réseau, et si oui a
construire ce réseau. Ce probleme a été résolu pour diverses classes de réseaux, allant
des réseaux élémentaires aux réseaux de Petri. Le principe général est de calculer
les régions du graphe, ou sous-ensembles de noeuds susceptibles de représenter les
extensions des places d’un réseau associé. La méthode de synthése naive qui s’appuie
sur ce principe conduit & des algorithmes exponentiels pour une classe de réseaux
arbitraire. Dans une étude antérieure, nous avons donné des algorithmes de synthése
en temps polynomial pour la classe des réseaux de Petri bornés. Nous montrons ici
que le probleme de synthese est par contre effectivement NP-complet pour la classe
des réseaux élémentaires. Ce résultat est indépendant des résultats de Kunihiko
Hiraishi, montrant que les probléemes de séparation et d’inhibition par les régions en
un noeud donné du graphe sont NP-complets.

Mots-clé : Synthese de réseaux, réseaux élémentaires, régions, NP-complétude



The Synthesis Problem for Elementary Net Systems is NP-Complete 3

1 Introduction / Preliminaries

A netis a quadruple N = (P, E,*(), ()* ), where the set of places P and the set of
events E are disjoint, and the pair of mappings *() , ()* : £ — 2% state preconditions
and postconditions in P for each event e € E. An elementary net is a net which
is pure: *e N e* =0 for all e € £ and simple: (*z =*y A 2* = y*) = z=y for
all z,ye PUE (where e€®p < pe ¢ and e€ p* < pe®e ), and which has no
1solatedevent: *e £ Qor e* # 0 forall e € F. An elementary netl systemis a quintuple
NS = (P,E,*(), ()* ,Mg), where (P,E,*(), ()* ) is an elementary net and M, is a
subset of P called the initial marking. The set of the accessible markings of NS is
the inductive closure of the singleton set {My} with respect to the relation over 2°
defined as M — M’ if M\ M'="e and M'\ M = e* for some event e € F. The state
graph of NS is the automaton NS* = (M(NS), E,T(NS), My), where M(NS) is the
set of accessible markings of NS and 7(NS) is the set of transitions M = M’ such
that M, M’ € M(NS), e€ E, and M\ M'= ®e and M'\ M = €*. An elementary
transition system is an automaton A = (S, E,T,sg), where T C S x F x S and so € S,
which is isomorphic to the state graph of some elementary net system i.e. such that
A= NS* for some elementary net system N.S. The synthesis problem for elementary
net systems consists in deciding uniformly in A and constructively in NS whether
there exists V.S such that A = NS*. This problem has been solved by Ehrenfeucht
and Rozenberg who gave in [ER90] a combinatorial method for the decision, based
on the computation of regionsin the underlying transition systems. It appears clearly
from the work of these authors that the synthesis problem for elementary net systems
is in NP when restricted to finite transition systems. The purpose of this note is to
prove that this problem is NP-complete (whereas the synthesis problem for bounded
Petri nets is in P, as we proved in [BBD94]).

According to Ehrenfeucht and Rozenberg, a region in a transition system 7'S =(S,
E,T)is a subset of states R C S whose characteristic function og : S — {0, 1} admits
a (unique) companion map ng: £ — {-1,0,1} such that or(s’) = or(s) + nr(e) for
every transition s = s’ in 7. A region R = (og,ng) induces an atomic net Ng(T'S) =
{R},E,*(), ()* ) with flow relations set according to the mapping ng, namely:

Re®e iff np(e)=—-1 and Re e* iff nr(e)=1

A subset of regions R, together with an initial state so € S, induces similarly a net
system NSR(T'S,s0) = (R, E,*(), ()* , My), where My ={R€R | so € R}. Given a
finite automaton A, a natural candidate for the solution of the synthesis problem
for Ais the net system A* = NSg.,rs)(A), where Reg(TS) is the set of all regions
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4 E. Badouel, L. Bernardinello & Ph. Darondeau

in its underlying transition system T'S. Ehrenfeucht and Rozenberg proved in fact
that A is an elementary transition system if and only if A = A**. In order to give
a precise account of their result, let us call pre-elementary transition system an
automaton A = (S, E, T, so) which is reduced: Ve € E 3(s = s') € T, accessible: Vs € S
so — s where — is the union of the labelled transition relations -, and which presents
neither loops: s = s’ = s # s', nor mulliple transitions: (s = s' A s L s') = e=¢.
Ehrenfeucht and Rozenberg proved that an automaton A = (S, E, T, s¢) is elementary
if and only if it pre-elementary and Reg(7'5) contains enough regions for solving all
instances of the following two separation problems, in which case A = A**,

States separation problem (SSP):

Given T'S = (S, E,T) and a pair of distinct states (s1,s2) € S x S, find a region R =
(cr,nr) in Reg(T'S) separating s; from s, in the sense that og(s1) = 0 and og(sy) =1
or vice-versa.

Fvent/State separation problem (ESSP):

Given T'S = (S, E,T) and a pair (s,e) € S x E such that e is not enabled at s (s = s’
in T for no s’ € 5), find a region R = (og,nr) in Reg(TS) inhibiling e at s in the
sense that og(s) = 0 and ng(e) = —1.

Desel and Reisig proved in [DR92] that A = (NSR(A))* for a subset of regions R C
Reg(T'S) if and only if A = (T'S, s0) is pre-elementary and R contains enough regions
for solving all the instances of the separation problems. Since the number of these
instances is quadratic in the size of TS, this makes clear that the synthesis problem
for elementary net systems is in NP, because problems SSP and ESSP are in NP (one
may certainly check in polynomial time whether a given region solves a fixed instance
of the separation problems). To be more precise, Hiraishi proved in [Hir94] that
both problems SSP and ESSP are NP-complete. However, as this author remarked,
it does not follow from this fact that the synthesis problem for elementary net
systems is NP-complete. We give in the remaining sections an independent proof
of the intractability of the synthesis problem for elementary net systems. For that
purpose, we construct a polynomial reduction of 3-SAT to the synthesis problem,
showing that the latter problem is NP-hard and therefore NP-complete. This will
be done in two stages. In section 2, we reduce 3-SAT to satisfiability of systems of
additive or multiplicative clauses over the boolean ring, a structure which fits exactly
the needs for expressing and solving separation problems in transition systems. In
section 3, we encode systems of clauses over the boolean ring to transition systems,

INRIA



The Synthesis Problem for Elementary Net Systems is NP-Complete 5

and we classify regions in the latter with respect to solutions of the former. We
finally prove in section 4 that satisfiability of systems of clauses over the boolean
ring reduces through this polynomial encoding to the solvability of all instances of
the separation problems for transition systems, and hence to the synthesis problem
for elementary net systems.

2 Reducing 3-SAT to satisfiability of systems of addi-
tive or multiplicative clauses over the boolean ring

Recall that 3-SAT is the problem whether, given a finite set V' of boolean variables
and a finite system C of (disjunctive) clauses over V', with exactly three literals per
clause, there exists a truth assignment for V satisfying all clauses in C. Problem
3-SAT is known to be NP-complete, see e.g. [GJ79]. The purpose of the section is
to reduce 3-SAT to an equivalent problem over the boolean ring, a structure which
fits exactly the needs for expressing and solving separation problems in labelled
transition systems. Recall that 2 = {0,1} may be equipped alternatively with the
structure of a boolean algebra 2 = ({0,1},V,A,—) or with the structure of a boo-
lean ring 2 = ({0,1},+,-), in which product is logical conjunction (z-y = zAy)
and sum is symmetric difference (¢ +y = (z A=y) V(-2 Ay)). Consider now a tran-
sition system 7'S = (S, E,T). Call abstract regionsin T'S the second projections ng :
E — {-1,0,1} of regions R = (ogr,nr) in Reg(T'S), and call floating regions in T'S
the mappings |ng| : £ — {0,1} which are derived from abstract regions ng by set-
ting |ng| (e) = |nr(e)| for e € E, where |- | maps integers to their absolute value. The
set of the floating regions in (the underlying transition system of) a pre-elementary
transition system A = (T'S, sg) may be easily characterized by a finite system of equa-
tions over the boolean ring in the variables |ng(e)|. The construction is as follows.
Extract from TS a spanning tree T rooted at sg, and form a basis of cycles for
TS with one cycle for each transition in 75 \ T (see e.g. [GM85]). Each cycle in
the basis is thus represented by a chain in T'S, let s; & 55 253 ... 2= s, 25,0y

€n+41 €nt+m €nt+m+1 . .
2 Suam T spyme1 5T s, formed by concatenating an elementary chain

in T and a transition s,jym41 ittt o in TS \ 7. Set for each cycle in the basis
a corresponding equation |ng(e1)|+ ...+ [n8(€ntm+1)| = 0. Next, for each elemen-
tary chain in 7T, say s; < 55 < s3 L, o Snt1 ‘i Sntm ntm Spama1, and
for each event e € E which is enabled in T'S at both ends of that chain, set the
equation |ng(e)| - ( Inr(el)|+ ...+ |nr(entm)|) = 0. We claim that the system of
equations £ assembled in this way characterizes exactly the set of the floating re-

gions in T'S (the proof for that claim is quite similar to the one given in [BBD94],

RR n"2558



6 E. Badouel, L. Bernardinello & Ph. Darondeau

where the ring of integers is used in place of the boolean ring). Relying on that
claim, instances of problems SSP and ESSP may be set in equational form. For

. o e e e €n—1 €n
each pair of distinct states (s',s") € Sx S, let s’ =51 <~ 59 <> 853 ... < 8, — Sp41
€n+41 €n4+m . . .

2 Suam 2 Supma1 = s be an elementary chain connecting s’ and s” in T,

then the states separation problem SSP is solvable at (s’,s”) if and only if the sys-
tem of equations € |J {|nr(e1)|+ ...+ [nr(én+m)| ) =1} has a solution. For each
pair (s',e) € S x E such that e is not enabled at s’ in T'S, let s” be an arbitrary

En—1 €n €n41

state at which e is enabled in TS and let s =57 & sy E 53 ... ' 5, Losp =L
Snam " Spyme1 = 5" be an elementary chain connecting s’ and s in T, then the
event/state separation problem ESSP is solvable at (s, ¢) if and only if the system of
equations & |J {|nr(e1)|+ ...+ nr(ent+m)|) =1, |nr(e)] = 1} has a solution On the
intuitive ground given by the above claims (which we do not prove because they
are not needed for the technical development), we focus our attention on systems of

additive or multiplicative clauses over the boolean ring, defined as follows.

Definition 1 (Systems of clauses over the boolean ring) Let X = {zq,..., 2,}
be a finite set of boolean variables, with a distinguished element rg. A system of
clauses over the boolean ring is a pair (X,1I) where ¥ is a finile set of additive
clauses o, (o € A) and 1l is a finite set of multiplicative clauses mg (6 € B) with
respective forms zo, + ¢o, + o, and zg, - xp,, subject to the following restrictions:
each additive clause has exactly three variables, two additive clauses have at most
one common variable, each multiplicative clause has exactly two variables, and the
distinguished variable xo does not occur in any multiplicative clause. The system
(3,10) is said lo be satisfiable if there exists a lruth assignment for X such that
x9g=1,0,=0 foralla € A, and m3 = 0 for all § € B. Such a truth assignment is
called a solution of (X,1I).

Observe that in the boolean ring, the equations zg = 21 +...4+ 2, and 20+ 21 +.. .+
z, = 0 are equivalent in view of the inversion law z + z = 0. Using this remark, one
can show that each instance of problems SSP and ESSP reduces to the satisfiability
of a corresponding system of clauses, with size polynomial in the size of the transition
system.

Let CBR denote the satisfiability problem for systems of clauses over the boolean
ring. It is patent that CBR reduces polynomially to 3-SAT. The converse is shown
by the following.

Proposition 2 3-SAT reduces polynomially to CBR.

INRIA



The Synthesis Problem for Elementary Net Systems is NP-Complete 7

Proof: Let (V,C) be an instance of 3-SAT. Define W =V U=V where =V = {-w |
ve V}, and equip this set with the involution —(v) = —-v and —(-v) = v for v € V.
We construct from (V,C) a system of clauses (3, II) over the boolean ring with va-
riables in the set X = {zo} UW U(W x W). The additive clauses in X are defined as
follows: for each literal ¢ € W set the clause zg + ¢ + —¢, and for each pair of lite-
rals ab € W x W set the clause a + ab + a—b. The multiplicative clauses in II are
defined as follows: for each pair of literals ab € W x W set the two clauses —a - ab
and —b - ab, and for each disjunctive clause avbVvcin C set the clause —a - —b—e.
It is easily verified that every truth assignment for V' which satisfies C' extends to a
truth assignment for X which satisfies (X, 1I) by setting [-v] = = [v] for v € V and
lab] = [a] A [8] for a,b € W. Similarly, every truth assignment for X which satisfies
(3, ) restricts to a truth assignment for V' which satisfies C, and the proposition

follows. |

3 Encoding systems of clauses over the boolean ring
to labelled transition systems

The purpose of the section is to encode uniformly systems of clauses (3, I1) over the
boolean ring to automata A(X,II) with size polynomial in the size of (X,1I), such
that (X,1I) is satisfiable if and only if A(X,II) is an elementary transition system.
The encoding will be done in two stages. In the first stage, we construct from (3, I)
a system of equations (X', II') with a larger set of variables, and we state the relation-
ships between the respective solutions of (X,1I) and (X', II'). In the second stage, we
construct from (¥, II') an automaton A(X, II) and we observe that (X, 1I) is satisfiable

if A(X,10) is elementary. The proof for the converse is left to a later section.

Now for (¥, 1II"). Let X = {&q,...,z,-1} be the set of variables of (X, II), where the
respective sets of clauses ¥ = {0, | « € A} and Il = {73 | B € B} have typical elements

(UOZ) P Tag T Tay T Tay (ﬂ-ﬁ) LTp T,

Let X' = XU{z*|a€ A} U{z,,...,zn}, wWhere N —n+ 1 =3 x size(A). Define ¥’ =
{o!,|a € AYU{c! |« € A}, where ¢/ and 0! are the equations:

(O-/a) : ‘rao —I_ xal —I_ ‘rag —I_ l‘ag —I_ :qu —I_ xa5 = 0

(c): 2%+ a4, + 2o, + 2T, =0

RR n"2558



8 E. Badouel, L. Bernardinello & Ph. Darondeau

where {z,,...,2nv} = Usea {Zass Tay, Tas}. Define ' = {7, |a € A}U {73 | § € B},
where 7, and 7 are the equations:

(Ta): z9-2%=0 (mg): xp, ~25, =0

A solution for (X', II') is a truth assignment for X’ such that all the above equations
hold. A distinguished solution for (¥’,1I') is a solution which assigns value 1 to the
distinguished variable ¢, and value 0 to all the auxiliary variables in X'\ X. Thus,
every solution of (X,II) extends to a distinguished solution of (X',II'), and every
distinguished solution of (¥’ II') restricts to a solution of (X, II). Before we construct
A(X, D), let us state some properties of the set of solutions of (¥’,1I') showing the
degrees of freedom introduced by the auxiliary variables.

Fact 3 For each positive integer 1+ < N, exists a family F; of solutions f: X' — 2
for (X', 1) such that {i} ={j |0<j< N A (Vfe€F) (f(z;) =1}

Proof indication: For 0 < ¢ < n, F; is the set of solutions f: X — 2 of (¥/,II') such
that f(zo) =0 and f(z;) = 1. |

Fact 4 For each a € A, exists a family F, of solutions f: X' — 2 for (X', 1) such
that (Vf € Fo) - (f(z*)=1) and {j |0<j <N A (VfeEF,) (f(z;)=1)} =0.

Proof indication: F, is the set of solutions f: X — 2 of (X', II') such that f(zg) =0
and f(z%) = 1. |

We now proceed to the definition of the automaton A(X,1I).

Definition 5 An aultomaton with entry states is a transition system (S, E,T) to-
gether with a set Sg C S of entry states. Given an i-indexed family of automata
(St, B4, T, SE), their union U;(S*, BY, T Si) is the automaton (U;S*, U;E*,U; T, U;Sh),
and their lifted union is the labelled transition system (S, E,T,so) with initial state
So, sel of states S = {so} U (U;S?), sel of events E = (U; E') U (U;S), and set of tran-
sitions T = (U;T") U (Ui{so = s | s € Si}).

Notation 6 For k ranging over {0,...,N}, let A(k)={a€A| Fie{0,...,5} -k
=a;}, Blk)y={BeB|3je{1,2} k=0;}, and I'(k) = A(k)U B(k).

INRIA



The Synthesis Problem for Elementary Net Systems is NP-Complete

Definition 7 Let A(X, ) and A'(X', 1) be respectively the lifted union and the union
of the families of automata S®, T?, UV}, = Uy er(r) Uv,), We = Wp UW§g indexed
byac A, BEB, and k € {0,..., N}, where 5%, T?, Uv,, Wi, and W§ are the
transition systems displayed in figures Fig. 1 to Fig. 4, with respective initial states

a 1 ¥
SO} to; uk;

systems of respectively A(X,11) and A'(X',11).

XO(
S5 = s3
ng Xga
sg ST
X5, Xan
Xo,
83 s
Figure 1: §¢
B
X
B B
ty ! t?
8 G
Xp, X5,
B
X
61 8
t5 t3
Figure 2: 7%

wg, and w§. TS(X, 1) and TS'(X', ') denote the underlying transition

Fact 8 Let p be a floating region of T'S(X,11), then Vy € T'(k) p(X]}) = p(x}), and the
)

mapping f : X' — 2 given by f(zr) = p(x}) for k € [0, N], and f

1s a solution of the system of equations (X', 1').

(

z®) = p(x

Corollary 9 (X,10) is satisfiable if A(X, 1) is an elementary transilion system.

RR n"2558



10 E. Badouel, L. Bernardinello & Ph. Darondeau

Y Y
¥ y Z
u k k
k u}‘: uk
y
Xk XZ
¥ Y
o z,, . Y
k vy Vi

Figure 3: UV}’

*
Xf XOéa
wg w{ w3 wg
* * o o] *
X0 (ij) Xo X* (WR) on4
o o (e o
w$ - w2 wg * we
X¢ X5,
Figure 4: W<

Proof: If A(X,1I) is an elementary transition system, there exists at least one region
R= (og,nr) such that or(wg) # or(wg) and thus |ng| (x3) = 1. Then the floating
region p = |ng|induces a solution f of (X', I') such that f(z¢) = 1 and which therefore
restricts to a solution of (X,1I). |

Observe that A(X,II) is a pre-elementary transition system, with size polynomial in
the size of (3, 1I). It is an elementary transition system if and only if all instances
of the separation problems SSP and ESSP can be solved in 7'S(X,1I). In order to
prove that CBR reduces polynomially to the synthesis problem, it remains to show
that A(X, ) is elementary if (X, 1) is satisfiable. Thus, one should prove that every
instance of SSP or ESSP can be solved in 7'S(X, 1) or equivalently in 75" (X, ') if
(3, 1) has a solution or yet equivalently if (¥/,1') has a distinguished solution.

INRIA



The Synthesis Problem for Elementary Net Systems is NP-Complete 11

4 Satisfiability of systems of clauses reduces to the
synthesis problem

We show in this section that every instance of SSP or ESSP can be solved in
TS (X, II') provided there exists a distinguished solution for (¥, 1I'). CBR reduces
therefore to the synthesis problem for elementary net systems, and this problem is
NP-complete like announced in the title of the paper.

As a starting point, let us observe again that every region R = (og,ng) in
TS'(¥,1I') determines a solution f:X’'— 2 for (X', II), given by f(zx) = |nr| (X})
(= Ingr| (x7)) and f(z*) = |nr| (x2). In order to carry on, we need a precise statement
for the converse relationship, enabling us to construct sets of regions from arbitrary
(i.e. possibly not distinguished) solutions of (¥, 1I").

Notation 10 In order to simplify the notation, let TS' = TS (¥, 1I'). Given an
arbitrary solution f for (X', 1'), let R(f) be the setl of regions R = (o,n) in T'S" such
that f(xp) = |n| (x}) for all k € {0,...,N} and f(z*) = |n| (X&) for all « € A. Finally
let A, be a disjoint copy of A and let -, be a bijective mapping from A onto A,.

Definition 11 (Type of a region) The type of region R = (o,n) € R(f) is the
unique map T: AUBU[0,n—1]U A, — {0,1} such that the following hold for all
a€A peEB, ke[0,n—1], and a, € Ay:

@) =o(s§) (B =o(ty) k) =0% n(xp)= () () = o(W5)

Definition 12 (Dependent type of a region) The dependent type of region R
= (0,n) € R(f) is the induced restriction of the map n on the set Y Z = U {{y},z]}|
kel0,....,N] A yeT(k)}.

Proposition 13 Let f be a fized solution for (¥',11'). A region R = (o,n) € R(f) is
totally determined from ils type, ils dependent type, its value c(wg) at the initial state
of each component W, and its value o(u]) at one initial state in each component
UVy. Conversely, every map 7: AUBUA, U [0,n —1] — {0,1} lypes a non emply
set of regions (o,m) € R(f) and determines uniquely the common restriction n;
of their n-component on E\YZ (where E is the set of events of T'S" and Y Z is
the set introduced in the above definition). Moreover, |n.(x})| =n,(X})| for every
kel0,...,N] and vy € I'(k), and a map 6 : YZ — {—1,0,1} is the dependent type of a
region of type T if and only if the following are satisfied for all k and ~:

Lo () =n(x) =0 = 8(yz)+6(2)=0

2. me(xp) = (xp) #£0 = 8(yp) =8(z) =0

3. n(xp) = (xp) 20 = [8(y3) = n-(X3) A 8(z) = 0]
VIB(yr) = 0 A 6(z) = nr (x3)]

RR n"2558



12 E. Badouel, L. Bernardinello & Ph. Darondeau

Proof: In order to establish the last claim made in the proposition, it suffices to
verify that all and only the maps from {x}, x}, y}, z}} to {—1, 0,1} that coincide
with abstract regions in UV, appear as entries in the following table.

x, | xx [ i | 7zp |
0 0 0

0 0 1 1
0 1 1

1 1 0 0

1 1 0 0

1 1 1 0

1 1 1 0

1 1 0 1

1 1 0 1

Once this verification has been done, one may delete temporarily all components UV,
and focus on regions (o,n) in 7'S" \ |, UV) subject to the constraints p(x}) = p(x})
(= f(zx)) imposed by the omitted components (where p = |n| is the induced floating
region). One may also delete temporarily all components W, imposing constraints
p(x3) - p(x%) = 0 automatically satisfied by assumption on f as soon as f(z“) = p(x2).
We are left with a transition system 75" = TS\ (U, UVx) U (U, W)) with the
unique occurrence property, meaning that each event has at most one occurrence.

The events which occur in 7'S” may have the form x§, Xf, or X; where a € A,
0<k<N,peB,and n<l< N.In particular, all events x} with £ < n have disap-
pear (since n < a; for j <3). By the unique occurrence property and because f is a
solution of (X,1I'), every subset of {sg| « € A} U {t| 8 € B} U {wg| o € A} deter-
mines a unique region (o, 7) in 7'S”, such that p(x) = f(zx), p(X0) = f(zr), p(xX}) =
f(z1), and p(x2) = f(z),fora € A,0<k < N,pB€ B,and n <l < N. The choice for
o is encoded bijectively by the map 7: AUBUA*—{0,1} given by 7(a) = o(55), 7(5)
= o(t)), and 7(a.) = o(W9).

Observe by the way that n(x¢) has been fixed by the above process. In order
to extend 7 into an abstract region of 7'S’, it remains to fix n(x}) for all k <n,
and subsequently to fix n(y}) and n(z]) for all 0 <k < N, and y € T'(k). By the first
part of this proof, every map 7 : [0,n — 1] — {0, 1} given jointly with a map 6 : YZ —
{—1,0, 1}, compatible with the extented map 7 : AU BU A*U [0,n — 1] — {0, 1}, defines
uniquely an abstract region of type 7 and dependent type § in T'S’.

In order to get a fully defined region (o, n) in 7'S’, it remains to extend o on all
components UV; and Wy . For each component G = UV, or G = W7, two situations
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The Synthesis Problem for Elementary Net Systems is NP-Complete 13

can occur. In case when n(e) # 0 for some event e occurring in G, the map n de-
termines uniquely the map o at all states in G since G is connected. In case when
n(e) =0 for all event e occuring in G, the map o has a constant value on G which
may be chosen freely in the set {0,1}. The value of ¢ on G is then entirely fixed from
the data of o(u,) if G = UV}, or o(w§) if G = WE. |

Armed with this proposition, and assuming a distinguished solution fy for (X', 11'),
we now start to prove that all instances of ESSP can be solved in T'S’. Once this
result has been established, one verifies easily that all instances of SSP can be solved:
most pairs of distinct states (s1,s2) in T'S” are split by some event e, enabled at s;
and disabled at sy (or the converse), and SSP is then automatically solved at (s1, s2)
when ESSP is solved at (s2,¢). The pairs of states which remain to be checked for
separation are all pairs of sink states, plus the pairs (u,, w¢), (w3, wg), (u,,, W), and
U, V), where a € A,j € {3,4,5},k € [0, N] and v € T'(k). If we except pairs (U], V]),
all these pairs are assembled from states in two different connected components of
TS’, and their separation makes no problem since the set of states of a connected
component is always a region. For the remaining pairs (U] ,V]), separation follows
from Prop. 13 applied to any solution f of (¥',1') such that f(zy) =1 (where 7(v)
is chosen so that n,(x}) = n-(x})).

In order to divide the proof into meaningful pieces, let us introduce one more
definition.

Definition 14 For any pair (G1,Gs) of connected components of T'S', let G1 <« G5 if
exists in TS a region which inhibits e al s for every evenl e occurring in G and
for every state s in Gy such that e is disabled at s.

In the appendix we prove that G; <Gy for every pair of connected components
(G1,G2), where possibly G; = G5, thus establishing the announced result, namely

Theorem 15 The synthesis problem for elementary net systems is NP-complete.

References

[BBD94] BADOUEL, E., BERNARDINELLO, L., and DARONDEAU, PH., Polynomial Algorithms for the
Synthesis of Bounded Nets. Proceedings of CAAP’95. Volume 915 of Lectures Notes in Computer
Science. Springer Verlag, 1995. p. 364-378.

[Ber93] BERNARDINELLO, L., Synthesis of Net Systems. Application and Theory of Petri Nets,
Springer-Verlag Lecture Notes in Computer Science, vol. 691 (1993) 89-105.

RR n"2558



14 E. Badouel, L. Bernardinello & Ph. Darondeau

[DR92] DESEL, J., and REisiG, W., The Synthesis Problem of Petri Nets. TUM research report,
Munich (1992).

[ER90] EHRENFEUCHT, A., and ROZENBERG, G., Partial 2-structures ; Part 1 : Basic Notions and
the Representation Problem, and Part 11 : State Spaces of Concurrent Systems, Acta Informatica,
vol 27 (1990).

[GJ79] GAREY, M.R., and JOHNsSON, D.S.; Computer and Intractability. A guide to the theory of
NP-Completeness. W.H. Freeman and Company (1979).

[GM85] GONDRAN, M., and MINoUX, M., Graphes et algorithmes. Eyrolles, Paris (1985).

[Hir94] HiraisHi, K., Some complexity results on transitions systems and elementary net systems.
Theoretical Computer Science 135 (1994) 361-376.

INRIA



The Synthesis Problem for Elementary Net Systems is NP-Complete i

Appendix

In this appendix we prove that G; <G, for every pair of connected components
(G1,G3) of TS, In several occasions we shall use the following fact about regions
which was observed in [Ber93] and can easily be verified by the reader.

Fact 16 The union of disjoint regions is a region. If Ry and Ry are regions with
Ry C R», then Ry \ Ry is a region.

Lemma 17 G<G' for G e {S*, 1% Wg Wg} and G' € {5« , 177 wg' Wg'}, where
a#ao and B £[3.

Proof: An event e occurring in G may have form x{ or Xf for Kk < N, or x¢, or x3,
or xj for k > n (viz. k = a; and j > 3). According to the case, let 2’ € X' be
the variable zy, or %, or zg, or z) then f(z') = 1 for some solution f of (X', 1I').
From Prop. 13 applied to f, one may construct a region R = (o, n) € R(f) such that
n(e) = —1 with an adequate choice for 7(a), 7(3), T(ax), or 7(0) according to the
form of e. If n(e’) = 0 for every €’ occurring in G’, then the region R’ = (R\ G’) inhi-
bits e at every state s’ in G'. Let us examine the converse case. If G/ € {S*', 7%, W§g'},
let 7/ be defined like 7 except at o', §’, or ), according to the form of G’. From
Prop. 13, there exists a region R’ = (o, 7') € R(f) with type 7’. Now the maps o
and ¢’ take complementary values at every state in G’, hence either R or R’ inhibits
e at each state s’ in G’. Finally let ¢’ = Wg'. If e = z¢, R inhibits e at wg and
w2. In the converse case, let 7/ be defined like 7 except at 0 if n(x}) # 0 or at o, if
n(x2) #£ 0. From Prop. 13, there exists a region R’ = (¢’,n') € R(f) with type 7.
The maps o and o' take complementary values on G’, and the conclusion follows as
above. |

Fact 18 S*«Wyp, S*<Wg, Wp<S% and WgZaS*.
Lemma 19 W «Wp, WpaWg, WEaWE, and WgZaWE.

Proof: An event e occurring in W may have form x§, or xj for £ > n, or x¢. Let
us examine separately the three cases.

If e = xg, one applies Prop. 13 to the distinguished solution fy of (¥/,11"), provi-
ding for a suitable choice of 7(0) a region R = (o,n) € R(fo) such that n(x}) = —1,
and 7(e’) = 0 for every €’ occurring in Wg. Now by Fact 16, the region R\ W
inhibits x} wherever it is not enabled in W<.
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If e =x; and k = a; (j > 3), consider the solution f of (X', 1I') defined by
f(zp) = 1for h € {oj, a34(j—1)moas} and f(z') = 0 for all the other variables. From
Prop. 13 applied to f with a suitable choice for 7(a,), one constructs a region
R = (0,n) € R(f) such that n(e) = —1. We proceed by case analysis according to the
value of j. If 7 = 4 or j = 5, the region R\ W} inhibits e at every state s where
it is not enabled in W%, If 5 = 3, the same holds except for state wg. In order
to deal with this exception, we construct another solution f’ for (X', 1), such that
f'(z®) = f'(z4,) = 1. For that purpose, choose ¢ € {0,1,2} such that a; # 0 and
let h = ;. Then set f'(z,) = 1, f'(27) = 1 and f'(z,) = 1 iff b € {70,71,72},
and f'(z") = 0 for all the other variables. From Prop. 13 applied to f’ for a suitable
choice for 7(ay), one obtains a region R’ = (¢/,7’) € R(f’) such that n(e) = —1, and
R’ inhibits e at state wg.

If e = x2, we construct in a similar way a solution f’ for (X’ 1I') such that
f(2%) = fl(za,) = 1 and f'(24,) = f'(2a,) = 0. We obtain therefrom a region
R' = (o',n') € R(f') such that n'(e) = —1, and R’ inhibits e wherever it is not en-
abled in W<, |

Fact 20 Let f be a solution for (X',1'), then for each o € A, i€ {0,1,2} and
j € {1,2}, the functionf" defined by f'(zo,) = 1 + f(za,) if k € {3+1i, 3+ (i + j) mod3},
and f'(z) = f(z) for all the other variables in X', is also a solution for (¥',1').

Lemma 21 5% «5°.

Proof: Let e = x¢ and k = a;. We examine separately the cases 7 < 2 and 7 > 3.

If i < 2,let f be a solution of (¥',1I') such that f(zx) = 1. From Fact 5, exists
another solution f’ such that f/(z4,) = 1+ f(2a,) for j € {3+14,3 + (i + 2)mod3}, and
f'(z") = f(a) for all the other variables in X’. From Prop. 13, applied to f and f’
with a suitable choice for 7(a), one may construct respective regions R = (o, ) € R(f)
and R’ = (¢/,n’) € R(f’) such that n(e) = n'(e) = —1, whence either R or R’ inhibits
e in S at every state s # s?.

Ifi >3, weset j =¢— 3 and h = a;, and we proceed separately for cases i # 0
and h = 0.

If A # 0, consider the solution f of (X',1I') defined by f(z) =1, f(z7) =1 for
v € Aiff h =, for some [ (< 2), f(z,,,) = 1 for such 7 and [, and f(z') = 0 for
all the other variables in X’. From Prop. 13 applied to f with a suitable choice for
7(a), one obtains a region R = (o,n) € R(f) such that n(e) = —1, and R inhibits e
in 5% at every state s # sg.
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If h = 0, consider the distinguished solution fy of (¥’,1I'). Let [ be the (unique)
integer in {0,1,2} such that [ # j and fo(z,,) = 1. One derives from fy another
solution f for (X', 1) by setting f(za,) = f(#a,.) =1 and f(z') = fo(z') for all the
other variables in X’. From Prop. 13 applied to f with a suitable choice for 7(a),
one obtains a region R = (o,7n) € R(f) such that n(e) = —1, and R inhibits e in S* at
all states s # s¢ except at state sf 5. In order to cope with this exception, consider
the solution f’ of (X', 1I') defined by f'(za,) = f'(%a,,,) =1 and f'(z') = 0 for all the
other variables in X'. From Prop. 13 applied to f’ with a suitable choice for 7(a),
one obtains a region R’ = (¢/,7') € R(f’) such that 7'(e) = —1, and R’ inhibits e at
state sf 5. [ |

Fact 22 TP «T%,

Lemma 23 GaUV; for G € {S*, TP W, Wg}.
Proof: Let e be an event occurring in G. Let 2/ =z}, if e = x§ or € = x or e = X},
and let 2’ = 2% if e = x2. We proceed separately with cases 2’ ¢ {zqg, 21}, 2’ = zp,
and 2’ = 2.

Suppose @’ € {xg,xr}. From facts 3 and 4, there exists in that case a solution
f for (', 1) such that f(z') = 1 and f(zx) = 0. From Prop. 13, applied to f with
a suitable choice for 7(a) (if G = $%) or 7(8) (if G = T?) or 7(aw) (if G = W§ or
G = W§), one may construct a region R = (o,n) € R(f) such that n(e) = —1 and
n(yy) = n(z)) = 0 for all v € I'(k). Now by Fact 16, R\ UV} is a region which
inhibits e at all states in UV},.

Suppose z' = z;, then either ¥ < n or k = a;- for some o/ € A and j > 3.
In either case, let f be a solution for (X', 1I') such that f(z') = 1. If e = x}, one
obtains from Prop. 13, applied to f with the suitable choice for (k) (if & < n
ie. if & = 0 ) or 7(e)) and all possible choices for {r(y)| v € ['(k)}, a family of
regions R; = (0;,7m;) € R(f) such that 7;(e) = —1 and every map n: {x]|y € '(k)} —
{=1,1} coincides with the restriction of some abstract region ;. If e = x for some
6 € I'(k), one obtains from Prop. 13, applied to f with the suitable choice for 7(6)
and with all possible choices for {r(y)| v # 6 Ay € ['(k)} and 7(k) (if £ < n) or 7(c)),
a family of regions R; = (oi,7:;) € R(f) such that n;(e) = —1 and every map n: {x}}
U {x}|v#éAy€eTl(k)} — {—1,1} coincides with the restriction of some abstract
region 7;. In both situations, some region R; in the resulting set inhibits e at each
state u,, v, uy, or v} in which it is not enabled. By varying now the dependent type
of each region R; according to the conditions stated in Prop. 13 (with 7; substituted

RR n"2558



iv E. Badouel, L. Bernardinello & Ph. Darondeau

for n; and §), one obtains additional regions which inhibit e at all the remaining
states U, and V).

Suppose finally 2’ = z¢ and k& # 0. Consider the distinguished solution fy of
(X, ). If fo(zx) = 0, which is always true for & > n, one obtains from Prop. 13,
applied to fu with a suitable choice for r(a) (if e = x§) or 7(0) (if € = x3), !
a region R= (o,n) € R(fo) such that n(e) = —1, n(x;) = 0 and n(x}) = 0 for
all v € T(k). From Prop. 13, the dependent type of R may be adjusted so that
n(yy) = n(z)) = 0 for all v € I'(k). Now by Fact 16, R\ UV} is a region which
inhibits e at all states in UVj. If fo(zr) = 1 (thus 0 < k < n), we proceed separately
for the case e = x§ A o € I'(k) and for the other cases.

Let e = x3, or e = x§ and o ¢ T'(k). From Prop. 13, applied to fy with a suitable
choice for 7(0) or 7(3) or 7(«), and with all possible choices for {r(y)| v € I'(k)}, one
obtains a family of regions R; = (0;,m;) € R(fs) such that n;(e) = —1 and every map
n:{x}|y €(k)} — {—1,1} coincides with the restriction of some abstract region 7;.
The expected conclusion follows like in case z’ = z.

Let finally e = x§ and o € I'(k), whence 0 = a; and k = a; for two distinct
integers 4,7 € {0,1,2}. Since fp is a distinguished solution of (X', 1I'), fo(24,) = 0
for all p € [0,5]\ {7,7}. From fact 5, exists another solution f for (X’,1I') such
that f(zo,) =1 for pe {3+ 7,3+ (j +2)mod3}, and f(z') = fo(z') for all the other
variables in X’. From Prop. 13, applied to f with a suitable choice for 7(«a), and
with all possible choices for 7(k) and for {r(v)| v # a Ay € ['(k)}, one obtains a fa-
mily of regions R; = (0;,n;) € R(f) such that 7;(e) = —1 and every map n: {x}} U
{x]|y#aAy €T(k)} — {—1,1} coincides with the restriction of some abstract re-
gion 7;. The expected conclusion follows again like in case &’ = z. [ |

Fact 24 For all k and v € I'(k), the sets {U],V]} and UV, \ {U],V]} define respec-
tive regions R = (o,n) and R' = (o', 7') in TS’ such that n(z)) = =1 and '(y}) = —1.
Similarly, the set U{{U,,V]'} |7 € I'(k)} and its complement in UV}, are regions.

Lemma 25 UV, «UV, for k # [.

Proof: In view of fact 24, it suffices to show that ESSP may be solved at all ins-
tances (e, s) in which s is a state in UV, and e = x% or e = X or e = x. Now in
every case except when e = x} and 0 < k& < n, ESSP may be solved at (e,s) as

a consequence from S« UV}, or T? « UV}, or Wi« UV, or Wi «UV). So assume

!'Remember that variable £y does not occur in equations II thus there is no event of the form

ngorﬁEB
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e = X} and 0 < k < n. There exists a solution f for (X', 1') such that f(z;) =1
and f(z;) = 0. From Prop. 13, applied to f with a suitable choice for 7(k), exists a
region R = (o, n) € R(f) such that n(e) = —1 and 7(e’) = 0 for every ¢’ in UV;. Then
R\ UV, is a region that inhibits e everywhere in UV]. ]

Lemma 26 UV, <«UV,.

Proof: In view of the properties S « UV}, TP a UVj, Wp aUVy, and W5 <« UVy, it
suffices to solve ESSP at (e,s) for sin UVy and e = z], or e = y}, or e = X} and
0 < k < n. The first case is immediate (from fact 24). We examine separately the
remaining cases.

Suppose e = x; (with 0 < k < n). Let then f be a solution for (X', II') such
that f(zx) = 1. From Prop. 13, applied to f with the suitable choice for 7(k)
and with all possible choices for {r(v)| vy € ['(k)}, one obtains a family of regions
R; = (0i,m;) € R(f) such that 7;(e) = —1 and every map n: {x}|y € I'(k)} — {-1,1}
coincides with the restriction of some abstract region 7;. As a consequence, some
region in the family inhibits e at each stateu,, v,, u}, or v] in which it is not enabled.
By varying the dependent type of each region R; according to the conditions stated
in Prop. 13 (with 7; substituted for 5, and §), one obtains additional regions which
inhibit e at all the remaining states ¢, and V).

Suppose now e = y,, where either k¥ < n or k = o} (j > 3). Since the set
u{{uf, Ve | 6 € T(k)} and its complement in UV}, are regions, it suffices in fact
to solve ESSP at (e, s) for s = u, or v}, and for s = u or v} with § # 7. Let f
be a solution for (X',II') such that f(zx) = 1. From Prop. 13, applied to f with a
suitable choice for 7(k) (if £ < n) or 7(al) (if £ > n) and for {r(8)| 6 € T(k)}, one
may construct a region R = (o,7) € R(f) such that 5(x;) = 1 and n(x}) = —1 for all
6 € I'(k) (including 7). From Prop. 13, one may adjust the dependent type of R so
that 7(y}) = —1, and then R inhibits e at u, and at all states v{ (6 € I'(k)). The
converse choice for {7(6)| § #v A § € ['(k)} produces a region R' = (¢/,n') € R(f) such
that 7'(x};) = 1, »'(x}) = —1, and 7(x}) = 1 for § # . This region R’ inhibits e at
all states uj (6 € T'(k) and 8 # 7). ]

Lemma 27 UV, <S® and UV, «T?.

Proof: In view of fact 24 and properties S7 < 5%, T7 <« 5%, W] « 5% Wp < 5%, and
SYQTE, TV aTP, W) aTP, Wh<TP, it suffices to solve ESSP at (e, s) for s in S or
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TP and e = x} with 0 < k < n. Let f be a solution for (¥, 1I') such that f(z;) = 1.
From Prop. 13, applied to f with a suitable choice for 7(k), one may construct a
region R = (o, n) of type 7 in R(f) such that n(x};) = —1. Let type 7’ be defined like
T except at a (respectively at ). From Prop. 13, exists a region R’ = (¢/,7') of type
7/ in T'S’. Now the maps ¢ and ¢’ take complementary values at each state s in ¢
(respectively T7), hence at each state s, either R or R inhibits x. [

Lemma 28 UV, <W§ and UV <W§.

Proof: For the same reasons as in the preceding lemma, it suffices to solve ESSP at
(e,s) for sin W} or W§ and e = xj, with 0 < k < n. Let f be a solution for (X', 11")
such that f(zy) = 1. From Prop. 13, applied to f with a suitable choice for 7(k),
one may construct a region R = (o,n) of type 7 in R(f) such that n(x};) = —1. Let
type 7’ be defined like 7 except at a,. From Prop. 13, exists a region R’ = (¢/,7') of
type 7/ in T'S’. Now the maps ¢ and o’ take complementary values at each state s
in Wg, hence at each state s in W, either R or R’ inhibits x} at state s. This line
of reasoning is also valid for Wi if f(z®) =1 (7' is like 7 except at a,) or f(z®) =0
and f(zg) = 1 (7' is defined like 7 except at 0). Consider finally the case where
f(z®) = f(zo) = 0. Then R\ W} is a region which inhibits x} at all states in W7.
|

The above series of lemmas show that Gy <« G5 for every pair of connected components
(G1,G3) in T'S" as required.
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