Metadata, citation and similar papers at core.ac.uk

Provided by INRIA a CCSD electronic archive server

archives-ouvertes

On the pathwise optimal Bernoulli routing policy for
homogeneous parallel servers
Ger Koole

» To cite this version:

Ger Koole. On the pathwise optimal Bernoulli routing policy for homogeneous parallel servers. [Re-
search Report] RR-2443, INRIA. 1994. inria-00074232

HAL Id: inria-00074232
https://hal.inria.fr /inria-00074232
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/50450587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00074232
https://hal.archives-ouvertes.fr

ISSN 0249-6399

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

On the pathwise optimal Bernoulli routing
policy for homogeneous parallel servers

Ger Koole

N° 2443
Decembre 1994

PROGRAMME 1
Architectures paralleles,
bases de donnéses,

réseaux et systemes distribués

apport
derecherche







Zd I N RIA

SOPHIA ANTIPOLIS

On the pathwise optimal Bernoulli routing policy for
homogeneous parallel servers

Ger Koole

Programme 1 — Architectures paralleles, bases de données, réseaux et systéemes distribués
Projet Mistral

Rapport de recherche n° 2443 — Decembre 1994 — 10 pages

Abstract: A long-standing conjecture on the optimal Bernoulli routing policy is proven to
be true. For the case of equal exponential service times it is shown that splitting equally
among the queues minimizes the departure times in a stochastic pathwise sense. A new
technique is used, showing that certain distributional properties related to Schur convexity
propagate forward in time.
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Sur I'optimalité trajectorielle parmi les politiques de
type Bernoulli pour des serveurs homogénes

Résumé : Une conjecture sur 'optimalité des politiques de type Bernoulli est prouvée.
Dans le cas ol les temps de service sont exponentiels avec des parametres égaux, il est établi
qu'une répartition égale des clients dans les files minimise trajectoriellement les temps de
départ. Une nouvelle technique est utilisée pour démontrer que certaines propriétés de Schur
convexité des distributions se propagent dans le temps.

Mots-clé : files d’attende paralleles, routage de type Bernoulli, Schur convexité, optimalité
trajectorielle



On the optimal Bernoulli routing policy 3

1 Introduction

Consider a system with m queues, each queue having a single exponential server with para-
meter . Customers arrive at the system according to a general arrival process. We consider
the class of Bernoulli policies RP, with p = (p1,...,pm) a probability distribution, where RP
assigns each arriving customer to queue k with probability pg, 1 < k < m. We prove that
RP" with p* = (#, ey #) (which we call the Equal Splitting Policy, or ESP) minimizes the
departure process of the system in a stochastic pathwise sense. For m = 2, the optimality
of the ESP holds also for various other objective functions. Although strongly related, we
show that our result is weaker than optimality in the weak Schur convex sense.

Several papers have studied Bernoulli routing. Chang, Chao and Pinedo [2] and Chang
[1] show that the ESP minimizes in expectation functions of the workload which are increa-
sing, symmetric, L-subadditive and convex in each variable. Note that this does not imply
stochastic minimization of the workload, as indicator functions are not convex. Jean-Marie
and Giin [7] and Chang [1] consider parallel queues with resequencing, i.e., systems in which
customers have to leave the system in the same order as in which they entered it. In [1] a
result similar to the one for the system without resequencing is obtained, while [7] mainly
is concerned with stationary response times. See Combé and Boxma [3] for a recent result
and references on the model with general and unequal service time distributions.

The outline of the paper is as follows. In section 2 two lemmas, which are the basis of our
results, are shown for m = 2. The first considers just a single system with assignment vector
(p,1—p), withp > % It states that there are, in some stochastic sense, more customers in
queue 1 than in queue 2 at any time. This property of distributions resulting from Bernoulli
routing is used in a second lemma to compare two systems with different assignment vectors,
resulting in a class of functions which are minimized at each point in time by Bernoulli
routing.

In section 3 only the total number of customers in the system is considered. First it is
shown that for this case the optimality at ¢ can be seen to hold jointly over all ¢ as well. Using
coupling this can be generalized to m queues, leading to the fact that the ESP minimizes
the departure times in a stochastic pathwise sense. The section is ended with some notes
related to Schur convexity.

2 The Basic Result

In this section we confine ourselves to two queues. We use the notation RP for the policy
with assignment vector (p,1 — p).

Let {a,}2, be the sequence of arrival events (possibly a sample from a stochastic point
process). The departures can be seen to be generated by a Poisson process with rate 2pu.
At each event of this process, a queue is selected, each with probability %, and a departure
will take place at that queue if there is a customer present. If there is no customer present,
nothing happens. Condition on this Poisson process, with event times {d,}22 ;. Now order
both types of events, resulting in an event list {b,}32 ,, where each event is either an arrival
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4 Ger Koole

or a (potential) departure. Let Q?(n) = (Q}(n),@%5(n)) be the queue lengths directly after
the nth event, in a system with assignment probabilities p to queue 1 and 1 — p to queue 2,
and initial state Q(0).

Define for all 2, 7,s € INg

A(ij,8) ={(z,y) € Ng | z < i,y < j,z+y < s}

Now let
Pl(i.j,s) = P((Qf(n),@g(n)) € A(i, ], s)).
Take P¥(4,7,s) = 1 for all 4,7, s, which corresponds to starting with an empty system.

The first lemma states a property of a single system, in terms of the sets A(3,j,s).
Intuitively speaking, lemma 2.1 says (for £ = 0) that if the assignment probability to queue
1 is bigger than %, then states with more customers in queue 1 than in queue 2 are more
likely to occur than states with more customers in queue 2.

Lemma 2.1 Forp > % and for all2,5,k,s,n >0

PY(i+ i+ k,8) > PR(ii+j 4k, 5).

Proof. We will use induction on n. Note that the assertion is true for n = 0. Assume the
lemma holds up to n. Let us first consider the case that the (n + 1)th event is a (potential)
departure. Then we have

P5+1(i,j,s) = %Pfl’(i+ L,y As, s+ 1)+ %P}l’(i/\s,j +1,s4+1). (1)

This equation can be explained as follows. Let us pay attention to P2(i + 1,5 As,s + 1),
which takes into account departures from queue 1. It is easily seen that

A+ 1L, jAs,s+ 1) ={(z,y) eN} |1 <z<i+1ly<jz+y<s+1}UA0,7s).

The first set consists of all states from which a departure leads into A(z, 7, s). Besides that,
it is possible that queue 1 was already empty, resulting in a transition from a state to itself.
This explains the second set and therefore the first term of (1). The second term is similar.
We apply (1) to Ps+1(i + j,i + k,s). Note that we can reduce the values of 4, j and k&
until 4 + j < s and 4 + k < s, without changing P¥ (i +j,i + k,s) or PY (.1 4+ j + k,s),
so we assume that these inequalities hold. Consider first the case £ > 0. Then we have

PY o (i+ji+k,s) = LPP(i+j+1i+ks+1)+3iPP(i+ji+k+1,5+1)
1PPli+1i+j+ks+1)+2iPP(ii+j+k+1,5+1)
TPP(i+1,(i+j+k)As,s+ 1)+ tPE(iAs,i+j+k+1,s+1)
Prf+1(i7i+j+kvs)a

v v
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On the optimal Bernoulli routing policy 5

where the first equality follows because : 4+ 7 < s and 72 + k < s, the first inequality follows
by induction.

Now consider the case k = 0. Assuming 7 + 7 < s and similarly s < 2¢ + 7, we have, by
using equation (1),

PY o (i+j.i,8) = EPE(i+j+ 14,5+ 1)+ 3PE(i+j,i+1,5+1)
= LPP(i+ji,s+1)+1PP(i+j+1,i+1,s+1). (2)

The condition s < 2¢ + j is needed to exclude the point (i +j+ 1,4+ 1) from A(z +j+ 1,7+
1,5+ 1), as is easily verified by drawing the sets. Because by induction

PP(i+j,i,s +1) > PE(i,i+j,s + 1)

and
PPli+j+1,i+1,s+1)>PP(i+1,i+j+1,s+1),

PP (i+j,i,s) > PV ,(i,i + j,s) follows by using equation (2).

Now consider an arrival event. Define P?(i,j,s) = 0 if ¢, j or s is negative. As p > %, we
can think of an arrival event being constructed from two successive Bernoulli experiments
in the following way. With probability 2(1 — p) the first experiment leads to a “symmetric”
arrival as second experiment that sends the arriving customer to each queue with probability
%. With probability 2p — 1 the first experiment leads to an “asymmetric” arrival, which is
an arrival at queue 1. Indeed, the total probability of sending an arrival to queue 1 is correct
under this construction, as 1(2(1 — p)) + (2p — 1) = p. Now condition also on the type of
arrival, symmetric or asymmetric. Let us start with the symmetric arrivals. In general, we
have that

P (4,5,8)=3PE(i—1,j,s = 1)+ 2 PE(i,j — 1,5 — 1). (3)

This leads to, for the case k& > 0,

PY (i+ji+k,s)=1PP(i+j—-1i+ks—1)+1PP(i+ji+k—15-1).
We have
PP(i4j—1yi4+ks—1)>PP(i—1,i4j+ks—1)
and

PP(i+ji+hk—1,s—1)>PP(ii+j+k—1,5—1).

Indeed, the first inequality follows by induction for z > 0, and holds trivially for ¢ = 0. The
second inequality follows by induction in all cases.

In case k = 0, we can assume j > 0, as the case 7 = 0 follows trivially. The case 1 = 0 is
similar to that above. Assume therefore : > 0. Now we have

P5+1(i+j,i,s) = %Pg(i-'-]—1,’&,8—1)+%P5(’L+},Z—1,S—l)
= IPP(i+j—Lli,s—1)+3PP((i—-1)+(j+1),i—1,s—1).

RR n°2443



6 Ger Koole

Now P? . (i+j,i,s) > P?  (i,i+ j,s) follows easily by induction.
Finally, consider an arrival at queue 1. We can assume ¢ > 0, as P£+1 0,7+ k,s) =0.
Then

P£+1(i—|—j,i+k,s) = PPli+j—1yi+k,s—1)
> PRi—1lyi+j+ks—1)=Pl (i,i+j+ks).

a

Based on the previous lemma, we can now compare two systems with different assignment
parameters. The lemma basically states that when comparing the systems under R? and RY,
forg>p > %, the system under RP puts more probability mass on sets A(i, k, s) with k < 4,
i.e., it puts more mass on sets with a surplus of queue 2 customers.

Lemma 2.2 Forq>p > % and for all i,7,s,n >0,

Pg(i?i'l'j’s) > Pg(iai+jas)-

Proof. The proof is similar to that of lemma 2.1. If an equation holds for both P? and P4,
we omit the superscript. Assume first that the (n + 1)th event is a (potential) departure.
Assume also, without loss of generality, that ¢+ j < s. By (2) and the induction hypothesis
we have

PP (iyi+gys) = §PEGi+j,s+1)+3P0(i+1,i+j4+1,5+1)
TPi(ii4+j,s+ 1)+ 2Pli+1,i4+j+1,s+1)
= P (ii+],s)

v

Now consider an arrival event. As in the proof of lemma 2.1, we distinguish between
symmetric and asymmetric arrivals, although their definitions are somewhat different. Under
both systems the symmetric arrival occurs with probability 2(1 — ¢), the asymmetric arrival
with probability 2q — 1. If there is an asymmetric arrival, this customer joins queue 1 in the
system operated by R?. Some computations show for the system with policy RP, and an
asymmetric arrival, this customer should join queue 1 with probability p’ = (p+q—1)/(2q—
1). This leads to an overall probability of joining queue 1 under R of £2(1—q)+p'(2¢—1) = p.
We condition also on the type of arrival.

Counsider a symmetric arrival. First we consider the case j > 0. Then, by (3)

Pop1(iyi+3,8) = 3Pa(i— Li+j,s — 1)+ £ Po(ini +j — 1,5 — 1).

By differentiating between i = 0 and i > 0, and by induction, P (i1 4 j,s) > Pl ,(i,i+
7, s) follows.
Now consider the case j = 0. As in (2), we have

Poi(iyiys) = 1Pu(i— 1i— 1,8 — 1) + 1P, (i i, s — 1).

INRIA



On the optimal Bernoulli routing policy 7

By induction the inequality follows.

Finally, consider an asymmetric arrival. As argued above, under R? (R?) the arriving
customer joins queue 1 with probability p' (1). The case ¢ = 0 is easy, as P! ,(0,7,s) = 0.
Thus assume ¢ > 0. Then

PP (ii+j,s) = p'PRi—1i+j,s—1)+(1—p)Pl(i,i+j—1,s—1)
> p'PPi—1,i+j,s— 1)+ (1—pPPi—1,i+74,s—1)
= PMi-1i+4+j,s—1)>Pli—1i+j,s—1)=PL (i,i+},s),

where the first inequality follows by lemma 2.1, the second follows by induction. o

It is immediate from lemma 2 2 that Pl(z i,s8) > Pi(i,i,s) for ¢ > 1. Obviously, by

symmetry the same holds for g < < 2. This leads us to the following. Let QP (t) = (Q}(t), Q4(t))
be the queue length vector at tlme t, under the policy with assignment probability p.

Theorem 2.3 The function f(QF(t)) is mazimized in expectation by the ESP, for all t, and
all f of the form f(z) =73, apI{z € A(ip, i, sk)}, with oy > 0.

Proof. We show that the result holds for every sequence {c,}. Let ¢y < t < ¢py1. Then
QF(t) = QP(n). Because IEf(QP(t)) = > arlP(QP(t) € A(ik,tk,Sk)) = Eaka(zk,zk,sk),

the result follows from lemma 2.2.

An obvious choice for f is f(Q(t)) = I{Q(t) € A(s,s,s)} = P(Q(t) < s), leading to the
result that the ESP minimizes the total number of customers in the system stochastically
at any time .

The next section is devoted to a more systematic investigation of the allowable cost
functions. Among other things we show that the optimality of the ESP also holds in the
stochastic pathwise sense, i.e., jointly over ¢.

The generalization to more than two queues is non-trivial. The collection of sets of the
form A(z,s) = {y € INg" | yn < Zn, ., Yn < s} (which would be the obvious generalization
to m dimensions) is not closed in the sense that if there is a departure, Pn+1(m, ) cannot
be written in terms of these sets, and therefore theorem 2.3 cannot be generalized directly
to more than two queues. However, the main result of the paper, the pathwise optimality
of the ESP, will be proven for multiple queues on the basis of theorem 2.3, using coupling
arguments, in section 3.

Remark 2.4 The condition that the system is initially empty is unnecessarily restrictive;
any initial distribution P} satisfying P¥ (i + j,i + k,s) > PY(i,i + j + k, s) for all s and all
i, 7 and k will do.

Remark 2.5 Another method to compare two systems (for example, two systems operated
by different Bernoulli policies) using distributions explicitly is the one described in Stoyan
[10], section 4.2. There are two crucial differences with the current method. First, in [10]
the set of all probability distributions on the state space is used. We manage to restrict this
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8 Ger Koole

set to those satisfying lemma 2.1. Second, Stoyan [10] assumes in equation (4.2.4) that the
two systems to be considered are ordered for each initial state. For models with complete
state observations this is indeed often the case; e.g., the shortest queue policy is optimal for
each initial state ([11]). For the current model that does not hold: if queue 2 contains more
customers than queue 1 it is obviously better to send more customers to queue 1, in order
to minimize the number of customers in the system in the near future. This is precisely
where lemma 2.1 comes in: it states that states where the ESP behaves worse are less likely
to occur, given an initially empty system. In Massey [9] a method related to Stoyan’s is
described.

3 On Pathwise Optimality and Stochastic Orderings

It was shown in the previous section that the ESP minimizes stochastically the number of
customers in the system at any time ¢, and therefore it maximizes the number of departures.
Here we will prove that this result also holds jointly over all ¢, i.e., P(Q}(1) +...+ QF,(1) <
$1,..., QY (n)+ ...+ Q% (n) < s,) is maximized by the ESP, for all n and s1,...,s,. In the
proof it is first shown for m = 2, based on the results of the previous section. Then, using
coupling arguments, we generalize it to m queues. After that we will pay attention to the
departure process.

Theorem 3.1 For all n and s1,..., S,

PQY(L)+... + QR (1) < 51,0, QF () ... + QF(n) < sn)

is maximized by p = p*, i.e., the ESP minimizes the total number of customers jointly over
time.

Proof. Define Q%.(k) = Q7 (k)+. ..+ QZF, (k). First we consider the case mn = 2. For simplicity,

assume that n = 2. As QP(2) = f(QP(1),U), for some appropriate f (depending on the type
of transition), and U a r.v. with distribution Py governing the transition, we have

P(Q7(1) < 51,Q7(2) < 82) =
ZZPf(m)PU(u)I{ml +z2 < s1HA{f1(z,u) + f2(z,u) < 852}y

where we use the fact that U is independent of the state of the system. 5
Now define the defective distribution P{ by P{(x) = P{(x)I{z < s1}. Let Q?(1) have
distribution PP, and QP(2) = f(QP(1),U). It is readily seen that
P(Q7(1) < 51,Q7(2) < 52) = P(QR(2) < 52).

Thus, generalizing to n > 2, by replacing P? by 15}1’ = PPI{- < s,} after each transition, we
find the distribution of IP(Q%(1) < s1,...,Q%(n) < s,). To prove the optimality of the ESP

INRIA



On the optimal Bernoulli routing policy 9

in this case, we have to prove that the lemmas of the previous section hold for 13}3 instead
of PP. That is easily checked, because PP(i,j,s) = PP(i,j,s A s,). This proves the theorem
for the case of 2 queues.

Now consider the general case with m queues. Assume we have 2 vectors with assignment
probabilities p and ¢, with p, = q, for n # I,7 and q; > p; > pr > q,. As events, we
distinguish between an arrival at queue ! or r (with probability pi +p2), and arrivals at queue
n, n # I,7 (each having probability p, = ¢,). Similarly, one event deals with departures
from queue ! or 7 (probability %), and there is a separate departure event for each other
queue (each with probability %), giving a total of 2(m — 1) types of events. By conditioning
on all these separate events, we see that under RP and R? all events at queues other than [
and r are exactly the same, and thus 3., . Q¥ (k) = it Q! (k) for all k. Combining this
with the result for 2 queues gives us that IP(Q%(1) < s1,...,Q%(n) < s,) > PP(Q4(1) <
$1,...,Q%(n) < s,). Repetition of this argument for different  and r proves the theorem.n

Let DP(n) be the total number of departures directly after the nth event. It follows
immediately that IP(D?(1) > dy,...,D?(n) > dy,) is maximized by p = p*. Then, when
comparing R? and RP", we can couple the sample paths such that there are always less
customers in the system operated by RP". In such a case, we say that RP" is better in a
pathwise sense. Summarizing, we have the following.

Corollary 3.2 The ESP maximizes the number of departures pathwise.

We will end this section with some notes related to Schur convexity. Let us first define the
weak majorization ordering. We say that z is weakly majorized by y, z <., v, if Ele Z) <
Ele yr for £ =1,...,m, where z; is the ith largest element of z.

The functions ¢ € C preserving this ordering (i.e., the functions for which z <, y =
¢(z) < ¢(y)) are called weak Schur convex (Marshall and Olkin [8]).

If <, y then z is more balanced and/or smaller than y. In routing models, z is typically
a state preferable to y. Indeed, for several routing models policies are found which minimize
the queue lengths or the workloads in a weak Schur convex sense ([11, 6, 5, 4]).

The current result is strongly related to weak Schur convexity, as we have A(i,4,s) =
{z |z <w (1,5 — 1)} (assuming that i < s < 2¢).

It is worth noticing that the current result states that RP is better than R? if p < ¢
(which means that p <, ¢ and ) pn =, ¢n), as was pointed out in [2].

For random variables X and Y we say that X <,, Y forr.v.’s X and Y if ¢(X) <, ¢(Y)
for all weak Schur convex ¢, and <, the usual stochastic ordering. For routing models there
are often optimality results for all weak Schur convex functions. Consider for example the
model where routing decisions are allowed to depend on the queue lengths, and let X; and
Y; be the queue length vector at ¢ under shortest queue routing and an arbitrary policy. For
this case it is shown in [11, 6] that X; <,, Y; for all ¢. However, our result is weaker. Indeed,
take g € C defined by g(z) = 1 — I{z <4 (3,3) or <, (2,0)}. It is easily checked that this
is a weak Schur convex function. The current result would imply that the ESP minimizes
g if it could be written as a convex combination of functions of the form I'{z € A(i,4,s)}.
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However, g = I{z € A(2,2,4)} + I{z € A(3,3,3)} — I{z € A(2,2,3)}, which does not fall
within our class of functions. On the other hand, as convexity of the cost functions is not
needed, the result is stronger than most other often used stochastic orderings. I conjecture
that the result also holds for all weak Schur convex functions. To prove this in a similar
manner would imply proving the lemma’s for all weak Schur convex 0-1 functions, which
would complicate the proofs considerably; the sets as they are now seem to be the minimum
needed to get the induction working.

Acknowledgement. I would like to thank Rhonda Righter for stimulating discussions.
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