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Résumé

On présente trois modeles probabilistes (simples par ordre de complexité croissante)
pour des réseaux avec serveurs mobiles. On utilise la théorie classique des files d’attente

et des méthodes d’analyse asymptotique. Les applications concernent directement des
réseaux de véhicules en libre service, type PRAXITELE.
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Abstract

Three simple stochastic models are proposed for moving server net-
works, by increasing order of complexity. The mathematical tools rely
on classical queueing theory and asymptotic analysis. These models
are applied to service vehicle systems (like PRAXITELE).

*Moscow State University, Mechanico-Mathematical Faculty, Chair of probability,
Vorobyevy Gori, 119899 Moscow, RUSSIA.

'INRIA - Domaine de Voluceau, Rocquencourt - BP.105 - 78153 Le Chesnay Cedex -
FRANCE. _

$Moscow State University, Faculty of Cybernetics and Numerical Mathematics,
Vorobyevy Gori, 119899 Moscow, RUSSIA.



1 Introduction

Transportation problems have been for a long time a source of interesting
mathematical problems. New transportation problems now arise in the con-
text of demand driven systems (e.g flexible route bus systems, flexible deliv- -
ery, rental and self service cars, etc.). In these systems, the demand cannot be
modelled by simple deterministic methods and stochastic models seem suit-
able to carry out analysis of performance. This paper is only a preliminary
attempt to provide some rough understanding in the behaviour of so-called
service vehicle networks (SVN). It can be viewed as a creation of models.
Some of them are classical and rely on so-called product form networks; oth-
ers can hardly be solved analytically, but asymptotics when the size of the
system increases can be obtained.

Basically, a customer arrives at a station (node, station, parking lot), where
he takes a car, if any available one, to reach some other station (destination),
where he leaves the car. Section 2 is devoted to the simplest case, when the
number of available cars is unbounded. Here time dependent parameters are
allowed. The model of section 3 assumes a finite number V of cars, no capac-
ity constraints and no waiting room for customers, who are lost if there is no
car when they arrive. The last section 4 presents the more interesting (and
difficult) case: at each station, the capacity for parking places is limited and
there is also a finite waiting room for clients at each station. An asymptotic
analysis is presented, in which the number of cars and the numder of nodes
simultaneously increase.

2 Non time-homogeneous input process and
infinite-server queues

Consider an open queueing network with N stations. At time ¢, customers
arrive at node 7,2 = 1,..., N according to a non time-homogeneous Poisson
process, with deterministic parameter (A;(t),t > 0). These N processes are
supposed to be independent. A customer arriving at node 1 is provided with a
car and goes to node j with some probability p;;, so that the matrix P = (p;;)
be stochastic. In this model, the number of available cars is supposed to
be unlimited. After having reached his destination, a customer leaves the
network.



Let us introduce the following random variables, for all 2,7 = 1,..., N:

e T7;;, the time to go from node : to node j, the corresponding distribution
function being B;;(z); ‘

e z;;(t), the number of cars which, at time ¢, are on their way from : to
J-

Now to each link (origin-destination pair) (2, j) with p;; > 0, we associate a
fictitious node having an infinite number of servers, the service-time of each
server being equal to 7;.

As an immediate corollary of standard results, which likely can be traced to
Palm (2], we have the following:

Theorem 2.1 Assume that all service times, routing and arrival processes
are are mutually independent and that A\i(t),t > 0,4,5 = 1, N are integrable
functions. Then, for each ¢, z;(t),i,j = 1, N are independent random vari-
ables having a Poisson distribution, with finite mean

: t
m,'j(t) = E.’l:,'j(t) =F \ p,'j/\,'(s)ds.
—ij
Remark 1 These results are valid under more general assumptions, includ-
ing time-dependent routing matriz. The reader is referred to [8] for an ez-
tensite survey an some new developments on these problems.

Example 1 Let B;j(z) = B(z) = P{r < z} for all i, = 1, N. Then the
total number of moving cars at time t is

M) = E [ As)ds,

t—-1

where As) = YN, Xi(s). The extreme values of M(t) occur at all time
instants tp, satisfying the equation

Mto) = [ “ At — u)dB(w).



3 Finite number of servers and no waiting
room '

3.1 Model description

Here we consider a more realistic situation, where the total number of cars in
the system is finite, say V. Customers who do not find available cars at the
station where they have arrived are lost. Moreover, a car arriving at a parking
lot waits until the arrival of the next customer (no empty returns); then both
leave to reach their destination. Here we shall assume time-independent ar-
rival rates \;,7,7 = 1, N. All other parameters and notations in this network
are the same as above.

As in the first model, we introduce virtual nodes denoted by (z,7). A car
will be said to be

e at node (,7), if he is moving from station 7 to station j;
e at station ¢, if it is waiting for a customer in parking lot i.

Then the system can be viewed as a closed network with N(N + 1) nodes, in
which V cars are moving around and there are two kinds of nodes:

1. the nodes of type z, which are single-server queues with exponentially
distributed service-times, with parameter A;,1 = 1, N;

2. the nodes denoted by pairs (¢, 7), which are depicted as infinite-sever
queues, with service-time distribution function B;;(z).

Let z;(t), ¢ = 1, N, be the number of cars parked in queue i at time ¢ and
z;;(t), 1,5 =1, N , - the number of cars moving between i and j.

When 7;; = E7;j; < 00 and matrix P = [pi;] is ergodic,its invariant measure
being denoted by m = (my,...,mn), it is well known that the vector-process

X(t) = (zi(t),s =1, N; zi5(),4,5 =1, N)
has an equilibrium distribution. Indeed, we have the following

Theorem 3.1 Under the above assumptions, the stationary distribution of
X(t) has a product form given by "

tl—igloP (a:;(t) =n;,i =1, N;z(t) = nyj, 1,5 = l,N) =

4



. - N pF )
P (niyi = T, N;ny,i,j = TN) =cl‘[(:—:) HH(”’;—T" (3.1)

k=1 =1 =1 8
where .
N N N
St Y ms =V,
=1 =1 j=l

and C is a normalizing constant.

Proof. The statement of the theorem is an immediate corollary of classical
results (see e.g. [4]). It suffices to remark that the transition probabilities
through the network can be written as p}, 5, where , 8 = ior (3, j) and

| P =0, Pigj) =P Pl =1
Then

N N N
P(n;,i = ]-aN;nijaiaj = l’N) = CHgt(n')H Hg"j(n"j)?
=1 =1 =1
where ™ (i)™
_ (4 (ny) = uTE) "
gi(n:) = (/\—.) » 9i5(ny;) = ng! ’
and

N N
lj = leip?ji),i = leiv lji = lJpJ‘
j=1 J=1

Thus l,‘ = T; and [,’j = TiPij, VZ,] = 1,...,N

The probability that a customer arriving at queue i be not served (loss prob-
ability) is exactly
Py, = ) P(ky,. .. kio1,0, ki, - . . kns kij).
2,‘;4.‘ ":‘+Z.~,,~ kij=Vv



3.2 Symmetrical network
When the network is symmetric, we have

Di; = %, /\,' =/\, Ty = T, i,j= l,N.

Let ¢g(¢) be the number of moving cars at time t. Now the probability that a
car goes to station j is equal to %, no matter which station the car was coming
from: thus it suffices to introduce only one global virtual node, which will be
assigned number 0 and contains all moving cars. The transition probabilities
are then simply

. . N AT 1 - I N
p?j=0’ 2,]=1,N,p:0=1, pSiz—ﬁ’z:l’N; P30=0

The equilibrium state distribution is obtained as in the previous theorem:

N7)ko
Jim P (z0(t) = ko, 2w{t) = k) = Pk, .., kw) = OxV+h = T2
e o] 0-
where YN k; = V. The constant C is given by
| A pv-m -1
=" cy —_ ,
0= (S R i)
where p = NAt. Then the loss probability is given by
v \ % pV—m
Pioss = p(koy..., kn-1,0) = CA CNogom——— =
ko.f.....f%,:,_l:V ° mE.—.:o N-2+ (V - m)'
\4 V—m
m P
mZ=OCN—2+m (V _ m)’ ]
= T (3.2)
S P
o TV —m)!



3.3 Asymptotic estimate of the loss probability in the
symmetrical case

It is of practical interest to compute Py, in (3.2), when the number of cars
increases with the number of stations. We shall take V =rN.

Let us introduce
s—m

8 m x
u(s, l; :L‘) = ZCI_*_mm .

m=0

Then
_u(V,N—-2;p)  u(rN,N —2;N\t)

T w(V;N—=1;p)  u(rN,N —1;NAr)’

One can check that u(s,/; z) admits the following integral representation

Pross & o(N)

Loy et dt
u(s,bie) = Z;/c to(1 — )i+

From this representation, exact asymptotic expansions can be obtained by
using the classical saddle-point method in the complex plane. Simply quoting
the main steps, we can write

1 eNA‘rtdt
u(rN,N-—Z,N/\T)— %/C;N(l_—t—)m
Analogously,
1 eN’\"dt
‘U(TN,N— I,NAT) = ﬁ'/cm

It follows (skipping all intermediate derivations — see for instance [5]) that

2 1

~ . +0(=).
/\'r+r+1+\/(z\‘r+r+1)2—4/\'rr N

¢(N) =1 (3.3)
3.4 Comparison of analytic and simulation results

The results derived in this section for symmetrical networks were compared
with simulation experiments carried out at INRIA by F. Dumontet, who used
the package QNAP. The parameters had the following values:

r=10, A=10, r =1, N = 5,50.

7
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Figure 1: Comparison of analytical and simulation results

On figure 1, the loss probability has been drawn as a function of the number
of nodes. Both simulation and analytic results show that this function is
monotone increasing,.



4 Finite capacities for cars and customers

4.1 Model description

This last model tries to cope with still more realistic assumptions. As a
consequence, there is a tremendous jump in terms of analytic complexity
and closed-form solutions.can hardly be expected. Nonetheless, it is possible
to get interesting information on the behaviour of the system when its size
becomes large.

There are N parking lots. Arrivals of cars (resp. customers) at the i-th
station form a time-homogeneous Poisson process with rate a; (resp. A;),
1=1,...,N. Let k; be the capacity of the i-th parking lot and m; be the size
of the waiting room for customers at station i—th node. Matrix P = {p;;}, as
before, denotes the routing probabilities of customers and 7;; is the average
time to travel from node ¢ to node j. A client arriving at a given node waits
for a car, if there are free waiting places; otherwise he leaves the network and
is lost. Similarly, a car arriving at a parking lot with free parking slots stays
there (if there are no waiting customers); otherwise, if there is no free space,
then the car immediately goes to node j with probability p;;.

The basic characteristics of this network are listed thereafter:

L - average number of cars waiting in parking lots;

Ly - average number of cars moving without clients;

0 - average time cars are waiting in parking lots;

v - average time necessary to looking for a free parking place at
the end of a trip;

P55 - the probability of loosing customers;

W - average customer- waiting time.

Assumption A Throughout this chapter, we shall assume that, when the
number of nodes in the above network tends to infinity, each of them behaves
approximately as a birth and death process. No attempt to present a proof of
this fact will be made, since it requires a deep study, which will be presented
in a forthcoming paper.



4.2 Analysis of a node in isolation

Take one arbitrary node in the network (its number will be omitted for the
sake of brevity). Let z(t) (resp. y(t)) be the number of cars (resp. customers)
in this node at time ¢. Define the process )

k—z(t), if z(t) >0, y(t)
2(t) = { k+y(t), ify(t)>0,=z(t)
k, if z(t) = 0, y(¢)

0,
0, (4.1)
0.

From the preceding Assumtion A, 2(t) is a birth-death process with finite
state-space and, for h sufficiently small, we have

P(z(t+h) =i+1|z(t) =1) = M +o(h), 0<i<m+k,
P(2(t+h) =i-1z(t) =i)=ah+o(h), 0<i<m+k,
P(z(t+h)=m+k+1|2(t) = m + k) = 0,

P(2(t + h) = —1]2(t) = 0) = 0.

Let
pa = lim P(2(t) = n), (4.2)
so that
A Gl IR ) (4.3)

= ] prmD
where have set p = A\/a.
Remark 2 The following holds:
1. For k = oo, a nonzero limit ({.2) exists if, and only if, p < 1.
2. For m = 00, a nonzero limit ({.2) exists if, and only if, p > 1.

3. If both k = 0o and m = oo, then p, = 0,Vn.

Return now to the components z(t) and y(t) of the process z(t). By (4.1)
and (4.3), we have

k—n
def .. P 1—-p —
Su ¥ Jim P(e(t) = n) = pun = E—2 0 ,Ekw), n=TF,

10



and we set .
i pH(1 = ™)

def
N $0= X P = T e (4.9)
Similarly,
k4n
def 1. R _P (1-p) T
Qn = lim Py(t) = n) = Petn = T a0 P LM
with
def pk+l
- Z = T (45)

The following characteristics can be obtained:

e The average number of cars waiting in parking lots:

L=f:/""j(1—p)._ (k+1)(1 — p) — 1 + pk*!

= 4.
D e D I
e The average number of waiting customers:
M= pk+l(1_(m+1)pm+mpm+l) (4 7)
T (A=p) Aty '
e The probability of loosing customers:
k+m(1 )
Pioss = Qm = —pk-f-—m+i— (4.8)
e The probability of empty return:
1-p

Now all basic characteristics of the network can be derived from the re-
lations (4.4) and (4.5), provided that one can compute all 1nten31t1es a;
(j = 1, N). The next sections show that this is indeed possible.

1



4.3 Fully symmetrical network

Suppose that

1
Dij = -N, Tij =T,)\,'=/\ and V=T‘N,

where r is a positive number. Then the average number of moving cars is
equal to rN — NL, where L has been defined in (4.6), and the intensity of
the arrival process of cars at a node (equilibrium equation) is

a=(r—L)/r, sothat L = r — ﬁ (4.10)
- p

It suffices then to substitute the unique non negative root po of (4.10) (if

any) in (4.6)-(4.9) to obtain all the basic characteristics of the network.

Denote
_ (k+1)(Q-p)=1+p
Mo = Ty

This function is monotone decreasing and

k(k +1)

L(0) =k, L(1) = },l_ffll L(p) = e tmt1)

L(oo) = 0.
The function ¥(p) = r — At/p monotonically increases and

L, AT .
¢(0) = —00, d)(p) >0, ’tf p> Ta 1/)(00) =T
Consider the following various situations:
1. If r < Ar, thenp0>%-'-21andao=z\/po</\.

2. IfAr<r< %4%)1—) + A7, then again po > 1.

3. ifr > %%Ll;+)\r, then the root of equation (4.10) is less than 1. This
means that a > A, i.e. cars arrive at a higher rate than customers: they
will be frequently free, causing thus a bad utilization of the resources

in the network.

12
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It is also now not too difficult to determine network parameters in order to
optimize the following (natural) efficiency criterion. Per unit of time, let ¢
(resp. ¢;) be the cost of loosing a customer (resp. a car) and c3, the profit
coming from the transportation of a customer. The total equivalent cost per
unit of time is '

W(k,m,r,AT) = Ae1Qm-+ 2L — caA(1 — Q). (4.11)

This function could be optimized in terms of k and r.

4.4 Approximate solutions of equation 4.10

Our intention is to analyze equation (4.10), which reads.
(k+1)(1=p) =14 1
(1 = p)(1 — pmtktl) p

e For p > 1 and m — oo, equation (4.10) is equivalent to r = Ar/p. So,
when m is large, p ~ At /7.

e Let now m = 0 and k — co. here there are no capacity constraints for
parking lots, but there is no waiting room for customers: this is the
case analyzed in section 3.2. Then (4.10) takes the form

1 AT
——— = P — -
p—1 p
or, equivalently,
rp? = (AT +r+1)p+ A7 =0, (4.12)

A7'+r+1:t\/(/\'r+r+1)2—4/\‘rr
Po = .
2r

It is not difficult to check that one of the roots of equation (4.12) lies in the
interval (0,1), while the second is greater than 1. Since k — o0, only the
second one is suitable for us, so that

. -1 2r
Poss=limp,=1—-—=1-
ko0 Po /\T+T+l+\/(/\7'+7‘+1)2—4/\7'7‘

To make the connection with section 3.3, it is amusing to check that the result
(4.13) coincides with (3.3), although obtained by quite different arguments!

. (4.13)

13



4.5 The non-symmetrical case

The basic characteristics can be obtained as in the symmetrical case, but
formulas are not so explicit. Begin with carrying out cars arrival rates {a;}.
At steady-state, cars do not accumulated in the nodes, so that we can write
flow equations:

N

a; = Zajpj,-, 1= l,N,

=t
and {a;} coincide with the stationary distribution {m;}, up to a multiplicative
constant C,, which can be obtained from the following balance equations
satisfied by the cars in movement:

N N ,
> awpimi; = Nr=3 L, (4.14)
'y.7=1 t=l '
where, from (4.6),
k k=3 . k+1
pi Tl=pi). (k+1D)1—p)—14p; i . —
L,'= J = m y Pi = — z=1,N.
2 1—pftm! (1= p:)(1 = pi*™*) o’

The left part of equation (4.14) increases from 0 to oo as a function of C,,
while its right part decreases from Nr to 0. Thus it has a unique root, which is
positive. Now relations (4.4)—(4.9) allow to compute all basic characteristics
of the network.
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