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Abstract: Each master iteration of a simplified Newton algorithm for solving a system
of equations starts by computing the Jacobian matrix and then uses this matrix in the
computation of p Newton steps: the first of these steps is exact, and the other are called
“simplified”.

In this paper we apply this approach to a large step path following algorithm for mono-
tone linear complementarity problems. The resulting method generates sequences of objec-
tive values (duality gaps) that converge to zero with Q-order p 4+ 1 in the number of master
iterations, and with a complexity of O(\/nL) iterations.

Key-words: Linear complementarity problem, primal-dual interior-point algorithm, con-
vergence of algorithms, simplified Newton method.
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Convergence rapide de l’algorithme de plus grand pas
simplifié

Résumé : Chaque itération majeure de la méthode de Newton simplifiée pour résoudre

un systéme d’équations commence par calculer le Jacobien, puis utilise ce Jacobien pour

le calcul de p pas de Newton : le premier de ces pas est dit exact, et les autres sont dits

“simplifiés”.

L’article applique cette approche & un algorithme de suivi de chemins & grands pas,
pour des problémes de complémentarité linéaire monotone. La méthode génére une suite de
valeurs de 'objectif (ou sauts de dualité) qui converge vers zero avec un Q-ordre p + 1 en
nombre d’iterations majeures, et avec une complexité de O(y/nL) itérations.

Mots-clé : Probléme de complémentarité linéaire, algorithme de point intérior primal-dual,
convergence d’algorithmes, méthode de Newton simplifiée.
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AMS (MOS) subject classification: 49M15, 65K05, 90C33

1. Introduction. The monotone horizontal linear complementarity problem is stated
as follows*: Find (z,s) € IR?" such that

zs = 0
(P) Qe+ Rs = b
zx,s > 0

where b € IR", and @, R € IR™*™ are such that for any u,v € IR",
if Qu+ Rv =0 then u?'v > 0.

This problem is a natural extension of linear and convex quadratic programming pro-
blems. If we add to the problem a strict complementarity hypothesis, then most of the primal-
dual interior point algorithms developed for linear programming can be directly adapted to
(P), preserving the same complexity and asymptotic convergence properties.

Presently the best convergence properties are shown for path following algorithms, which
generate points in a neighborhood of the curve known as central path. The primal-dual
central path was initially described by Megiddo [14], and the first algorithms to achieve the
low complexity of O(y/nL) iterations following this path are due to Kojima, Mizuno and
Yoshise [11] and Monteiro and Adler [19, 20].

The evolution of these methods is surveyed in the papers by Gonzaga [5] and by Kojima,
Megiddo, Noma and Yoshise [9]. The complexity bound of O(y/nL) iterations seems to be
the lowest obtainable by the existent techniques, and it is common to all methods that follow
the central path using an Euclidean proximity measure. The asymptotic convergence rates
of these methods has been the object of much effort in the last few years, and is also the
object of this paper.

The predictor-corrector algorithm introduced by Mizuno, Todd and Ye [18] for linear
programming was the first method for which a high convergence rate was proved. Ye, Guler,
Tapia and Zhang [27] and independently Mehrotra [15] proved Q-quadratic convergence for
this algorithm, when considering the predictor and corrector steps as a single iteration. Ye
and Anstreicher [26] proved the same rate for linear complementarity problems. But since
the method requires two complete Newton steps per iteration, the actual rate of convergence
is /2, and not quadratic.

This fact motivated a vivid search for an algorithm with genuine quadratic convergence.
Ye [25] proposed an algorithm in which the need for corrector steps is less frequent as the
sequence approaches the optimal face, thus achieving sub-quadratic convergence, i.e, conver-
gence of order two but not quadratic. Very recently, Luo and Ye [12] showed how corrector
steps can be restrained to a finite number, thus achieving genuine quadratic convergence.
The same rate was also obtained by Gonzaga [3], for an algorithm that follows the central
path with the largest possible pure Newton steps.

* The notation and the problem will be formally discussed ahead

RR n 2433



4 Clovis C. Gonzaga , J. Frédéric Bonnans

The largest step path following algorithm in a formulation based on the proximity
measure given by the primal-dual potential function was studied by McShane for linear
programming and for linear complementarity [13]. He proves superlinear convergence under
the hypothesis that the iterate sequence converges. Bonnans and Gonzaga [2] show that the
sequence always converges, thus confirming the superlinear convergence. This algorithm will
be the basis for the present paper, and will be thoroughly discussed ahead.

An advancement to predictor corrector algorithms that proved very efficient in practice
was proposed by Mehrotra [16]: he computed the corrector step by a simplified Newton step,
based on the Jacobian matrix already factored in the predictor step. Gonzaga and Tapia [7]
added a safeguard to this algorithm to guarantee the efficiency of the corrector steps when
far from the optimal face, and proved that the quadratic rate of convergence is preserved.

In the present paper we apply this approach to the largest step path following algorithm,
and show that it really achieves the best possible results that can be expected from a
simplified Newton algorithm with p steps per iteration: a Q-order of convergence of p+1.

Conventions. Vectors may be denoted with sub- or superscripts. The scalars y and p will
be denoted only with subscripts. Hence g/ denotes p to the power j.

Given a vector z,d, the corresponding upper case symbol denotes as usual the diagonal
matrix X, D defined by the vector. The symbol e will represent the vector of all ones, with
dimension given by the context.

Given a matrix A, its null space and column range space are denoted respectively by
N(A) and R(A). The projection matrix onto N'(A) is P4, and its complement is Py =1-Py.

We shall denote component-wise operations on vectors by the usual notations for real
numbers. Thus, given two vectors u, v of the same dimension, uv, u/v, etc. will denote the
vectors with components w;v;, u;/v;, etc. This notation is consistent as long as component-
wise operations always have precedence in relation to matrix operations. Note that uv = Uv
and if A is a matrix, then Auv = AUw, but in general Auv # (Au)v.

We shall frequently use the O(-) and Q(-) notation to express the relationship between
functions. Our most common usage will be associated with a sequence {z*} of vectors and
a sequence {u;} of positive real numbers. In this case z¥ = O(uy) means that there is
a constant K (dependent on problem data) such that for every k € IV, ||zF|| < Kpug.
Similarly, if 2¥ > 0, 2¥ = Q(ux) means that (z*)~! = O(1/us). Finally, zF ~ pj, means that
¥ = O(pr) and =% = Q(uy).

2. The simplified largest step algorithm. Consider the monotone linear comple-
mentarity problem (P).
The feasible set for (P) and the set of interior solutions are respectively

F = {(z,8)ER™|Qz+Rs=b, x,5s>0},
FO = {(z,s)e F'|z>0,5>0}.

We say that respectively « or s is feasible if there exists s or  such that (z,s) € F.

INRIA



Fast convergence of the simplified largest step path following algorithm 5

The set of optimal solutions and the set of strictly complementary optimal solutions are
respectively

F = {(z,s)e F|xs=0},
FO = {(x,s) € Flx+s>0}.

Centrality. The centrality measure is a map that associates with each (z,s) € Frand u € IR,
1 > 0, the value

zs
Sle,s, ) =||— — €|
( )= ” l

If é(x,s,p) = 0, then (x,s) is the central point associated with the parameter value g,

and the set of such points composes the well-known central path (see for instance Kojima,
Megiddo, Noma and Yoshise [9]).

Assumptions. In this paper we study only feasible problems, with the following assump-
tions:

Assumption 1. F° # 0, and initial data (2°,s%) € F° po > 0 are given such that
§(2°,% o) < 0.5.

Assumption 2. There exists a strictly complementary solution, i.e. F° # .

The strict complementarity hypothesis is discussed in Monteiro and Wright [22], where
it is shown to be necessary for obtaining algorithms with fast convergence rates.

With these hypotheses the central path is a well defined differentiable curve, which ends
at a strictly complementary solution (z*, s*).

The set F is a face of the polyhedral feasible set F', and F° is its relative interior.
This face is characterized by a partition {B, N} of the set of indices {1,...,n}, such that
if (z,s) € F° then zxy =0, sg =0, zp > 0, sy > 0. The variables 2y, sp are called small
variables, and the variables x g, sy are the large variables. The analytic center of the optimal
face (also called the central optimal solution) is characterized by z% = 0, s} = 0 and

(x5, s%) = argmin{—Zlog z; — E logs; | (z,s) € F°},
i€B ieN
and it coincides with the end point of the central path (see [9]).
Notation. The symbol w will be used to denote triplets w = (2, s, u), where (z,s) € F' and
p > 0. The notation will be consistent, e.g. w* = (z*,s* ui). We say that w = (z, s, p) is
feasible if (z,s) € F and u € [0, fo).

Our algorithm will work in an Euclidean norm neighborhood of the central path, defined

by
N ={w= (2,5, p) | wis feasible, 6(w) < 0.5}.

RR n 2433



6 Clovis C. Gonzaga , J. Frédéric Bonnans

If w=(z,s,u) € N, then Monteiro and Tsuchiya [21] show that the large and small variables
satisfy respectively

(1) (zB,sn)~1 and (zn,sB) =~ p.

They also show that the central path does not approach (z*,s*) tangentially, with the
following result: if (z,, s,) is the central point associated with each p > 0, then

(2) z,— " =0(u) and s, —s" =0(p).

The path following algorithms start each iteration from data w € A, usually coming
from a former iteration, and then take Newton steps for solving the system below, which
corresponds to the search for a point in the central path:

Zysy

Ql‘n =+ RSu

THe,
b

bl

where v € [0, 1].
A Newton step for solving this system computes a point

(3) zy=x+u, s =s+v,

where u,v are obtained by solving a linearization of the system above. The system to be
solved is

(4) sSu—+xv = —IS+ YUE,
Qu+Rv = 0.

A simplified Newton step does this linearization around a point wy, possibly different
from w. The reason for using simplified steps is that the same linearization can be used in
several steps, with great computational savings. The system to be solved is

(5) s, u+ xpv = —xs+ yue,
Qu+Rv = 0.

This system can be rewritten as

(6) ssut v = —(L—7y)as+y (—as+ pe)
Qu+ Rv = 0.

By superposition, we see that

(7) (u, 'U) = 7(Uc, 'Uc) + (1 — ’y)(ua, 'Ua),

where (uc, v.) is the solution corresponding to v = 1, called the centering step, and (uq, v4)
is the solution corresponding to v = 0, called the affine-scaling step.

INRIA
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Defining now

We = (zca Se, ,Uc) = (I + ue, s + v, /L),
(8) o — (o — m .
We = (Za,8aspa) = (&4 ug, s+ v4,0),

the result of the simplified Newton step will be
(9) wy = ywe + (1= 7)wa.

Now we present the algorithm, beginning by a formal statement of the simplified Newton
step procedure. This procedure computes the centering and affine-scaling steps from given
Wy, w.

PROCEDURE 2.1. Computation of centering and affine-scaling steps.

Data: wy, = (zy, 8, 1), w= (x,5, 1) such that w,,w €N, u < .

Compute w, and w, as in (8) by solving the system below twice, for ¥ = 0 and
v =1.

S u+ Tpv = —ITS+ YUE,
Qu+ Rv 0.

Now we state the main algorithm. Each master iteration begins by computing an exact
Newton step, i.e, by using the procedure above with w, = w, followed by at most p — 1
simplified steps which keep w, constant.

In the beginning of the iteration there is a safeguard (to be extensively commented
below,) which decides whether a centering step should be taken: if this is the case, then the
centering step is accepted and the iteration is restarted.

ALGORITHM 2.2.
Data: € >0, w® = (2°,5° ig) e N, pe IN,p > 0.
k:=0
repeat (master iteration)
Ezact step: Set w := w* w, := w* and compute w,, w, by procedure 2.1.
Safequard: If 6(0.1w, + 0.9w,) € [0.42,1] then set w := w¢,w, = w, and
compute w., w, by procedure 2.1.
steplength: compute v € (0,1) such that é(yw. + (1 — y)w,) = 0.5, and set
wy 1= yw, + (1 — 7y)w,.
for i := 1 to p— 1 do (simplified steps)
Set w := wy and compute w,, w, by procedure 2.1.
If §(w.) > 0.5 then exit loop.
steplength: compute y € (0, 1) such that 6(yw. + (1 —y)w,) = 0.5, and set
wy = yw, + (1 — y)w,.
end for
whtl = wy.
ki=k+1.
until g < e.

RR n 2433



8 Clovis C. Gonzaga , J. Frédéric Bonnans

Remarks. Each iteration of the algorithm computes either two or one exact Newton steps,
depending on whether the safeguard is triggered or not, followed by a maximum of p — 1
simplified steps. The simplified steps do not reset w,, and therefore do not need to compute
a factorization.

In the case p = 1, the algorithm essentially reduces to the largest step path following
algorithm [3]. With p = 1 and no safeguard, it reduces to the algorithm described by
McShane [13].

The safeguard computes the proximity of the point resulting from the Newton step with
7 = 0.1. Any smaller fixed number can be used instead of 0.1. If this proximity is in a narrow
interval, then the iteration is restarted from w,, i.e, a centralization step is performed. Note
that the safeguard can only be triggered when the step v = 0.1 is acceptable, which only
occurs in the final stages of the algorithm. We will explain below why it is reasonable to
expect that the safeguard will be triggered only a very small number of times. We shall very
soon comment further on the safeguard.

In each inner iteration (simplified step) the centering step is tested. If §(w,) > 0.5, then
it is inefficient, and cannot be used. In this case the remaining simplified steps are aborted.

The rest of the paper will be dedicated to proving the following theorem:

THEOREM 2.3. Assume that assumptions 1 and 2 hold, and let L = log,(fig/€). Then

(i) The algorithm finds a feasible point that satisfies x7s < ¢ in O(\/nL) iterations.

(ii) There exists i > 0 depending only on problem data such that the safequard is acti-
vated at most once whenever py < .

(iii) For allk € IN, ppy1 = O(MI,:H), and hence the sequence uyj converges to 0 with
Q-order p + 1.

The analysis will be done by proving the following facts:
— (i) is an immediate consequence of the polynomiality of the short step algorithm, proved
by Kojima, Mizuno and Yoshise [11], since the steplength here is always at least as large as
the one in that reference.
— The safeguard detects the situation in which the Newton step is very efficient (y < 0.1)
but (z,s) is far from the central solution (2*,s*), and corrects this by a centering step.
If this happens for pz small, then the iterates will stay forever near the central optimum.
Consequently, the safeguard will not be activated again.
— If (2*,s*) is near the central optimum, then the exact Newton step is very efficient,
producing v = O(p). If besides this, (2, s,) — (2, 8) = O(w), then the simplified step is also
efficient, producing v = O(p ). These conditions will be true at all iterations: the first one
because of the safeguard; the second one because large steps (steps with small v) have little
influence on the large variables.

3. Analysis of the simplified Newton step. In this section we shall use general
results about the linear complementarity problem, fully described in [2]. The notation is
greatly simplified if we use the following observation from that reference: some of the variable
pairs (z;,s;) can be permuted for the analysis of the algorithm, in such a way that  —
(zp,sn) and s — (zn, sp). Renaming the variables in this way (and rearranging the matrices

INRIA



Fast convergence of the simplified largest step path following algorithm 9

in (P)) obviously does not affect the algorithms, but simplifies the treatment: it is the same
as assuming that N = @, z is the vector of large variables, and s is the vector of small
variables. So, for the rest of the paper we use the following assumption:

Assumption 3. Assume that z is the vector of large variables and s is the vector of small
variables.

Remark. This change of variables can only be done in the analysis: it cannot be used by
algorithms, since B and N are unknown. The Newton steps are obviously not affected by
renaming the variables.

Notation. All entities related to the reference point w, will be indicated by the symbol ‘b’;
the entities related to the result of a Newton step will be indicated by ‘4’. We also define

Vo 1= p/
With this permutation, the optimal face is characterized simply by
(10) F={(z,8) € R*™ |s=0,Qx = b,z > 0}.

We assume for the remainder of this section that w,,w € N are given, and study the
Newton step from these data. The Newton equations remain unchanged,

ss,u+ xpv = —s+ yue,
(11) Qu+ Rv 0.

Scaled equations. Let us define the scaling vector

dy ==y /sy,

and scale the variables by
(12) z=z/dy,, u=u/dy, s=dys/py, v=dyv/p,.
Note that this scaling differs from the usual one by the presence of y, in the expressions.

This makes sense because z and s are now the large and small variables.
This scaling transfers the given z, and s, to the same vector

dy sy {x} )
13 oy i=xp/dy = — = .
(13) / Hb K

.. s .. .
We define similarly ¢ := , / —. The proximity measure can be written as
\/ u

(14) 8(x,s,1) = |6 —ell.

RR n 2433



10 Clovis C. Gonzaga , J. Frédéric Bonnans

Substituting the scaled variables into (11), we obtain

Pt + py U = —pp IS+ ype
QDyu+ mRD v = 0.

Dividing the first equation by w, ¢y,
s i -1
(15) utv = -4 :vsjmfbb
QDyu = —pwRD; v,
We note that 4”4 > 0 whenever u, v satisfy the second relation in (15).

Sizes. The following size limitations hold: if w;,, w € A, then

rxl, sxp, ol dxl;
vyl s 2, oyl d &
1,5y, v=0(m).

3]

& %

(16)

&I

That z & 1 follows from (1). That ¢ &~ 1 is a consequence of the definition of A, as
|2 — €| < 0.5. It follows that s = pu¢?/z ~ u, and hence d = \/uz/s ~ 1. Similar relations
hold for z}, z}, ¢, dy and Z. The size of § stems from § = dys/p, = 1, d,O(p)/p. Finally,
from a?v = u?'v > 0, we deduce that @ and v are of the order of the right hand side of (15),
i.e. of order 7.

Solution of the scaled equations.
To derive the most useful properties of the scaled equations, we shall use Lemma 5.3 of
reference [2], which proves the following result: Consider a system with the format

ut+v = f
AHu = g,

where H is a diagonal matrix whose every diagonal element is of order 1, and v L N (AH).
Then u is the orthogonal projection of f into the affine space given by AHu = g¢.
If g = O(p), then the lemma proves that

u=Pauf+O(n).
If follows that v = f — Pag f 4+ O(p), or
v=Pauf+O0(p).

Now we apply this result to the scaled system (15), for the case in which  is near ;.
LEMMA 3.1. Let M be a subset of N'x N such that if (w,w,) € M, then u = v < py,
and © — x, = O(wy). Then the solution of the simplified Newton step (11) gives

dy Bgy 4+ O(p),
= —s+ynmd, 'Pé; + O(uw).

u

INRIA
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Proof. Using the assumption that = 2, + O(y;) and remembering that , = ¢, and
d, ~ 1, we deduce that Z = ¢, + O(y, ), and it follows from (16) that

¢ e = e+ O(m).
It also follows from (16) that v = O(9,). Applying these two results to (15),

U+v = —s+yno; "+ O0(mm),
QDu = O(nm).

Following [2], we know that with the monotonicity condition, any dual feasible direction v
for the scaled LCP problem (15) satisfies

v L N(QDb)
Since d, & 1 and g = ~, u;, it follows from the result on projections described above that
i=-Ps+ynBe " + 0.

But s is the vector of small variables, and the following interesting fact holds: since any
optimal solution (z*,s*) satisfies s* = 0, any feasible vector of small variables s is also a
feasible direction s — s*. In particular for the scaled problem, s is a dual feasible direction,
and thus

51QD,, Ps=0, P5s=5.
It follows that

u = Bt +0(n),

b= =5+ ynBet + 0.

The results for the original coordinates are obtained by multiplying the first and second
equations respectively by d, &~ 1 and ,ubdb_1 & py, completing the proof. [ |

This lemma shows a very interesting fact: if both w;, and w are in the region A and the
large variables have a small variation between w, and w, then the result of the simplified
Newton step suffers very little influence from the actual values of the small variables s. In
fact, the only contribution of the data from w in the expressions in the lemma is the value
of 4, : the influence of z, s are hidden in the residuals O(p) and O(ppy ) in the formulae. This
will become clearer in the lemma below.

Let w, = (z¢, s¢, pt) and wg = (24, $q, 0) be defined as usual, as the result of the simplified
Newton step from w, with (2., s.) = (2}, $,) + (uc, vc). Define the exact Newton centering

and affine-scaling steps from w, respectively as ", = (2, 5%, ;) and w!, = (2, 5",0), with
(xt; Si) =(z, )+ (ut, UD

a’)“a’

RR n 2433



12 Clovis C. Gonzaga , J. Frédéric Bonnans

LEmMA 3.2. Let w, and w be as in Lemma 3.1. Then

se = ms.+0(ud).
and
ug = O(p)
Sa = %O(/‘bz)

Proof. The centering step from wj, is obtained from Lemma 3.1 with w = w;,, vy =, = 1,
and gives with s’ = s, + o”

= &,P¢; "+ O(w)

wd; ' Pgrt 4+ O(ud).

u
v

ﬁvmv
[

The simplified centering step from w is obtained with vy = 1:

wdy Byt + O(py)

U,

ve = mwd] Byt + 1 0(ud).

The results for the centering step follow immediately from the comparison of these two
systems. The results for u, and s, follow from Lemma 3.1 with v = 0, completing the proof.
|

This is then the behavior of a centering step when z — 2, = O(,) and g is small: the
large variables approach the center by a step u. approximately equal to ’ybu}é. Noting that
ut approximates the exact centering step from z, we see that the simplified centering step
looses efficiency. If 7, is small (we will show that 4, = O(w)), then we conclude that the
simplified centering step does not affect the large variables significantly.

The effect of simplified centering on the small variables for small g, independs on the
actual value of s, and results in s, proportional to sbc. If the central path approaches a
straight line, than the simplified centering step becomes as efficient as the exact centering
step from w.

4. Proximity measures. In this section we describe some results relating proximity
measures and FEuclidean distances between points.

We start by describing the effect of an exact centering step on the proximity measure.
This is a well known result, but we shall specialize it for our case. We use the following
lemma due to Mizuno [17]:

LEMMA 4.1. Let y,z € IR" be such that y“z > 0. Then

1
VB

lyzll < —=lly + =I1*.

INRIA



Fast convergence of the simplified largest step path following algorithm 13

LEMMA 4.2. Consider w € N and let w, be the result of an exact centering step from
w. Then
1 8% (w)

o(we) < BT 5(w)

Proof. The exact centering step corresponds to wy = w, v = 9 = 1. Using scaled
variables, Z = § = ¢, and the first equation of (15) becomes
(17) u+v=9¢"1(¢* —e).

The proximity at w is given by §(w) = ||¢? — e|| by (14). The proximity after centering is
§(we) = ||(¢ + u)(¢ + ©) — €|. Developing this and using (17), we get 6(w.) = ||uv||. Using
Lemma 4.1,

1
V8
From (17), [la + ol = 6182 — )| < 16~ |28%(). As [}6 — el] = 6(w), 7 > 1 - b(w)
for i = 1,...,n. It follows that ||¢~=1||%, < 1/(1 — §(w)). Putting together these results, we
obtain the conclusion. |

§(we) < —=|lu+v|*.

The primal scaled distance from z to x,.

Remark. In this paragraph we do not assume that « and s were reordered according to the
optimal partition. We are arbitrarily calling  ‘primal variables’, and this abuse of language
will be often used ahead, but all the results in this paragraph are true if we switch z and s.

Consider problem (P), and denote the central point associated with each g > 0 by

Wy = (Zy, Su, ).
For any feasible (2, s) we define the scaled distance from z to z, by

r— Ty

(18) dist(z, 1) = |

Ty

As we remarked above, dist(s, p) is defined similarly.
By definition, z,s, = pe. Substituting this into (18), we obtain

(19) dist(x, 1) = [| 24 — ¢]].
I
The scaled Euclidean distance between z and z, has been studied by Renegar and Shub
[24] for LP problems, using scaling about « rather than about z,. Our result below is valid

for the monotone LCP, and is sharper than theirs when applied to linear programming.
LEMMA 4.3. Consider a feasible w = (x, s, ) such that §(w) < \/2/2. Then

dist(z, p) < V2 <1 —y/1- ﬂ&(w)) .
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14 Clovis C. Gonzaga , J. Frédéric Bonnans

Proof. Without loss of generality, assume that z, = e and s, = pe. This can be achieved
by a change of scale, since z,s, = pe. Denote

r=e+dzr, s=ple+ds), 6 =6w).
The primal scaled distance is given by
dist(z, 1) = |[da| < |ldz + dsi]
because dz”ds > 0. The primal-dual proximity is given by

§ =122 — ¢|| = ||dz + ds + dads]|.
7

Using Lemma 4.1, ||dzds|| < ||dz + ds||>/+/8, and hence
§ > ||dz + ds|| — ||dz + ds||*/V/3.

Denoting z = ||dz + ds||, we have the inequality

22 —\V/82 486> 0

Solving the equation, the roots are z = /2 (1 +v1- \/56) Since § < +/2/2, the roots are
real. The inequality is satisfied for

(20) z:ﬁQ_m_ﬂg<ﬂ¢nz:ﬂQ+m_ﬂﬂ>ﬂ.

Since dist(x, u) = ||dz|| < z, all we need is to prove that the second case cannot happen, i.e.
that whenever §(w) < v/2/2, we have ||dz + ds|| < V2.
Assume by contradiction that for some feasible @, 6() < +/2/2 and ||cix + CZSH > V2.
The map z,s € F° — 8(z, s, i) is smooth and has a unique minimizer at (zz,s;). Let
us construct a continuous curve a — (z(a), s(a)) in F° that joins (Z,5) and (2, sz), along
which é(z(«), s(a), ft) decreases strictly. It suffices to integrate the differential equation

d
5 (de, ds) = (u(z,5), v(x, 5))

where (u(z, s), v(z,s)) is the centering direction at (z,s). Then

L 2= 2 (% — o) (su(x,s) + zv(z,s)) = —26(x, s, i)?,

INRIA



Fast convergence of the simplified largest step path following algorithm 15

so that é(z,s, i) decreases exponentially along the trajectory. Since ||ch + JSH > /2 and
[|dzs + dsz|| = 0, there must be a point (&, 5) on the curve such that 6(z, 3, i) < V/2/2 and
z = ||dx + ds|| = v/2. This contradicts (20), completing the proof. |

The following lemma does not make much sense at this point, but it will soon be very
useful. The lemma relates the primal distance given by ||zs,/p — €|| to an approximation
[|zsc/p — e]| which will often appear.

LEMMA 4.4. Consider w € N and let w. be the result of an exact Newton centering step
from w. Then

S,

|
7

—e|| < dist(se, ) + (14 dist(se, p))dist(z, p).

Proof. As in the proof of the previous lemma, let z, = e, s, = pe, * = e + dx and
sc = p(e +ds;). Then

xS,

|
7

—el| = [|dz + ds. + dads.[| < [|dsc[| + (1 + [|dsc|])]|d=]].

The result follows from dist(z, u) = ||dz|| and dist(s, u) = ||ds.||, completing the proof. R

Numerical values. The useful features of the lemmas in this section can be summarized
by applying them in sequence to compute some numerical bounds. The facts below do this.
Their proofs are consequences of Lemmas 4.2, 4.3 and 4.4.

The first fact applies to any w € N.

Fact 4.5. If §(w) < 0.5 then

dist(z, u) < 0.65, §(w.) < 0.177, dist(s., p) < 0.1895, ||xs./p — e]| < 0.97.

The second one applies to a point w resulting from an exact centering (note that from
the fact above such points have é(x) < 0.177).
FacT 4.6. If §(w) < 0.177 then

dist(z, p) < 0.1898 , 6(w,) < 0.014 , dist(s,, u) < 0.014 | ||zs./u — e|| < 0.206.

The last fact applies to a point in A for which we know that the primal (large) variables
are near their center.
Fact 4.7. If §(w) < 0.5 and dist(z, p) < 0.2 then ||zs./p — || < 0.43.

Primal distance to the central optimum. Now assume that z is the vector of large
variables. The central path approaches the central optimum (z*,s*) = (2*,0) when p de-
creases, and we extend (18) by defining

r—x*

(21) dist(z, 0) = | .

I*
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16 Clovis C. Gonzaga , J. Frédéric Bonnans

Using (2),
dist(z, 0) = HM”’
2y + O(p)
and since z, ~ 1,
(22) dist(x, 0) = dist(z, p) + O(p).

5. Acceptation of very large steps. In this section we prove Theorem 2.3. We start
by deriving properties of the proximity at the point wy resulting from an exact or simplified
Newton step from w € N.

LEMMA 5.1. Consider wy,,w € N, v € (0,1], % = /s € (0,1] and the result wy of the
simplified Newton step from w. Then

(23) m_e:Py(l‘cSc _e)+(1_7) <£L‘5c_e)+0(:ub)
TH K H
If e —x, = O(wy) and v, = O(w,) then

(24) oy wse L Olw)
TH H v
Proof. Using Lemma 3.2, 2, = 2 + O(w ), s¢ = O(up). It follows that

ry = yr.+(1=7)zs =vz.+ (1= 7))z + O(w) = O(1)
rse + (1 - 7)5«1 =78+ O(,u,ub).

Sy
Multiplying these expressions and remembering that s, = O(u),

. 0O
+(1_7)£+M
TH It It v

Ly St _ TceSe

(25)

The first result follows by subtracting e = ye + (1 — 7)e.
If 2 = 2, + O() and v = O(), then by Lemma 3.2 u, = O(wy) and s, = O(w).
From (25),

zys . O 0
£ _ B (uh)+78 ()
Yuo y 1
The last term equals 3, O(u2)/us = O(w), completing the proof. |

The expression in the lemma will appear several times ahead. The safeguard in particular
computes §(wy) for ¥y = 0.1 and w = w, an exact Newton step. Let us give numerical values
for this case. The values follow directly from the application of Facts 4.5 to 4.7 and (22) to
the norm of the expression (23),

§(wy) < 0.18(w,) + 0.9 |
7

—ell +O0(w).

INRIA



Fast convergence of the simplified largest step path following algorithm 17

FacT 5.2. Assume that w = wy, ¥ = 0.1. Then the result @ of the (exact) Newton step
satisfies:
(i) If 6(w) < 0.5 then 6(w) < 0.894+ O(w).
(ii) If 6(w) < 0.177 then 6(w0) < 0.194+ O(wy).
(iii) If 6(w) < 0.5 and dist(z,0) < 0.2 then §(w) < 0.403 4 O(w,).

The exact Newton step and safeguard.

Each iteration of the Algorithm 2.2 starts by an exact Newton step and an application
of the safeguard, and then proceeds to the simplified steps. We shall begin the study of the
algorithm by describing the effect of the exact step and safeguard on a generic point w.

Assume then that a point w € A is given. We shall study the following procedures
extracted from Algorithm 2.2:

Ezact step: Set wy, := w and compute w,, w, by procedure 2.1.

Safeguard: If §(0.1w, 4+ 0.9w,) € [0.42,1] then set w := w¢, w, := w, and compute
W, Wy by procedure 2.1.

steplength: compute v € (0, 1) such that é(yw. + (1 — y)wa) = 0.5, and set wy =
ywe + (1 = 7)wa.

Remark. In the next lemmas we shall introduce several bounds for u, e.g. i1, fi;. These
numbers are constants that depend only on the problem data, and not on the initial point.
LEMMA 5.3. Consider the procedure above applied to w € N. There exists jiy, not
depending on the initial point, such that for p <y,
(a) At the safeguard step, §(0.1w. + 0.9w,) < 1.
(b) After the safeguard (whether or not it was triggered), 6(0.1w, 4+ 0.9w,) < 0.42 and
llzse/p —el| < 0.49+ O(p).
(c) At the end of the computation, zy —z = O(u) and v = O(p).
Proof. Let w = 0.1w. + 0.9w,.
(a) follows from Fact 5.2(1) for u sufficiently small (say p < fiy).
If the safeguard is not triggered, then §(w) < 0.42 by construction; otherwise a centering
step produces §(w) < 0.177 by Fact 4.5 and then é(w) < 0.194+ O(p) by Fact 5.3. In any
case, §(w) < 0.42 for p sufficiently small (say u < fia < fi1). Applying this to (23) for u < fia,
=t~ e[+ 0(n).

7

Since é(w.) < 0.177 by Fact 4.5, it follows that [|zs./p — e|| < 0.487 + O(u), proving (b).
Now we prove (c). At the steplength computation, using (b),

0.42 > —0.1 6(w) + 0.9 |

zSs, O(p
05=0u) < 20w + (L= 2 - of + A2
< 0177y 40.49(1 = 7) + O(p) /vy
< 049+ 0(uw)/7.
this implies that ¥ = O(p), completing the proof. |
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18 Clovis C. Gonzaga , J. Frédéric Bonnans

The simplified Newton steps. Now we extend these results to the simplified Newton
steps. Since the safeguard is already well understood, we shall study the behavior of the
algorithmic step at a generic point w satisfying the conditions (b) in the last lemma, i.e. a
point as the Algorithm 2.2 would generate after the safeguard. To do this, we extract from
the algorithm the internal iteration, composed of one exact Newton step followed by p — 1
simplified steps:
ALGORITHM 5.4. Data: wy, = uw® € N, p > 1.
for j:=0top—1do
Set w :=w’, v, = p/p, and compute w,,w, by procedure 2.1.
If §(w.) > 0.5 then exit loop.
steplength: compute v € (0, 1) such that §(yw, + (1 — y)w,) = 0.5, and set w/ ! =
wy = yw, + (1 — 7)w,.
end for
In the Lemma below, we use the following local notation: y; is the value of u obtained
after j — 1 steps of the inner iteration.
LEMMA 5.5. Consider an application of Algorithm 5.4 to a point wy, = w® € N satisfying
the conditions in Lemma 4.3(b). There exists jis < fiy such that for p, < fi, 5 =0,1,--- p—
1:
(1) 6(wl) < 0.5, and hence the ‘exit loop’ is not triggered.
(ii) pj41 = O(M]},+2) T, or equivalently, yoy1 -+ -v; = O(,ujb'H).
(iii) 27Tt = 2, + O(y).
Proof. For j = 0 we have the exact Newton step studied in Lemma 4.3. The results
are immediate for u, < fig = ji1, since by that lemma §(w?) < 0.177, 2! = 2° + O(w),
70 = O(y).
Consider now j € {1,---,p—1} and assume that the results are true for i € {0,1,---,j—
1} for py, < fij—1. We shall prove them for iteration j.
Note initially that 2/ = &, + O(u,) because (ii) holds at the former iterations, and that
T =071 Yj—1 = O(p)) by (iii).
Also, by Lemma 3.2, zJ = 2/ + yu’ + O(y) = @7 + O(py) and si = (s> + O(u?)). Since
s~y s =30(w).
Using these results we can calculate the following:

xi sl o) b O(u2 U
L7 5 — Pyb(l;h + (/L},))(Sc + (:uh )) — ThS, + IbO(Hb) + S};O(l)
Hj Yo Hb Hb

Since z, ~ 1 and 512 SN

(26) I]S'g _ I},Si
H; I

+O(m).

t Remember that a superscript on a scalar always means power.
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Fast convergence of the simplified largest step path following algorithm 19

Using the facts established above that zJ = 2/ 4+ O(p,) and sZ = %,0(w, ),

xl sl x5l y Ol x5l
cvc _ c + v (iub) — c + O(Mh)
Hj Hj Hj Hj

Merging this with (26),

I]SJ I[,Sb
97 Tefe = D% 4 O(wy).
(21) 2E = T o)

Now we use the condition in Lemma 5.3(b), ||z,s"/u, — €|| < 0.49 to conclude from (26)
and (27) that

s 2l sl
x5 xdsl

(28) | — e[| <049+ 0(w) , |

J J

— ]| <0.49+ O(w).

For p;, sufficiently small, say p < fi; < fij_1, the second relation above proves (i). To prove
the other relations, we use (24): in the steplength computation,

ol
05 = |25 o < 1B g Q) < g4 Q)

Vi M Hj Vi Vi
This leads directly into y; = O() and hence pj41 = O(,ub)O(,u{) = O(/L{+1), proving (ii).
To prove (iii), we use Lemma 3.1 and the assumption that 7 = z, + O(y,) to get

2/t =27 +97%,0(1) + O(ny) = 2y + O(w).

This proves the relations in the lemma for j € {1,---,p — 1} with u < fp,_;. Setting
fia = fip—1 completes the proof. |
The application of the lemma above to the sequences generated by Algorithm 2.2 is
summarized in the corollary below:
COROLLARY 5.6. Consider an iteration k of Algorithm 2.2, starting at w* € N, and
assume that pp < po. Let wbk be the point obtained after the safequard. Then all p — 1

simplified steps are completed, pr41 = O(,ui“) and z*+! — :L‘f = O(ug).
Proof. Immediate from Lemma 5.5 for j = p — 1. |

This proves that in the Algorithm 2.2, uj converges to zero with Q-order p + 1. To
complete the proof of the main theorem, we must still prove that the safeguard must stop
being triggered beyond a value of y that depends only on problem data.

Triggering of the safeguard.

LEMMA 5.7. Consider a sequence (z*) generated by Algorithm 2.2. There exists ji > 0
dependent only on problem data such that the safequard can only be triggered once for pp <
.

Proof. The proof will be done by showing that after triggering the safeguard for pg
small, the condition in Fact 5.2(iii) will be forever satisfied. The statement of that condition
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20 Clovis C. Gonzaga , J. Frédéric Bonnans

will be reworded as follows:
If py is sufficiently small, say py < i1, then
§(w*) < 0.5 and dist(z*,0) < 0.2 imply §(0.1w* + 0.9w*) < 0.42 (the safeguard is not
triggered).
By Corollary 5.6, 2¥*! = zf + O(ux) and hence

: 2 + O(ux ) .
dist(+,0) = | 2 E QB ) B o) 4 o) = dist(at,0) + O(ue).

Thus there exists K > 0 dependent on problem data such that
(29) dist(zF+10) < dist(zF, 0) + K py.

Consider now an iteration k in which the safeguard is triggered, and let k& > k be the
first iteration in which it is triggered again. By Fact 4.5 and (22), we have after centering

dist(zf,0) < 0.19 + O(ur).
Merging this and (29), we get
~ k-1
dist(2*,0) < 0.194 O(ur) + K Y _ pj.
i=k

But the sequence (ur) converges to zero at least linearly because the algorithm is polynomial,
and hence

K py = O(m),
i=k
and we arrive to
dist(2*,0) < 0.19 4+ O(uz).

If pyp is sufficiently small, say pp < fi < fig, then dist(z*,0) < 0.2. As we saw above,

the safeguard cannot be triggered in iteration k. This prevents the safeguard from being

triggered twice for pi < i, completing the proof. |
This completes the proof of Theorem 2.3.
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