-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

A Geometrically Based Approach to 3D Skeleton Curve
Blending

Francis Lazarus

» To cite this version:

Francis Lazarus. A Geometrically Based Approach to 3D Skeleton Curve Blending. [Research Report]
RR-2458, INRIA. 1995. inria-00074218

HAL 1d: inria-00074218
https://hal.inria.fr /inria-00074218
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/50450601?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00074218
https://hal.archives-ouvertes.fr

ISSN 0249-6399

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE

A Geometrically Based Approach to
3D Skeleton Curve Blending

Francis Lazarus

N° 2458
Janvier 1995

PROGRAMME 4
Raobotique,
image

et vison

apport
derecherche







ZIINRIA

ROCQUENCOURT

A Geometrically Based Approach to
3D Skeleton Curve Blending

Francis Lazarus*

Programme 4 — Robotique, image et vision
Projet Syntim

Rapport de recherche n° 2458 — Janvier 1995 — 20 pages

Abstract: This paper presents an efficient method to smoothly transform one polyline into
another. The method makes use of a moving adapted frame associated to each curve. We
introduce a simple propagation equation involving the moving frame which accounts for
the transition between two consecutive points of a polyline. The curve transformation is
performed using the interpolation of the quantities involved in this propagation equation.
Depending on the type of interpolation, we propose two algorithms to compute the interme-
diary shape of the curve. Moreover, we define a measure of the transformation and minimize
this measure to distinguish a “minimal transformation” which the user can modify through
the addition of simple parameters.

Key-words: Curve, Computer Animation, Computer-Aided Geometric Design, Interpola-
tion, Deformation, Shape transformation.

(Résumé : tsvp)

*Email : Francis.Lazarus@inria.fr

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
Téléphone: (331) 39635511 —Téécopie: (33 1) 39635330



Une approche géométrique pour ’animation de
courbes polygonales gauches

Résumé : Nous présentons une approche originale pour calculer une transformation (ho-
motopie) entre deux courbes polygonales gauches. Pour cela nous munissons chaque courbe
d’un repere mobile. Nous introduisons ensuite une équation de propagation simple qui ex-
plicite le passage entre deux sommets consécutifs d’une courbe et dans laquelle intervient
le repére mobile. La transformation est alors effectuée a l’aide de 'interpolation des quanti-
tés apparaissant dans cette équation et nous obtenons deux algorithmes en fonction du type
d’interpolation choisi pour le repére mobile. De plus, nous définissons une mesure de la trans-
formation que nous minimisons afin de définir une “transformation minimale”, modifiable a
I’aide de parametres simples.

Mots-clé : Courbes, Animation, CAO, Interpolation, Déformation, Modélisation géomé-
trique



A Geometrically Based Approach to 3D Skeleton Curve Blending 3

1 Introduction

The animation and deformation of closed plane curves have been widely studied in image
analysis [KWT87, KTZ92, ST94] and in computer graphics [SGWM93, SG92]. However, it
seems that little attention has been paid in the computer graphics community, to the pro-
blem of the transformation of 3D open curves, even though there are many applications for
this in animation techniques. For instance, generalized cylinders or implicit surfaces defined
by skeleton curves, may be animated through the use of their skeleton [BW76, Wyv90]. We
can also animate the axial deformations proposed in [LCJ94] or use the curve transforma-
tions to perform a metamorphosis as in [LV94].

This paper presents an original approach to analyze curve transformations and proposes
two simple algorithms that, given two polylines with n vertices, compute an intermediary
polyline.

Our transformation techniques has several advantages:

e The curve transformation is very smooth.

e The interpolation of the geometric entities such as length, curvature or torsion is well-
controlled.

e The geometry of the interpolated curve is independent of the relative position of the
two initial curves in space.

e The computation is fast enough to allow the visualization of the curve animation in
fully interactive time.

In this paper, we will assume that the polylines have been obtained by regularly sampling
smooth regular parametrized curves. Note that this assumption is not restrictive, since it is
always possible to fit a polyline to an interpolating spline. One can also assume that instead
of two polylines, the user has been given two parametrized curves with which he or she
wants to get a continuous transformation of the curves.

As the motion of a curve in the 3D space may be more complex than in the plane, we
provide each curve with an associated moving frame, so that we transform both the curves
and their frames. In section 2 we show, in a theoretical framework, that the curves may
be represented by a progression equation involving their moving frame and we propose two
methods to interpolate these frames.

As the addition of a moving frame may seem unnatural we point out in section 3, the
relationship between the geometry of the curve and its frame, when a particular frame is
chosen.

In section 4, we propose a measure of the deformation and deduce from this, by a minimi-
zation process, a simple way to interpolate the moving frames. Section 5 presents extensions
to modify this “minimal interpolation” while section 6 presents our implementation and the
results.

RR n~ 2458



4 Francis Lazarus

2 Our approach

A classic way to study the geometry of a curve is to define an adapted frame along the curve,
whose members are either tangent to or perpendicular to the curve [Bis75, Fau93].

As mentionned in the introduction, we consider a parametrized curve I', defined on the
interval [0,1], sampled with the step 1. If R is an adapted frame for I', we can express
I(2L), (i = 0,1,...,n — 1), in the local frame (I'(£),R(%)) by the following progression
equation (see Figure 1)

) =)+ TR (L) 1)

1
F(z-l-

Now, given two curves I'y and I'y we can construct a curve I'y, going from I'y to I';. To do

Figure 1: From ['(%) to ['(:£L).

so we interpolate the quantities ('yt(%'),Rt(%)) from (70(%'), RO(%)) to (71(%),731(%)), and
then recover the polyline I';( ) at any time ¢ in [0,1], using equation 1.

i

n
this process is relevant when the sampling step % tends to 0. In the following two sections
2.2 and 2.3 we will propose two different ways to interpolate the frame R;(%).

i
n

In section 2.1 we will show that we can interpolate separately v;(%) and R,(%) and that

2.1 A convergent process

As we desire a smooth transformation, we must be sure when the sampling step % tends to
0, that the reconstructed curve I';(%) tends to a differentiable curve.
In order to establish this result we need some definitions. A sequence f™ of functions,
defined on [0,1], is said to converge uniformly to f if
lim  sup [|f(s)—f"(s)] =0
n—00 s€l0,1]

Furthermore, if (f/*)o<i<n is a sequence of sequences, with values in some IR?, we will say
that f* converges uniformly to f if the sequence of functions s — ansn | converges uniformly

Inria
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to f.

Let 'y and 'y be two regular parametrized curves and Ry and R their respective frames,
we put (see Figure 2)

Figure 2: The sampled curve I'y

g, = Lo(=) and 1i= ry(=), it €[0,n]

1
n

) and 1i=Ru(

S|e=3|=

R(T]b,i = RO( ) , 1€ [O,TL]

*
n
We also define:

Ag; =15 41 — T0;) and AT, =n(l7 ;00 —T7;), i€[0,n—1]
=Ry AL, and AP =R AL, i€ [0,n—1]

Since I'; (j = 0,1) is defined on the compact set [0,1], we can stipulate that I'};, R}, AT, 77,
converge uniformly to the respective functions I';, R;, I, v; %, where v;(s) is the velocity
at I';(s)! and 7'is the first vector of the canonical frame.

Now, let us suppose that we know how to interpolate 7}'; and R, in the function of
time ¢, so that we are given 7;’; and R}, such that

n . .mn n _.n
Yi=0,i = 70,i and V=1, = M,i
n _ n n _n
t=0,i — Ro,i and Rt:l,i =MN,i

and such that 77; and R}; converge uniformly to differentiable functions 7:(s) and R:(s).
Hence we see that Aj'; = Ry, v,"; converges uniformly to A; = R;~;. Finelly we can define
I'y; and I'; by

FZO =14(0), ¢t € [0,1]

- - . - LRy . !
1Since T; is regular, v; is strictly positive, i.e. v; = 1T

RR n~2458



6 Francis Lazarus

n ™
i =18+

Al
= :Ft,0+ﬁkz_0Atv’“

and
Py(s) = T4(0) + /0 Ay(uw) du

In Appendix A, we show that I'}’; converges uniformly to I';. Moreover we have F; =A; =
Rt Yt -

Hence, if v; = v; 7, we conclude that the velocity of T'; is v; and that R; is an adapted
frame at any time ¢.

Furthermore, when (s,t) — v(s) and (s,t) — Ry(s) are continuous , the mapping
(s,t) — T'y(s) defines an homotopy from the curve T’y to the curve T'.

2.2 An interpolation scheme for the moving frame

So far we have seen that we could separately interpolate the quantities ;'; and R} ;. The
3D vector ;!; may be obtained simply by a linear interpolation

Yo =1 —=1t) 7+t 1 (2)

so that 77*; converges uniformly to ((1 —t)vo(s) +tvi(s)) % where vy(s) (resp. v1(s)) is the
velocity at To(s) (resp. I'1(s)). From this we see that the time evolution of the length
is linear

1 1
o) = / Il = / (L= t)w +tvy) = (1— ) L(Ty) +LL(Ty)
0 0
It only remains to find an interpolation scheme for the frame Rj’;, which may be equally
considered as a rotation. A study of moving frames shows that for any differentiable path
R(s) in the space SOj3 of rotations we have

R (s) = R(s) Q(s)

where €2 is? the angular velocity of R. Note that we choose to multiply R(s) by €(s) on the
left, so that the components of £(s) that appear in Q(s) should be expressed in the local
frame R(s).

Hence in order to interpolate two paths Rg(s) and Ry(s) in SO3 we need only to inter-
polate their angular velocity and to solve the ordinary differential equation (ODE)

Ri(s) = Ra(s) Qu(s) (3)

where €, is an interpolation of Q4 and ©; and where the initial condition R;(0) is given by
an interpolation of the two initial frames R(0) and R;(0).

2From now on, we will denote ¥V the map U — Vu = V x U where x denotes the cross product.

Inria
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2.2.1 Solving? R =R

In general the numerical solution of an ODE is obtained by the Euler method [PFTV92] (or
any derivative method like Runge-Kutta) which advances the solution from R; to R;4+1 by

1, i
Rip1 =Ri+ —R; Q— 4
+1 + R Q() (4)

Meanwhile, such a method does not guaranty that R;41 is still a rotation. This arises from
the fact that equation 3 is defined over the rotation space SOz (a manifold embedded in
R?, homeomorphic to the projective space Py ) and that the Euler method should only be
used on an open set of a vector space. If we still wish to use the Euler method, we need to
map into a parameter space, through the use of a chart.

Hence, if (V, ¢) is a chart of SO3 around a rotation Ry and g = ¢~ is the corresponding
parametrization (see Figure 3), we should solve in the parameter space

v' = (dg)™! .9(v) 2 (5)

with initial condition vy = ¢(Ry). }
Note that (dg)~!.g(v) € is valid, since g(v) €2 lies in the tangent space of SO3 at g(v),
which is isomorphic to the product of g(v) by the space of antisymmetric matrices.

SO ® (V)

Figure 3: A chart over a neighborhood V of rotation R

In order to parametrize SO3 we use the exponential map defined by

2 . -
viserp(V)=Id+ v + V_‘ Lo =TId+ sin ||v|] v cosz||v|| 5
2! v vl
where ||| is the Euclidean norm. The remarkable character of this map may be seen by

the conjunction of the following properties: its definition is algebraic, it is analytic, and it
corresponds to the geometric definition of the exponential map that involves geodesics (see
[Car76], p. 284).

3In this part we omit the parameter ¢ and the superscript n to clarify the notations.

RR n~2458



8 Francis Lazarus

This parametrization is defined around the identity matrix but may be “shifted” around
any matrix R with the parametrization

v — Rexp(V)
The exponential map may be differentiated by using the formula [Fau89]
dezp(¥).h = Rb(v,h)

with ) )
_ vl =sin|lv] sinfjv|, , 1—cos|v]

b(v,h) = = 2
vl vl

where <, > denotes the dot product. Identifying RB(V, h) and R € we can extract h

<v,h>v+ h+ hxv

vl

h = (dezp(¥)) L. RQ = a(v,N)

where

B sin||v||
[vl[>  2lvII(1 —cos[v]])

1
a(v,h)=h+§vxh—|—( v x (v xh)
From equation 5, we now see that a “good” Euler method may be performed by the following

scheme
Vo = 0
R; =R(0) exp(¥v;)
Vit = Vi + +a(v;, Q;)

Note that we have shifted the parametrization around the initial condition R(0). Meanwhile
we can shift the parametrization around R; at each step. Since a(0,2) = €, we can see
that the Euler method, centered at each step, is equivalent to considering that
) is constant over each interval [%, %] Indeed, the equation R = R €; with initial
condition R; may be integrated in

R(s) = R; exp(s€);)

We have implemented both Euler methods (centered or not) and since we have not seen
any negligible difference, we have chosen to keep the method centered at each step, as this
requires fewer calculations. Hence, we have replaced the propagating Euler equation 4 by

Riy1 = Riexp(— Q) (6)

1
n

Inria
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2.3 Interpolation of the frame progression

One could argue that the previous calculation for R;, based on equation 3, needs to evaluate
the angular velocity of the moving frames R and R;. We present a method that directly
interpolates the progression r; = R} 'Ri+1 of the moving frame. To interpolate the rotation
7y, from rg ; = R(I,}ROJH.]_ tory,; = Rf,}Rl,H_l we make use of Shoemake’s slerping [Sho87]
and we will show that this corresponds to a linear interpolation of the angular velocity.

As stated in [BCGH92, HP93], the use of quaternions to represent rotations has several
advantages. Quaternions have only 4 coordinates in contrast to the 9 parameters of a rotation
matrix. Moreover, there is a simple 2 to 1 mapping from the space of unit-length quaternions
to the space of the rotations: the unit-length quaternion (w,z,y,z) = (w, V) is mapped to
the rotation

r=1Id+2wV +2V?2 (7)

Conversely, the rotation of angle a about unit-length axis vector b corresponds to the

quaternion
(cos(e/2), sin(a/2)Db)

and to its opposite. This former mapping is a local isometry: the geodesics around a qua-
ternion are mapped to the geodesics around the corresponding rotation.

If we now choose the corresponding quaternions gg ; and g; ; of ro ; and 1 ; such that their
scalar product (in R*) is positive, then ¢, ; = slerp(qoi,q1.,t) will represent the rotation
Tt,i-

In Appendix B, we give an outline of the reasons why the moving frame R; obtained by a
limiting process (when the sampling step tends to 0) from the equation

Rt,i+1 = Rt,i Tt,i (8)

corresponds to equation 3, where €; is a linear interpolation of €y and €.

Hence quaternion slerping provides a simple way to interpolate the moving frames. On
the other hand, no control is allowed over the interpolation of the angular velocity since it
is always linear.

3 How to frame a curve

In the previous section, we have described a general interpolation process that roughly
amounts to equations 1, 2 and 8. Hence, in order to initialize the process, we wish to evaluate
two adapted frames Ry and Ry, given two curves [y, I'y.

Below, we discuss two types of adapted frame, point out their relationship with the
geometry of the curves and give a construction of these frames.

RR n~ 2458



10 Francis Lazarus

3.1 The Frenet frame

The Frenet frame [Car76], or FF, is the most commonly used frame. It is characterized by
the nullity of the second component of the angular velocity expressed in the local frame.
Indeed, if (t,f,g) are the axis of the frame R, the angular velocity € must be of the form
—At + pg. Identifying t' and 2 x t we see that

vkn = pf

thus
f=4n g=+b p==vk A=Ztvur

where n, b, v, Kk and 7 are respectively the normal, the binormal, the velocity, the curvature
and the torsion of the curve I'.

Hence, up to the velocity, the components of €2 are equal to the curvature and the torsion
of the curve.

Now if we interpolate €2y from g to €2, keeping the second component equal to
zero, we will obtain a frame R; which is a FF at each time and the curvature and tor-
sion of the interpolated curve will be defined by the component of €4, up to its velocity
vy = (1 —t)vg + toy.

For a polyline, a good approximation of the FF may be obtained with an approximated
tangent t;, the approximated binormal b; = (t; X t;11)/||t; X t;41|| and the normal b; X t;.

3.2 The relatively parallel adapted frame

The relatively parallel adapted frame, or RPAF, is an alternative to the FF. Starting with
an arbitrary frame, we propagate the frame along the curve by rotating it as little as pos-
sible, while keeping the frame adapted to the curve. As stated in [Bis75, Klo86] it has some
advantages over the FF. Apart from its minimal rotation property, it is defined at every
point for every regular curve, twice continuously differentiable. In particular, the RPAF is
defined where the curvature vanishes, although this is not the case for the FF.

From [Bis75], it may be seen that a RPAF is characterized by the nullity of the first
component of the angular velocity expressed in the local frame. More precisely their angular
velocity takes the form €2 = vkb, where v, s and b are defined* as for the FF.

Now if we interpolate ©; from Qg to €1, keeping the first component equal to zero, we
will obtain a frame R; which is a RPAF at each time. Moreover the curvature is given
by the norm of the angular velocity €, up to the velocity v; = (1 — t)vg + tvs.

4Note that the product vkb is defined even if the (bi)normal is not, since, in this case, the curvature x
vanishes.

Inria



A Geometrically Based Approach to 3D Skeleton Curve Blending 11

For a polyline we can construct a good approximation of the RAPF. For this, first note

that o)t
iy €008 < (s),t(s +u) >

u—0 u

= v(s)k(s)

Hence, if o; denotes the angle formed by t(£) and t(*tL) (see Figure 4), it is seen that na;
converges uniformly to v(s)x(s). From this and equation 6 we obtain the recursive equation

Figure 4: The angles «; and #6;.

Ri+1 = RZ exp(aibi) (9)

So that R;y1 is obtained by rotating R; about b; of angle a;. We have thus retrieved the
results stated in [K1o86].

4 Interpolation of the angular velocity

In this section, we will discuss the method to interpolate the angular velocity once we have
provided an adapted frame for the two curves I'y and I';. This interpolation will determine
the geometry of the interpolated curve.

Firstly, we will show how to relate the angular velocity interpolation to the minimization
of a deformation measure. Since the geometry of a curve is determined by its curvature x
and its torsion 7, we minimize the length of the path® (k;,7;) that goes from (kg, 7)) to
(1, 71). This length is given by

M(T,) = /01 /01 JRe(8)? + 7i(s)? dsdt

(the superscript dot accounts for the time derivation). M is simply minimized by a para-
metrization of the segment that connects (o, 7) to (k1,71). For a uniform parametrization

5The points of this path should be considered as couples of functions.

RR n~ 2458



12 Francis Lazarus

we may choose

ki(8) = (1 — t)ro(s) + tri(s)
Ti(s) = (1 — t)10(s) + t71(s)

4.1 Link with the frenet frame

For a normal parametrization of a curve provided with the Frenet frame, we have

mwy= [ [ 1)) dsa

Hence the minimization of M leads to a linear interpolation of the angular velocity. For our
practical needs we choose to keep this interpolation even though the parametrization is not
normal. In such case we have

ﬂt(s) = (1 — t) QU(S) +t91(s)

so that (a1 .
- —1 VoK —I—t’Ulfil - B
Kt = v =Ko + —(1+Z_(1) 7%:,}_2(”1 Ko)
and (1-1) ¢ 1
_ U =tvro +toimn B
e v - (1+%})*%%(ﬁ ™)

Hence,the linear interpolation of the angular velocity leads to a monotone inter-
polation of the curvature and of the torsion.

4.2 Link with the relatively parallel adapted frame
In the case of a linear interpolation of the angular velocity we have
Q, = (1 — t) Qp+tQ = (1 — t)vonobo + tvik1 by

and by the triangular inequality

1
el < Iol + = (] = o)

(1+m)-

t vy

which shows that |r;| is comprised between |rg| and |£1]. Actually, we can obtain the same
interpolation for the curvature and for the torsion as for the Frenet frame. Indeed, in the
local frame of a RPAF, the binormal is expressed by (see [Bis75]) b = (0, —sin#8,cos6)7,
where 6 is a primitive of the torsion (see Figure 4). Thus we have

Qi = nai(O, — sin 01', COS 91) (10)

We obtain a linear interpolation of vx and v7 by replacing the linear interpolation of €; by
the linear interpolation of the angles «; and #6;.

Inria
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5 Extensions

We have seen how to interpolate two curves in a rather constrained way. In order to give
more flexibility we enable the user to add two types of scalar fields along the curve. One will
represent an extra twist of the associated frame, while the other concerns the local speed of
the transformation.

5.1 Twisting the frames

In our implementation, the user has the ability to associate a real value to some points of the
curve. Those values are then interpolated along the curve and interpreted as angles. Each
frame is then rotated about the tangent using these angles. Hence, the associated frame R
(that is the FF or the RPAF) is replaced by

R=Rr,

where 7, is a rotation of angle ¢ about the x-axis. The angular velocity € of R is related
to the angular velocity of R
Q=r_,Q -7
In order to interpolate two twisted frames Ry and R we may either interpolate separately
Q and ¢, or interpolate Q globally. In the first case the geometry of the interpolated curve
is independent of the twist, while this is not true in the second case, as may be seen when
comparing Figures 11 and 12.

5.2 Control of the transformation speed

The second scalar field is used to control the speed of the transformation. More precisely,
we replace in the linear interpolation formula, the time ¢ by a function of the time and of
the scalar field so that any quantity z; will be interpolated with

Ty = (1= f(t,9) o + f(t,9) T2

provided that f(0,7) =0 and f(1,7) = 1.
This will change the local rate of the transformation as may be seen from Figure 5.

5.3 Curve straightening

Using a constant twist of angle w, it is possible to straighten any curve with constant length.
As a matter of fact, we can transform a curve into one with a twisted angular velocity, using
quaternion slerping. As this corresponds to a linear interpolation of the angular velocity, at a
half way point, we will have ﬂ%,i = 0. From this and from the fact that the length is linearly
interpolated, we see that at time ¢ = %, the interpolated curve is a straight segment with
the same length as the initial curve. Note that the angular velocity follows a geodesic (i.e a

RR n~ 2458



14 Francis Lazarus

Figure 5: (left) The transformation of a line segment into a spiral. The interpolated curves
are visualized at time t = 0, 0.1, 0.2, 0.35, 0.5, 0.75, 1. (right) The transformation of the
same curves, but this transformation is gradually accelerated along the initial curve

segment) that passes through 0, hence the transformed path of rotation is also a geodesic in
the rotation space. More precisely, as the curve is straightened, the associated moving frame
is retracted over the identity following the geodesics (see Figure 6).

6 Implementation and results

In our implementation we have used the RPAF instead of the FF so that we have two modes
of interpolation, apart from the extra parameters. One mode uses the quaternion slerping to
correspond to a linear interpolation of the angular velocity, as stated in section 2.3, and the
other mode uses angles interpolation and is computed with formulas 10, 6, 2 and 1. Below,
we will summarize the algorithm steps for both methods. We call the two methods Q and
A (for quaternion and angle) respectively.

Preprocessing of Q
For each of the two polylines:

Inria



A Geometrically Based Approach to 3D Skeleton Curve Blending 15

Figure 6: (left) the frame Ry is retracted over the identity. (right) A straightening of a curve
visualized at time t = 0, 0.1, 0.2, 0.3, 0.4, 0.5.

1. evaluate tangents t; at points I';,

2. compute the angles o; = /(t;,tit+1), the binormales b; = (t; X ti+1)/|[t: X ti+1||, and the
quaternions ¢; = (cos(;/2),sin(a:/2)b;),

3. propagate the frame R = (to, fo, g0) = (to, no, bo) using equation 9,

4. calculate the local coordinates 7,1 = nR;l (Tig1 — T4).

Note that, in step 3 of our implementation, we convert the rotations into quaternions for
the calculation of the propagation equation 9.
Interpolation at time ¢ with Q

1. calculate (I';0,R¢,0) from (I'o,0,R0,0),(I'1,0,R1,0) and ¢,
2. compute for each i: g;; = slerp(qo,i, q1,i,t) and i = lerp(70,5, V1,55 t)s

3. recover I';; using equations 8 (converted in terms of quaternions) and 1.

Note that step 1 only influences the relative position of the interpolated curve and not its
shape. More precisely, the geometry of the transformation is independent of the relative
positions of the curves, since we consider the involved entities in local coordinates.

RR n~ 2458



16 Francis Lazarus

In our implementation we used separately lerping (linear interpolation) and slerping for
the point I'; g and the frame R .

Preprocessing of A
Same as for Q, and add the calculation of 8; = Z(g;, b;) in step 4.

Interpolation at time ¢ with A

1. same as for Q,
2. compute for each i: z;; = lerp(zo,, z1,i,t), with z = a,0 or z =1,

3. recover I'y; using equations 10, 6 and 1.

In the following examples we have used sampled cubic splines, and we have swept a
square attached to the frames in order to visualize the twist of these frames. In each figure,
the dark blue curve is transformed into the yellow one. The same curves are used for Figures
7 to 10. In Figures 7, 8, 9, 11 and 12 we use one spline segment sampled with 40 points,
while the curves in Figure 10 have only 10 points. A comparison of Image 8 and 10 shows a
very good stability of the algorithm.

In Figures 11 and 12, the initial and final key frame curves have the same shape but the
initial curve is twisted (the twist varies from 0 to 47 radian).

7 Conclusion

We have presented a new technique to smoothly transform two polylines, using adapted
moving frames. We have also shown the relationship between the two algorithms designed
for the polylines and the underlying continuous parametrizations.

Our method is particularly adapted to the control of local geometry (curvature and tor-
sion) as well as of global geometry (length). Through the use of simple intuitive parameters
the user can explore a wide variety of transformations. Moreover, the simplicity of the com-
putation allows one to carry out the transformation of curves with several hundreds of points
in interactive time. Note that, as a particular feature, our approach leads to a simple way
of straightening a curve.

Our technique could be used to animate generalized cylinders, implicit surfaces or any
objects defined by a skeleton curve. Future research could focus on the problem of self-
intersections, a topic which as not been discussed by the authors in this presentation. In
particular, if a curve resembles an open knot, we could investigate how to combine some
auto-repulsion of the curve with the evolution process proposed here. To conclude we will
borrow the words from Sederberg and al. [SG92]: “of course, extending this algorithm to
polygonal surfaces in 3-D is a worthwhile goal”.
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A T}, converges uniformly to I’

With the notation of section 2.1 we must check that

lim sup ||Ft lsn] — Ft( )” =0
n—o0 E[O 1

From the definition of I';; and T'; we have

lsn]—1

T oy — Tu(o)ll = 050+ = > i 1) - [ Ay aul
0

Transforming the sum into an integral

Lsn] -1 lsn] -1 k4l Lsn)
Soan=Y /ﬁ AgLuanuz/ L AR du
k=0 k=0 “m 0
with the fact that '}y = I';(0), we deduce
Len) s
IT% sn) — Tl = II/0 AY Lun) du*/O As(u)]l

Lsn]

gn/ 1AL ) — (WM+/ 1 Ae(w)] du
0 n

n 1
S sup ||At,|_unj _At(u)”—l— — Ssup ||At(8)”
s€[0,1] N sefo,1]

We conclude using the fact that Ay, converges uniformly to A;, and that A; is bounded over the
compact set [0,1].

B The interpolated angular velocity with quaternion
slerping
With the notation of section 2.3, let us note

qgo,; = (cos(mo,:/2), sin(ao,i/Z)bO’i) and ¢1,; = (cos(a1,:/2), sin(al,i/2)b1’i)
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Quaternion slerping [Sho87] gives

i sin(1 — t)u; + g1,s sintu;
Qi = SleTp(qo,i, Q1 t) — qo, ( ) q1

sin u;

where u; is the 4 dimensional dot product of go,; and g1.
Putting g:;; = (we,i, V¢,i), we have

sin(1 — t)u; sin tui
Wt,i = COS(“W‘/”% +cos(a,i/2) sin u;

and
sin(1 — ¢)u;

7 . int @
u bO,i +SIII(0(1,»;/2) S tu

V., = sin(a@o,:/2) b

sin u; sin u;

On the other hand, from equation 7, we can show that
. Tt,lsn] — Id .

lim ——— = lim 2N W¢ |on| Vi, |sn 11
where 7 |.,,) is the rotation associated to gi,|..|. From the expression of w;,; and V¢, the right
member of the former equality is easily shown to converge to (1 —1t) Qo(s)+1t £21(s), where nao,sbo,:
(resp. naa,ib1,;) converge to €2 (resp. ©21). From this, using classic techniques of numerical analysis,
we may conclude that the angular velocity of the interpolated frame, obtained as a limiting process
of equation 8, is a linear interpolation of £y and €2;.
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Figure 8: A transformation with method Q. Interpolated curves are

Figure 7: A transformation with method A. Interpolated curves are
visualized at time t=0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.

visualized at time t= 0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.

Figure10: Sameasfigure 8, but the curves has only 10 points.

Figure11: A transformation with method A. Thefirst curveis Figure 12: A transformation with method Q. The first curveis
twisted. twisted asin Figure 11.
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