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This paper shows that the annotation proof method, proposed by Deransart for proving
declarative properties of logic programs, is also applicable for proving correctness of direc-
tional types. In particular, the sufficient correctness criterion of well-typedness by Bronsard
et al, turns out to be a specialization of the annotation method. The comparison shows
a general mechanism for construction of similar specializations, which is applied to derive
yvet another concept of well-typedness. The usefulness of the new correctness criterion is
shown on examples of Prolog programs, where the traditional notion of well-typedness is
not applicable.

We further show that the new well-typing condition can be applied to different execu-
tion models. This is illustrated by an example of an execution model where unification is
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Types flechés pour programmes logiques
et
méthode de preuve par annotation

Résumé : Types flechés pour un programme Prolog expriment certaines propriétés opera-
tionelles de celui-ci.

Cet article montre que la méthode de preuve par annotation, proposée par Deransart
pour prouver des propriétés déclaratives de programmes logiques, est également appliquable
pour démontrer la correction des types flechés. En particulier, le critére de bon typage proposé
par Bronsard et al, se trouve étre un cas particulier de la méthode de preuve par annotation.
La comparaison révéle un mécanisme général pour concevoir des spécialisations similaires.
Celui-ci est appliqué pour définir un nouveau critére de bon typage. L’utilité de ce nouveau
critére est démontrée sur des exemples de programmes Prolog, auxquels ’ancienne notion
de bon typage n’est pas appliquable.

Nous montrons aussi que ce nouveau critére peut étre appliqué a differents modéles
d’exécution. Ceci est illustré par un modeéle d’exécution ot la résolution d’équations est
controlée par des types flechés; et ou notre nouveau critére de bon typage est utilisé pour
démontrer ’absence de “deadlock”.

Mots-clé : programmation en logique, types flechés, correction de programmes



Directional types for logic programs and the annotation method 3

1 Introduction

Recently there has been a growing interest in the notion of directional types for Prolog
programs [12, 35, 4, 6, 1, 13, 33, 38]. This kind of prescriptive typing describes the intended
ways of calling the program, as well as the user’s intuition of how the program behaves when
called as prescribed. Together with some methods and tools for type checking, directional
types may provide a good support for program validation.

This paper shows that directional types has two aspects. One of them is declarative and
can be discussed regardless of the computation rule as long as the operational semantics
is sound, while the other is related to the computation rule. This view allows us to put
the concepts of well-typing appearing in the literature in a broader perspective, and relate
it to the annotation method for proving declarative properties of logic programs proposed
by Deransart (see e.g. [22]). This facilitates systematic development of similar sufficient
conditions for correctness of directional types, also for other computation rules. In particular,
we introduce yet another well-typing condition, and illustrate its power on examples which
cannot be handled by the well-typing of [12, 4]. We show that it also gives a sufficient
condition of non-suspension for a model of computation when the declared types are used
for control.

The idea of directional types is to describe the computational behaviour of Prolog pro-
grams by associating an input and an output assertion to every predicate. The input assertion
puts a restriction on the form of the arguments of the predicate in the initial atomic goals.
The output assertion describes the form of the arguments at success, given that the predi-
cate is called as specified by its input assertion. Thus a directional type is a specification of
the input-output behaviour of a program executed under the Prolog computation rule.

A directional type can also be used as a description of the way the program predicates
are called during the computation. In that case, assuming that the initial query satisfies
its input assertion, it is expected that every intermediate call in the computation will also
satisfy its input assertion. In that case the directional type can also be seen as a resolution
invariant.

As an example, consider the append/3 predicate:

append([1, X, X).
append([E|L], R, [E|LR]) :- append(L, R, LR).

When this predicate is used to concatenate two lists, we call it with the two first argu-
ments bound to the two lists. Upon success the third argument is bound to the resulting list.
The form of the third argument at call is not restricted. Also we are not concerned about
the form of the first two arguments at success. This use of the predicate may be described
by the following notation:

append/3: (| List, | List, | List)

where the two first argument positions (marked with |) are considered as input positions, and
the third argument (marked with 1) is considered an output position. A more general concept
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4 Johan Boye , Jan Matuszynski

of directional type (e.g. in [12]) requires specification of input and output assertion for every
argument of the predicate. Thus a directional type specification for an n-ary predicate p
would consist of two vectors of type expressions, each of them of length n. Clearly, the
restricted concept of directional type is a special case of the more general one; the example
shown above can be reformulated as follows:

append/3: | (List, List, Any) 1(List, List, List)

A given directional type may or may not be correct in the sense that it properly describes
the actual computational behaviour. The directional type in the example above is correct; if
append/3 is called with the two first arguments bound to lists, then the third argument will
be bound to a list upon success. Moreover, in every intermediate call, the two first arguments
are bound to lists.

As pointed out above, the correctness of directional types has two aspects:

e the input-output correctness: whenever the call of a predicate satisfies the input as-
sertion then the call instantiated by any computed answer substitution satisfies the
output assertion.

e the call correctness: whenever the call of a predicate satisfies the input assertion then
also any other call in this computation will satisfy the input assertion.

A directional type intended to cover both aspects can be seen as a special case of assertion
in the sense of [25], where a sound (and complete [24]) method for proving correctness of such
assertions has been presented. However, the method is quite complicated in general case.
The focus of recent research on directional types has been on defining sufficient conditions
for correctness. For example, the well-typing condition of [4, 12] is sufficient to ensure both
input output correctness and call correctness of a given directional type and it is used as a
basis for automatic type checking in [1, 38]. However, it is not applicable to directional types
which are input-output correct but not call correct. This kind of directional types may be
particularly interesting for programs using the power of the logical variable, as illustrated
in the examples of Section 3 and Section 7.

In this paper we discuss the two aspects of directional types separately. Notice that input-
output correctness is a property which does not depend on the computation rule R, since the
SLD-resolution computes the same answers, regardless of R. This observation allows us to
abstract from the computation rule and to study the problem in the framework of declarative
semantics. In particular, we show that for the types closed under substitution input-output
correctness of a program can be proved by the annotation method originating from [20, 19]
and discussed more recently in [22]. It turns out that the well-typedness condition of [12, 4]
can be seen as a specialization of the annotation method, even though it has been derived for
Prolog computation rule. With this perspective we obtain immediately another specialization
of the annotation method, which allows us to prove input-output correctness of directional
types which are not call-correct under Prolog computation rule. This sufficient condition for
input-output correctness is called sharing-based well-typedness, or briefly S-well-typedness.

Inria
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For studying call correctness of a program we introduce a concept of well-typed position
of a clause. It allows us to identify a subset of the positions of the predicates for which a
given directional type is a resolution invariant.

We also discuss directional types as a means for controlling execution of logic programs
through a delay mechanism. The idea is to postpone unification of those arguments of the
goal which do not satisfy the prescribed type. The principle is reminiscent of that used in
existing Prolog systems, like e.g. [14], where an atomic subgoal can be delayed if some of
its arguments are not sufficiently instantiated. However, our delays concern unification of
single arguments, while Prolog suspends resolution steps. We define formally an execution
mechanism, called type-driven resolution (or simply T-resolution), based on this idea. A
mechanism similar to T-resolution has been used in our previous work to achieve declarative
integration of logic programs with external procedures [9, 30].

The programs executed under T-resolution may deadlock, in the sense that no further
step of computation is possible, even though the set of delayed unifications is not empty.
We show that if for the directional type used for controlling the execution the program is
S-well-typed, then every computation starting with a correctly typed goal is deadlock-free.

The paper is organized as follows.

Section 2 summarizes the basic notions relevant for the presentation of the results. In
particular the notion of well-typing is presented following [12, 4]. The concepts of input-
output correctness and call correctness of a gived directional type are formally defined.

Section 3 discusses an example of a program with a directional type which is input-
output correct but not call correct for LD-resolution. Thus the program is not well-typed
under this directional type. This motivates an attempt to search for a better sufficient
condition for checking input-output correctness.

Section 4 outlines the annotation proof method following [22] and shows that the input-
output correctness of a directional type is equivalent to the correctness of an annotation
corresponding to that type. It shows also that the well-typedness condition of [4, 12] can
be seen as a specialization of the annotation method. It introduces the concept of S-well-
typedness as another specialization of the method and illustrates its use on the example of
Section 3.

Section 5 discusses the problem of call correctness of a given directional type for a given
computation rule. The question considered is for which input arguments of the program
predicates a given directional type is a resolution invariant for a given computation rule. For
the Prolog computation rule a sufficient test for answering this question is provided.

Section 6 presents T-resolution. It is shown that no computation of a S-well-typed
program executed by T-resolution will result in a non-empty set of delayed unifications.
This can be seen as a kind of deadlock-freeness: the delayed unification will always be
resolved, unless the computation loops or fails. This theorem contributes to static analysis
of programs with delays, which seems to be an important topic.

Section 7 illustrates the usefulness of the concept of S-well-typed program by some
examples.

RR n"2471



6 Johan Boye , Jan Matuszynski

Section 8 discusses relations to other work. Conclusions and future work are outlined
in Section 9.

2 Preliminaries

2.1 Types

Adopting to a popular view (e.g. Apt [4]), we define a type to be a decidable set of terms
closed under substitution. In particular, in the examples we will use the following types:

Any the set of all terms

Ground the set of ground terms

List [] | [Any | List] (lists)

GrlList [l | [Ground | GrList] (ground lists)
BinTree void | tree(Any, BinTree, BinTree) (binary trees)
GrBinTree void | tree(Ground, GrBinTree, GrBinTree)  (ground binary trees)

A typed term is an object t : T', where t is a term, and 7' is a type. A directional type for
an n-ary predicate p is a pair of vectors of types of length n, denoted

p: L(T, ..., ) (11, ..., T}

For each i = 1,...,n, T; will be called the input type of the i-th position, while T} will be
called the output type of the i-th position. In most examples considered in this paper we
use a restricted kind of directional types, where for € each argument only an input or an
output type is specified, but not both. Formally, a restricted directional type for an n-ary
predicate p is an n-tuple, associating every predicate position of p with a direction (| or
1) and with a type. The argument positions associated with | (1) are called the input (the
output) positions of p.

A restricted directional type is to be understood as a special case of directional type,
where for every i either 7} and 7; are identical types or T; is the type Any. An atom
p(t1,...,tn) is said to be correctly typed in its i-th position iff t; € T}.

For instance,

append/3: (| List, | List, | List)

is a directional type for the append/3 predicate and the atom append/3([]1,Y,[1,2] is
correctly typed in its first and third positions.

A directional type is a specification of the computational behaviour of the program
under SLD-resolution with a fixed computation rule (typically under LD-resolution). This
is captured by a notion of correctly typed program for a given computation rule.

Definition 2.1 Let R be a computation rule. If for every atom A which is correctly typed
in its input positions:

Inria



Directional types for logic programs and the annotation method 7

o all atoms selected in every SLD-derivation of a given program P under R starting from
A are correctly typed in their input positions, and if

e for every computed answer o, Ao is correctly typed in its output positions,

then the program P is correctly typed for R. Alternatively, we say that the directional type
is correct for P and R.

If the first of the conditions is satisfied the directional type is said to be call correct for
P and R. If the second condition is satisfied the directional type is said to be input-output
correct (10 correct) for P. O

By the independence of the SLD-resolution of the computation rule we obtain at once
that the IO correctness of a directional type for P does not depend on R, what justifies the
definition.

2.2 Well-typing

Bronsard et al. [12] give a sufficient condition for a program to be correctly typed for the
Prolog computation rule, namely that the program is well-typed. For our setting we follow
its presentation by Apt [4]. Before explaining this concept, we introduce the notion of type
judgement.

Let s1,...,8pn,t be terms, and S1,...,S5,,7 be types. A type judgement has the form

$1:S1T AN ...AN s, S, = t:T
The judgement is true, written
Esi:S1T A NS S, =t:T

if, for all ¢ from 1 to n, and for all substitutions o, o(s;) € S; implies that o(t) € T'.

The problem of proving a type judgement true is undecidable in the general case. In all
examples considered here however, it will be obvious whether type judgements are true or
not.

To simplify the notation, we will throughout this section write an atom as p(u : U, t : T),
where u : U is a sequence of typed terms filling in the input positions of p, and t : T is a
sequence of terms filling in the output positions of p.

Definition 2.2

e A clause po(ig : Ig,00 : Og) : — p1(i1 : I1,07 : O1),...,pn(in : In,on : On) is well-
typed if, for all j from 1 to n:

Fig:Ip AN o1 :07 A ... /\Oj_li()j_]_ = lJIJ

and if
':io:IO /\01:01 A... ANon:0n = 00:00

RR n"2471



8 Johan Boye , Jan Matuszynski

e A program is well-typed if each of its clauses is well-typed.

Thus a clause is well-typed if

e the types of the terms filling in the input positions of a body atom can be deduced
from the types of the terms filling in the input positions of the head and the output
positions of the preceding body atoms, and if

e the types of the terms filling in the output positions of the head can be deduced from
the types of the terms filling in the input positions of the head and the output positions
of the body atoms.

To show that the first clause of append/3 is well-typed, we have to prove that
([, X) : (List, List) = X : List
which is obviously true. To show that the second clause is well-typed, we have to prove that
([E|L], R) : (List, List) = (L, R) : (List, List)
and that
([E|L],R) : (List, List) A LR:List = [E|LR]: List

Both of these type judgements are easily proven true; thus the append/3 program is well-
typed.
The following theorem is stated in [12]. A proof can be found in [6].

Theorem 2.3 Every well-typed program is correctly typed.

2.3 Proof trees

We now summarize a uniform framework for discussing both the operational and the de-
clarative semantics of definite programs. This will allow us to discuss separately the 10
correctness, and to relate the results to the problem of call correctness. This will also allow
us to discuss SLD-resolution under various computation rules and execution with delays in
a uniform way. The framework originates from Deransart and Matuszyriski [22], and is based
on the notion of proof tree, similar to that used by Clark [15].

In our view, the resolution process can be viewed as the stepwise construction of a skeleton
(by “pasting” together instances of clauses), intertwined with equation solving (unification).
We first give a preliminary definition:

Definition 2.4 For a given program P a skeleton is a tree defined as follows:

e if G is an (atomic) initial query, then the node labeled (G, L) is a skeleton;

Inria



Directional types for logic programs and the annotation method 9

e if S is a skeleton, then Ss is a skeleton if S5 can be obtained from S; by means of the
following extension operation:

1. choose a node n in Sy, labeled (A4, L);

2. choose a clause Ay : — Ay,...,Ar in P, such that A and Ay have the same
predicate symbol and the same arity;

3. change n’s label into (A, 0(Ag)), (where o is a renaming to fresh variables), and

add k children to n, labeled (o(A1), L),...,(c(Ag), L).

A node is incomplete if its label contains |, and complete otherwise. A skeleton is
incomplete if it contains an incomplete node, and complete otherwise. a

Definition 2.5 The set of equations associated to the node n is denoted by F(n), and is
defined as follows:

e if n is an incomplete node, then E(n) = 0;
o if n is labeled with (p(s1,...,sk),p(t1,...,t%)), then E(n) = {s1 =t1,...,8r =t }.
O

For example, an LD-resolution step corresponds to choosing the leftmost node n (in preorder
of the skeleton), expanding it as described in definition 2.4, and computing the solved form
of E(n) (which is equivalent to computing an idempotent unifier [29]). A proof tree is a
complete skeleton, together with a solution of all the associated equations. The mgu of the
equations is a canonical solution, representing all solutions of the equations.

Every successful LD-derivation corresponds to a proof tree and its computed answer
substitution is determined by the mgu of the set of equations of the underlying skeleton.

One of the advantages of this view on operational semantics is that we can make fine-
grained adjustments to the resolution process. For instance, for some node n, we may choose
not to solve all equations in F(n) at once (this corresponds to partly delaying unification).
This is in fact exactly what we will do in the type of resolution introduced in Sect. 6.

Note that this scheme applies also to constraint logic programs, in which case solutions
to the equations have to be computed by a constraint solver.

The declarative semantics of a program P can also be defined in terms of the proof trees.
For every proof tree ¢ denote by r(t) the atom labeling the root of the skeleton and by o(?)
a solution of the equations associated to the skeleton, i.e. any unifier of the equations. Then
the set

PTp = {r(t)o(t)t is a proof tree of P}
consists of all atomic logical consequences of P can be considered as a declarative semantics
of the program.

Notice that this set may include non-ground atoms and that it is closed under substitu-
tion.

RR n"2471



10 Johan Boye , Jan Matuszynski

2.4 Dependencies

For the rest of this section, we assume that we have some unambiguous way of referring
to the atoms in the program, and let A be the atom p(t1,...,%;) in some clause C. The
argument positions in A are denoted by A(1),..., A(k).

Definition 2.6 The set of clause positions in C is defined as

U {AG) | 1< i < arity(A)}

A is an atom in C

O

If no confusion can arise, we will refer to “clause positions” simply as “positions”. We will
not always make a distinction between clause positions and terms filling in clause positions,
i.e. we may make statements like “A(7) is a variable” instead of “the term filling in A(7) is
a variable”.

Note that, in the type judgements concerning well-typedness of a clause (Definition 2.2)
the terms occurring in the consequents originate from the output positions in the head,
or from the input positions of the body. For convenience, we introduce a name for these
positions:

Definition 2.7 A(7) is an ezporting clause position of C' if either
e A is the head of C, and the i:th argument of p is an output position, or
e Ais a body atom in C', and the i:th argument of p is an input position.

A clause position is importing if it is not exporting. We use the expressions imp(C) and
ezp(C) to denote the set of importing and exporting clause positions of C, respectively. O

Within a clause C', we think of data as flowing from the importing positions to the
exporting positions. This is reflected by the following definition.

Definition 2.8 For each clause C, its local dependency relation ~+¢ is defined as follows:
A(i) ~c¢ B(j)

ift A(7) € imp(C), B(j) € exp(C), and A() and B(j) have at least one common variable. O

To model the dataflow in a complete skeleton T', we construct a compound dependency
graph ~p by “pasting together” the local dependency graphs for the clauses used in T.
More precisely:

Inria



Directional types for logic programs and the annotation method 11

Definition 2.9 Let T be a complete skeleton, and let n be a node in 7T, labeled with
(p(s1,...,80),p(t1,...,ts)). Then n has k node positions (one for each equation s; = t;),
denoted n(l),...n(k).

Let ny and ny be nodes in T, labeled (A, By) and (A2, Bz) respectively. We define

n1 (i) ~1 na(j)
if one of the following cases apply:

e n is the father of ny (thus B; is the head of some clause C, and A; is a body atom
in C), and By (i) ~¢ A2(4)

e n; and ny are siblings (thus A; and A are body atoms in the same clause C), and

A1(i) ~¢ Aa())

e ny is the son of ny (thus Bj is the head of some clause C', and A; is a body atom in

(), and Ba(i) ~¢ A1())

e n; and ny is the same node, and A;(7) ~¢ A1(j) (where C is the clause in which A,
is a body atom), or By (i) ~p Bi(j) (where D is the clause in which B is the head).

O

Every node position is associated with an equation. The idea of the type-driven resolution
introduced in Sect. 6 is that we solve these equations in accordance with the ~»p relation.
Therefore it is absolutely essential that the ~»p relation is a partial ordering. This motivates
us to introduce the following concept.

Definition 2.10 If the relation ~»p is a partial ordering for every skeleton 7', then the
program is said to be non-circular. a

The non-circularity concept stems originally from the field of attribute grammars. [28].
It is well-known that this property is decidable (see e.g. [21] or [22]).

3 An informal example

In the literature on directional types, specification of the input-output behaviour of the
program is often stated as the main objective (see e.g. [1]). However, as already pointed
out, the well-typing condition is a sufficient condition both for IO correcnesst and call
correctness. Thus, if a given program is IO correct but not call correct, the well-typing
criterion is inapplicable to prove 1O correctness. We claim that such typings often are of
practical interest, especially for programs using incomplete data structures. We will now
give an example of a correctly 10 typed program which is not well typed. The reader may
find more examples in Sect. 7.

RR n"2471



12 Johan Boye , Jan Matuszynski

Consider the following task: Given a binary tree T" whose nodes are labeled with integers,
compute a binary tree with the same structure as 7', but where every node is labeled with
the maximal integer in 7T'. For example, given the tree

/ ’ \ / ! \
’ / ! \ ! / ! \
4 1 7 7
Conceptually this is a two-pass problem; first traverse T to find the maximal integer

n, and then construct the output tree where every node is labeled with n. However, the
following program solves the problem in one pass.

we would like the answer

maxtree(Tree, NewTree) :-
maxtree(Tree, Max, [], Labels, NewTree),
max (Labels, Max).

maxtree(void, _, L, L, void).

maxtree(tree(Lbl,Left,Right), Max, In, [Lbl|Out], tree(Max,NLeft,NRight)) :-
maxtree(Left, Max, In, IO, NLeft),
maxtree(Right, Max, IO, Out, NRight).

During the execution of the program maxtree/5 traverses the input tree, collects all
labels in a list, and builds a new tree where all nodes are labeled with the same logical
variable. This variable is then unified with the maximal label, as computed by max/2 The
definition of max/2 is straightforward and therefore omitted.

Note that upon success of maxtree/5, the fifth argument is bound to a non-ground binary
tree. The only variable of the tree is being instantiated to an integer by max/2, so that upon
success of maxtree/2, the second argument is bound to a ground binary tree. Thus, the most
precise correct directional type of the program (using the types in Sect. 2.1) is as follows:

maxtree/2: (| GrBinTree, | GrBinTree)
maxtree/5: (| GrBinTree, | Any, | GrList, 1 GrList, | BinTree)
max/2 : (| GrList, T Ground)

However, the clause defining maxtree/2 is not well-typed, since the type judgement

Tree : GrBinTree A
(Labels, NewTree) : (GrList, BinTree) A
Mazx : Ground =

NewTree : GrBinTree

is not true. The problem lies with the variable NewT'ree: one can not conclude that NewT'ree
is a ground binary tree just from the fact that it is a binary tree.

Inria



Directional types for logic programs and the annotation method 13

Since the program is not well-typed, theorem 2.3 is inapplicable. It is also inapplicable
to the directional type:

maxtree/2: (| GrBinTree, | GrBinTree)
maxtree/5: (| GrBinTree, | Ground, | GrList, 1 GrList, T GrBinTree)
max/2: (| GrList, 1 Ground)

In this case the first clause is not well-typed, since the judgement Tree : GrBinTree =
Maz : Ground is not true. This directional type is indeed not correct, since it is not call
correct under LD-resolution: the maxtree/5 predicate is called with the second argument
being a variable, not a ground term. However, the directional type is IO correct, as will be
shown by the method presented in Sect. 4.

4 Proving IO correctness

As already pointed out the problem whether a given directional type is IO correct or not is
independent of a particular computation rule under which the program is to be executed.
Thus the problem can be discussed in terms of proof trees of a program rather than in
terms of computations. We now show that the method for proving properties of proof trees
introduced in [19] and presented more recently in [22] can also be used for proving 10
correctness of directional types. For making the relation explicit we introduce a new notation
for directional types.

4.1 Annotations

A directional type p/n: | (T3, ...,Tn) 1(T7,...,T)) will be alternatively represented as a pair
of formulae

(W1(p1) A e An(pn), ¥1(P1) A o A (pn))

interpreted on the universe of the terms of the program, where py, ..., p, are the only free
variables of the formulae, referring to the argument positions of the predicate. For example
the directional type

append/3: (] List, | List, | List)
will be represented as
(any(appendy ) Aany(appends) Alist(appends), list(append; ) Alist(appends ) Alist(appends))

Here any and list are unary predicates of the specification language, interpreted on the
domain of terms. Thus, a directional type T' = (¢, ¢') for a predicate p specifies two sets of
atoms, S1(T) and Sa(T'), consisting of the elements of the form p(t1,12,t3), which satisfy,
respectively, ¥ and 1’ in the interpretation considered. For example, for the directional
type T' above, S1(T') consists of all atoms of the form append(t,t2,t3), where ¢; and t5 are
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14 Johan Boye , Jan Matuszynski

arbitrary terms and ¢3 is a list. The conjuncts of the formulae will be called the assertions
of the directional type.
Recall the restrictions on directional types:

e every assertion is unary, i.e. it has exactly one free variable, and there is a one-one
mapping between the assertions of each formula and the argument positions of the
predicate.

e the interpretation of the specification language is such that the set of the terms specified
by every assertion is a type, i.e. it is a decidable set of terms closed under substitution.

e the formulae observe a kind moding: for each i the i-th assertion of the first formula
is either any(p;), or it is identical to the i-th assertion of the second formula.

Lifting these restrictions will give us a (syntactic) concept of predicate annotation.

Definition 4.1 Let L be a first order logical language with an interpretation Z. An assertion
for an n-ary predicate p is a formula whose free variables are in the set {p1,...,pn}. An
annotation A for p is any pair (Inh, Syn), where Inh and Syn are finite sets of assertions,
called respectively the inherited assertions and the synthesised assertions of A.

O

In the sequel we assume that L is interpreted on a term domain. Thus, as in the case
of directional type, for a given interpretation 7 the annotation defines two sets of atoms
denoted by S1a and S2a. An annotation A is said to be closed under substitution iff for
every term ¢ in Sia (i = 1,2,) and for every substitution o, to is in Sia. For example,
consider the following annotation of append/3:

({list(appends)}, {list(appends), list(appends), Ya(elem(z, appends) — elem(z, appends)})

Assume that the predicate list is interpreted in Z as the set of lists, and the relation
elem holds for  and y iff  is an element of the list y. Under this interpretation:

e S1 consists of all atoms of the form append(t1,ta,t3), where t1, t5 are arbitrary terms
and t3 is a list,

e S2 consists of all atoms of the form append(t1,2,3) such that ¢; is an arbitrary term,
and tq, t3 are lists such that each element of 5 appears also as an element of 3.

Clearly, a directional type is a specific case of an annotation.

4.2 Program annotations

As discussed above, an annotation A of a predicate is a specification of two sets of atoms
S1a and S2a . We now discuss the use of annotations for specification of logic programs.
The idea is to compare some semantics of a program P with the sets of atoms which are
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Directional types for logic programs and the annotation method 15

specified by the annotation. In this context we will consider two kinds of the semantics:
the input-output semantics and the declarative semantics P7 p. The former will be used to
extend for arbitrary annotation the notion of input-output correctness defined for directional
types in Section 2.1. The latter is the semantics used in the annotation method.

Definition 4.2 The input-output semantics ZOp of P is a function which maps an arbitrary
set of atoms I into the set of all atoms go such that ¢ is in I, and ¢ is a computed answer
substitution for the goal «+ g under SLD-resolution.

An annotation A is input-output correct for P iff ZOp(S1la) C S2a. ad

Suppose var is a unary predicate of the metalanguage L, such that var(t) is true in 7
whenever ¢ is a variable. Then the annotation

({var(append,), (var(appends), list(appends)}, {list(appends), Ve (elem(z, appends) —
elem(z, appends)})

is input-output correct for the append program.

Notice that the notion of input-output correctness of an annotation which is a directional
type, reduces to the notion of input-output correctness of the directional type, discussed in
Section 2.1.

We now relate the annotations to the proof-theoretic semantics. The proof-theoretic
semantics P7 p of a program P is the set of the root labels of all proof trees of P. Thus it
corresponds to all atoms provable from P. An annotation may be used to state a property
of the subset of P7T p obtained by the intersection with a given set of atoms. In that case the
inherited assertions of the annotation specify the restriction, while the synthesised assertions
state the property. This is captured by the following definition:

Definition 4.3 An annotation A is success correct for P iff (P7Tp N S1a) C S2a. O

For example the annotation
({list(appends)}, {list(appends), list(appends), Ve (elem(z, appends) — elem(z, appends)})

is success correct and describes an interesting property of the append program.
On the other hand, the annotation

({var(append, ), list(appends)}, {nat(appends)})

is (trivially) success correct for the append program, whatever is the relation nat, since in no
proof tree of the program the atom labeling the root has a variable as the first argument and
a list as the third argument. Assume now that nat is the set of terms representing natural
numbers: {zero, s(zero), ...}. In that case the example annotation is not input-output correct,
since a call of append whose first argument is a variable and whose third argument is a list,
may succeed but no instance of a list is in nat. Hence, in general, the input-output correctness
is not implied by the success correctness of the annotation. However, for the annotations
closed under substitutions both types of correctness coincide.
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16 Johan Boye , Jan Matuszynski

Theorem 4.4 Let A be an annotation closed under substitution. A is input-output correct
for a program P iff it is success correct for P.

Proof : Assume A is not success correct. Then there exists an atom ¢ in S1a which is
the root label of a proof tree and which does not belong to S2a. Then, by the definition
of proof tree and by the completeness of the SLD-resolution, the empty substitution is a
computed answer substitution for the goal « g. Hence A is not input-output correct.

Assume A is not input-output correct. Then there exists an atom g in S1a such that
a substitution o is a computed answer substitution for <+ g, but go is not in S25. By the
definition, go is the root label of a proof tree. As S1a is closed under substitution it includes
go. Hence A is not success correct. a

Notice that the proof of the ”if” case does not use the assumption that A is closed under
substitution. However, for input-output correct A not closed under substitution, the success
correctness may sometimes reduce to the trivial case where no root label of a proof is in
Sla.

The theorem applies in particular to the annotations being directional types. Thus a
method for proving success correctness of annotations can also be applied for proving cor-
rectness of directional types.

4.3 The Annotation Method

We now survey briefly the complete method for proving success correctness of annotations
introduced in [20] for attribute grammars and adapted for the case of logic programs in [19].
The method is called the annotation method. Its more extensive presentation can be found
in [22].

Let A be an annotation. To show that it is success correct one has to check for every
proof tree that if its root label p(t1,...,t,) is in S1a then it is also in S2. This corresponds
to checking validity of an implication of the form

Y1 A LAY =YL A LAY,

where ;’s are the inherited assertions of p in A and %’s are the synthesised assertions
of pin A, instantiated by the substitution {p1/t1, ..., pn/tn}

The idea of the annotation method is to consider the structure of the proof trees. Each
of them is constructed from instances of the clauses of the program. The body atoms of a
clause included in a proof tree give rise to root labels of the subtrees of the tree. As the
number of program clauses is finite the idea is then to check that the above mentioned
condition holds for the head atom of the clause, provided that it holds for every body atom.
But also the condition for every of the body atoms is an implication constructed as discussed
above. The interesting case is when the predecessor of the implication hold, since otherwise
the implication holds trivially. Call the predecessor assertions of the head implication and
the successor assertions of the body implications the premiss assertions of the clause. The
remaining assertions of the implications will be called the conclusion assertions of the clause.
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Directional types for logic programs and the annotation method 17

To achieve the local proof it suffices to show that every conclusion assertion follows from
some premiss assertions of the clause.
For example consider the following annotation for the append program:

({list(appendy), list(appends)}, {list(appends})
Then for the clause
append([A|X], Y, [AlZ]) :- append(X,Y,Z).

there will be two instances of the annotation:

({list([A|X]), list(Y)}, {list([A] Z]})
({list(X), list(Y)}, {list(Z)})

The premiss assertions are:
(a) list([A|X]) , (b) list(Y) , (c) list(Z)

The remaining assertions are the conclusion assertions:
(1) list([A]2]), (2) list(X), (3) list(Y)

The verification of a clause consists in proving each of the conclusion assertions from
(some of) the premiss assertions. More precisely, what is proved are universally quantified
implications. For each of them the predecessor is a conjunction of some premiss assertions
and the successor is a conclusion assertion.

In our example

(1) follows from (c¢), T = VA, Z(list(Z) = list([A|Z])
(2) follows from (a), Z = VA, X (list([A|X]) = list(X))
(3) follows from (b). Z | VY (list(Y') = list(Y))

A proof done for the assertions of a clause holds also for the assertions of any clause
instance, since the assertions are closed under substitution. Thus, for any proof tree of the
program the correctness of annotation of its root should in principle follow from the proofs
done for its constituent clauses. For example, consider a proof tree of the append program
with the following skeleton:

append ([A|X]1,Y, [AlZ])
|

append( X, Y, Z ),
append( [1, Vv, V )

and such that the arguments of its root label satisfy the inherited assertions of append.
To show that its root label satisfies the synthesised assertion of the annotation it suffices to
combine the local proofs for the constituent clauses.
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18 Johan Boye , Jan Matuszynski

list([A|X]) the inherited assertion of the root
ist(Y) the inherited assertion of the root
= definition of the proof tree
=V definition of the proof tree

1% definition of the proof tree

list(V) by (2) and (4)

list(7) by (5) and (6)

list(7Z) = list([A|Z]) local proof for a constituent clause
E list([A]Z2]) by (7) and (8)

There is, however, a danger that combination of the local proofs may lead to a circular
argumentation for some proof trees. For example, consider the program:

q(X) :- p(X,X).
pX,X).

with the annotation:

{({ground(p:)H{ground(q1), ground(pz2)})

Intuitively this annotation says that if an atom ¢(¢) is the root label of a proof tree then
t must be ground, which is not true. The conditions which are to be checked are as follows.
For the first clause we get:

E VX (ground(X) = ground(X))
This condition will be generated twice: for the only position of the head and for
the first position of the body atom.

The same condition will be obtained for the second clause. The condition is trivially satisfied.
Thus, the conclusion assertions of each of the clauses are implied by their premiss assertions.
However, in the only proof tree of this program, the combination of the verification conditions
of its clauses gives the statement VX (ground(X) < ground(X)), which does not allow
to conclude that X is indeed ground. We now discuss the circularity phenomenon more
abstractly.

Construction of a proof for a conclusion assertion of a clause uses some premiss assertions
of this clause. We say that the conclusion assertion depends on these premiss assertions.
Thus, in our first example (1) depends on (c), (2) depends on (a), and (3) depends on (b).
Notice that different proofs may give rise to different dependencies. For example, if the set
of premisses contains the assertions list([4|X]) and list([B|X]) then the conclusion list(X)
may be obtained by each of the premisses.

Generally we may consider an arbitrary relation between the premisses and the con-
clusions of a clause, which may or may not properly indicate the premisses sufficient for
proving each conclusion. A logical dependency scheme (LDS) for a given program P and an
annotation A is a family of such relations, indexed by the clauses of P. The relation for a
particular clause can be represented by a graph spanned on the tree representing a clause.
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Directional types for logic programs and the annotation method 19

The nodes of the graph are the assertions of the clause. Thus a tree node is associated with
the nodes representing the assertions of its atom. The arcs of the dependency graph are
determined by a given LDS. Any proof tree is obtained by pasting together instances of the
clauses. Hence, by pasting together the copies of the dependency graphs of the clauses we
obtain a dependency graph of a skeleton. The mechanism is identical to that described by
the definition of the relation ~»r, so that we skip a more formal presentation. An LDS is
said to be non-circular iff the dependency graph of any skeleton has no loops. This property
is decidable and has been studied in the context of attribute grammars (see e.g. [21]). The
techniques proposed therein can be directly applied for checking non-circularity of a given
LDS.

Intuitively, an LDS can be seen as a plan for proving success correctness of an annotation.
For each clause the LDS shows the premiss assertions which are to be used for proving its
conclusion assertions. The first question is whether the local proofs can be achieved according
to this plan. The other one is whether for some skeleton the combination of the local proofs
may give a circular reasoning, as illustrated in the example above.

For a given program an annotation is said to be sound iff there exists a non-circular LDS
such that each conclusion assertion is implied by the premiss assertions on which it depends
in the LDS.

The essence of the annotation method is captured by the following theorem, originating
from [22] L.

Theorem 4.5 An annotation A = (Inh, Syn) is success correct for a program P iff there
exists an annotation A’ = (Inh’, Syn’) sound for P and such that S1n C Sla:
and S2a C S2a

The annotation A’ plays the role of a generalization lemma, which may be needed to
prove A. However, we are only interested in sufficient conditions for success correctness.
Such conditions can be obtained by defining sound but incomplete specializations of the
annotation method. The first step in that direction is to assume A’ = A. Thus, the restriction
focuses on the cases when the inductive proof can be achieved without any lemma. Further
simplification consists in assigning to each program and annotation a particular LDS, which
may or may not be sound. Thus, the application of theorem 4.5 reduces to checking whether
for given program P and annotation A the associated LDS is sound or not. If yes, A is success
correct for P, otherwise no information is provided by the check. Since success correctness is
equivalent to IO correctness for the directional types (Theorem 4.4), this approach applies
also to type checking.

In the particular case of directional types of [4] there is a one-one correspondence between
the assertions of the annotation and the positions of the predicates. Thus, the premiss
assertions of a clause correspond to the input positions of the head and to the output
positions of the body, while the conclusion assertions correspond to the remaining positions.
The well-typing condition of [4, 12] (see also Section 2.1) requires that for every clause the

LA slightly different phrasing is caused by the fact that [22] considers only one notion of correctness of
the annotation, namely the success correctness
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type of an output position in a body atom is implied by the type of the input positions of the
head and by the types of the output positions of the preceding body atoms. It requires also
that the type of an output position of the head is implied by the types of the input positions
of the head and by the types of the output positions of all body atoms. Thus, for given
program and directional type, it defines a priori a logical dependency scheme. This kind
of dependency is an L-dependency scheme, according to the terminology used in attribute
grammars (see e.g. [21]) and it is known to be non-circular. Thus, well-typing requires
satisfaction of the verification conditions connected with a non-circular LDS determined by
a given program and a given type annotation. It is hence a specialization of the annotation
method.

By Theorem 4.4 we obtain at once that well-typed programs are 10 correct. The addi-
tional result that they are also call correct does not follow automatically, since the theorem
concerns only IO correctness. On the other hand, the theorem may allow for proving 10
correctness of directional types which are not call correct. We now develop another specia-
lization of the theorem, applicable to such directional types.

4.4 S-well-typed programs

We will derive yet another sufficient condition for IO correctness of a directional type,
considered as an annotation. To do this we put a restriction on the use of the annotation
method similar to that used for well-typing: we assume A’ = A and we define a priori an
LDS for given program and directional type considered as annotation. This LDS is, however,
different from that used by well-typing. We now present a rationale for defining the LDS.

For a given clause there is a one-one correspondence between the type assertions and the
arguments of the predicates. Consider a conclusion assertion i in a clause corresponding
to an argument position p of the clause. For construction of the LDS one may consider all
premiss assertions of the clause. However for reducing the risk of circularity it is better to
restrict a priori the logical dependencies. Therefore we propose to assume that ¢ depends
only on those premisses whose corresponding positions share variables with p. This sug-
gestion is justified by the observation that for every valuation for which all these premiss
assertions are satisfied, the logical values of the remaining premisses are irrelevant for the
satisfaction of . In other words, we propose to use the family ~>¢ of the local dependency
relations, determined for a given program by a given directional type, (see Section2.4) as
the LDS to be considered.

We formalize the proposed idea by the following notion of sharing-based-well-typing or
S-well-typing where the imposed a priori logical dependency scheme is based on sharing of
variables between positions of the clauses:

Inria



Directional types for logic programs and the annotation method 21

Definition 4.6
Let 7 be a directional type of a program P and let C' be a clause of P. Denote by ~¢
the dependency relation determined by 7 on the positions of C.

e For a given exporting position e, in C":

— let ¢ be the term occurring in C on e, and let T" be the type associated to e by 7.

— let 41, ...,%; be all importing positions of C' such that i; ~¢ €, and let ¢1,...,%,
be the terms on these positions of C' typed, respectively, 71, ...,7, by 7.

The position e is S-well-typed iff

Eti:Th Ao ATy = t:T

e The clause C is S-well-typed iff all its exporting positions are S-well-typed.

e The program P is S-well-typed iff it is non-circular (Definition 2.10) and all its clauses
are S-well-typed.

Thus, the annotation induced by an S-well-typing 7 is sound for P, since the LDS
induced by ~+¢ of P is non-circular, and every conclusion assertion of a clause is implied by
the premiss assertions on which it depends. Hence, by theorem 4.5 and by theorem 4.4 we
obtain at once:

Theorem 4.7 Every S-well-typed program is correctly 10 typed.

We now illustrate the definition for the maxtree program of Section 3 with the directional
type:

maxtree/2: (| GrBinTree, | GrBinTree)
maxtree/5: (| GrBinTree, | Ground, | GrList, 1 GrList, 1 GrBinTree)
max/2: (| GrList, 1 Ground)

As discussed in Section 3 the program is not well-typed with this directional type. We
now show that it is S-well-typed, hence that it is IO correct.

According to the definition, the program is S-well-typed iff every clause satisfies the local
verification conditions and the program is non-circular. For a given clause, every conclusion
assertion gives rise to one verification condition. The conclusion assertions are associated
with the exporting positions of the clause. To make things explicit we quote the program
and we underline the exporting positions of each clause
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maxtree(Tree, NewTree) :-—
maxtree(Tree, Max, [], Labels, NewTree),
max (Labels, Max).

maxtree(void, _, L, L, void).

maxtree(tree(Lbl,Left,Right), Max, In, [Lbl|Out], tree(Max,NLeft,NRight)) :-
maxtree(Left, Max, In, Outl, NLeft),
maxtree(Right, Max, Outi, Out, NRight).

We now give explicitly the verification conditions for the clauses. The conditions will be
stated for every exporting position in the order of its appearance in the clause. All conditions
are easily proven true.

= NewTree: GrBinTree = NewTree: GrBinTree
| Tree: GrBinTree = Tree: GrBinTree

E Max: Ground = Max: Ground

E true = [1: GrList

= Labels: Grlist = Labels: GrList

For the second clause we get:

E L: GrList = L: GrList
E true = void: GrBinTree
For the third clause we have:
= tree(Lbl,Left,Right): GrBinTreeA Out: GrList = [Lbl|0Outl]: GrList

= Max: GroundA NLeft: GrBinTreeA NRight: GrBinTree = tree(Max,NLeft ,NRight:
GrBinT'ree

= tree(Lbl,Left,Right): GrBinTree = Left: GrBinTree
E Max: Ground = Max: Ground

E In: GrList = In: GrlList

E tree(Lbl,Left,Right): GrBinTree = Right: GrBinTree
E Max: Ground = Max: Ground

= Outi1: GrList = Outl: Grlist

For checking S-well-typedness it is now sufficient to check non-circularity of the program.
An automatic checker would discover that the scheme is strongly non-circular, hence non-
circular. For discussion of the concept of strong non-circularity see e.g. [21].
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5 Call correctness under LD-resolution

We now consider the problem of call-correctness. It may turn out that for a given directional
type the input assertions of certain predicate positions are call invariants under a given
computation rule, while the others are not. In this section we give a sufficient condition for
an input position to be a call invariant. We restrict our discussion to the Prolog computation
rule, but the idea presented can also be extended to other computation rules.

Reconsider the maxtree program in Sect. 3 with the second directional type, that is:

maxtree/2: (| GrBinTree, | GrBinTree)
maxtree/5: (| GrBinTree, | Ground, | GrList, 1 GrList, T GrBinTree)
max/2: (| GrList, 1 Ground)

When executed with LD-resolution, in every call to the recursive clause for maxtree/5,
the first and third position (but not the second) are correctly typed. Upon success, the fourth
position (but not the fifth) is correctly typed. Intuitively, the reason is that the dataflow to
these positions follows the execution order of LD-resolution. We say that these positions are
well-typed.

Definition 5.1 Let P be a program. W is a set of well-typed clause positions in P if it
satisfies:

(1) Let H be a head of some clause in P. If H(%) is an input position, and H (i) € W, then
for all body atoms B that unify with H, B(i) € W.

(2) Let B be a body atom in some clause in P.If B(7) is an output position, and B(i) € W
then for all heads H that unify with B, H(i) € W.

(3) Let A;(i) be an input position in the clause H : — Aq,..., A,. If A;(d) € W, then its
type can be inferred from the types of input positions in H which are elements of W,
and the types of output positions in Ay, ..., A;_; which are elements of W.

(4) Let H(i) be an output position in the clause H :— Ay,..., Ay. If H(i) € W, then its
type can be inferred from the type of input positions in H which are elements of W,
and the types of output positions in A1, ..., A, which are elements of W. a

O

It is easily realized that there exists a largest set of well-typed clause positions. Let
S1 and Ss be two sets of well-typed clause positions, and suppose S; U S is not a set of
well-typed clause positions. For example, suppose case (1) is violated. Then there exists an
input position H(7) in some head H, such that H(i) € S; U Sz, but B(i) € S; U Sy, for
some body atom B that unifies with H. Obviously, this implies that either S; or S» contains
H (i) but not B(7), which contradicts our assumption that S; and S are sets of well-typed
clause positions. For case (2)-(4) we reason similarly, proving that S; U S5 is indeed a set of
well-typed clause positions. Thus there exists a largest set of well-typed clause positions. A
clause position of P will be called well-typed if it belongs to this set.
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Definition 5.2 Let p be a predicate, and let Ay,...A, be all atoms in P which have p
as a predicate symbol. The i:th position of p is well-typed if A1(i), Aa(i),...An(2) all are
well-typed.

O

Let us exemplify definition 5.2 on the maxtree program. Consider the clause defining
maxtree/2. The second clause position of the first body atom is not well-typed. Since this
position is a input position in the body, we check case (3). We note that the type of the
term filling in this position (Max) cannot be inferred from the types of the importing clause
positions in the head.

Now consider the recursive clause for maxtree/5. The second position in the head is
not well-typed, since (1) is not satisfied. This is due to that the position considered in the
previous paragraph is not well-typed. As a consequence, the fifth position in the head, and
the second position in the two body atoms are not well-typed, and so on.

The maxtree program, with its well-typed clause positions underlined, is shown below.
(By also considering the definition of max/2, we would perhaps be able to show that also
the second clause position of max/2 is well-typed).

maxtree(Tree, NewTree) :-—
maxtree(Tree, Max, [], Labels, NewTree),
max (Labels, Max).

maxtree(void, _, L, L, void).

maxtree(tree(Lbl,Left,Right), Max, In, [Lbl|Outl], tree(Max,NLeft,NRight)) :-
maxtree(Left, Max, In, Outil, NLeft),
maxtree(Right, Max, Outi, Out, NRight).

We conclude that the first argument of maxtree/2, the first, third and fifth arguments of
maxtree/5, and the first argument of max/2 are well-typed.

Definition 5.3 Given a directional type 7 of a program P, we obtain 7y, the strongest
well-typing compatible with T, as follows: For every predicate position e:

e if e is well-typed under 7, then it is given the same type by 7w as by 7T;
e otherwise, e is given the type Any by Tw .

O

Recall the maxtree program, and let 7 be the previous directional type. Then 7y is the
following directional type:

maxtree/2: (| GrBinTree, | Any)
maxtree/5: (| GrBinTree, | Any, | GrList,| GrList, | BinTree)
max/2: (| GrList, | Any)
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Theorem 5.4 Let 7 be a directional type for P. Then 7y is a well-typing for P.

Proof : Let C be the clause H :— A;p,.... Ay, and consider the position Ag(é). If this
position is importing, we do not need to consider it. If it is exporting, then according
to definition 2.2 we must be able to infer its type from the types of importing positions
in H,Ay,...,A—1. This is obviously possible if the type of Ay(¢) is Any; thus the only
interesting case is when A(7) has some type different from Any. By the construction of Ty,
this case will only arise if Ax(¢) is a well-typed clause position under 7.

If Ag(?) is a well-typed clause position, then according to case (3) of definition 5.1, we
can infer its type from well-typed importing clause positions in H, Ay, ..., Ax_1. Since these
positions are typed the same way by 7 and 7w, it follows immediately that we can infer
the type of A(7) from the types of importing positions in H, Ay, ..., Ap_1.

For exporting positions in H we reason similarly, thus proving that 7y is indeed a well-
typing for P. a

We now state some immediate corollaries of the above theorem.

Corollary 5.5 Let P be a program, and let G be an atom which is correctly typed in its
input positions. Then for every computed answer substitution o, o(G) is correctly typed in
its well-typed output positions.

Corollary 5.6 Let P be a program, and let G be an atom which is correctly typed in
its input positions. Let H : — Ay,..., A, be a clause in P. Then in every LD-derivation
starting from G: if the query o(A;,..., An, B1,...,By) is reached, then the well-typed
input positions in o(A;) are correctly typed.

The idea behind the notion of well-typed position is related to the annotation method.
The call-correctness concerns properties of incomplete nodes of derivation trees. The com-
putation rule defines a class of incomplete derivation trees which will be constructed during
the computations. The property of an input argument of an incomplete node can be proved
by the annotation method provided that this argument logically depends only on the argu-
ments of some complete nodes of the (incomplete) tree. Thus the problem is which of the
input arguments of the program predicates are always fully determined in every incomplete
derivation tree which can be constructed under the considered computation rule. The con-
cept of well-typed position gives a sufficient condition identifying such arguments for Prolog
computation rule.

6 Type-driven resolution

Several existing Prolog systems (like e.g. [14]) provide delaying primitives, which allow for
suspension of resolution of the selected goal until it is sufficiently instantiated, for example
until some of its arguments are ground. The non-suspension condition can often be formalized
as a type of the atom, typically the groundness of some argument is required. This section
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presents a model of computation where directional types are used for controlling execution.
This is formalized as a notion of type-driven resolution ( T-resolution for short).

The delays in Prolog concern resolution steps: a selected atom which does not fulfill an
imposed condition is not resolved. In contrast to that, the selected atom in our execution
mechanism is first compared with the head of a clause. As result a set of equations is
obtained, one equation per argument position of the atom. The delay mechanism we are
going to discuss concerns unification of the equations in this set. A non-suspension condition
is used for controlling which of them may be selected for unification. The remaining ones
are kept suspended until they become sufficiently instantiated. Thus, the usual resolution
step is divided into the equation generation phase and the equation solving phase.

Notice, that Prolog execution with delays is still an SLD-resolution, though with a dy-
namic computation rule. In contrast to that, our model of computation is not an SLD
resolution.

In contrast to Prolog with delays the equation generation phase in our model is never
suspended and a selected atom of the goal is always replaced by the body atoms of some
clause. Thus, the computation may reach a state where the goal is empty and the set of the
suspended unifications is non-empty. Such a situation may be seen as a kind of deadlock.
We show in this Section that S-well-typedness is a sufficient condition for a program to be

deadlock-free.

6.1 T-resolution

We now give a formal definition of T-resolution. We consider logic programs with restricted
directional types. Thus, the i-th argument position of a program predicate p/n is always
classified as an input or as an output and has associated a type 7;. We first introduce some
auxiliary concepts.

Definition 6.1 [Query] A query is a either the atom fail or a pair (G; E), where G is a
sequence of atoms, and E is a set of equations. For an initial query (given by the user), we
require that £ = 0. O

Definition 6.2 [Eligible equation] Let p/n be a predicate and let p(s1,...,s,) = p(t1,...,tn)
be an equation. The equation s; = t; is eligible if either

o the j:th position of p is an input, and = s; : Tj, or
o the j:th position of p is an output, and = ¢; : Tj.
O

Definition 6.3 [T-derivative] Let @ = (G; E) be a query. A T-derivative @' is a query
obtained from @) as follows:

1. If E contains a trivial equation t = ¢, then Q' = (G; E — {t = t});
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2. Otherwise, if E contains a non-trivial equation of the form p(s1,...,s,) = p(t1,...,tn
where s; = t; is an eligible equation, and s; and ¢; unify with mgu o, then Q' =

(o(G),0(E)). If s; and ¢; do not unify then @' = fail.
3. Otherwise (if no eligible equation is found in F), if G = Ay,..., Ay, where A

1 =
p(s1,...,8n), and H : — By,...B, is a (renamed) clause, where H = p(t1,...,1,),
then

Q' =(Bi1,...,Bm,As,. .. Ap ; EU{p(s1,...,pn) =p(t1,...,tn)})
4. Otherwise, @ has no T-derivative.
O

A more elaborate concept of the notion of T-derivative might have required unifiability
of the delayed equations. This would correspond to the usual satisfiability requirement for
the accumulated constraints in a constraint system. The main result of this section extend
easily for such a modified version of T-resolution.

Definition 6.4 [T-derivation] A T-derivation is a sequence of queries Q1,Q, ... , such
that Q;41 is a T-derivative of @);. Consider a finite T-derivation which ends with a query
for which no T-derivative exists. The T-derivation is:

o successful if it ends with (¢;0);
o deadlocked if it ends with (e; E), where E is a non-empty set of equations;

o failed otherwise, i.e. if it ends with fail or a query of the form (G; E), where G is a
non-empty sequence.

O

For successful derivations we can compute answers in the ordinary way by composing all
the substitutions obtained in the derivation. The soundness of T-resolution follows directly
from the soundness of LD-resolution, since the same equations are solved, albeit possibly
in a different order. T-resolution is not complete since some derivations may deadlock, but
theorem 6.5 constitutes a restricted completeness result.

Using the “proof tree view” on resolution, a successful derivation corresponds to the
case where we can construct a complete skeleton and solve all the associated equations. A
deadlocked derivation corresponds to the case where we can construct a complete skeleton,
but there is at least one equation which cannot be selected for solving, due to that the terms
therein are not instantiated to the right type.

We illustrate this resolution process on an example, Reconsider the maxtree program in
Sect. 3. We now type it as follows:

maxtree/2: (| GrBinTree, | GrBinTree)
maxtree/5: (| GrBinTree, | Ground, | GrList, 1 GrList, | GrBinTree)
max/2 : (| GrList, | Ground)

Consider the initial query
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(maxtree(tree(5,void,void), N); {3}

We resolve it against the only possible clause, but we keep one equation unsolved, yielding
the query:

(maxtree(tree(5,void,void) ,Max1, [],Labels1,NewTreel,
max (Labels1,Max1);
{ N=NewTreel }

We can depict this with the incomplete proof tree shown in figure 1. (Two terms stacked
upon each other indicate an unsolved equation.) We continue by resolving the leftmost atom
in the query (expand the node Ny).

. . NewTr ee
maxtree |tree(5,void,void) ,
NewTr eel
NO
maxtree( tree(5,void,void), Max1l, [], Labelsl, Newlreel ) max( Label s1, Max1 )

N 1 N2 1
Figure 1: An incomplete proof tree

Some derivation steps later we obtain the tree shown in figure 2.

. . NewTr ee
maxtree [tree(S, voi d, voi d) , }
NewTr eel
NO
. . Max1 NewTr eel max( [5] , Max1l )
maxtree tree(5,v0|d,v0|d),Ma2, [1, [5],t (Max2 i d i d)
X ree( Max2, voi d, voi
N1 N2 J_
nﬁXtree(VOi d, Max2, [] , [] , voi d) nHXtree(VOi d, Max2, [] , [] . VOi d)

Figure 2: Another incomplete proof tree

When we now resolve the atom max([5], Max1), the variable Max1 becomes instantiated
to 5. We can now solve the equation Max1=Max2 at node N, since Max1 now is instantiated to
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the right type (Ground). We can then solve the equation NewTreel=tree(Max2,void,void)
at node Nj, and finally the equation NewTree=NewTreel at node Nj.

Hopefully this example has conveyed the general idea of type-driven resolution: unifica-
tion is performed argumentwise in “dataflow order”.

6.2 A sufficient condition for deadlock-freeness

The possibility of deadlock when executing a program with T-resolution, raises the question
if it 1s possible to detect the cases where T-resolution really computes all answers, i.e. where
deadlock does not occur. It turns out that the notion of S-well-typedness is a sufficient
condition for that.

Theorem 6.5 Let P be a program which is S-well-typed, and let G be an atom which
is correctly typed in its input positions. Then no T-derivation starting from (G;0) will

deadlock.

Proof : Assume the contrary. Then starting from G, we can construct a complete skeleton
T such that at least one equation will never be selected for solving.

Since P is non-circular, the ~+7 relation is a partial ordering. We will prove by induction
on ~»p that it is possible to select equations until we reach fail, or until all equations are
selected and solved. Hence it is impossible to construct a deadlocked derivation.

(Base step) The minimal elements of ~»p are (1) the input positions at the root of the T,
and (2) the positions associated with an equation ¢ = ¢, or t = ¢, where ¢ is a term occurring
on an exporting position of a clause D and not sharing variables with any importing positions
of D. occurring at an exporting position A(Z) in some clause D. In case (1), by assumption
the input positions of the initial query are correctly typed, so these equations can be selected.
In case (2), the verification condition for ¢ has empty set of premisses, hence ¢ is correctly
typed, and the equation ¢ = ¢ can be selected.

(Induction step) Let n; be a node position associated with the equation s = ¢, where s is
a term occurring at an exporting position in some clause D. Let dep(n;) be the set of all node
positions related to n; under the ~»7 ordering. By the induction hypothesis; all equations
at the positions in dep(n;) can be selected. If any of these equations is unsolvable, we have
reached fail. Otherwise all of these equations can be solved, and since by assumption the
program is S-well-typed, the type of s can be inferred from the types of the terms computed
at the nodes in dep(n;). Thus s is correctly typed, and the equation s = ¢ can be selected. O

The following theorem is a direct corollary of the previous results and definitions.

Theorem 6.6 Let P be a program which is S-well-typed, and let ¢ be an atom which is
correctly typed in its input positions. Then for every answer o computed by T-resolution,
go is correctly typed in its output positions.
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Proof :
As T-resolution is sound, the result follows by Theorem 4.7. a

We illustrate the use of T-resolution by another example modelling a version of producer-
consumer process. A producer p may freely produce some items ¢ which are to be consumed
by a consumer r. The consumer writes a confirmation ¢ for every consumed item. The con-
firmation is read by the producer. The process terminates after the producer has finished the
production and the consumer has consumed all produced items. For achieving the simulation
effect we use the following types:

e [ListStr consists of all terms of the form [i[¢] where ¢ is a constant (representing one
produced item) and ¢ is arbitrary term.

e C'ListStr consists of all terms of the form [¢]t] where ¢ is a constant (representing a
confirmation of consumption) and ¢ is arbitrary term.

e (' is the singleton {c}.
e [ is the singleton {i}.

The producer and the consumer are binary predicates. Their arguments reflect their infor-
mation about the state of production and the state of consumption.

p: (1 IListStr,| CListStr)

r: (] IListStr,| C'ListStr)

read : (| {C})

write: (| {I},1{C})

pc : —p(X,X1), r(X, X1).

p([4, 3[T],[X1, X2/T1]) : — read(x1), p([4T], [k2[T1]).

read(c).

r([X1,X2|T], [¥1,Y2|T1]) : — write(X1,Y1), r([X2|T], [Y2|T1]).

write(i,c).

p([i],[X]) : — read(X).

r([X],[Y]) : — write(Y).

This program is S-well-typed hence its execution until T-resolution starting with the goal

— pc is deadlock-free. Such an execution simulates the interaction of the producer and the
consumer described above. If the actual goal contains a call of the producer, then the first
argument of this call can be resolved. Thus the producer can produce freely until it termi-

nates. The communication with the consumer is obtained at the top level of the derivation
tree. Each produced item causes further instantiation of the list structure bound to X and
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releases a possibility for one consumption step, that is one delayed equation corresponding
to the first argument of r in some node becomes eligible. This releases the possibility of
writing a confirmation in the second argument of the same node. The confirmation is passed
back to the top level of the tree and releases the possibility of reading the confirmation by
the producer.

7 Examples

In this section we give some more examples of programs which are not well-typed (given an
“Intuitive” typing), but which are S-well-typed. The programs of Section 7.1 and 7.2 could
be made well-typed under the considered directional types by changing the order of the body
atoms in some clauses. The programs originate from the literature, thus we are interested
in proving IO correctness of their directional types without transforming them. This does
not apply to the program of Section 7.3. It cannot be made well-typed under the considered
directional type by rearrangement of body atoms of the clauses.

7.1 Flattening a list

A program flattening a list using difference-lists is given in the book by Sterling and Shapiro
[37]. Below we give a version of the program where instead of using difference lists, we use
two arguments.

flatten(Xs, Ys) :- flatten(Xs, Ys, [1).

flatten([X|Xs], Ys, Zs) :-
flatten(X, Ys, Ys1),
flatten(Xs, Ys1, Zs).

flatten(X, [X[|Xs], Xs) :-
simple(X), \+ X=[].

flatten([1, Xs, Xs).

We would like to prove that if we call flatten/2 with the first argument bound to a
list, then the second argument will be bound to a list upon success. However, to type the
predicate flatten/3 in a way that reflects how the program executes under LD-resolution,
is not so easy. The most precise we can do is:

flatten/2: (| List, | List)
flatten/3: (| Any, 1 Any, | Any)

The reader can easily verify that under this directional type the program is not well-typed,
so theorem 2.3 is inapplicable here.
We now type the program in a way that reflects the dataflow in the program:

flatten/2: (| List, | List)
flatten/3: (| Any, | List, | List)
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This time the program is S-well-typed, thus the second argument of flatten/2 will indeed
be bound to a list upon success.

7.2 Quicksort on difference lists

An example of a directional type for a quicksort program using difference lists has been
discussed in [13]. For proving that the program transforms an integer list into an integer
list an extension to polymorphic directional types has been used. Notice that the result
concerns input-output behaviour of the program. In this section we show that it can be
obtained by a simple S-well-typing. Below we give a version of the program where instead
of using difference lists, we use two arguments.

quicksort(X,Y) :— quicksort-d1(X,Y,[1).
quicksort—-d1([],X,X).
quicksort—-dl([A[X],Y,Z) :- partition(X,4,L,U),
quicksort-dl(U,Y¥1,Z), quicksort-dl(L,Y,Y1).

We assume that partition is defined by a set of clauses S-well-typed under the following
directional type:

partition: (| IntList,| Int,1 IntList,] IntList)

Under this assumption we want to show that quicksort called with the first argument
being an integer list binds on success its second argument to an integer list. This follows
immediately from the fact that the program is S-well-typed under the following directional

type:

quicksort: (| IntList,| IntList)
quicksort-dl: (| IntList,1 IntList, | IntList)
partition: (| IntList,| Int,1 IntList,] IntList)

7.3 A small typesetting program

As mentioned in section 2.3, we may also consider definite programs interpreted on some
domain other than the term domain. The concept of a S-well-typed program can then be
very useful in program analysis, as it extends the groundness analysis method used for such
programs in our previous research [10, 11].

In the example below, we assume that the functor + is interpreted as a function computing
the sum of two integers, and that the functor size is interpreted as a function returning the
number of characters of its only argument. Operationally, we assume that these interpreted
symbols are handled as follows: Whenever an interpreted term, e.g. s + ¢, is unified with
another term u, it is checked that s and ¢ both are ground terms. If so, s 4 ¢ is evaluated,
and the result is unified with u. Otherwise, the unification is delayed until both s and ¢
become ground. Thus we can view the operational semantics as being based on a restricted
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form of T-resolution (where every predicate argument is typed either as | Ground or as
1 Ground), combined with evaluation of interpreted terms. The restriction is that only the
arguments including interpreted functors are delayed, while the others are unified without
delay, whenever selected. In [9], a condition which guarantees deadlock-freeness of such
execution was given. The condition is a special case of S-well-typedness: It uses only the
type Ground and requires that the interpreted terms appear only at the exporting positions.

Note that in the presence of interpreted terms the concept of T-resolution is very natural,
and similar ideas have appeared in several functional logic languages, e.g. in [3, 2, 31, 30].

Consider a simple typesetting program which typesets text tables. The input to the
program consists of a description of the text table as a list of lists, for instance:

[[This, is, some, text], [Another, line, of, text]l]
The produced output consists of a list of typesetting commands:

[[put(1,1,This), put(1,8,is), put(1,12,some), put(1,16,text)],
[put(2,1,Another), put(2,8,1line), put(2,12,0f), put(2,16,text)]]

where the two first arguments to put represent the line and the indentation on the line. In
this case, the output list of typesetting commands represents the table:

This 1s some text
Another line of text

Note that every column has the width of the longest word of the column. Thus the widths
of the individual columns cannot be computed until the whole input has been processed by
the program. By using the same programming technique as in the example of section 3, we
still obtain an efficient “one-pass” program.

First we consider the predicate typesetrow/6, which typesets one row of the table.

(C1) typesetrow(_, _, [1, [1, [1, [1).

(C3) typesetrow(Line, Ind, [Text|Ts], [MaxWid|Ms], [size(Text)|Ss],
[put(Line, Ind, Text)|Insts]) :-
typesetrow(Line, Ind+MaxWid, Ts, Ms, Ss, Insts).

The arguments represent (from left to right) the current line number, the current indenta-
tion on the line, the description of one row of the table (for instance [This, is, some,
text]), the width of the widest element in each column, the number of characters in each
element of the row, and the output list of typesetting instructions. Conceptually, the first
four arguments represent the input to the predicate, while the last two arguments represent
the output. Thus the natural directional type for typesetrow (using only the type Ground)
would be:

typesetrow/6 :(| Ground, | Ground, | Ground, | Ground, | Ground, 1 Ground)
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or more precisely
typesetrow/6:(| Nat,| Nat,| GrList, | Listof Nat, | Nat, | ListofC'md)

The types used in the more precise directional type are as informally defined in the intuitive
explanation above. Thus, Nat is the type of natural numbers, C'md is the type of the
typesetting instructions, and ListofT, for T' being a type, denotes the type of lists with the
elements of type T'.

typesetrow/6 is called from typesettab/6:

(C3) typesettab(_, _, [1, X, X, [1).

(Cy4) typesettab(Line,Ind, [Row|Rows],MaxWidths,MaxSoFar, [InstRow|Insts]) :-
typesetrow(Line, Ind, Row, MaxWidths, Widths, InstRow),
compute max(Widths, MaxSoFar, NewMaxSoFar),
typesettab(Line+1, Ind, Rows, MaxWidths, NewMaxSoFar, Insts).

The arguments represent (from left to right) the current line number, the current indentation
on the line, the description of the whole table (as a list of lists), the width of the widest
element in each column, the width of the widest element in each column in the rows processed
so far, and the output list of typesetting instructions. Conceptually, the first, second, third
and fifth arguments represent input to the predicate, while the fourth and sixth arguments
represent output. Thus a natural directional type is:

typesettab/6: (| Ground, | Ground, | Ground, | Ground, | Ground, | Ground)
or more precisely:
typesettab/6: (| Nat, | Nat, | Listof GrList, | Listof Nat, | Listof Nat, | Listof ListofCmd)

We assume that compute max is a predicate that, given two lists of integers [71,...,1,]
and [j1,...,Jn], returns the list [maz(i1,j1),..., max(iy, jn)] (we omit the definition of
compute max). Thus the directional type for compute max is:

compute max/6 : (| Ground, | Ground, 1 Ground)
or more precisely:
computemax/6 : (| Listof Nat, | Listof Nat, | Listof N at)

The first directional type describes groundness properties of the program. It tells for
instance that if we call the program with the goal

?- typesettab(1l, 1, [[This,is,some,text], [Another,line,of,text]], _,
[0,0,0,0], I)
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then the variable I will be ground upon success. This reflects our intention, since I is
supposed to be bound to the resulting list of typesetting instructions.

The reader may verify that for both directional types considered above the program is
not well-typed. On the other hand, for both of them the program is S-well-typed, hence
IO correct. Since the interpreted terms appear only at the exporting positions, the first
directional type satisfies the deadlock-freeness condition of [9]. The second, more precise,
directional type describes an interesting property of the program.

8 Related Work

8.1 General Proof Methods for Run-Time Properties

As pointed out in the introduction, directional type checking for Prolog can be seen as a spe-
cial case of proving run-time properties of the Prolog program. The early papers addressing
this problem are [25, 8, 18]. In the approach of [25], input-output assertions are assigned to
all predicates. Correctness of the assertions are proved by showing a verification condition
locally for each clause. The method of [8] can be seen as a special case of [25], where the
properties described by the assertions are closed under substitution. The input assertions of
[25] may express arbitrary relations between the predicate arguments at call and the output
assertions may express any relations between the predicate arguments at success and its
arguments at call. Thus, the directional types are assertions such that

e both the input and the output assertions are products of types closed under substitu-
tion,

e output assertions express only relations between predicate arguments at success but
cannot relate them to the arguments at call.

The types of [4], discussed also in this paper, are even more restricted, since for every
argument one can only specify either its input type or its output type, but not both. In
practice, the restricted directional types are often sufficient to show interesting properties
of programs. On the other hand, checking of a non-restricted directional type of a program
may be reduced to checking of a restricted directional type of a transformed program. We
illustrate this idea by the following example.

Consider the append program

append([], X, X).
append([E|L], R, [E|LR]) :- append(L, R, LR).

with the directional type :
append: | (List, Any, GrList) 1 (GrList, GrList, Any)

The directional type defines different input and output types for the first argument of the
predicate, which thus can be classified neither as an input nor as an output argument. In the
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following version of the program the first argument has been duplicated: its first copy plays
the role of input while the second one is an output. The execution of append1 simulates the
execution of append in an intuitively clear way.

append1([1, [1, X, X).
append1([E|L], [EIL1], R, [E[LR]) :- append(L, L1, R, LR).

The following directional type of the transformed program
appendl : (| List T Groundlist | Groundlist | Groundlist)

corresponds to the unrestricted directional type of the original program.

The second above mentioned paper ([18]) on proving runtime properties of Prolog pro-
grams assigns assertions to program points. This shows another, still unexplored way of
dealing with directional types: by assigning them to occurrences of the predicates in pro-
gram clauses rather than to predicates. The concept of well-typed position discussed in
Section 5 is a step in that direction. However, for large programs it may be rather difficult
for the user to specify this kind of directional type.

While the methods mentioned above are specialized for LD-resolution and aim at proving
at once both the 10 correctness and the call correctness of a given specification, our approach
to directional types separates clearly these two aspects. Hence we are able to prove 10
correctness of directional types which are not call correct under LD-resolution. The methods
mentioned above do not apply to such directional types.

8.2 Related work on directional types

As already pointed out the paper [4] has been a direct inspiration for the way we present
our results. We have shown that the well-typing condition, as presented therein, is a spe-
cialization of the annotation method. In contrast to the annotation method, where the LDS
is a subject of search, the LDS for well-typing is determined by a given program and a gi-
ven directional type. Our S-well-typing condition is another specialization of the annotation
method using a different kind of LDS. The LDS used by well-typing is non-circular by the
definition and thus simpler to check than S-well-typing.

S-well-typing does not imply well-typing, since only 1O correctness is guaranteed, while
well-typing implies also call correctness. On the other hand, well-typing does not imply S-
well-typing. One of the reasons is that the dependency relation of a well-typed program may
be circular. For example, consider the program:

q(X) :- p(X,X).
p(X,X). with the directional type:

a: (| Ground)
p:(l Ground, | Ground)
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The dependency relation of the program is circular, hence the program is not S-well-typed
but it is well-typed. Another reason concerns ”trivially” well-typed programs, where the
premisses of a verification condition are never satisfied. For example, consider the program:

p([1) :- q(X).

q(X).

with the directional type:
p:(l BinTree) q:(| List)

The program is well-typed since:
E BinTree([]) = List(X)

However, it is not S-well-typed since the verification condition
true = List(X)

is not valid.

Most of the papers on directional types consider types closed under substitution. We
have shown that under this assumption specializations of the annotation method can be
used for type checking. The well-typedness criteria presented in the literature are mostly
such specializations of the annotation method. There is no clear reason why the assertions of
a directional type should only concern individual arguments of the predicate. This has been
pointed out also in [12]. As long as the assertions are closed under substitution, whether
they are unary or not, they can be handled by the annotation method. Soundness of any
new sufficient condition obtained by the specialization of the annotation method would
automatically follow from the soundness of the method.

Types not closed under substitution can generally not be handled by the annotation
method. Correctness of such types may still be proved by the method of [25]. Actually the
method of [25] is complete [24], so that its verification condition can be seen as the best
possible well-typing for Prolog execution rule.

All papers on directional typing known to the authors concern Prolog computation rule
and thus are not directly applicable to other execution methods. Our approach makes it
possible to discuss various execution principles in one uniform framework. In particular, we
are able to prove some interesting properties of LD-execution of programs with incomplete
data structures. For such programs it is usually rather difficult to provide non-trivial well-
typings. A recent work presented in [13] suggests a polymorphic extension of well-typing to
deal with them. It is interesting to note that for the quicksort example, discussed in [13],
S-well-typing condition is sufficient as well. Admittedly, the example cannot be handled by
the well-typing condition.

The concepts of S-well-typedness and of well-typed position generalize conditions pro-
posed in [22] for groundness analysis of definite programs. The data-driven programs of [22]
are well-typed programs, such that the only type used is the type Ground of all ground
terms. Similarly, the simple programs of [22] are S-well-typed programs with the only type
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Ground. An extension of the concept of simple program has been used for groundness ana-
lysis and for analysis of delays in the language GAPlog [30] integrating logic programs with
external procedures in a clean declarative way. A combination of similar kind of groundness
analysis with some properties of unification has been used for studying occur-check, e.g. in
[7], termination, e.g. in [34], AND-parallelism [23], and the question whether a program can
be executed with pattern matching instead of full unification, e.g. in [5].

Some rudimentary concepts of well-typedness are used in the above mentioned papers
for static analysis of logic programs. As mentioned above, well-typedness is conceptually
rooted in proof techniques and in reasoning about programs. On the other hand a widely
accepted approach to program analysis is based on the notion of abstract interpretation.
Abstract interpretation techniques have been proposed for many purposes, among others for
groundness analysis, e.g. in [16, 17] and for type analysis e.g. in [27].

The relation between proof-based methods and abstract interpretation based methods
is not obvious. We note here that the directional types, as discussed in this paper and
in the related publications are prescriptive and concern the predicates while the abstract
interpretation approach intends to synthesise properties, usually for program points. On the
other hand, for a given abstract domain of types the verification conditions of well-typing for
an untyped program could probably be seen as fixpoint equations for assigning directional
types to the predicates. A more closer investigation of the relations is a subject of future
work.

The notion of well-typed program has been extended to constraint logic programs in [38§].
A static type checker implemented for a non-trivial constraint logic programming language
checks a sufficient condition for well-typing. The checker is based on the ideas of abstract
interpretation. The results of the experiments reported are quite promising as concerns both
the efficiency of the checker and the coverage of the correctly typed programs by the sufficient
test proposed.

The problem of implementation of a type checker for directional types has also been
addressed in [1] in an original way, but there is no reference to existing implementation.

9 Discussion and Conclusions

We have separated two aspects of directional types: the input-output characterization of
the program, which is independent of the computation rule, and the characterization of
the call patterns, which strongly depends on the execution model. We have shown that
the input-output aspect can be proved by the annotation method, provided that the types
are closed under substitution. We have also shown that the method can be specialized to
obtain relatively simple sufficient conditions for IO correctness. As a matter of fact, the
well-typing condition proposed in the literature for types closed under substitution can be
seen as a specialization of the annotation method. Analysis of the well-typedness condition
from this point of view shows a methodology of specialization of the annotation method to
relatively simple special cases, with good prospects of automation. On the other hand, it
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shows possible ways of modification and generalization of existing well-typedness conditions.
The S-well-typedness is an interesting modification obtained in that way.

We also considered directional types as a tool for controlling execution of logic pro-
grams. The idea of such execution is to enforce the types specified by a given declaration
by argument-wise delaying of unification of the arguments which are not correctly typed.
This mechanism is more fine-grained than atom-wise delaying in some Prolog systems. It
suspends only the unification of single equations, but it does not suspend the resolution
steps as done in the Prolog systems. The idea of delaying the resolution of an equational
constraint until it becomes sufficiently instantiated resembles the concept of the ask primi-
tive in concurrent constraint programming [36]. We formalized the model of execution by
the concept of T-resolution. The T-resolution is not an SLD-resolution.

The T-resolution is sound but it is not complete, even for definite programs, since the
computation may deadlock. In particular, if the imposed directional type restricts the least
Herbrand model of the program, the elements of the model which are not correctly typed
according to the output assertions cannot be computed by T-resolution. We have shown
that S-well-typing gives a sufficient condition for deadlock-free execution under T-resolution.
The notion of S-well-typing uses a concept of dependency relation similar to that introduced
for attribute grammars, and refers to the techniques of attribute grammars for checking
properties of this relation.

Data flow in S-well-typed programs is well characterized by the dependency relation.
Therefore the delays under T-resolution are predictable in compile time. Consequently, they
can be compiled out, at least in some cases, by source-to-source transformations, similar
to those described in our previous work [10], where the resulting logic program is executed
without delays with the Prolog computation rule. An alternative approach to implementation
of S-well-typed programs may rely on scheduling techniques used in attribute evaluators. A
proposal for the use of such techniques in logic programming is the multi-pass execution of
logic programs discussed [32]. In this way one would achieve the effects of T-resolution by
computational mechanisms without dynamic delays. This topic is, however, outside of the
scope of this paper.

The usefulness of T-resolution is an open question. In this paper we use it more as an
illustration of the thesis that the methods of directional types apply not only to Prolog. It is
an interesting question, whether a variant of the technique used here for deriving a sufficient
condition for deadlock-freeness of T-resolution may be of interest for concurrent constraint
programming. We note also that we used a similar technique for compiling out dynamic
delays in the new implementation [26] of the GAPLog language ([30]).

Our future work aims at automated checking of S-well-typedness of programs. This in-
cludes two aspects. The non-circularity of the LDS can be automatically checked by the me-
thods used for attribute grammars. The second aspect concerns checking of the verification
conditions for the clauses. This is similar to well-typedness, so that the advances in auto-
mation of well-typedness can probably be re-used for that purpose. However, well-typedness
itself is undecidable in general case so that identification of interesting and tractable special
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cases is essential here. The results on this topic reported in the literature seem still to be
preliminary.

Another interesting question is, whether the conditions for well-typing and S-well-typing
can be used for types which are not closed under substitution. In general, correctness of such
directional types can only be proved by taking into consideration a particular computation
rule and using a version of the method of [25]. However, under certain syntactic restrictions
on the program well-typedness and S-well-typedness could probably still be applicable.
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