Metadata, citation and similar papers at core.ac.uk

Provided by INRIA a CCSD electronic archive server

archives-ouvertes

Formal Verification of Concurrent programs: How to
specify UNITY using the Larch Prover
Boutheina Chetali

» To cite this version:

Boutheina Chetali. Formal Verification of Concurrent programs: How to specify UNITY using the
Larch Prover. [Research Report] RR-2475, INRIA. 1995. inria-00074199

HAL Id: inria-00074199
https://hal.inria.fr /inria-00074199
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50450619?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00074199
https://hal.archives-ouvertes.fr

ISSN 0249-6399

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Formal Verification of Concurrent programs:
How to specify UNITY using the Larch Prover

Boutheina Chetali

N° 2475
Janvier 1995

PROGRAMME 2

apport
derecherche

Zd I N RIA

LORRAINE

Formal Verification of Concurrent programs:
How to specify UNITY using the Larch Prover

Boutheina Chetali*

Programme 2 — Calcul symbolique, programmation et génie logiciel
Projet Eureca

Rapport de recherche n2475 — Janvier 1995 — 15 pages

Abstract: This paper describes the use of the Larch Prover to verify concurrent programs.
The chosen specification environment is UNITY, because it provides a higher level of ab-
straction to express solutions to parallel programming problems. We investigate how the
syntax and the semantic of UNITY can be mechanized in LP, a theorem prover designed to
check and reason about algebraic specifications, and how we can use the theorem proving
methodology to prove safety and liveness

Key-words: formal verification, concurrent program, Unity, Larch prover

(Résumé : tsvp)

*CRIN-CNRS and INRIA-lorraine, University of Henri Poincaré, B.P.239,54506 Vandoeuvre-les-Nancy,
email: chetali@loria.fr

Unité derecherche INRIA Lorraine
Techndpole de Nancy-Brabois, Campus scientifique,

615 rue de Jardin Botanique, BP 101, 54600 VILLERS L ESNANCY (France)
Téléphone: (33) 83 59 30 30 — Télécopie: (33) 8327 8319
Antenne de Metz, technopdle de Metz 2000, 4 rue Marconi, 55070 METZ
Téléphone : (33) 87 20 3500 — Téécopie: (33) 87 76 39 77

Veérification Formelle de programmes Concurrents:
Comment spécifier UNITY avec le Larch prouveur

Résumé : Cet article décrit 'utilisation du prouveur de théorémes Lp pour vérifier des
programmes concurrents. L’environnement de spécification choisi est UNITY. Ce mod‘ele
fournit un niveau élevé d’abstraction pour exprimer les solutions aux problémes de program-
mation paralléle. Nous avons étudié la formalisation de la syntaxe et de la sémantique de
UNITY en LP, prouveur concu & 'origine pour raisonner sur les spécifications algébriques,
dans le but d’utilisé ce prouveur pour la preuve de propriété de sireté et de vivacité.

Mots-clé : vérification formelle, programme concurrent,Unity, Larch prouveur

Formal Verification of Concurrent programs: How to specify UNITY using LP 3

1 Introduction

Several approaches to program verification have been proposed and used in literature.
Among them, there are two principal views, one operational the other syntactic. The first
one consists of an analysis of the program in terms of its execution sequences, analysis which
is often successful in the case of sequential programs but much less so in the case of concur-
rent programs. The syntactic approach is based on an axiomatic reasoning, where one needs
a formalism to express the relevant properties of a program, an appropriate language to
construct well-founded formulas and a proof system to construct proofs. The UNITY envi-
ronment [CM88a] provides these tools to design and prove concurrent programs. Despite
the relative simplicity of the proposed model, the formal verification of a program specified
in UNITY requires a careful analysis and involves an enormous amount of clerical detail.
Therefore, the use of a theorem prover provides a very high degree of confidence that this
verification is correct. UNITY offers a logic and a notation in which abstract specification of
the computation and successive refinements of the specification are expressed, without any
mention to the execution sequences. This static view of the program recall the LARCH style
of specification [GHG193], which emphasizes brevity and clarity rather than executability.

In this paper, our aim is to investigate how UNITY logic and methodology could be
specified within a general-purpose theorem prover for first order logic like Lp [GGI1], and
we are interested in using it to verify safety and liveness properties of concurrent programs
written in UNITY. Proofs are done in UNITY logic, an extension of the language UNITY.

The paper is organized as follows. We start by an introduction to UNITY, and its funda-
mentals concepts. Next we describe the mechanization of UNITY logic, give the specifications
of temporal operators in the framework of the assistant prover LP, and give an example of
proof of one UNITY inference rule. Finally, we conclude with a discussion about this study
and future work.

2 A brief introduction to UNITY

A UnITY program consists of declarations of variables, a description of their initial values
and, a finite set of statements. All statements in UNITY are assignments, therefore execution
of every statement terminates in every program state and a program execution consists of
an infinite number of steps in which each statement is executed infinitely often.

A UNITY program terminates by reaching a fized point, which is equivalent to termination
in standard sequential-programming terminology. Correctness of concurrent programs is
defined in terms of properties of execution sequences. There are two basic kinds of properties
of concurrent programs: Safety, the property must always be true, and Liveness, the property
must eventually be true [Lam77]. There are five relations on predicates in UNITY theory:
Unless, Stable, invariant, Ensures and leads to. The first three are used for stating safety

RR n2475

4 B.Chetali

properties whereas the last two are used to express Progress properties, a subset of liveness
properties.

Proofs in UNITY are based on assertions of type {P}s{@}, where s represents a UNITY
assignment statement, P a precondition that must be true before the execution of s and @
a postcondition that results from an execution of s. This notation denotes that execution of
statement s in any state that satisfies predicate P results in a state that satisfies predicate
@, if execution of s terminates. This assumes implicitly that execution of every UNITY
atomic statement (assignment) terminates.

The temporal operators

Unless For a given program, p unless q denotes that once predicate p is true, it remains
true at least as long as ¢ is not true. Formally:
def .
punlessq = (Vs:sinpgm = {pA-qts{pVq})
i.e, if p A —=q holds prior to execution of any statement of the program, then pV ¢ holds
following the execution of that statement.

Ensures For a given program, p ensures ¢ implies that p unless ¢ holds for the program,
and if p holds at any point in the execution of the program then ¢ holds eventually. Formally:

p ensures ¢ = p unless ¢ & (3s : s in pgm = {p A ~q}s{q})

It follows from this definition that once p is true it remains true at least as long as ¢ is not
true. Furthermore, from the rules of program execution, statement s will be executed some
time after p becomes true. If ¢ is still false prior to the execution of s, then p A —=¢ holds,
and the execution of s establishes q.

Leads to For a given program, p leads_to q denotes that once p is true, ¢ is or becomes
true. Unlike ensures, p may not remain true until ¢ becomes true. leads to is defined as

the strongest predicate satisfying:
p ensures ¢

pleads_toq
p leadsto r,r leads_to q

p leadsto q

For any set W,
(Ym:m e W :: p(m) leads_to gq)

Im:me W ::p(m)) leads_to q

INRIA

Formal Verification of Concurrent programs: How to specify UNITY using LP 5

3 Encoding UNITY using LP

The logic of the theorem prover in which it is intended to mechanize another notation
must be both powerful and general enough to allow a sound and practical formulation.
Several theorem provers have been used to mechanically verify UNITY programs, namely
NQTHM [Gol90], B_TooLs [BM93], HOL [And92].

Unlike the NQTHM system or B | the Larch Prover does not contain any predefined
theory. LP is based on equational term rewriting [GG91], for a fragment of first-order logic,
and supports proofs about axiomatic specifications. All proofs are carried out by applying
rewrite rules, proofs by case splitting, induction, contradiction and application of inference
rules. The design and development of the Larch proof assistant LP have been motivated
primarily to debug LSL specification [GHG¥93] but it has been also used to establish the
correctness of hardware designs [SGG89], and to reason about algorithms involving concur-
rency [SGG8S].

Our purpose in stating this work was to check whether the logic supported by Lp can be
used to encode the logic of UNITY, and if the style of LP specification could be used to
specify a UNITY program. We apply this to verify properties about concurrent programs.
That goal requires to encode the syntax of UNITY, the wp-calculus and the syntax of first
order predicates.

We suppose a little familiarity with the Lp system (as few as possible) and we recom-
mand [GGYI1] as an introduction.

3.1 Sorts and Types

The model proposed by UNITY is traditional in the sense that we have a state-transition
system with named variables to express the state and conditional multiple assignment to
express state transitions. The simplicity of the model comes from the absence of communi-
cation construct and flow control.

The first section in a UNITY program, declare, contains the variable names and their
types, and the section initially defines their initial values.

Example: declare
kr : nat
bb : bool
initially
kr = 1,bb = false

In this declaration, kr and bb are variable names. In a state-transition model, the values of
theses variables represent at any moment of the computation a program state. They take
their values from different types. But we can have to prove a property like : Vy :y < kr <
(y+1). In this property, kr is a identifier of type nat and y is a identifier of variable of type
nat.

RR n2475

6 B.Chetali

Therefore UNITY variables are of two kinds. The identifiers appear in the program text and
are encoded as constant in Lp of sort id. The proof variables appear in the UNITY proof
and are encoded as LP variables of sort id_of var.

It is important to distinguish between LP variables, logical variables which are identifier

standing for an arbitrary value of some sort, and UNITY program variables (state variables).
Logical variables do not change over time.
The sorts used are: naturals (nat), sequences (seq), record (rec), and boolean. We also define
arithmetic expressions (exp), boolean expressions (bexp) such as ((z +y) > 0) A b, actions
and list of actions (act, alist), pairs of identifiers and expressions (id, exp) or (id, bexp) and
finally sets of pairs (pset) that we think of as being unordered lists of pairs of identifiers and
expressions.

Specifications of the abstract data types (naturals, sequences,. . .etc) are part of the Larch
Shared Language [GHG193], which we have modified in order to axiomatize customized data
types. These specifications are definitional in the sense that they list explicitly the properties
of the type, which we can manipulate just invoking its operations. We will see that is not
the case for the specification of temporal operators.

Embedding

The operator +: exp,exp — exp creates a new expression out of two expressions. Clearly
this operator is not the same as the operator 4: nat,nat — nat, but as we may imagine it
is strongly connected, and identifiers and naturals are themselves expressions. As the logic
of LP does not has subsorts, we explicitly embedded id, id _of var and nat into exp using
functions id_to _exp and nat_to_exp.

e nat to exp : transforms a natural into an expression.

e id to exp: transforms an identifier into an expression.

e id to nat: transforms an identifier into an natural.

e id to bexp: transforms a boolean identifier into an boolean expression.
e seq to exp : transforms a sequence into an expression.

Note: The signature of id_to_nat is: id — nat and id_of _var — nat. For instance, kr is a
natural identifier of the sort id, z is a variable identifier of the sort id of var and we could
have id_to_nat(kr) = id_to_nat(z).

3.2 Assignment

We define a UNITY program as a list of actions and we assign this list to a constant: prg :
— actlist.
To encode assignment, we use four operators:

e assg: pair — act: single assignment with pair of type (id, exp) or (id, bexp).

INRIA

Formal Verification of Concurrent programs: How to specify UNITY using LP 7

e cond assg: pair, bexp — act: conditional assignment where bexp is the condition.
e mult_assg: pset — act: multiple assignment, where pset is a list of pairs (id, exp).

e cond mult_assg: pset, bexp — act: multiple conditional assignment, where pset is a
list of pairs and bexp the condition.

A multiple assignment is a parallel assignment, but we cannot directly code the fact
that all assignments in the list are carried out simultaneously. In the logic of Lp, the
corresponding rule would be an infinite rewrite rule. Thus we use the fact that Lp allows
associative and commutative operators, and pset is a set of pairs with the union declared
to be associative and commutative. We obtain then a unordered list of pairs of identifier
and expressions This representation has the property that a variable may occur more than
once in the left-hand side of an assignment. It is the programmer’s responsibility to ensure
for any such variable that all possible values that may be assigned to it in a statement are

identical [CM88al].

3.3 The wp calculus

The assertion {P}s{@} is a notation equivalent to P = wp(s, @), where wp(s, Q) is the
weakest pre-condition for the post-condition @ [Dij76]. We have formalized the wp-calculus
for assignment statements. Let X := X ¢f b, be an assignment statement where X is a list
of identifiers, ¥ a list of expressions possibly depending on X, and b a boolean expression.
The semantic of this assignment is:

wp(z = F,Q)
wp(z = FE if b,Q)
wp(X =X if b,Q)

Qr
(b=>wp(z .= E,Q))A(-b=> Q)
(b= QX)A (b= Q)

where QF is obtained by substitution in @ of all occurrences of # by E, similarly Qgé is
obtained from @ by simultaneous substitutions of the variables {z;...2,} in X by the ex-
pressions {ey ...e,} in X.

3.3.1 Specification of assignment

Set name wp

assert
wp(assg(idl.ex),p) == sub_bexp(p(idl.ex),p)
wp(assg(id1.b),p) == sub_bexp(p(id1.b).p)

wp(cond_assg(idl.ex,b),p) == (b |5 wp(assg(idl.ex),p)) A (nnot(b) = p)
wp(cond_assg(idl.c,b),p) == (b = wp(assg(idl.c).p)) A (nnot(b) = p)

RR n2475

8 B.Chetali

wp(mult _assg(pl),p) == sub_bexp(pl.p)
wp(cond _mult_assg(pl,b).p) == (b |= wp(mult_assg(pl).p))A(nnot(b) = p)

In this specification, the first two lines specify assignment of an expression ex or a boolean
expression ¢ to an identifier. As the set bexp is not (and cannot be) an extension of bool
(a basic type provided by Lp, we had to define imply, or, and, true, false as =,V and A
different from LP’s built-in operators = | & for implication, disjunction and conjunction. So
as for nnot,\= which are different from LP operators not,=. The function sub_bexp(list,p),
where list is a list of pairs (id,exp), substitutes each occurrence of id by exp in the boolean
expression p. We specify substitutions inductively on the structure of expressions.

3.4 Specification of the temporal operators

As for the operator wp, the specifications of the temporal operator are operational specifi-
cations, which define a function by showing how to compute it. Let us give the equational
specification of the three logical operators which are at the core of the UNITY logic.

Unless:
unless(p,q,anil) == true

unless(p, q, a) == (((pA—=(a))E wp(a, pVaq))=T)
unless(p,q,a@act_|) == unless(p.q.,a) & unless(p,q,act_1)

a@act | is the list of all the actions of the program. For an atomic statement a, unless(p,q,a)
means that if p holds and q does not in a program state, then after executing a either q or
p holds ; hence, by induction on the number of statement executions, p keeps holding as
long as q does not hold.

Ensures:

ensures(p,q,anil) == false

ensures(p,q,pgm) == unless(p,q,pgm) & exists_act(p,q,pgm)
where

exists_act(p,q,anil) == false

exists_act(p,q,a) == (((p A—(q)) & wp(a.q))=T)
exists_act(p,q,a@act_|) == exists_act(p,q,a) V exists_act(p,q,act_I)

The function exists _act checks whether there is a in pgm such that {p A—-q}a{q} is valid.
For a given program pgm, ensures(p,q,pgm) implies that unless(p,q.pgm) holds , and if p
holds at any point in the execution of the program then q holds eventually.

Leads _to:
when ensures(p,q,pgm) vield leads _to(p,q,pgm)
leads to(p,r,pgm) A leads to(r,q,pgm)) = leads to(p.q.pgm)
leads to(p,q.pgm) A leads to(r,q,pgm)) = leads to(p V r.q.pgm)

INRIA

Formal Verification of Concurrent programs: How to specify UNITY using LP 9

leads to(p,r,pgm) A leads to(q,c,pgm)) = leads to(p V q.r V c,pgm)

In order to infer p leads_to q once we have p ensures ¢ in the current system, we use what
Lp calls a deduction rule and which it notes when hypotheses yield conclusions: the when
clause contains the hypotheses of the rule and the yield clause, the fact inferred when the
hypotheses are true. In the definition of the predicate leads to [CM88b], the disjunction
rule is really an infinite set of rules, one for each integer n. Indeed, all of these rules are
consequences of special case of the rule for n = 2. Furthermore, we code the disjunction
rule for n = 2, and a special case of the general disjunction theorem [CM88b].

Note: We do not code the last one as a deduction rule because such a rule would lead
the system into an infinite loop. If we would have p; leads_to q; and ps leads_to q5 in our
current system, LP would infer (p; V p2) leads_to (q1 V ¢2) and with the last one it would
infer (p1 V (p1 V p2)) leadsto (q1 V (q1 V ¢2)) and so on. This is due to the fact that there
will be four different variables in the hypotheses of the deduction rule. It is not the case
for the second and the fourth axioms because there is the same variable in the hypotheses,
but for uniformity we encode the four axioms as implications and we use them with explicit
instantiation (see (4)).

The next operators are abbreviations.

Invariant:

stable p is a shorthand for p unless false or in Lp language:
stable(p,pgm) == unless(p,F,pgm)

If p holds at every initial state and p is stable, then p holds at every state during any exe-
cution of pgm; it is an invariant of pgm:

Inv(p,pgm,init) == ((init | p)=T) & stable(p,pgm)

Fixed point:
A fixed point of a program is defined by :

FP =(s:s e€pgm AN s is X :=E = X=FE)

RR n2475

10 B.Chetali

This property is not an operator like unless, ensures ... etc. It is a boolean expression,
which we compute using a recursive function on the actions of the program.

fp(l(assg(il.e))) == rec(p(il,e))
fp(I(mult_assg(p(il,e)@plist))) == rec(p(il,e)) A rec(plist)
fp(I(cond_assg(il.ex, b))) == (nnot(b) V rec(p(il.ex)))
fp(l(cond_mult_assg(pl, b))) == (nnot(b) V rec(pl))
fp(al@act_l) == fp(al) Afp(al)
fp(anil) == T
where
rec(pnil) == T
rec(p(il.e)@pl) == (id_to_exp(il) = e) A rec(pl)

In this specification, il stands for an identifier (inl,ivl,isl or ibl), and e for an expression
(ex) or a boolean expression (p)

4 Proofs rules

The UNITY proof system is built upon rules derived from the definition of unless, ensures
and leads to. Derived rules play the same role in proofs of program properties as lemmas
in mathematical proofs. So we can introduce them as axioms in the proof or to use them as
theorems. For the last case, they have to be proved before any attempt to prove a program.
Actually we proved them using LP and put them into a data basis of general purpose UNITY
lemmas that can be reused for other experiments. Some of those rules are:

~unless(p, q, pgm), unless(q, r, pgm)
’ unless(p V ¢, r, pgm)

Unless_cancel

~ensures(p, ¢, pgm), ensures(r, ¢, pgm)

Ensures_conjonc
ensures(p Ar,qV e, pgm)

leads_to(p,qV b, pgm), leads_to(b, r, pgm)

Leads_to_cancel
leads_to(p, q V r,pgm)

We prove most of the rules about unless and ensures by induction on the list of the actions of
the program, because these predicates are defined inductively on the actions of the program.

4.1 Example

As an example, we describe the main steps of the proof of the derived rule unless_cancel
for an action a (let [be an operator of signature act — act_list), followed by its mechanic
implementation in LPp.

INRIA

Formal Verification of Concurrent programs: How to specify UNITY using LP 11

unless(p, q,1(a)), unless(q, r,(a))
unless(p V ¢, 7, l(a))

unless_cancel :

Proof:
unless(p, q,1(a)) hyp (1)
unless(q,r,(a)) hyp (2)
unless(pV ¢, (-pAT)V(mgAq)V(pAr),l(a)) unless disjon (1) and (2)
unless(pV ¢, (-pAT)V (pAr),l(a)) (A and V) properties
(kpAPYV(PAT)) =T lemma (3)
unless(p V ¢, 7, l(a)) ConseqWeak on (1) and (3)

end Proof.

The Lp script of the proof is:

-LP script -------------m -
set name cancel_act
prove when unless(p,q,1l(al)), unless(q,r,1(al))

yield unless((p \vee q),r,1(al))

inst p by pc, q by qc, ¢ by gqc, d by rc , al by alc in
disjunction_act

set name cancel_lemma
prove (((nnot(p)~r) \vee (q°r)) \=> r)=T==true by =>-m
resume by case (qc ~ rc) = T
inst p by (pc \vee qc), q by ((mnot(pc)~rc) \vee (qc ~rc)),
r by rc,al by alc in consqweak_act

The inference rule unless_cancel is translated in a deduction rule. To prove a deduction
rule, Lp transforms the hypotheses by replacing each variable by a constant (p by pe,
q by gc and r by rc) and adds this hypothesis to its current system and tries to prove
the conclusion. The command inst directs LP to use the inference rule unless_disj and
conseqWeak, two deduction rules which we did not give here but which the system knows,
with the appropriate constants. We direct LP to prove the lemma cancel lemma by =
method: First LP normalizes the conjecture, then adds to the current system the hypothesis:

((nnot(pcl) =~ rci) \vee (qcl ~ rcl)) =T

to prove the subgoal: rcl = T == true

RR n2475

12 B.Chetali

-LP script---------------m -
Lemma cancel_lemma.1: Subgoal for proof of =>
New constants: pcl, 1rcil, qci
Hypothesis:

cancel_lemmaImpliesHyp.1:

((nnot(pcl) ~ rci) \vee (gqcl ~ rcil)) = T == true

Subgoal:

cancel_lemma.1.1: rcl = T == true

4.2 An Induction principle for leads to

The following induction rule has a crucial importance in the proof system because it involves
the most interesting predicate, namely leads to. Remember that this predicate helps to
specify the progress properties of a program. In most of the proofs of concurrent programs,
in order to prove a progress property, we have to exhibit something which "decreases", so
we need a rule to specify that fact. We give the rule as it was in [CM88al:

Vm:meW :leadsto(pAM =m,(p AM <y m)Vq)
leads;o(p, q)

Induction:

W is a set well-founded under the relation <,, and M is a function (the metric) from program
states to W. For simplicity, in the rule M (without its argument) denotes the function value
when the program state is understood from the context. The hypothesis of this rule is that
from any program state in which p holds, the program execution eventually reaches a state
in which ¢ holds, or it reaches a state in which p holds with a lower value of the metric
M. Since the metric value cannot decrease forever, eventually a state is reached in which ¢
holds.
The function M and the ordering depend on the example or the program to prove. So M
and the corresponding order should be considered as parameters to be instancied. That it
is not possible in Lp, as in almost all theorem provers. For example, M could be a binary
function M = f(x,y) = (x,y), with the lexicographic ordering among pairs of integers, or
an unary function f(z) = # + 2 with the ordering <.

So we have formalized this principle using a lexicographic ordering among list of arith-
metic expression. We define this ordering as follow:

lexico(nil,nil)==T
lexico(cons(el,list1),cons(e2 list2))==(el<e2) V ((el=e2)A lexico(list1,list2))

where listl and list2 are two list of expression, el and e2 two expressions. We define
<:exp,exp — bexp as an extention of <: nat, nat — bool

The formalization of the induction principle is :

INRIA

Formal Verification of Concurrent programs: How to specify UNITY using LP 13

Set name induc_ princ

assert

leads to(p A equal exp_list(exp listl,exp list2),
(p A lexico(exp listl,exp list2)) V q,pgm)

> leads to(p.q,pgm)

where eq is a function testing "equality" of two expression lists.

With this principle, we prove this following rule :

leads_to(p A eq(l1,12), lexico(I1,12), pgm)

IND coroll :
leads_to(true, —p, pgm)

The reader can find examples based on this work in [Che95], where we describe a fully
computer checked proof of a UNITY program. The example is a protocol for communications
over faulty chanels, provided by Chandy and Misra in [CM88a].

5 Discussion

In this paper, we have described the mechanization of UNITY logic and of its proof system,
and we have shown that the translation into the first-order logic of Lp is sufficiently natural
to allow concentrating efforts on formal proofs.

In fact this simplicity is obtained by a sophistication of the encoding. The axiomatization
of the standard data types we used, such naturals and sequences, are part of the Larch Sha-
red Language (LSL) [GHG%93]. We have modified these definitions in order to axiomatize
customized data types and to produce formal definitions for basic concepts related to the
case studies. On the other hand, additional work was required to simplify the translation
and to bring some expressions into a form that the prover can handle.

We have seen that the style of specification in LP can be used to specify UNITY, since
algebraic specifications are easy to write and to use. This is important when dealing with
concurrent programs whose proofs are complex in essence. It is important to note that the
complexity of the specifications comes from the embedding of sorts, which made it difficult
to read. Therefore we concentrated our efforts first to make it as readable as possible
by a correspondence between function names and their semantics. This problem could be
overcome with future developments of the prover.

In this paper, thanks to the wp_calculus, we were able to reason on the syntactic struc-
ture of the program itself instead of reasoning on the computations. Indeed never in the
course of the proof we made any mention to a run of the program, unlike Goldshlag in [Gol90]
in his NQTHM proof. Our approach was closer to this of Brown and Mery in [BM93].

Our future efforts will concentrate on the mechanization of the use of invariants in the
proofs. In particular we will investigate how we can use a proved invariant in a proof. Indeed
presently, we introduce these invariants as axioms in the proofs. On the other hand, we want
to reduce the script of the proofs with less directives to the prover. One way to reduce the

RR n2475

14 B.Chetali

script of a proof is to use more deduction rules, because it is the only way to infer facts
without interacting with the user. But, as explained before, that may lead to infinite loops,
and even if not, the use of many deduction rules slows down the proof process.

Another issue of our work will be the design of a translator, which translates automatically
a UNITY program in a script LP, and proof obligations as input to L.

In [B.A91], the author shows that combining the substitution axiom [CM88a] with the
three temporal predicates leads to an unsound proof system. In our system, we do not code
the substitution axiom, and we are not concerned by the common misunderstanding about
the definition of the operators unless and ensures [B.A91].

6 Conclusion

Our experiences with the theorem prover Lp; to prove a circuit of division [CL92] and at-
tempts done by others to use it in the verification of circuit design or for the verification
of a compiler [Sco92], ..., made us confident to try it in the proof of concurrent programs.
We chose UNITY as a proof environment for concurrent programs, because of it success to
provide a common foundation for the design of programs for a variety of parallel and distri-
buted architectures.

The course of our investigation leads us to make the mechanization of LARCH proof of UNITY
properties as practical and natural as possible in order to be able to formally verify without
excessive effort correctness of programs expressed in this formalism. Despite many resear-
chers urge for the most powerful prover, we were happy with an assistant provided it helped
us to find easily bugs in wrong proofs and it allowed us to express properties we wanted to
prove about individual programs.

This experiment has been conduct with the release 2.4 of LP and our proof system contains

about 500 rewrite rules, including the definitions of naturals, sequences, boolean expressions. .

and the theorems about the temporal predicates.

The main contribution of this paper consists in taking advantage of both the simplicity
and the power of the model proposed by Chandy and Misra and those of the assistant
prover Lp. Chandy and Misra seem to have captured what is important for the design of
parallel programs and provide a program notation, specification language and proof theory
in order to specify and to prove in a clearly and concise way. So it is important to do that
"automatically" and to get formal verified proofs.

References

[And92] F. Andersen. A theorem Prover for UNITY in Higher Order Logic. PhD thesis,
Technical University of Denmark, 1992.

[B.A91] Sanders B.A. Eliminating the substitution axiom from UNITY logic. Formal
Aspects of Computing, 3:189-205, 1991.

INRIA

el

Formal Verification of Concurrent programs: How to specify UNITY using LP 15

[BM93] N. Brown and D. Mery. A proof environment for concurrent programs. In
In Proceedings FME93 Symposium, volume 670 of Lecture Notes in Computer
Science. Springer Verlag, 1993.

[Ched5] B. Chetali. A formal proof of a protocol for communications over faulty channels
using the larch prover. Research Report 2476, Inria-Lorraine, 1995.

[CL92] B. Chetali and P. Lescanne. An exercise in LP, the proof of a non restoring
division circuit. In U. Martin and J. Wing, editors, Proc. of First International
Workshop on Larch. Springer-Verlag, 1992.

[CM88a] K. M. Chandy and J. Misra. Parallel Program Design: A Fundation. Addison-
Wesley, 1988. ISBN 0-201-05866-9.

[CM88b] K. Mani Chandy and Jayadev Misra. Parallel Program Design
A Foundation. Addison-Wesley, 1988.

[Dij76] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[GGIT] S. V. Garland and J. V. Guttag. A guide to Ip, the larch prouver. Technical
Report 82, Digital Ssystems Research Center, 130 Lytton Ave., Palo Alto, CA
94301, USA., 1991.

[GHG*93] J. V. Guttag, J. J. Horning, S. J. Garland, K. D. Jones, A. Modet, and J. M.
Wing. Larch: Languages and Tools for Formal Specification. Springer-Verlag,
1993.

[Gol90] D. M. Goldschlag. Mechanically verifying concurrent programs with the boyer-
moore prover. IEEE Transactions on Software Engineering, 16(9):1005-1022,
September 1990.

[Lam77] L. Lamport. Proving the correctness of multiprocess programs. IEEE Transac-
tions on Software Engineering, 3(2):125-143, 1977.

[Sco92] E. A. Scott. Using LP to investigate compiler correctness. Technical report,
IMEC-2.A.2-01 of CHARME BRA 3216, 1992.

[SGG88] J. Staunstrup, S. J. Garland, and J. V. Guttag. Verification of VLSI circuits
using LP. In Proceedings of the IFIP WG 10.2 Conference on the Fusion of

Hardware Design and Verification, pages 329-345. Elsevier Science Publishers
B. V. (North-Holland), 1988.

[SGG89] J. Staunstrup, S. J. Garland, and John V. Guttag. Localized verification of cir-
cuit descriptions. In J. Sifakis, editor, Proceedings of a Workshop on Automatic
Verification Methods for Finite State Systems, Grenoble (France), volume 407 of
Lecture Notes in Computer Science, pages 349-364. Springer-Verlag, June 1989.

RR n2475

/¢

Unité derecherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité derecherche INRIA Rhone-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex 1
Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des L ucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
ISSN 0249-6399

