
HAL Id: inria-00074161
https://hal.inria.fr/inria-00074161

Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lessons from FTM: an Experiment in the Design and
Implementation of a Low Cost Fault Tolerant System

Gilles Muller, Michel Banâtre, Mireille Hue, Nadine Peyrouze, Bruno Rochat

To cite this version:
Gilles Muller, Michel Banâtre, Mireille Hue, Nadine Peyrouze, Bruno Rochat. Lessons from FTM:
an Experiment in the Design and Implementation of a Low Cost Fault Tolerant System. [Research
Report] RR-2517, INRIA. 1995. �inria-00074161�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50450657?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00074161
https://hal.archives-ouvertes.fr

IS
S

N
 0

24
9-

63
99

appor t
de r ech er ch e

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE

Lessons from FTM: an Experiment in the Design
and Implementation of a Low Cost Fault Tolerant

System

Gilles Muller, Michel Banâtre, Mireille Hue, Nadine Peyrouze et Bruno Rochat

N˚ 2517
Février 1995

PROGRAMME 1

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 Rennes Cedex (France)

Téléphone : (33) 99 84 71 00 - Télécopie : (33) 99 38 38 32

Lessons from FTM: an
Experiment in the Design
and Implementation of a
Low Cost Fault Tolerant

System

Gilles Muller, Michel Banâtre, Mireille Hue, Nadine Peyrouze et
Bruno Rochat

Programme 1- Architectures parralèles, bases de données,
réseaux et systèmes distribués

Projet Solidor

Rapport de recherche n˚2517 - Février 1995

46 pages

Abstract: This report describes an experiment in the design of a general purpose
fault tolerant system, FTM. The main objective of the FTM design was to imple-
ment a “low-cost” fault tolerant system that could be used on standard workstations.
At the operating system level, our goal was to provide a methodology for the design
of modular reliable operating systems, while offering fault tolerance transparency to
user applications. In other words, porting an application to FTM had only to require
compiling the source code without having to modify it. These objectives were
achieved using the Mach micro-kernel and a modular set of reliable servers which
implement application checkpoints and provide continuous system functions
despite machine crashes. At the architectural level, our approach relies on a high
performance stable storage implementation, called Stable Transactional Memory
(STM), which can be implemented either by hardware or software. We first moti-
vate our design choices, then we detail the FTM implementation at both architec-
tural and operating system level. We comment on the reasons for the evolution of
our stable memory technology from hardware to software. Finally, we present a per-
formance evaluation of the FTM prototype. We conclude with lessons learned and
give some assessments.

Key-words: Fault Tolerance, Blocking Consistent Checkpointing, Stable Memory,
Modular Operating System, Micro-kernel.

Leçons du projet FTM :
une expérimentation dans

la conception d’un
système tolérant les
fautes de faible coût

Résumé :Ce document présente une expérimentation dans la conception d’un sys-
tème tolérant les fautes à vocation générale, le FTM. Notre motivation principale
était la conception d’un système de faible coût pouvant être utilisé sur des stations
de travail standard. En ce qui concerne le système d’exploitation, notre objectif était
de développer une méthodologie de conception de systèmes d’exploitation fiables
offrant la transparence de la tolérance aux fautes aux applications utilisateurs.
Autrement dit, le portage d’une application sur FTM ne doit nécessiter que la com-
pilation du logiciel source sans avoir à modifier ce dernier. Nos objectifs ont été
atteints en utilisant le micro-noyau Mach et un ensemble modulaire de serveurs fia-
bles qui implément les points de reprises des applications et offrent un service sys-
tème continu, malgré la défaillance d’une machine. Au niveau de l’architecture,
notre approche a reposé sur la conception d’une mémoire stable rapide pouvant être
mise en œuvre soit par matériel, soit par logiciel. Nous décrivons tout d’abord nos
choix de conception, puis nous présentons la mise en œuvre du FTM en ce qui con-
cerne l’architecture et le système d’exploitation. En particulier, nous décrivons
l’évolution de la technologie mémoire stable depuis sa mise en œuvre par matériel
jusqu’à son implémentation par logiciel. Enfin, nous présentons une évaluation des
performances du prototype qui a été réalisé au cours de cette étude. Nous concluons
en tirant les leçons de ce projet.

Mots-clé : tolérance aux fautes, points de reprise cohérents, mémoire stable, sys-
tème d’exploitation modulaire, micro-noyau.

Lessons from FTM: an Experiment in the Design and Implementation of a Low Cost Fault

1 Introduction

A fault tolerant computer system is one which is able to deliver a continuous
service to its users even if one or several of its subsystems crash. Fault tolerance is
obviously a desirable property and the natural answer to the question “who needs a
fault tolerant computer?” should be “everybody”, as no one wants to suffer from a
system outage. Unfortunately, solutions to fault tolerance are based on redundancy
techniques [Lee & Anderson90] and these introduce additional hardware costs and
overheads in execution times. As a consequence, very few computers among the
many designed are fault tolerant. Designing a computer system is always a trade-off
between performance and cost; designing a fault tolerant computer system is even
more complicated since the solution is a trade-off between performance, cost and the
level of system reliability that users obtain for their applications.

This document describes an experiment in the design of a general purpose
fault tolerant system, FTM, developed at IRISA [Banâtreet al. 91b]. The main ob-
jective of the FTM design was to implement a “low-cost” fault tolerant system that
could be used on standard workstations. At the operating system level, our goal was
to provide a methodology for the design of modular reliable operating systems while
offering fault tolerance transparency to user applications. In other words, porting an
application to FTM had only to require compiling the source code without having to
modify it. These objectives were achieved using the Mach micro-kernel and a mod-
ular set of reliable servers which implement application checkpoints and provide
continuous system functions despite machine crashes [Banâtreet al. 93]. At the ar-
chitectural level, our approach relies on the use of a high performance stable storage
implementation called Stable Transactional Memory (STM) which can be imple-
mented either by software or hardware.

1.1 Motivation for Fault Tolerance in a Local Area Network

Local area network based distributed systems are often built from a set of
workstations or PCs. Such a system architecture is commonly used in office automa-
tion, software development and scientific environments. Since LAN-based systems
are made up of independent machines, one might expect such architectures to be less
sensitive to individual machine failures than a centralized system. Therefore, the ba-
sic fault tolerance requirement concerns the availability of the whole system: a single
node may fail, but such a failure must not freeze all of the system. In other words, to
preserve global availability in a LAN-based system, no basic operating system func-
tion should depend on the availability of any single node. Basic functions include
naming services (e.g., machines, users), storage services, such as distributed file sys-
tems, and distributed lock services. Consequently, one can state the primary fault tol-
erance requirement for LAN systems as being thatthe operating system has to pro-
vide an available service paradigm where an available service is one that can run
continuously despite node failures. It should be noted that some services (e.g., inter-

4 Gilles Muller, Michel Banâtre, Mireille Hue, Nadine Peyrouze et Bruno Rochat

net naming) are already highly available in commonly used distributed systems but
rely on ad-hoc solutions that cannot be generalized.

In office automation systems, where dedicated tools such as word processors,
spreadsheet calculators and publishing tools are used, high application availability is
not a general requirement. If a machine crashes, a user only wants to be able to restart
his job on another workstation from a recent consistent state without losing too much
work. We can formulate this second requirement as being that the operating system
has to make a consistent user state available. Currently, this facility is sometimes im-
plemented within tools such as text editors which regularly flush temporary text ver-
sions to disk. Nevertheless, these solutions rely on ad-hoc recovery mechanisms
which do not easily integrate into standard operating systems: problems such as
atomically replacing an old file version with an updated one are not always managed
properly following a crash. Therefore, to permit reuse of existing applications, a third
requirement is that fault tolerance management must be transparent to the end user
programmer. This means that fault tolerance mechanisms have to be integrated into
the operating system layers.

In a scientific environment, LAN distributed systems are also used as large
virtual multiprocessors to run number crunching computations on many nodes for
long durations (up to several days). The temporary unavailability of one of the virtual
multiprocessor nodes is acceptable, so long as it only results in a loss of CPU power
and that the whole computation is still able to complete successfully. Due to the large
number of nodes involved in such computations and to their duration, applications
not only have to deal with hardware crashes, but also with the likelihood of system
maintenance. In a non-fault-tolerant computing environment, a programmer who
wants to cater for such situations has either to cut his large software into small pieces
communicating through files or, design, by hand, some kind of disk checkpoint
mechanism permitting an interrupted program to be restarted.

We may thus consider that the main fault tolerance requirement for scientific
computations is that a node failure and restart be treated transparently to the end user
application programmer. If we assume that the operating system provides available
process states (i.e., the second need that we had identified), tolerating node mainte-
nance is simple. However, the execution environment of a scientific computation is
generally different to that of the office automation system. Firstly, a user job is gen-
erally tied to a single workstation with the exception of accesses made to remote
files. Second, the saving of a consistent state must be done quite frequently so that
the amount of work lost is minimized. By contrast, in scientific computations, there
are no strong requirements concerning the time interval between two savings, since
the loss of five to ten minutes of work is not very significant in a day-long computa-
tion.

Since a LAN architecture is built from off-the-shelf components, a good ap-
proach to fault-tolerance in such an environment is to make it “low-cost” so that the

Lessons from FTM: an Experiment in the Design and Implementation of a Low Cost Fault

solutions can be widely applied. This objective was our major guideline when defin-
ing the FTM solutions to the three requirements identified above.

1.2 Content of the paper

This document is structured as follows. Section 2 presents an overview of the FTM
approach to low-cost fault tolerance and outlines the main design choices that we
made. Section 3 describes the FTM architecture and the evolution of our RAM stable
storage technology from hardware boards to a software implementation. Section 4
presents our model for designing reliable modular operating systems and details the
checkpointing algorithms. Section 5 is devoted to the programming of reliable serv-
ers; we focus in particular on how fault tolerance can be masked from system pro-
grammers. Section 6 gives some performance evaluation for applications represen-
tative of workstation use. Section 7 presents related work. Section 8 concludes with
lessons learned as well as some assessments.

2 How to Implement a Low Cost Fault Tolerant System:
the FTM Solution

Our main design choices for FTM, at both architectural and operating system
level, were dictated by our objective of building a low cost fault tolerant system. We
now detail these choices.

2.1 Minimizing the Hardware Cost of Fault Tolerance

The hardware cost of a fault tolerant system depends mainly on the degree of
replication of its components. Thus, to build a low-cost system we chose solutions
that minimize the degree of machine replication; this was done in two ways. First,
we chose to tolerate only a single hardware failure at a time. This choice is justified
by the fact that the reliability of popular computers has increased and that hardware
failures are becoming increasingly rare. Consequently, the probability that two ma-
chines fail at the same time is acceptably low in a LAN environment. Second, we ori-
ented the operating system towards passive replication and checkpointing. In normal
operating mode, all machines of the architecture perform their own jobs; in the event
of a crash, jobs that were running on the failed machine are restarted on a backup ma-
chine from a previously saved checkpoint. It should be noted that after a failure, the
backup machine executes both the failed machine’s jobs and its own jobs.

Finally, to minimize the hardware cost, the FTM architecture is not built from
special purpose machines but is instead designed to use standard machines: PCs,
workstations, industrial CPU boards. As a result of this choice, failure detection re-
lies both on crash detection (software watch-dogs) and on mechanisms built into the
machine (Error Checking Codes, Checksums). When an error is detected by these
built-in mechanisms, the operating system halts the machine.

6 Gilles Muller, Michel Banâtre, Mireille Hue, Nadine Peyrouze et Bruno Rochat

2.2 RAM Stable Storage: Architectural Support for Efficient
Checkpointing

The implementation of checkpointing requires that checkpoints be stored in a
memory which is unaffected by crashes. Stable storage disks [Lampson81] are usu-
ally used for this purpose. Such a solution offers acceptable performance for file
meta-data but is inefficient when using small structures such as those of the low level
system (e.g., lists, graphs). To permit efficient use of persistent memory within the
operating system, we retained the stable RAM technology used in our previous stud-
ies into reliable distributed systems: Enchere [Banâtreet al.86] and Gothic [Banâtre
et al.88]. A RAM stable storage is based on the use of separate banks of RAM mem-
ory located in two independent machines for availability reasons. The FTM RAM
stable storage, called Stable Transactional Memory, provides two notions ofstable
object and transaction. We define a stable object as a contiguous set of memory
words and a transaction as an atomic set of primitive operations executed on stable
objects. Two versions of STM were successively designed during the FTM project:
a hardware based implementation which provides fine-grained object protection, and
a software implementation which does not require any specific hardware and is thus
easily portable. The evolution of our STM technology during the project as well as
STM features are discussed in section 3.

An STM can be conceptually viewed as a memory possessing two indepen-
dent access ports (see figure 1). It is used to build astable node which is made up of
a primary machine, a backup machine and an STM. In normal operation, the primary
processor has exclusive access to the STM and uses it to store checkpoints. If a crash
occurs, the backup processor aborts transactions running on the failed machine in or-
der to ensure a consistent state of STM data, and then takes over by restarting the
computations from their checkpoints. Stable nodes are coupled in pairs using passive
replication: the primary machine of a stable node is the backup machine of the other
stable node and visa versa.

2.3 Modular Operating Systems: the Right Way to Integrate
Checkpointing

Our design goal for the FTM operating system was to satisfy three require-
ments. The first requirement was fault tolerance transparency for the end user appli-
cation programmer so that he could design or port an existing application without
having to write source code for failure handling. Transparency is already provided
by many of the current checkpointing techniques [Elnozahyet al.92] [Borget al.89]
used in scientific computations. However, most of these techniques deal only with
the memory resource of application processes; this is not sufficient as standard soft-
ware generally use various other system resources such as files and screens. Thus,
our second operating system requirement was that checkpointing be extended to
manage all system resources and services. This has been achieved by the provision

Lessons from FTM: an Experiment in the Design and Implementation of a Low Cost Fault

of a methodology for designing reliable operating systems. Our third requirement
was portability for the operating system, that is, it could be easily installed on differ-
ent hardware platforms. This last objective had many consequences on the operating
system design.

Before the appearance of the micro-kernel technology, integration of a new
feature, such as fault tolerance, within an operating system was accomplished in one
of two ways: a new operating system could be designed from scratch or an existing
monolithic system could be extended. The first solution can be efficient but entails a
huge amount of work. Moreover, it suffers from portability restrictions, thus causing
problems whenever migration to a new generation of machines is required. Modify-
ing a monolithic system solves some portability restrictions since it frees the devel-
oper from having to deal with low level hardware. Nevertheless, the resulting soft-
ware is still dependent upon up-coming kernel releases. Furthermore, interactions
between parts of code in a monolithic system are not always well defined; addition
and debugging of new code is difficult.

Micro-kernels [Accetta et al. 86] [Rozier et al. 88] [Mullender et al. 90]
opened a third way; they provide a low level abstract machine and permit the design
of modular operating systems. Micro-kernel operating systems are generally based

STM
ab

STM
ba

Primary access
port

Figure 1 : The pair of stable nodes

Machine a

Machine b

Backup access
port

STM
ba

Backup access
port

Machine a

Machine b

Primary access
port

STM
ab

LAN

LAN

LAN

Machine a

Machine b

Pair of stable nodes ab

Stable node ba

Stable node ba

8 Gilles Muller, Michel Banâtre, Mireille Hue, Nadine Peyrouze et Bruno Rochat

on the client-server model, that is, the system is built from a set of servers, each im-
plementing a system service. It is possible to add new services, by means of new
servers, to an existing system without having to change the kernel. This solution is
therefore highly portable.

Given the advantages of micro-kernels, we decided to introduce fault toler-
ance in a modular operating system while keeping the advantages of the micro-kernel
technology. In particular, introducing fault tolerance without sacrificing modularity
means that the classical client-server model has to be modified to integrate fault tol-
erance mechanisms. In FTM, this is achieved through the design of reliable servers
which implement available system services (see figure 2). A reliable server manages
a system resource and is able to restart after a failure from a local checkpoint stored
in STM. An application checkpoint is made up of the collection of local checkpoints
of the reliable servers created by the application’s processes (e.g., memory segment
server, screen server, file server). The next paragraph gives the reasons which led us
to retain a blocking consistent checkpointing algorithm for creating application
checkpoints.

2.4 Blocking Consistent Checkpointing

Checkpointing has been widely studied by many researchers. These studies
fall into two groups: independent (asynchronous) checkpointing and consistent (syn-
chronous) checkpointing. In the independent checkpointing approach, each proces-
sor takes checkpoints independently. Messages exchanged between applications are

µ-Kernel

Recoverable

Virtual
Memory

Workstation

User
applications

µ-Kernel

WorkstationStandard
Hardware

Micro-kernel
based

reliable
operating
system

Figure 2 : Structure of the FTM operating system

Recoverable

Virtual
Memory

LAN

Reliable
Screen
Server

Scientific
computationText

editor

Lessons from FTM: an Experiment in the Design and Implementation of a Low Cost Fault

logged during normal execution and are replayed after a crash. Each process executes
normally without having to synchronize with others. The drawbacks of independent
checkpointing are that it is either domino-effect prone [Wood 81] [Bhargava &
Lian 88] [Merlin & Randell 78], or that message replay requires deterministic pro-
cesses [Strom & Yemini 85] [Borg et al. 89] [Goldberg et al. 90] [Juang &
Venkatesan 91] [Elnozahy & Zwaenepoel 92]. Forcing processes to be deterministic
means that the sources of systems’ non-determinism, such as multi-threading, inter-
rupts and memory mapped I/O [Gleeson 93], must be removed. Consequently, solu-
tions for deterministic processes are always hardware dependent and lead to restric-
tions on the services that can be implemented in the operating system.

In the consistent checkpointing approach, processors coordinate their local
checkpointing actions so that the global state is guaranteed to be consistent [Chandy
& Lamport 85]. When a failure occurs, processors roll back and restart from their
preceding checkpoint. Due to our portability requirement, we retained the consistent
checkpointing approach since it allowed us to deal with sources of systems’ non-de-
terminism and thus its implementation did not require any assumption about the un-
derlying micro-kernel nor about the machine on which the system ran (mono-proces-
sor, multiprocessor). Consistent checkpointing techniques also fall in two sub-
groups: blocking and non-blocking techniques. In blocking techniques [Tamir &
Sequin 84] [Koo & Toueg 86] [Leu & Bhargava 88], processes halt and synchronize
with each other when saving a local checkpoint. To minimize halt-time duration, sev-
eral studies have focused on how to reduce the number of dependent processors in-
volved in a checkpoint and the number of messages exchanged [Koo & Toueg 86]
[Ahamad & Lin 89].

Non-blocking techniques [Cristian & Jahanian 91] [Li et al. 91] [Silva &
Silva 92] [Elnozahy et al. 92] have been successfully applied to message based par-
allel scientific applications in distributed systems. When a process takes (or receives)
a checkpoint decision, it saves a temporary checkpoint and resumes its execution.
Temporary checkpoints are later made definitive when it is known that all processes
have saved a temporary checkpoint and that no messages are still in transit. However,
when working at the operating system level, non blocking checkpointing makes the
management of operating system resources such as memory segments difficult. For
instance, application processes have to be halted while the contents of their memory
segments are checkpointed in order to ensure that the CPU registers are consistent
with the segment. Application processes and server processes have thus to be syn-
chronized during a checkpoint. It should also be noted that non blocking checkpoint-
ing is more complex to implement than blocking checkpointing since it requires mes-
sage logging during the execution of the checkpointing protocol and a termination
algorithm for making temporary checkpoints definitive. Due to the these consider-
ations, we chose to implement a blocking checkpointing algorithm.

Though blocking consistent checkpointing possesses the advantage of being
simple, its well known drawback is that processes are stopped during the checkpoint-

10 Gilles Muller, Michel Banâtre, Mireille Hue, Nadine Peyrouze et Bruno Rochat

ing protocol. One of the contributions of the FTM project has been to develop strat-
egies for reducing the checkpoint duration by minimizing the number of servers in-
volved in the computation of a global consistent state, and also by reducing the
amount of data checkpointed [Mulleret al.94]. Reduction of the number of servers
involved in the computation of a global consistent state is achieved by keeping track
of the dependencies arising from a client’s call to a server operation. Minimization
of the data to be checkpointed is performed at the application level by the segment
server (recoverable virtual memory) and the micro-kernel virtual memory support:
only pages modified since the preceding checkpoint are saved in a checkpoint.At the
server level, we require that checkpointing only be performed after specific instruc-
tions; this permits stack and data segments to be discarded from the servers’ check-
point and thus efficiently reduces the checkpoint size; it need only contain stable da-
ta.

In the next three sections, we detail the implementation of several aspects of
the FTM project: the STM technology, the reliable client-server model, the check-
pointing protocols and the design of reliable servers.

3 Evolution of the RAM Stable Storage Technology:
from Hardware to Software

Our initial objective for the stable RAM technology was to design a reliable
memory device which protects the consistency and availability of data in the event
of a crash. We also wanted to use stable data within servers and this necessitated the
ability to efficiently manage groups of objects of arbitrary size, from single word ob-
jects to MMU page objects. Disk storage was deemed inappropriate both for perfor-
mance and access granularity reasons. This led us to introduce a new stable storage
design, called Stable Transactional Memory (STM), built from banks of RAM mem-
ory with a built-in transaction facility [Banâtreet al.91b].

A RAM stable storage is based on the use of two separate banks of RAM mem-
ory located in two independent machines in order to ensure availability. So that STM
transactions and stable objects could be managed as simply as standard C++ objects,
we build a C++ interface library that hides the implementation of the STM from the
programmer [Mulleret al.91].

Two versions of STM were successively designed during the FTM project: a
hardware based implementation made from two boards and a software implementa-
tion not requiring any specific hardware and which is thus easily portable. The hard-
ware-based STM was the first designed: it offers fine-grained object protection
against processor crashes and high performance STM transactions. A prototype has
been implemented for the Intel IlbxII local bus. Several considerations subsequently
led us to redesign this STM in order to make it easier to port to new platforms. This
was done by allocating STM RAM banks in processors’ main memory and by inte-

Lessons from FTM: an Experiment in the Design and Implementation of a Low Cost Fault

grating STM functionality, previously implemented by hardware, into the software
C++ library.

3.1 Description of the Hardware-based STM

Our design goal for the hardware-based STM was to develop a high perfor-
mance stable storage board which internally masks single hardware faults and power
failures. In addition, we wanted to detect standard machine errors so we added a
hardware mechanism capable of verifying the correctness of processor accesses to
memory. This was achieved by integrating the object paradigm into the STM hard-
ware: addresses generated by the processor are checked against the bounds of objects
residing in STM.

The hardware STM is made up of two separate boards, one connected to the
primary processor, the other to the backup (see figure 3). Each board contains a fail-
stop controller and a 32 Mbyte memory bank. The boards are connected together us-
ing a fast serial link offering a 16 Mbits/sec bandwidth. To provide efficient access
to STM data, stable objects are mapped into the processor’s address space and the
processor is able to modify the primary bank directly.

3.1.1. Basic Functionality

At any given moment, only the controller of the board attached to the active
processor is running. The active controller’s task is to implement object protection
and to manage transactions. More specifically, an Open command first makes the ob-
ject accessible to the processor, thereby permitting the construction of the list of ob-

Serial
links

Memory
bank

Fail-silent
controller

Double
serial
link

Figure 3 : Structure of the STM boards

Memory
bank

Fail-silent
controller

Double
serial
link

Backup STM boardPrimary STM board

Ilbx II bus
interface

Ilbx II bus
interface

12 Gilles Muller, Michel Banâtre, Mireille Hue, Nadine Peyrouze et Bruno Rochat

jects accessed or modified by a transaction. A Close command hides the object: any
tentative access to a closed object are detected and signaled as an error by the con-
troller. The Commit command is executed internally in the STM by the controller us-
ing a two-phase protocol:

• Working phase: the processor modifies objects in the primary mem-
ory bank.

• Phase 1 (Precommit): all objects are closed to prevent further modi-
fication.

• Phase 2 (Commit): when receiving the commit command, the con-
troller copies modified objects over the serial link from the primary
memory bank to the backup.

If a processor failure occurs during the working phase, the previous version of
the objects, which are still in the second memory bank, are copied back onto the first;
the update is not successful. If a failure occurs during phase 2, the first memory bank
will still contain the new version of the objects, so this phase can be restarted. Only
on completion of phase 2 is the update considered successful.

From the operating system standpoint, it can be necessary to group several
possibly distributed transactions so that either all transactions commit, or all transac-
tions abort. Transaction grouping is efficiently supported by the STM as part of the
Precommit phase. In this phase, no object accessed by a transaction is or can be
opened. Thus, if the processor fails, objects are still consistent and the transaction
does not have to be aborted. When receiving the group decision from the operating
system to either commit or abort, the processor forwards the decision to the transac-
tion.

The controller is also able to take decisions. For instance, it can decide that a
processor access is faulty and then initiate a reconfiguration by deconnecting the
main processor and signaling the failure to the backup. Detection of a processor crash
is done by a watch-dog timer which is regularly reset.

3.1.2. Advanced Transaction Support

In order to provide efficiency and convenient support for the operating system,
the STM supports multiple concurrent transactions. Multiple concurrent transactions
permit any process to have one or more private STM transactions. From the micro-
kernel standpoint, the STM can be viewed as an atomicity supporting co-processor:
when a scheduling decision occurs, the current transaction of the elected process be-
comes the activated transaction. Transaction switching can also be effected from the
programming level, thus permitting an application to manage stable objects within
separate transactions.

Lessons from FTM: an Experiment in the Design and Implementation of a Low Cost Fault

3.1.3. Masking a Single Internal Failure

When designing the STM, special care was taken to mask single internal hard-
ware failures. For instance, the two controllers have direct access to the two memory
banks and every processor access goes through a controller. If the controller fails, the
contents of memory may be destroyed. To prevent this, a controller possesses the
fail-silent property: it is made from two identical RISC R3000 single CPU chips that
always do the same job. Their outputs are compared before being sent to the memory
banks. If any difference is found, the comparator disconnects the chips and declares
the fail-stop controller to be in failure. If both chips’ outputs are the same, access to
the memory banks is permitted.

Access to STM must always be assured to permit service continuation, even
in the event of a controller failure. We therefore consider that a failure of the active
controller is equivalent to a failure of the processor - the backup controller and pro-
cessor become active. The backup controller aborts current internal STM operations
and restores a consistent object state. In order to do this, all algorithms executed by
a controller manipulate robust data structures [Tayloret al. 80].

The memory banks are made up of a set of memory chips organized by col-
umns (i.e., each chip is referenced by different address bits). In order to tolerate soft
(non permanent) errors when reading memory, an Error Correcting Code (ECC)
mechanism is used to correct a false bit. Soft errors are the result of spontaneous al-
terations of the memory chip and occur from time to time. The ECC is able to correct
an error on one bit and detect an error on two. If a chip fails, i.e., the error is hard
(permanent), the ECC is able to correct the false bit, deliver the correct memory word
value to the processor, but cannot write it back to the memory chip. Hence the ECC
cannot recover from subsequent soft failures. In such cases, thebit steering technique
[Hardell et al. 90] is used to copy the contents of the faulty memory chip to a spare
one on the board. The fault is reported to the kernel and to the operator, asking the
latter to replace the faulty chip during a scheduled maintenance. Using the aforemen-
tioned mechanisms, a memory chip failure is masked from the processor.

3.2 Lessons from the Hardware-Based STM

The hardware-based STM was successful from a performance point of view.
This was due to the internal controller being able to asynchronously execute complex
functions, thus freeing the processor to execute other tasks. The STM provides high
level functionality such as transactions and objects, both of which were lacking in
our Gothic stable storage design [Banâtreet al. 88]. Finally from the programming
point of view, the C++ interface to STM means that using stable objects is as simple
as using standard C++ objects.

When designing the hardware-based STM, we had the underlying goal of be-
ing able to create a modular STM board which could be easily ported to different
platforms. For instance, machine specific functions such as the bus interface were de-

14 Gilles Muller, Michel Banâtre, Mireille Hue, Nadine Peyrouze et Bruno Rochat

signed as a block separate from the memory banks and the controller. Nevertheless,
porting the hardware STM is not as simple as we had hoped. The first reason is due
to the size of the fail-stop and error detection mechanisms which led our IlbxII bus
design to take up a “large” MultibusII board. The second reason is the difficulty en-
countered in implementing dual powered boards in a standard machine. The third
reason is the conflict between the protection mechanism and the evolution of modern
processors which require large internal caches to run efficiently: when using the
hardware STM, data caches have to be disabled or flushed before closing an object.
This is not a drawback for our FTM prototypes since they ran on 68030-based indus-
trial single boards possessing only a small 256 Byte data cache.

For all of the above reasons, we decided to move to a software design which
could be independent of the architecture and which could withstand the evolution of
machines.

3.3 The Software-Based STM

Our requirements for the software-based STM meant that functions previously
performed by the STM hardware had either to be performed by software or else dis-
carded. For instance, STM RAM banks are allocated by software in the standard
RAM main memory of the two machines. Unfortunately, checking processor access-
es to currently opened objects is not possible unless a trap is generated on each mem-
ory access; this would induce an unacceptable execution overhead. Consequently,
the concept of fine-grained object protection was abandoned.

From the programmer’s view, there is no difference between the two STM im-
plementations: all functions which were performed by hardware have been moved to
the software C++ library. The transaction list of accessed objects is now managed as
part of the Open procedure. Protection related commands, such as Close, which pre-
viously hid an object from the processor, are represented by null procedures.

One potential source of performance bottleneck in the software STM is the du-
ration of transaction commit because of the time needed to copy modified objects
from the primary machine to the backup machine on transaction commit. To reduce
this duration, and to speed up inter-bank copies of objects, we decided to use a fast
point to point serial link similar to the one designed for the hardware-based STM.

3.3.1. Implementation of the Fast Serial Link

Using a dedicated point to point serial link means that the use of general pur-
pose communication protocols can be avoided and thus round-trip latency reduced.
Today, there exist many ways to implement a point to point serial link. A simple so-
lution consists of using either the Fast Ethernet or the ATM technology which cur-
rently offers a physical 100-150 Mbits/sec bandwidth. However, as these technolo-
gies were not available when we started the FTM project, we chose to design a fast
serial link using a high speed transmitter/receiver [Gazelle 90].

Lessons from FTM: an Experiment in the Design and Implementation of a Low Cost Fault

The fast serial link itself is a simple board built from the transmitter/receiver,
a 16 Kilobyte receive FIFO and some TTL circuits (see figure 4). The transmitter/
receiver registers are directly mapped into the process address space, allowing data
transfer from one machine to the other by means of the standard memory move pro-
cessor instructions. Our implementation for the FTM prototype (e.g., MultibusII
board) is based on 200Mbit/sec Gazelle circuits that provide a usable bandwidth of
48 Mbits/sec, which is only limited by the speed of the processor’s local bus interface
[Muller & Prunault 93].

3.3.2. Management of Objects in STM Banks

In contrast to the hardware-based STM where memory banks were specially
designed to mask internal failures and to survive power failures, availability of a
RAM bank of the software-based STM is dependent upon the machine in which it is
allocated. Management of objects within a transaction is consequently performed as
follows (see figure 5):

• Initial state: the previous transaction commit has been completed.

• Working phase: when the processor modifies an object for the first
time, a memory copy is allocated for the new object version.

• Phase 1: modified objects are sent to the backup processor through
the serial link. The backup processor also allocates a memory copy
for the new object version. When phase 1 completes, the backup ma-
chine possesses the old and new versions of all modified objects.

• Phase 2: if the transaction belongs to a group, the transaction waits
for the group decision before executing phase 3.

Gazelle
transmitter

Figure 4 : Structure of a fast serial link board

Receive FIFO
Coaxial

link

Ilbx
interface

IlbX local
bus

Gazelle
receiver

16 Gilles Muller, Michel Banâtre, Mireille Hue, Nadine Peyrouze et Bruno Rochat

• Phase 3: the final decision, commit or abort, is propagated to the
backup processor. The two processors then delete old versions of ob-
jects in the commit case, and new versions in the abort case.

Assuming that there is only one machine failure at a time, the following situ-
ations may arise:

• failure of the primary machine in the initial phase; nothing needs to
be done since no object is modified.

• failure of the primary machine in working phase or phase 1; the
transaction is aborted and the backup machine takes over using the
old (initial) versions of objects stored in the backup bank.

• failure of the primary machine in phase 2; the backup machine pos-
sesses sufficient information to commit or abort, and thus resumes
waiting for the group decision.

• failure of the primary machine in phase 3; the failure does not affect
the backup machine which can complete the phase.

• failure of the backup machine; at a hardware level, a backup failure
does not affect the primary machine which is able to proceed with its
work. However, in situations where a computation running on the

Figure 5 : Object version management using the software STM

OldOld Old

New

Old

New

Old

New

Old

NewNew

Initial state Working phase: object updated

Phase 2: precommit completed Phase 3: commit completed

Primary machine Backup machine Backup machinePrimary machine

Serial
link

Serial
link

Serial
link

Serial
link

Lessons from FTM: an Experiment in the Design and Implementation of a Low Cost Fault

backup depends on another running on the primary, a failure of the
backup requires a software abort of the dependent computations run-
ning on the primary machine. As the old object versions on the back-
up machine are destroyed, a software abort requires the availability
of another copy of the old object versions. To deal with such a situ-
ation, we keep an old object version on the primary machine when
modifying an object. It should be noted that if the software configu-
ration prevents software dependencies between the backup and its
primary machine, then keeping the old versions of objects on the pri-
mary machine is not necessary.

3.4 Results From the Software-Based STM

From the standpoint of performance, using a separate point to point link in-
stead of the normal local area network, means that network protocols are unnecessary
and communication latency with the backup machine is reduced. Furthermore, the
implementation of the software STM does not require modification to the kernel
memory allocator nor to the scheduler. Allocation of STM objects is completely per-
formed using standard memory allocation primitives.

Finally, the main benefit of the software STM is that it permits the FTM archi-
tecture to be built without the use of dedicated hardware. Today, the software-based
STM can be implemented with ATM (100-150 Mbits/sec) or fast Ethernet (100
Mbits/sec) without requiring the design of a specific serial link. Consequently, FTM
implementations only necessitate the addition of a second network interface to the
user machine.

4 Operating System Issues

In this section, we describe more precisely issues related to the efficient im-
plementation of consistent checkpointing on top of a micro-kernel using a reliable
client-server model.

4.1 The Reliable Client-Server Model

Our computing model basically consists of a set of reliable server processes
accessed by user processes. A server abstracts a system resource (e.g., a memory
segment or a console). A server is defined by its access interface and its internal
state, where the access interface lists the operations used to access the internal state.
Communication between clients and servers uses the RPC model [Nelson 81].

A process (user or server) is the execution of a sequential program. The pro-
cess code consists of a sequence of instructions which either manipulate the internal
state or perform an RPC. The state is made up of the processor registers, the process
stack and some static structures. To get fault tolerance, we associate a persistent state

18 Gilles Muller, Michel Banâtre, Mireille Hue, Nadine Peyrouze et Bruno Rochat

(i.e., a local checkpoint), resilient to a single machine crash, with each process. User
and server persistent states are both stored in STM. However, their implementations
differ for performance reasons since our objective is to reduce the size of persistent
states and thus, checkpoint durations

Reliable Servers’ Persistent State: A server performs a cyclic task (see figure 6). It
receives calls, processes them and returns the results. Whenever the server is
waiting for a call, the stack and control registers always have a fixed value and
thus, their contents can be easily rebuilt by re-executing theinit code (see
figure 6). When checkpointing a global consistent state, we insist that the local
checkpointing action can only be performed while the server is awaiting a call.
This allows us to efficiently reduce the size of a server’s persistent state to
include only the static structures stored in STM (i.e., stable objects) by
discarding the stack and CPU control registers. A server’s state is managed by
an STM transaction which is initialized when executing the first call occurring
after a checkpoint and commited at the saving of the next checkpoint.

To restart a reliable server, the STM static structures are first restored. From
the values of these structures, the serverinit code is able to determine whether
the execution is the first following a restart and thus whether the stack and
processor registers should be re-initialized.

User Process’ Persistent State: No assumption can be made about the behavior of
user processes. Consequently, a user’s persistent state must contain the
processor registers as well as the stack and data segments. A naïve solution
would be to allocate each of these segments in one large STM object.
However, this would be inefficient since checkpointing would entail copying
a large amount of unmodified data. To reduce the size of user checkpoints, a
solution based on the virtual memory management system can be used. This
approach, introduced into the Targon system [Borget al.89], allows the
calculation of the set of pages modified since the preceding process
checkpoint and thus the set of persistent memory pages to be flushed on
checkpointing. Since the micro-kernel technology provides an interface to the

Figure 6 : Server structure

Server process

Init code;

Do

Operation execution;

Return (result);

Restart

Receive (call);

End;

Checkpoint*

Lessons from FTM: an Experiment in the Design and Implementation of a Low Cost Fault

MMU through pagers, such a solution can be simply implemented without
having to modify the kernel. In FTM, this is done by means of a recoverable
virtual memory server which manages a persistent copy of pages in STM
[Rochat 92].

Recovery Unit: A recovery unit is the sequence of instructions performed by a (user
or server) process since the saving of its preceding persistent state. The
commitment of a recovery unit is the atomic saving of the process’ persistent
state and the continuation of this process with a new recovery unit. Aborting
a recovery unit leads to the restoration of the process’ persistent state and to
the restart of the process with a new recovery unit. An STM transaction is
associated with each server’s recovery unit: the STM objects which contain
the server’s persistent state are manipulated within the scope of this
transaction. Recovery units are uniquely named in the system in order to
distinguish successive re-executions of the same process.

Dependencies: To compute a consistent distributed persistent state, it is necessary to
keep track of the dependencies that arise when a client, which can be an
application or a server, calls a server operation. More precisely, dependencies
exist between clients’ and servers’ recovery units. We define dependencies as
follows:

A recovery unit Ru2 depends on a recovery unit Ru1 (Ru1 → Ru2), if aborting
Ru1 necessitates the abortion of Ru2. In other words, if Ru2 commits then Ru1

cannot later abort. To ensure the dependency Ru1 → Ru2, it is necessary to
commit Ru1 before Ru2. For the dependency Ru1 → Ru2, Ru1 is said to be the
predecessor of Ru2 and Ru2 the successor of Ru1.

Dependency tracking: the programmer of a reliable server must associate one of the
two attributes, read or update, with each operation of the server; this attribute
specifies whether the operation modifies the abstract state of the server or not
(see section 5). It should be noted that some operations may modify the real
representation of a server’s state without modifying the abstract state. For
instance, reading a file fills the main memory cache, but leaves the file
unchanged. Therefore, attributes of operations are not propagated through
nested calls. The following scenarios may arise when a client calls a remote
operation:

1. The operation updates the state of the server.

2. The operation reads the server’s state which has been modified
since the beginning of the server’s recovery unit.

3. The operation reads the server’s state though this state has not been
modified since the beginning of the server’s recovery unit.

20 Gilles Muller, Michel Banâtre, Mireille Hue, Nadine Peyrouze et Bruno Rochat

In the first scenario, the server state is modified by the client operation. Thus,
if the client fails, its operation on the server has to be undone; this gives the depen-
dency Ruclient → Ruserver. In the same way, a failure of the server destroys all mod-
ifications performed by the client. So we also get the dependency Ruserver→ Ruclient.

In the second scenario, the client reads a non-persistent state in the server. If
the server fails, the state observed by the client is lost, so the recovery unit of the cli-
ent has to be aborted; there is thus a dependency Ruserver→ Ruclient. In contrast to
the previous case, a failure of the client does not affect the server since no modifica-
tion of its state has been made by the client.

In the third and final scenario, the client operation reads the persistent state of
the server. Thus even if the server fails, the state seen by the client is persistent so no
dependency results.

With each recovery unit, we associate a local persistent graph containing the
set of recovery units upon which it depends. Dependency tracking is performed with-
in the RPC mechanism; prior to an RPC return, the newly created dependency is add-
ed to the caller’s and called recovery units’ local graphs.

4.2 Implementing Blocking Consistent Checkpointing

Our main requirement in the checkpointing algorithm design was to leave a
server programmer free to initiate the saving of a checkpoint. Consequently, a check-
point protocol can be initiated at any time by any recovery unit, whether it is a server
or a user application. In the following, this recovery unit will be designated the initi-
ator. To build a global consistent state, the dependencies stored in all graphs are used
to determine the set of recovery units which depend on the initiator; this is imple-
mented using a chase protocol [Merlin & Randell 78]. The resulting set is merged
into a distributed atomic action with the initiator becoming the coordinator of the
atomic action. The atomic action is then committed using the popular two-phase
commit protocol [Gray 78]. Consequently, checkpointing is implemented in three
phases:

• Phase 1: a consistent state is built by transforming the distributed
graph of dependent recovery units into a distributed tree.

• Phase 2: precommit the atomic action (e.g., dependent recovery
units) using the previously computed tree.

• Phase 3: commit the atomic action.

Dependencies are also used during crash recovery to determine a previous
consistent state for the system and to merge the dependent recovery units into a dis-
tributed atomic action. In this case, the resulting action is aborted. It should be noted

Lessons from FTM: an Experiment in the Design and Implementation of a Low Cost Fault

that due to the dependency rules, the consistent set built for a checkpoint decision is
not always the same as the set built for crash recovery.

We wanted the FTM system to operate as much as possible as a standard non
fault tolerant system. Thus, in order to allow free sharing of resources, we do not en-
force serializability. Consequently, separate client recovery units may be joined
within the same consistent set. For example, in figure 7, the first read call from clienta
does not create a dependency since the server’s recovery unit has just started and so
the operation reads the server’s persistent state. On the other hand, the second read
call from clienta creates a dependency since the server’s state has been modified by
clientb. Consequently, when the server takes a checkpointing decision, the consistent
set of recovery units will contain the recovery units of clienta, clientb and the server.

In practice, checkpoint decisions are taken either regularly by a library man-
aging application recovery units or by a few servers, e.g., those dealing with I/O. It
follows that very few server programmers need to code “checkpoint” instructions
and application programmers need never do so. Finally, it should be noted that the
initialization of a new recovery unit is transparent to the programmer since it is per-
formed as part of the commit of the previous recovery unit. We now detail the basic
checkpoint protocol and extensions which allow us to deal with special cases such as
dependency chasing and the merging of multiple initiators. We do not describe the
crash recovery protocol since it is similar to the checkpoint protocol.

Figure 7 : Building a distributed consistent state

ServerClient a Client b

Ruserver
Ruclient a Read call, no

dependency

Update call ->
dependency

Read call ->
dependency

Ruclient b

Checkpoint

Checkpoint decision

Checkpoint Checkpoint

22 Gilles Muller, Michel Banâtre, Mireille Hue, Nadine Peyrouze et Bruno Rochat

4.2.1. Basic Checkpoint Protocol

The checkpoint protocol is implemented using three phases:
build_atomic_action, precommit and commit. We have chosen to implement these
phases in a completely distributed way using waves [Raynal & Helary 90]. The goal
of the build_atomic_action phase is to compute the consistent distributed state by
building a distributed tree of dependent recovery units. In the two other phases, the
tree is used to propagate the precommit/commit waves.

• Phase 1 (build_atomic_action): When a user process enters the
phase build_atomic_action, it stops to prevent further dependencies
being added. However, servers still handle incoming requests. To
build the tree, a wave build_atomic_action is multicast from the in-
itiator to the recovery units upon which it depends (i.e., its predeces-
sors). When receiving this wave, a recovery unit enters the phase
build_atomic_action, becomes a sub-node of the wave sender,
which is called its node, and propagates the wave to its own prede-
cessors. If the recovery unit is already a sub-node of another node, it
just returns a negative acknowledgment to the sender. When all re-
covery unit predecessors have replied, a positive acknowledgment is
sent to the recovery unit’s upper node. Only the predecessors that
have replied positively are kept in the tree. The phase
build_atomic_action terminates when the initiator of the action re-
ceives all acknowledgments.

• Phase 2, 3 (precommit, commit): The precommit and commit phases
are wave implementations of the popular two-phase protocol
[Gray 78]. During the precommit phase, the precommit wave is mul-
ticast. Upon receipt of this wave, a server stops servicing calls, pre-
commits its associated STM transaction (see details in section 5) and
replies with a positive acknowledgment. When the initiator has re-
ceived all acknowledgments and they are positive, it performs the
commit phase by multicasting the commitwave. Finally, when re-
ceiving the commit phase, a recovery unit commits its associated
STM transaction and normal execution is resumed with a new recov-
ery unit.

It is possible for the build_atomic_action wave to be sent to a recovery unit
which has already committed or is executing phase 1 or 2. In such a situation, the re-
covery unit terminates the current commit and replies with a negative acknowledg-
ment so as not to be added to the new atomic action tree.

Lessons from FTM: an Experiment in the Design and Implementation of a Low Cost Fault

4.2.2. Dependency Chasing

As we mentioned above, server recovery units can only be committed while
the server is waiting for a call. Thus, before suspending service in the precommit
phase, we must ensure that all nested calls under execution have completed. In order
to do so, the phase build_atomic_action integrates a chase protocol.

When a reliable server enters the phase build_atomic_action, it will request
authorization from the initiator to service further operations. The initiator replies
serve while in phase build_atomic_action, otherwise it replies defer. The authoriza-
tion mechanism permits handling of incoming operations up to the building of a dis-
tributed consistent state. For instance, in figure 8, chasing permits servera to execute
its second call to serverb, which in turn permits it to complete clientx’s call. Deferred
operations will be serviced by the reliable server after execution of the commit pro-
tocol.

If any dependency is added during the phase build_atomic_action as a result
of initiator authorization, the dependent recovery unit is directly connected to the ini-
tiator who immediately sends a build_atomic_action message to the new dependent
recovery unit. For instance, in figure 8, clienty’s recovery unit will be added to the
dynamic action since the build_atomic_action phase has not completed. To optimize

Servera
first call

Figure 8 : Chasing recovery units

Server bServer aClient x Initiator Client y

write call ->
dependency

read call, no
dependency

Servera
second call

Serve

Build_atomic_action

Ack

Authorization_Rq

Ack

Ack

Precommit

Build_atomic_action

24 Gilles Muller, Michel Banâtre, Mireille Hue, Nadine Peyrouze et Bruno Rochat

the authorization mechanism, the initiator is not called by a recovery unit if the latter
has not sent up its acknowledgment to its node since the recovery unit is obviously
aware that the build_atomic_action phase has not yet terminated.

4.2.3 Merging Multiple Initiator Graphs

As there is no fixed top-level initiator, a recovery unit may participate in sev-
eral simultaneous dynamic actions. When this occurs, the trees have to be merged
and a single initiator has to be elected. To merge two trees, we choose to keep as ini-
tiator, the initiator whose recovery unit possesses the smallest UID and then to con-
nect the other initiator as a sub-node of the new one.

Merging is detected whenever a recovery unit receives a build_atomic_action
message from a different initiator while in phase 1 (see figure 9, step1). The recovery
unit (Ru2) then sends a merge message to the initiator possessing the highest unique
identifier (Ru3), asking it to become dependent on the other initiator (see figure 9,
step2). The recovery unit which receives a merge message loses its initiator status
and sends an add_dependency message to the elected initiator (e.g., Ru1 in figure 9,
step3). The latter then adds this recovery unit to its list of dependent recovery units.
As in a normal build_atomic_action phase, the dependent recovery units (Ru2, Ru3)
become nodes of the dynamic atomic action tree only after receiving all acknowledg-
ments from their successors.

The merging algorithm also handles the situation where a recovery unit has al-
ready lost its initiator status when a message merge or add_dependency is received.
Receipt of multiple merge messages occurs when several trees are merged simulta-
neously (see figure 10). When receiving an additional merge message, the recovery
unit (e.g., Ru5 in figure 10, step 3) forwards it to the initiator possessing the highest
unique identifier (e.g., Ru3 in figure 10, step 4). Similarly, if a recovery unit receives

Figure 9 : Merging multiple initiator graphs

Step 1 Step 2 Step 3

Ru1
(initiator)

Ru1
(initiator)

Ru3
(initiator)

Build_atomic_
action

Merge
Add_dependency

Ru3 Ru3

Ru4

Ru1
(initiator)

Ru2 Ru2Ru4 Ru2Ru4

node/sub-node relation

Lessons from FTM: an Experiment in the Design and Implementation of a Low Cost Fault

an add_dependency message after losing its initiator status, it forwards the message
to its current initiator.

4.2.4. Dealing with Crashes While Committing

When a recovery unit crashes while running the commit protocol, two deci-
sions may be taken at restart, depending on whether the recovery unit state is restored
from persistent memory or not. If the recovery unit has performed the precommit
phase, it completes the commitment of the distributed action by waiting for the final
(commit/abort) decision from the initiator. If the recovery unit is in the
build_atomic_action phase, the building of the atomic action is cancelled and the
crash recovery protocol is started: the tree of recovery units which are dependent on
the failed unit (i.e., its successors) is built. It should be noted that this new set is gen-
erally not the same as in the previous distributed action.

Due to crashes, messages in a wave may be lost. To tolerate this, the protocol
keeps a list of recovery units to which a wave has already been sent in STM. If no
acknowledgment from a recovery unit is received within a finite time, the wave is
resent. To avoid unpredictable effects due to multiple receptions of the same wave,
the message is simply discarded though a re-acknowledgment is returned.

Figure 10 : Concurrently merging multiple graphs

Step 1

Step 3

Ru1
(initiator)

Ru5
(initiator)

Build_atomic_
action

Ru4 Ru2

Ru3
(initiator)

Ru6

Ru1
(initiator) Ru5

Ru4 Ru2

Ru3
(initiator)

Ru6

Merge

Step 2

Ru1
(initiator) Ru5

Ru4 Ru2

Ru3
(initiator)

Ru6

Merge

Ru1
(initiator) Ru5

Ru4 Ru2

Ru3

Ru6

Merge

Step 4

26 Gilles Muller, Michel Banâtre, Mireille Hue, Nadine Peyrouze et Bruno Rochat

4.3 Implementation of the FTM Model on Mach 3.0

The FTM model has been implemented on top of Mach 3.0 [Accettaet al.86]
[Loepere93] by adding specific mechanisms to deal with failures. Normal Mach en-
tities such as tasks, ports, threads and memory objects are destroyed by a processor
failure. To restart applications and reliable servers safely after a crash, we have de-
veloped the following three stable entities:stable tasks, stable memory objectsand a
persistent ports.

Stable task: a stable task defines an execution environment. It is used to implement
reliable servers and user application tasks. As with standard tasks, a stable task
contains access rights and a virtual address space. Should aprocessor fail, the
environment of the stable task is restored at restart time on the backup
processor. Stable memory objects are then remapped at their previous address
and a thread is restarted from theinit code of reliable server tasks (see section
4.1) or, for applications, from the address in the saved program counter.

Stable memory object: a stable memory object can be viewed as a logical STM. It
allows access to the real STM and allocation of stable objects. A stable
memory object is private to a stable task and is always remapped at the same
logical address when restarting after a crash.

Persistent port: a persistent port has a naming function. It allows FTM entities (i.e.,
stable tasks, stable memory objects) to possess a unique name which resists
crashes. Persistent ports are implemented using a UID and a specific name
server. In a primitive design [Banâtreet al.91a], sending and receiving
messages on a port had the property of being atomic and all messages were
stored in STM. Later on, we relaxed theses two properties as they led to an
expensive design and were only useful for managing acknowlegements within
the checkpoint and crash recovery protocols. In our current implementation,
acknowlegements are managed in STM by the protocols themselves.

These three stable entities have been implemented in libraries and did not re-
quire kernel modifications.

5 Programming Reliable Servers

As for application programmers, our goal for programming reliable servers
was to mask fault tolerance from a server designer, that is, programming a reliable
server should be no more difficult than programming an ordinary one. Nevertheless,
achieving the degree of transparency obtained for applications programming is not
possible since the purpose of reliable servers is to implement the applications’ check-
points. Furthermore, for servers such as those dealing with I/O devices, complete
transparency is not desirable as the programmer may want to perform specific ac-
tions during the saving of a checkpoint or the recovery from a crash. For example,

Lessons from FTM: an Experiment in the Design and Implementation of a Low Cost Fault

when designing a reliable window server, the programmer must insert a
refresh_window procedure in the restart code of the recovery unit.

Object-oriented languages provide important features such as abstract data
types, generic functions and inheritance. The inheritance mechanism enables classes
to inherit features of ancestor classes. For these reasons, we chose to program reliable
servers using the object oriented language C++. We use inheritance for two purpos-
es: first, to allocate the server state in STM, and second, to provide default check-
point/crash recovery procedures while allowing for their redefinition. Such a tech-
nique has also been used in the projects ARJUNA [Dixon & Shrivastava 87] and
AVALON [Eppinger et al. 91].

5.1 Reliable Server Structure

To offer transparency, our approach relies on an automatic generation of a re-
liable server from a C++ server written by the programmer. A reliable server
xx_reliable_server implements both the standard server operations which manage
the resource xx, and the checkpointing/crash recovery protocols. Consequently,
when a request message is received by the reliable server (see figure 11), the opera-
tion called may be either a server operation of the resource xx, or an operation that
implements a protocol wave or acknowledgment and manages the recovery unit. Our
idea is thus to automatically create the code of a reliable server by merging the access
interface of the standard xx server with the protocol interface of the recovery unit.

A reliable server for a resource xx is built from three main C++ classes (see
figure 11): xx, Recovery_unit and xx_reliable_server. The xx class implements the xx
resource and is written by the programmer. The Recovery_unit class is a built-in class
that implements the recovery unit and the distributed protocols. The
xx_reliable_server class is generated from the access interface (i.e., operations on the
resource) and from the protocol interface (i.e., waves and acknowledgments). The
xx_reliable_server class inherits from a built-in Generic_reliable_server class which
offers a default implementation of the protocol interface. The purpose of calling pro-
tocols through an inherited class is to permit the programmer to redefine the opera-
tions if he wishes to execute specific actions during the protocol’s execution.

The reliable server interface is called by RPC using communication ports.
Translation from a system RPC to the C++ reliable server interface is performed by
a stub, the RPC_manager, which is also generated in C from the definition of the xx
class.

5.2 Programming a Reliable Server: the Window Server Example

To design the window class, the programmer specifies the internal state and
the access methods of the resource (see figure 12). In our example, the internal state

28 Gilles Muller, Michel Banâtre, Mireille Hue, Nadine Peyrouze et Bruno Rochat

is an array of characters; access methods read or write a character at a given position
in the window, and refresh it. Persistence of the resource state is achieved through
inheritance by the window class from the Stable class: window’s instances are then
allocated in STM. The programmer should also give hints to the reliable server gen-
erator: all access methods need to be prefixed with the read or update keyword de-
pending on whether or not the methods look-up or modify the resource’s internal
state.

The window_reliable_server class is generated from the xx class using a pre-

processor*. The code is generated as follows (see figure 13): first, the
window_reliable_server class inherits protocols from the Generic_reliable_server

* This is currently implemented using a modified version of the Mig tool provided with the Mach
micro-kernel.

class xx_reliable_server:
public
Generic_reliable_server

access interface

class Recovery_unit :
public Stable
{
/* internal state */
Graph depend_graph;
Transaction* ru_trans;

add_dependency(..);

/* protocol methods */
build_graph(..);
ack_build_graph(..);
precommit(..);
ack_precommit(..);
commit(..);
abort(..);
ack_abort(..);
restart(..);
}

RPC_manager

for (;;)
{
receive request
treat request
send result
}

Figure 11 : Reliable server structure

Code written by the programmer

Library

class
Generic_reliable_server

protocol interface

class xx :
public Stable
{
/* access methods */
update modify(..);
read look-up(..);
}Method call

 Automatically generated code

Lessons from FTM: an Experiment in the Design and Implementation of a Low Cost Fault

class. Second, for each method of the resource, an equivalent method is created with
the addition of parameters which permit the caller’s recovery unit to be identified and
to return the dependency. The appropriate method of the resource object (i.e., the
window) is then called within the scope of the server’s recovery unit.

In the case of the reliable window server, the window needs to be refreshed as
part of the crash recovery protocol. To do this, the programmer must redefine the re-
start method of the protocol to include the refresh-window command.

class window : public Stable
{
/* internal state */
/* array of characters within the window of size H*W */
char A[H*W];

public:

/* access methods */
/* read or write a character at a given position in the window */
read void read(char& c,int x, int y);
update void write(char c,int x, int y);
/* refresh the window */
read void refresh();
}

Figure 12 : Definition of the window class

30 Gilles Muller, Michel Banâtre, Mireille Hue, Nadine Peyrouze et Bruno Rochat

5.3 Recovery Unit Implementation

An STM transaction is associated with each recovery unit; both possess the
same lifetime. The commit operation of a recovery unit is thus straightforwardly im-
plemented by committing its associated STM transaction. This leads to a copy, from
one bank to the other, of the STM objects modified within this transaction. Due to
the multi-transactional functionality of the STM, it is necessary to activate the recov-
ery unit transaction before calling an access method of the resource. This is imple-
mented by the activate_recovery_unit method of the Generic_reliable_server class
(see figure 14). This method also computes the dependency between the client’s re-
covery unit and the local recovery unit and atomically adds the dependency to the
dependency graph.

/* Inheritance of the class Generic_reliable_server to add protocol interface */
class window_reliable_server : public Generic_reliable_server
{
public:

/* access window interface */
void read(char& c,int x, int y,ident_ru_t client_ru,
dependency_t& depend);
void write(char c,int x, int y,ident_ru_t client_ru,
dependency_t& depend);
void refresh(ident_ru_t client_ru,dependency_t& depend);
}

/* Generated code the access write method */
void window_reliable_server::write(char c,int x, int y,
ident_ru_t client_ru,
dependency_t& depend)
{
/* Execution of the access method within the recovery unit scope */

depend=activate_recovery_unit(UPDATE, client_ru);
resource->write(c,x,y);
deactivate_recovery_unit(UPDATE);
}

/* Redefinition of the restart method in order to insert the refresh of the window */
void window_reliable_server::restart()
{
/* Execution of the default restart method */
Generic_reliable_server::restart();

/* Then execution of the access refresh method */
resource->refresh();
}

Figure 13 : Definition of the window_reliable_serverclass

Lessons from FTM: an Experiment in the Design and Implementation of a Low Cost Fault

The recovery_unit class implements the distributed protocols, the local graph
of dependant recovery units and also contains information recording the replies re-
ceived from other recovery units during checkpointing. The persistence and consis-
tency of this information despite failures is achieved by inheriting from the Stable
class and accessing the graph within a short term STM transaction which is indepen-
dent of the recovery unit’s one.

6 Performance Analysis

To analyze the performance of the FTM system, we ran several applications
typical of workstation use: scientific computations and interactive office tools. The
scientific programs were represented by two long running computations: a prime
number calculator and the mp3d program of the SPLASH test suite [Singh et al. 91].
The office tools were represented by the well-known text editor, micro-emacs.

What we wanted to analyze was the fault tolerance penalty, i.e., the overhead
paid for fault tolerance in a non-stop execution of programs. It should be noted here
that the penalty is not measured in the same manner for the two kinds of applications.
In scientific computations, we are interested in the execution overhead in time, while

class Generic_reliable_server : public Stable
{
Recovery_unit* recovery_unit; /* Pointer to the C++ object which implements

the server recovery unit */
Stable* resource; /* Pointer to the C++ stable object which implements

the managed resource */
ident_ru_t server_ru; /* server recovery unit identifier */
boolean_t modified; /* tells if the resource internal state being modified */

/* delimite the recovery unit scope within which access methods are
executed */
dependency_t activate_recovery_unit(method_t method,
ident_ru_t client_ru);
void deactivate_recovery_unit(method_t method);

public:

/* protocol interface */
void build_graph (ident_ru_t ru,ident_ru_t initiator, ident_ru_t father);
void ack_build_graph (ident_ru_t ru, boolean_t son);
void precommit ();
void ack_precommit (ident_ru_t ru);
void commit ();
void abort (ident_ru_t ru,ident_ru_t initiator, ident_ru_t father);
void ack_abort (ident_ru_t ru,boolean_t son);
void restart ();
}

Figure 14 : Definition of the Generic_reliable_server class

32 Gilles Muller, Michel Banâtre, Mireille Hue, Nadine Peyrouze et Bruno Rochat

for office tools the penalty is the checkpoint duration, i.e., the time which the user
cannot interact with the program.

6.1 Test Environment

The tests described in this section compare the execution of the same pro-
grams, on the same machine, under a Mach 3/BSD (MK75) environment and under
the FTM system. Porting to the FTM environment did not require any change to the
source programs. Nevertheless, to enable proper tests and analysis of the result, we
instrumented the test programs by placing a “checkpoint” instruction at specific lo-
cations in the code. We measured the fault tolerance overhead in time, as well as sev-
eral other parameters such as the mean checkpoint size and duration so that all sourc-
es of overhead could be defined.

The tests were run on a single pair of stable nodes using our prototype based
on a MultibusII single board computer; this is as powerful as a Sun 3/60. The size of
the main memory is 20 Mbytes. Computations run only on the primary machine of
the pair, the backup machine only being used to implement the STM backup bank.

The software configuration used by applications is made up of the application
process itself, a Recoverable Virtual Memory (RVM) server and a reliable screen
server (only used with micro-emacs). The RVM server manages three segments for
the application process: the data segment, the stack segment and the heap segment.
Since a recovery unit is associated with the application’s process, the screen resource
and each segment, a checkpoint protocol involves cooperation between 4 recovery
units (5 in the micro-emacs example). In our configuration, the checkpoint decision
is always taken by the application recovery unit which plays the coordinating role.
As this configuration is quite simple, the execution of the checkpointing protocol
leads to the exchange of 5 messages between a recovery unit and the coordinator: 2
for the build tree phase, 2 for the precommit phase and 1 for the commit phase. Con-
sequently, the number of Mach messages exchanged during a checkpoint is 15 (20 in
the micro-emacs example).

When checkpointing a segment, a minimum of 3 messages is exchanged be-
tween the RVM server and the Mach kernel: a flush request from the server to the
kernel, 1 data return message for each 256 Kilobytes of contiguous data from the ker-
nel to the server (e.g., Mach maximum size transfer), and an end of flush message
from the kernel to the server. Since the size of a memory page is 8 Kilobytes, there
is one return message for each set of 32 pages sent.

6.2 Prime Number Calculation

The prime number calculation program is based on the well known Erathos-
tene’s sieve. This program possesses the property of having a small working set since
the modified data are the pages containing the prime numbers produced. As an inte-
ger is 4 bytes long, one memory page contains 2048 prime numbers. Figure 15 shows

Lessons from FTM: an Experiment in the Design and Implementation of a Low Cost Fault

the time to calculate 400 000 prime numbers, when varying the numbers of check-
points taken. We chose to take checkpoints whenever a power of 2 pages was pro-
duced. The checkpoint size can thus be precisely calculated: it equals the previous
multiple, plus 2 pages for the stack and data segments.

The execution time overhead of FTM varies from 3.6% to 16%, depending on
the amount of computation the user accepts to loose in the event of a crash. The min-
imum overhead is obtained when checkpointing every 266 seconds; this correspond
to a 25% loss of work in the event of a crash (4 checkpoints). The 16% worst-case
overhead is obtained when checkpointing every 12 seconds; this corresponds to a 1%
loss of work.

6.3 Mp3d

Mp3d is a scientific program coming from the SPLASH test suite. This scien-
tific computation solves a problem in rarefied fluid flow simulation. Details can be
found in [Singh et al. 91]. We ran mp3d with two different numbers of molecules,
10 000 (see figure 16) and 30 000 (see figure 17), for 300 time-steps (see figure 18).
Checkpoints were taken every n time-steps in order to vary the amount of work lost
after a crash.

The minimum overhead measured (for 5 checkpoints) is 2.6% and 2% for 10
000 and 30 000 molecules respectively. The maximum overhead (for 100 check-
points) is 13.7% and 23% for 10 000 and 30 000 molecules respectively. The gradi-
ent of time overhead, dependent on the number of checkpoints, raises when the num-
ber of molecules is lower (e.g., see gradients for the 10 000 and the 30 000 molecules
execution in figure 18). This is due to the fact that the mp3d execution time increases

of
CKPT

Exec
time

Page
faults

Exec
overhead

Time
between
CKPT

Data_
return
_msg

Mean
CKPT

duration

 CKPT
size

(pages)

Mach 1028 s

FTM, 0 1036 s 197 0.78 %

FTM, 4 1065 s 197 3.6 % 266 s 4 7.25 s 2 + 64

FTM, 7 1070 s 197 4.09 % 153 s 3 4.8 s 2 + 32

FTM, 13 1076 s 197 4.67 % 83 s 3 3 s 2 + 16

FTM, 25 1092 s 197 6.23 % 43.6 s 3 2.24 s 2 + 8

FTM, 49 1125 s 197 9.44 % 25 s 3 1.81 s 2 + 4

FTM, 98 1192 s 197 16 % 12 s 3 1.59 s 2 + 2

Figure 15 : Summary of 400 000 prime numbers calculation

34 Gilles Muller, Michel Banâtre, Mireille Hue, Nadine Peyrouze et Bruno Rochat

faster than the process’ working space. Consequently, the checkpoint duration is pro-
portionally smaller for larger numbers of molecules.

Another observation that can be made is that mp3d modifies nearly all of its
working space during each time-step. A consequence of this is that the checkpoint
size does not decrease proportionally with the number of checkpoints but becomes
constant.

Number of
CKPT

Exec.
time

Page
faults

Exec.
overhead

Time
between
CKPT

Data_
return
_msg

Mean
CKPT

duration

Mean CKPT
size

Mach 831 s

FTM, 0 835 s 103 0.5 %

FTM, 5 853 s 103 2.6 % 170 s 7.8 3.6 s 819 Kbytes

FTM, 10 864 s 103 4 % 86 s 7 2.9 s 732 Kbytes

FTM, 20 881 s 103 6 % 44 s 6.6 2.3 s 689 Kbytes

FTM, 43 923 s 103 11 % 21 s 6.4 2 s 665 Kbytes

FTM, 100 1028 s 103 23 % 10 s 6.3 1.9 s 654 Kbytes

Figure 16 : Summary of mp3d execution for 300 time-steps with
10 000 molecules

Number
of CKPT

Exec.
time

Page
faults

Exec.
overhead

Time
between
CKPT

Data_
return
_msg

Mean
CKPT

duration

Mean CKPT
size

Mach 2406 s

FTM, 0 2415 s 246 0.4 %

FTM, 5 2455 s 246 2.0 % 491 s 12 8 s 1964 Kbytes

FTM, 10 2470 s 246 2.6 % 247 s 10 5.5 s 1746 Kbytes

FTM, 20 2513 s 246 3.6 % 125 s 10 4.9 s 1637 Kbytes

FTM, 43 2568 s 246 6.7 % 59 s 10 3.5 s 1578 Kbytes

FTM, 100 2737 s 246 13.7 % 27 s 9.8 3.2 s 1551 Kbytes

Figure 17 : Summary of mp3d execution for 300 time-steps with
30 000 molecules

Lessons from FTM: an Experiment in the Design and Implementation of a Low Cost Fault

6.4 The Micro-Emacs Text Editor

Micro-emacs is a well-known editor that runs on many platforms from Unix
to PC. We chose to port this editor to the FTM environment since it is representative
of many of the interactive tools that can be found on the network. Even if some mod-
ern office tools already implement some form of regular checkpointing using disk
files, this is not the common case. Moreover, if the operating system does not provide
a transactional file system, the checkpoint has to be coded in an ad-hoc fashion [Sch-
muck & Wyllie 91]. Thus, file consistency and availability are not always ensured if
a user’s machine crashes. Consequently, we think that the operating system should
provide support for masking workstation failures.

The Micro-emacs editor is representative of programs that manage not only
memory but also I/O. After crash recovery, it is necessary that the user sees on his/
her screen, characters consistent with the internal state of the text file. In order to pro-
vide this behavior, we designed a reliable screen server that emulates a VT100 con-
sole. The VT100 server is simply implemented by storing a copy of the screen in
STM. When it is restarted after a crash on the backup machine, the screen is updated
with the old version of the screen stored in the backup bank.

To port Micro-emacs to the FTM environment, we compiled it with appropri-
ate libraries and initialized the FTM environment to save a checkpoint every 15 sec-

0 20 40 60 80 100
Checkpoints

0

5

10

15

20

25

O
ve

rh
ea

d
in

 %

 Overhead, 30 000 molecules
 Overhead, 10 000 molecules

600

800

1000

1200

1400

1600

1800

2000

C
heckpoint size in K

ilobytes
 Checkpoint size, 30 000 molecules
 Checkpoint size, 10 000 molecules

Figure 18 : Execution of mp3d

36 Gilles Muller, Michel Banâtre, Mireille Hue, Nadine Peyrouze et Bruno Rochat

onds. To measure the fault tolerance penalty, the important criterion is the check-
point duration, since the execution time overhead is not meaningful. During check-
pointing, an application process is suspended and thus cannot interact with the user.
This is due to the fact that the memory segments have to be consistent with the CPU
registers of the application process and hence must not be modified. Our measure-
ments show a checkpoint duration of about 1 second, with a 30% variation in the re-
sult due to scheduling. Even if the text is not modified, three pages are modified be-
tween checkpoints. Whenever text is entered by the user, with the exception of load-
ing a file, 8 pages are modified leading to a mean increase of 0.1secs. One should
note that these durations are still perceptible to the human user on our older ma-
chines.

6.5 Sources of Inefficiency and Possible Improvements

We can observe that running a program under the FTM environment without
checkpointing leads to an initial overhead compared to the same program running on
the pure Mach/BSD environment. This is due to the use of an external pager (the
RVM server). When the program initializes data in a new page, the kernel requests
the page from the RVM server which in turn replies with a data unavailable message.
This leads to an exchange of 2 messages per new page. Therefore, the initial over-
head is proportional to the size of the process’s working space, i.e., the number of
page faults during execution.

Another observation that can be made for the prime and mp3d programs is that
the checkpoint duration for a small number of checkpoints is slightly longer than the
duration for a large number of checkpoints, even if the checkpoint sizes are the same.
In fact, the penalty comes from the creation of the first checkpoint and is due to the
allocation and initialization of internal RVM structures in STM. Currently, this part
of the RVM server has not been optimized and so performance improvement can be
expected by tuning the page initialization code.

When few pages are saved during a checkpoint, its duration directly depends
on the number of messages exchanged and also on the number of process switches
induced. In our implementation, a message exchanged between two recovery units is

Page
faults

Time between
checkpoints

 Data
return

messages

Checkpoint
duration

Mean
checkpoint

size

No text
modification

10 15 s 3 0.98 s < d < 1.3 s 3 pages

With text
modifications

10 15 s 5 1 s < d < 1.4 s 8 pages

Figure 19 : Summary of micro-emacs execution

Lessons from FTM: an Experiment in the Design and Implementation of a Low Cost Fault

implemented by a single Mach message. As some Mach servers, such as the RVM
server, manage several recovery units for the same application, a possible optimiza-
tion would be to group together messages of the same wave within a single Mach
message. By also applying this optimization to acknowledgments, the number of
Mach messages exchanged in a test configuration for segment recovery units would
be divided by three. This would give us 5 messages instead of 15 (10 instead of 20,
in the micro-emacs example).

7 Comparison with Other Work

Our work builds on numerous previous results which are closely related to
techniques for building reliable services and approaches that provide checkpointing
environments for scientific computations. This section discusses these related works.

The idea of exploiting a dependency tracking system to reduce the number of
computations involved in a checkpoint or a recovery operation appears first in [Koo
& Toueg 86] for consistent checkpointing and in [Strom & Yemini 85] for indepen-
dent checkpointing. This technique is now reused in most of the checkpointing sys-
tems. An RPC based dependency tracking system was introduced in [Lin &
Ahamad 90], in the framework of a distributed reliable object-based system. The
main difference between this study and ours is that, in their work, attributes of oper-
ations are calculated from source code: a read operation should not modify any data
in the object. Therefore, update attributes are propagated through nested calls that
may transform an upper read operation into an update one. In our work, attributes
have to be specified by the programmer and are only valid at a single call level. Thus,
our scheme allows the number of dependent servers to be reduced. Moreover, our de-
pendency tracking system permits the concurrent execution of several applications,
something not described in [Lin & Ahamad 90].

In [Leu & Bhargava 89], Leu and Bhargava have shown that consistent check-
pointing can be modeled as a distributed transaction (e.g., ARGUS [Liskov et al. 87],
CAMELOT [Eppinger et al. 91], RELAX [Schumann et al. 89], ARJUNA [Dixon &
Shrivastava 87] [Little 91], QuickSilver [Haskin et al. 88] [Schmuck & Wyllie 91]).
In transactional systems, the system programmer must still explicitly define the units
of work, and hence, the fault-tolerance techniques are not transparent. Moreover,
locking resources limits the sharing of objects by several clients. In order to allow for
an early release of locks before the transaction commit, the RELAX system manages
a dependency graph of transactions sharing uncommitted resources. Also, recent
transactional systems, such as QuickSilver [Schmuck & Wyllie 91], separate syn-
chronization from failure atomicity and allow servers to implement their own con-
currence control policy.

One of the major issues when designing a reliable operating system is to make
programming no more difficult than programming a classical system. This implies

38 Gilles Muller, Michel Banâtre, Mireille Hue, Nadine Peyrouze et Bruno Rochat

the need to be able to mask distributed protocols and the management of reliable data
from the programmer. Our solution relies on the use of inheritance in the C++ object-
oriented programming language. This technique was first introduced in the projects
ARJUNA [Dixon & Shrivastava 87] and AVALON [Eppinger et al.91]. While per-
mitting the redefinition of object creation (e.g., data storage allocation), our (GNU)
C++ compiler is not sufficiently flexible to allow the redefinition of method invoca-
tion. This implies that the programmer needs to write a call to the Open method be-
fore accessing a stable object whereas these instructions should be easily integrated
into a stable object’s method invocation. Some recent variants of C++ [S. Chiba 93]
do provide access to method invocation and object creation and thus offer the ability
to modify them in the language itself: this property is known as reflection. This ap-
proach is currently being investigated to design secure and reliable object-based ap-
plications using the Fragmentation-Redundancy-Scattering technique
[J.C. Fabre 94].

Among the other studies in the checkpointing domain, very few have pub-
lished real measurements. One major contribution was reported in [Elnozahy et
al. 92], with the measurement of the checkpointing overhead of the failure-free exe-
cution of several parallel/distributed scientific programs. This study provides better
results than ours since the mean overhead measured was 1% for taking checkpoints
every 2 minutes. The common link between this study and ours is that the MMU is
used to determine the modified pages in an application’s working set. The major dif-
ference is that their algorithm is non-blocking while ours is blocking. This is the first
reason for our lower result. A second reason is the fact that our test programs run on
a single machine and do pure computations without waiting for messages. Therefore,
there is no time wasted which could otherwise be used to flush checkpoints in the
background.

The third reason of our lower performance is that they modified the system
kernel (V-kernel). In contrast, the FTM implementation is effected completely on top
of Mach; no modifications were made to the micro-kernel. Consequently, our imple-
mentation induces additional context switches (i.e., between applications and serv-
ers) which would not exist in an in-kernel implementation. Nevertheless, this permits
an easy port of our system to any existing Mach platform. Finally, it should be noted
that the FTM model is not restricted to the management of memory; it has been de-
signed to be general, by allowing the support of reliable servers able to handle I/O,
such as our VT100 screen server.

8 Lessons and Conclusion

Our goal for the FTM was to provide solutions that permit the construction of
“low-cost” reliable operating systems with minimal assumptions about the underly-
ing machine and kernel. These objectives led us to choose the micro-kernel technol-

Lessons from FTM: an Experiment in the Design and Implementation of a Low Cost Fault

ogy and a blocking consistent checkpoint approach for the FTM reliable client-server
model. We now draw lessons from our experience.

8.1 Assessments of the Architecture

At the architectural level, we wanted to develop a convenient memory device
which permitted the design of reliable operating systems. This led us to introduce a
new stable storage design, called Stable Transactional Memory, built from banks of
RAM memory with a built-in transaction facility. We first built a hardware imple-
mentation of the STM which provided fine-grained object protection and high per-
formance transactions. Despite its good performance, this hardware design suffered
from portability restrictions and this was inconsistent with our goal of using standard
of-the-shelf machines.

We consequently introduced a software-based STM relying on a high speed
serial link. As such a link can be implemented in several manners, the software based
STM is machine independent and is thus able to survive workstation evolution. As a
consequence, the FTM code is highly portable and can be run on any mono-processor
or multiprocessor Mach platform since the only machine dependent code is related
to the serial link implementation. Moreover, several configurations can be chosen for
the two machines making up a pair of stable nodes, according to the kinds of faults
that must be tolerated:

• two machines in an office connected to the same network. This sim-
ple configuration only permits machine failures to be tolerated,

• two machines in separate offices with different sources of external
power, possibly connected to separate network segments. This con-
figuration handles faults such as air-condition and power supply
breakdown as well as network partitioning, as a result of which other
nodes become unreachable,

• two machines in separate buildings. This configuration handles cat-
astrophic disasters such as fire.

Finally, since the two machines of a stable node can be active at the same time,
the hardware cost of fault tolerance boils down to the cost of duplicating the main
memory (triple or quadruple for modified objects according to the software configu-
ration) and adding the serial link.

8.2 Assessments of the Operating System

Our main objective for the FTM operating system was to offer fault tolerance
transparency to the end user application programmer, so that he could design or port
an existing application without writing source code related to failure handling. Fur-

40 Gilles Muller, Michel Banâtre, Mireille Hue, Nadine Peyrouze et Bruno Rochat

thermore, we wanted our approach to be general purpose so that it could be applied
to all system resources and services. This has been achieved with the design of the
reliable client-server model. An application checkpoint is built from the persistent
states of all the servers called by the application since the preceding checkpoint. For
instance, the memory part of the application checkpoint is managed by a recoverable
memory segment server. It should be noted that the micro-kernel pager paradigm has
permitted this recoverable server to be implemented in an efficient way by only sav-
ing the pages modified since the last checkpoint.

8.2.1. Analysis of the Reliable Client-Server Model

The advantages and drawbacks of the reliable client-server model result di-
rectly from our design choices. The first advantage is that the model preserves the
benefits of micro-kernel based operating systems: modularity and compatibility be-
tween the communication model and distribution. Modularity means that new sys-
tem functionality can be added to an existing operating system without having to
modify the system. This property is ensured by the checkpointing algorithm and the
reliable server design methodology, since a consistent state is dynamically computed
when checkpointing and consequently no static software configuration has to be
specified. Compatibility with distribution is also preserved since a reliable server
may be on a different machine to the client. The second advantage of the reliable cli-
ent-server model is that it does not introduce RPC performance degradation: the
number of messages involved in a client-server call in FTM is the same as for a tra-
ditional micro-kernel based system. The only difference is that the length of messag-
es is increased by the addition of the recovery unit’s UID. Consequently, the cost of
fault tolerance is only noticeable when a checkpoint is being taken.

The drawback of our approach is that checkpointing needs to be implemented
in three phases. This is the price paid for preserving modularity and allowing any
server or client to initiate a checkpoint. Our current protocol takes care of complex
situations, such as chasing and multiple graph merging, which may seldom appear in
the first phase when building the consistent global checkpoint. Nevertheless, the gen-
eral case is simpler and can be described as a single application communicating with
a recoverable virtual memory and screen server. Moreover, most of the time the
checkpoint decision is taken by the application recovery unit and this reduces the du-
ration of the build_atomic_action phase since the application stops before the servers
do. Consequently, many optimizations can be studied to improve performance: to-
pology optimization and depth reduction of the recovery unit commit tree, and exe-
cution of the checkpoint protocol in two phases when all application processes have
been stopped before servers.

8.2.2. Blocking Consistent Checkpointing: Did we Make the Right Choice?

When designing the FTM model, our objective was to minimize the hardware
cost of fault tolerance. This led us to choose a checkpoint-based system model; this
means that computations performed since previous checkpoints are lost when a crash

Lessons from FTM: an Experiment in the Design and Implementation of a Low Cost Fault

occurs. Thus, not all types of applications can be run on the FTM system. For in-
stance, applications managing I/Os whose results should not be destroyed by a crash
need to save a checkpoint at each I/O. The extent to which the FTM model can be
used depends on how often checkpoints can be saved or, more precisely, on how long
it takes to save a checkpoint. We now analyze the limits of our current prototype and
estimate what those limits would be when the prototype is run on modern machines.

One might expect that the major checkpoint penalty is due to the checkpoint
protocol. However, our experiment shows that this is generally not true. For instance,
in our scientific computation oriented tests, the time overhead is mainly due to the
saving of modified memory pages during checkpointing. This time is directly pro-
portional to the serial link speed and to the machine’s memory bandwidth. These pa-
rameters are independent of the consistent checkpointing choice. The protocol over-
head becomes the main source of overhead when very few pages are flushed in a
checkpoint. Such a situation arises for office tools, such as our micro-emacs exam-
ple, for which checkpoint duration is under 1.4sec.

From the user’s perspective, the important overhead is the time during which
he is unable to interact with his application. It should be noted, that a 1.4sec duration
is still perceptible to the human user. Two comments can be expressed about this re-
sult. First, our FTM prototype has not yet been optimized; several techniques, such
as those described in sections 6.5 and 8.2.1, can be used to improve performance.
Second, our prototype machine is a slow machine, equivalent to an out-dated Sun3.

Extrapolating existing results to an up to date machine is always difficult. In
the case of FTM, performance depends on several parameters: CPU speed, memory
and serial link bandwidth. On a modern off-the-shelf PC (e.g., 486/66 Mhz-PCI), the
Mach micro-kernel runs 4 to 7 times faster than on our prototype. Current ATM
boards offer a physical bandwidth of 155Mbits; at user level, a 50-70 Mbits band-
width is reachable using standard TCP/IP. As we said above, the checkpoint protocol
overhead becomes important when small amounts of data is sent over the serial link,
so performance then mainly depends on the micro-kernel speed (e.g., messages ex-
change and scheduling). Consequently, with current off-the-self hardware, we hope
to gain a factor of 4 for office tools’ checkpoint durations. This would lead to a min-
imum checkpoint duration of about 0.3sec. In our micro-emacs example, that would
make checkpointing nearly transparent to the human user.

Acknowledgements

We wish to thank C. Bryce, V. Issarny, I. Puaut and P.A. Lee from Newcastle
University for their pertinent comments and patient reviews of early versions of this
document. J.P. Routeau helped us to implement FTM on top of Mach and to improve
system performance; we are grateful to him for this.

42 Gilles Muller, Michel Banâtre, Mireille Hue, Nadine Peyrouze et Bruno Rochat

References

[Accetta et al.86] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A.
Tevanian, & M. Young. Mach: A new kernel foundation for Unix
development. InProc. of Usenix 1986 Summer Conference, pages 93–112,
July 1986.

[Ahamad & Lin89] M. Ahamad & L. Lin. Using checkpoints to localize the effects
of faults in distributed systems. InProc. of 8th Symposium on Reliable
Distributed Systems, pages 2–11, Seattle (WA), October 1989.

[Banâtreet al.86] J.P. Banâtre, M. Banâtre, G. Lapalme, & Fl. Ployette. The design
and building of enchere, a distributed electronic marketing system.
Communications of the ACM, 29(1):19–29, January 1986.

[Banâtreet al.88] J.P. Banâtre, M. Banâtre, & G. Muller. Ensuring data security and
integrity with a fast stable storage. InProc. of 4th International Conference on
Data Engineering, pages 285–293, Los Angeles, February 1988.

[Banâtreet al.91a] M. Banâtre, P. Heng, G. Muller, & B. Rochat. How to design
reliable servers using fault tolerant micro-kernel mechanisms. InUSENIX
Mach Symposium, pages 223–231, Monterey, California, November 1991.

[Banâtre et al.91b] M. Banâtre, G. Muller, B. Rochat, & P. Sanchez. Design
decisions for the FTM: A general purpose fault tolerant machine. InProc. of
21th International Symposium on Fault-Tolerant Computing Systems, pages
71–78, Montréal (Canada), June 1991.

[Banâtreet al.93] M. Banâtre, P. Heng, , G. Muller, N. Peyrouze, & B. Rochat. An
experience in the design of a reliable object based system. InProc. of the 2th
Conference on Parallel and Distributed Information Systems, San Diego,
California, January 1993.

[Bhargava & Lian88] B. Bhargava & S.R. Lian. Independent checkpointing and
concurrent rollback for recovery in distributed systems - an optimistic
approach. InProc. of 7th Symposium on Reliable Distributed Systems, pages
3–12, Columbus (OH), October 1988.

[Borg et al.89] A. Borg, W. Blau, W. Graetsch, F. Herrmann, & W. Oberle. Fault
tolerance under unix.ACM Transactions on Computer Systems, 7(1):1–24,
1989.

[Chandy & Lamport85] K.M. Chandy & L. Lamport. Distributed snapshots:
Determining global states of distributed systems.ACM Transactions on
Computer Systems, 3(1):63–75, February 1985.

[Cristian & Jahanian91] F. Cristian & F. Jahanian. A timestamp-based
checkpointing protocol for long-lived distributed computations. InProc. of

Lessons from FTM: an Experiment in the Design and Implementation of a Low Cost Fault

10th Symposium on Reliable Distributed Systems, pages 12–20, Pisa (Italy),
September 1991.

[Dixon & Shrivastava87] G.N. Dixon & S.K. Shrivastava. Exploiting type
inheritance facilities to implement recoverability in object based systems. In
Proc. of the 6th Symposium on Reliability in Distributed Software and
Database Systems, pages 107–114, Williamsburg, March 1987.

[Elnozahy & Zwaenepoel92] E.N. Elnozahy & W. Zwaenepoel. Manetho:
Transparent rollback-recovery with low overhead, limited rollback and fast
output commit.IEEE Transactions on Computers, 41(5):526–531, May 1992.

[Elnozahy et al. 92] E.N. Elnozahy, D.B. Johnson, & W. Zwaenepoel. The
performance of consistent checkpointing. InProc. of 11th Symposium on
Reliable Distributed Systems, pages 39–47, Houston (TX), October 1992.

[Eppingeret al. 91] J.L. Eppinger, L.B. Mummert, & A.Z. Spector, editors.Camelot
and Avalon: A Distributed Transaction Facility. Morgan Kaufmann, San
Mateo, 1991.

[Gazelle90] Gazelle. Hot Rod High Speed Serial Link Data Sheet. Gazelle
Microcircuits, Inc, Santa Clara (CA), 1990.

[Gleeson93] B.J. Gleeson. Fault tolerance: Why should I pay for it. In M. Banâtre &
P.A. Lee, editors,Hardware and Software Architectures for Fault Tolerance:
Experiences and Perspectives, volume 774 ofLNCS, pages 66–77, Le Mont
Saint-Michel (France), June 1993.

[Goldberg et al. 90] A. Goldberg, A. Gopal, K. Li, R. Strom, & D.F. Bacon.
Transparent recovery of mach applications. InUSENIX Mach Workshop,
pages 169–183, Burlington (VT), October 1990.

[Gray78] J. Gray.Notes on Database Operating Systems., volume60 of Lecture
Notes in Computer Science. Springer Verlag, 1978.

[Hardellet al. 90] W.R. Hardell, D.A. Hicks, L.C. Howell, W.E. Maule, R. Montoye,
& D.P. Tuttle. Data cache and storage control units. InIBM RISC System/6000
Technology, pages 44–51. IBM, 1990.

[Haskinet al. 88] Roger Haskin, Yoni Malachi, Wayne Sawdon, & Gregory Chan.
Recovery Management in QuickSilver.ACM Transactions on Computer
Systems, 6(1):82–108, February 1988.

[J.C.Fabre94] B.Randell J.C.Fabre, Y.Deswarte. Designing secure and reliable
applications using fragmentation-redundancy-scattering: an object-oriented
approachcattte. In K. Echtle, D. Hammer, & D. Powell, editors,Dependable
Computing - EDCC1, volume 852 ofLNCS, pages 21–38, Berlin (Germany),
October 1994. Springer Verlag.

44 Gilles Muller, Michel Banâtre, Mireille Hue, Nadine Peyrouze et Bruno Rochat

[Juang & Venkatesan 91] T.TY Juang & S. Venkatesan. Crash recovery with little
overhead. In Proc. of 13th International Conference on Distributed
Computing Systems, pages 454–461, Arlington (TX), May 1991.

[Koo & Toueg 86] R. Koo & S. Toueg. Checkpointing and rollback recovery for
distributed systems. In Proc. of Fall Joint Computer Conference, pages 1150–
1158, Dallas, 1986.

[Lampson 81] B. Lampson. Atomic transactions. In Distributed Systems and
Architecture and Implementation: an Advanced Course, volume 105 of
Lecture Notes in Computer Science, pages 246–265. Springer Verlag, 1981.

[Lee & Anderson 90] P.A. Lee & T. Anderson. Dependable computing and fault-
tolerant systems, vol. 3. In J.C.Laprie A. Avizienis, H. Kopetz, editor, Fault
Tolerance : Principles and Practice. Springer Verlag, New York, 1990.

[Leu & Bhargava 88] P. Leu & B. Bhargava. Concurrent robust checkpointing and
recovery in distributed systems. In Proc. of 4th International Conference on
Data Engineering, pages 154–163, Los Angeles (CA), February 1988.

[Leu & Bhargava 89] P. Leu & B. Bhargava. A model for concurrent checkpointing
and recovery using transactions. In Proc. of 9th International Conference on
Distributed Computing Systems, pages 423–430, 1989.

[Li et al.91] K. Li, J.F. Naughton, & J.S. Plank. Checkpointing multicomputer
applications. In Proc. of 10th Symposium on Reliable Distributed Systems,
pages 1–10, Pisa (Italy), September 1991.

[Lin & Ahamad 90] L. Lin & M. Ahamad. Checkpointing and rollback-recovery in
distributed object based systems. In Proc. of 20th International Symposium on
Fault-Tolerant Computing Systems, pages 97–104, Newcastle Upon Tyne
(UK), June 1990.

[Liskov et al.87] B. Liskov, D. Curtis, P. Johnson, & R. Scheifler. Implementation
of Argus. In Proc. of 11th ACM Symposium on Operating Systems Principles,
pages 111–122, 1987.

[Little 91] M.C. Little. Object Replication in a Distributed System. Computing
laboratory, University of Newcastle upon Tyne, September 1991.

[Loepere 93] K. Loepere. OSF MACH 3 Kernel Final Draft Kernel Interfaces. Open
Software Foundation and Carnegie Mellon University, May 1993.

[Merlin & Randell 78] P.M. Merlin & B. Randell. State restoration in distributed
systems. In Proc. of 8th International Symposium on Fault-Tolerant
Computing Systems, pages 129–134, Toulouse, June 1978.

[Mullender et al.90] S.J. Mullender, G.Van Rossum, A.S. Tanenbaum, R.Van
Renesse, & H.Van Staveren. A distributed operating system for the 1990s.
IEEE Computer, pages 44–53, May 1990.

Lessons from FTM: an Experiment in the Design and Implementation of a Low Cost Fault

[Muller & Prunault93] G. Muller & Y. Prunault. Conception et réalisation d’un lien
série haut débit. Technical report,IRISA, 1993.

[Muller et al.91] G. Muller, B. Rochat, & P. Sanchez. A stable transactional memory
for building robust object oriented programs. InEuroMicro 91, pages 359–
364, Vienna (Austria), September 1991.

[Muller et al.94] G. Muller, M. Hue, & N. Peyrouze. Performance of consistent
checkpointing in a modular operating system: Results of the FTM experiment.
In K. Echtle, D. Hammer, & D. Powell, editors,Dependable Computing -
EDCC1, volume 852 ofLNCS, pages 491–508, Berlin (Germany), October
1994. Springer Verlag.

[Nelson81] B.J. Nelson.Remote Procedure Call. PhD thesis, Department of
Computer Science, Carnegie-Mellon University, Pittsburgh, 1981.

[Raynal & Helary90] M. Raynal & J.M. Helary.Synchronization and Control of
Distributed Systems and Programs. Wiley series in parallel computing, 1990.

[Rochat92] B. Rochat.Une approche à la construction de services fiables dans les
systèmes distribués. Phd. thesis, université de Rennes I, February 1992.

[Rozier et al.88] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M.
Guillemont, F. Herrmann, P. Léonard, S. Langlois, & W. Neuhauser. The
Chorus distributed operating system.Computing Systems, 1(4):305–370,
1988.

[S. Chiba93] T.Masuda S.Chiba. Designing an extensible distributed language with
meta-level architecture. InProceedings of the ECOOP ’93, volume 707 of
LNCS, pages 483–502. Springer Verlag, July 1993.

[Schmuck & Wyllie91] F. Schmuck & J. Wyllie. Experience with transactions in
quicksilver. In ACM, editor,Proc. of 13th ACM Symposium on Operating
Systems Principles, pages 239–253, October 1991.

[Schumannet al.89] R. Schumann, R. Kroger, M. Mock, & E. Nett. Recovery
management in the RelaX distributed transaction layer. InProc. of 8th
Symposium on Reliable Distributed Systems, pages 21–28, Seattle, October
1989.

[Silva & Silva92] L.M. Silva & J.G. Silva. Global checkpointing for distributed
programs. InProc. of 11th Symposium on Reliable Distributed Systems, pages
155–162, Houston (TX), October 1992.

[Singh et al.91] J.P. Singh, W.D. Weber, & A. Gupta. Splash : Stanford parallel
applications for shared-memory. Technical Report CSL-TR-91-469,
Computer Systems Laboratory, Stanford University, April 1991.

46 Gilles Muller, Michel Banâtre, Mireille Hue, Nadine Peyrouze et Bruno Rochat

[Strom & Yemini 85] R.E. Strom & S. Yemini. Optimistic recovery in distributed
systems. ACM Transactions on Computer Systems, 3(3):204–226, August
1985.

[Tamir & Sequin 84] Y. Tamir & C. Sequin. Error recovery in multicomputers using
global checkpoints. In Proc. of 1984 International Conference on Parallel
Processing, pages 32–41, August 1984.

[Taylor et al.80] D.J. Taylor, D.E. Morgan, & J.P. Black. Redundancy in data
structures: Improving software fault tolerance. IEEE Transactions on
Software Engineering, SE-6(6):585–594, November 1980.

[Wood 81] W.G. Wood. A decentralised recovery control protocol. In Proc. of 11th
International Symposium on Fault-Tolerant Computing Systems, pages 159–
164, Portland (OR), June 1981.

Lessons from FTM: an Experiment in the Design and Implementation of a Low Cost Fault

48 Gilles Muller, Michel Banâtre, Mireille Hue, Nadine Peyrouze et Bruno Rochat

Éditeur

Inria, Domaine de Voluceau, Rocquencourt, BP 105 LE CHESNAY Cedex (France)

ISSN 0249-6399

Unité de recherche INRIA Lorraine, technopôle de Nancy-Brabois, 615 rue du jardin botanique, BP 101, 54600 VILLERS-LÈS-NANCY
Unité de recherche INRIA Rennes, IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex

Unité de recherche INRIA Rhône-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex1
Unité de recherche INRIA Rocquencourt, domaine de Voluceau, Rocquencourt, BP 105, LE CHESNAY Cedex

Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

50 Gilles Muller, Michel Banâtre, Mireille Hue, Nadine Peyrouze et Bruno Rochat

