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Simulations numériques de couches de

mélanges compressibles avec des schémas
d’ordre élevés du type ENO

Résumé : Dans ce rapport, quelques expériences qui ont été faites avec des
schéma volumes finis d’ordre élevé du type ENO sont rapportés. Dans une
premiére partie, les parties centrales de la méthode numérique, la reconstruc-
tion et le choix du stencil, sont présentées a 1'aide de 1’équation d’advection.
L’extension de I'algorithme aux équations d’Euler et les équations de Navier-
Stokes est montrée. Les propriétés de stabilité et la précision de la méthode
sont discutés. Dans une deuxiéme partie, I’algorithme est appliqué aux équa-
tions de Navier-Stokes. Le cas test choisi est constitué d’une couche de mélange
a des nombres de Mach transoniques et subsoniques. La méthode numérique
montre des bonnes propriétés de capturer des shocks et des discontinuités de
contacte lorsque des schémas précises au troisieme sont utilisés. Des calculs
avec des schémas ENO précises au quatrieme ordre font des problemes lorsque
les maillages fins sont utilisés.
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1 Introduction

Turbulence and the transition to it are now investigated for more than one
century. Pioneer works have been done by e. g. Helmholtz [10]. Until now,
there are neither rigorous descriptions of turbulence itself nor of the tran- -
sition to it. The - very simple - picture that one has of transition is, that
an instable flow is subject of small perturbations. These perturbations are
amplified in space and time, vortices come up and interact eventually. At
the moment, there are three ways to investigate transition to turbulence: Ex-
periments, theory (especially analysis of stability) and numerical simulations.

In a first section a very brief overview of the existing experiences will be
given. Especially, several authors, who have observed an enormous influence
of the numerical methodology and the precision of the solution on the results
will be cited. This is the motiviation why .in this study high-order ENO-
schemes will be applied to shear-flow.

In the second section, the ENO-scheme used in this study will be briefly
presented, together with some already existing experiences that were made
with these new schemes. In the last two sections results will be shown and
commented.

2 The Mixing-layer

Before giving a short survey of the experiences that were already made in
the field of numerical simulation of transonic shear-layer, the compressible
Navier-Stokes-equations will be given.

2.1 The Compressible Navier-Stokes-equations

The physical problem is a two-dimensional temporally developping mixing
layer. The domain of calculation (2 is a rectangle of length L, in horizontal
direction and 2L, in vertical direction, i. e.

0<z< L, - - —Ly,fy<L, (1)



The Navier-Stokes-equations write in dimensionless form:

97 OF oG _ 10R 195 )
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The primitive variables of the fluid are density p, vector of velocities & =
[u, v], pressure p, and temperature T. The vector of conservative variables
is
p
g=1"" w1the——2——+2p(u + v?) (3)
pU
e
So e is the total energy of the fluid, v = 2 = 1.4 is the ratio of the specific
heats. The Euler fluxes in horizontal dlrectlon x and vertical direction y are

puU PV
: 2
s_ | pu’4p s_ | puv
F = ouv G = pv? 4 p (4)
u(e + p) v(e+ p)
The viscous fluxes are
0 0
R‘ — Tzx S‘ — ' Txy
T 8T w 1 oT
UTas + VTay + a0 uTey + V7 + Brarar T oy
(9)
respectively.
The shear stresses are 7,z = 2 p(2%e — g;) Tey = ;t( 8 Ty = 3 ;1(2‘9u -

a“) In this study, the viscosity y and the thermal conduct1v1y k are assumed
to be a constant (= 1).

In the above non-dimensionalized equations, the quantities poo, 2Uco, Too,
¢ and k have been used, where the index oo denotes, that a quantity is taken
at free-stream conditions. The characteristic length of the problem is é;, the
thickness of the shear layer at the beginning of the computation.



The dimensionless numbers (Reynolds number Re, Prandtl number Pr, Mach
number Ma) are defined by:

Re = oo bi poo pp . Gk Ma= 242 (g)

i k "~ VA RTo
It is easily seen, that the reference Mach number defined here is twice the
convective Mach number Ma.. To complete the set of governing equations,
it is necessary to give the equation of state in dimensionless form:

1
p= 7Masz (7)

2.2 Some results from linear analysis of stability and
direct numerical simulation

One of the most-investigated types of unstable flow is the mixing layer. Sev-
eral authors have investigated this issue either from the point of view of linear
analysis of stability or from the point of direct numerical simulation. A short
review of their results will now be given.

One often cited work is the work of Michalke [15]. He investigates the
stability-properties of a two-dimensional, incompressible and non-viscous
shear-layer. He takes a hyperbolic-tangent velocity-profile as basis profile
U, to which he adds a small sinusoidal perturbation u’.

= 51 + tanh(y)) (8)
¥ = @(y) - explia(z — c-1) 9)

a indicates the wave-number of the perturbation, x the spatial direction and
¢ is a complex number (¢ = ¢, + 7¢;). The real part ¢, is the phase velocity
and the imagimary part ¢; measures the amplification rate. Inserting eq. 8
and 9 into the Euler-equations of incompressible flow and linearisation in v’
gives the Rayleigh-stability equation:

(U —c)- (2" — a?®) - U" =0. | (10)
Together with the boundary-conditions ®(—oc0) = ®(o0) = 0, Michalke
solved the stability-equation numerically. He found the most amplified wave-
length to be a = 0.4446 and its amplification rate to be a - ¢*** = 0.0949.
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Blumen [4] extended the work of Michalke to compressible flow. He ob-
serves, that the wavelength A of the most amplified mode increases with the
Mach number. He also reports, that the amplification rate « - ¢; decreases
with increasing Mach numbers.

Sandham and Reynolds [18] studied the stability-properties of compressible,
inviscid and three-dimensional shear-layers. They investigated temporal as
well as spatial evolution of a perturbed shear-layer. Their basic velocity pro-
file is U = tanh(2y) and not U = tanh(y) as before. Here only the results
of temporal evolution will be cited briefly. They confirmed the results of
Michalke and Blumen (Fig. 1). Furthermore they observe, that for three-
dimensional flow oblique modes become dominating (Fig. 2).



<
© — )
e o "‘.\‘ ~‘\ u@o
ml T e, ., M=001_
Ch ; T - ...‘.’!.?..Q:f....
S, o | M=zo08_
h Mz=Q
-
3 ° - .;I
:.-":,-' T )
s 7 7 .
i \
14 \
g i‘ .......... -~ s \ ‘.. :

T T 4 T T T T
000 025 0% o075 100 25 150 %

a

2.00

225

Figure 1: Wavenumber and amplification-rates for hyperbolic-tangent flow
(from [18])
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tangent flow from ([18])



The results from linear stability analysis are often used for direct numer-
ical simulations. One often-investigated configuration is a box of length L,
and width L,. The basic flow is hyperbolic-tangent with small sinusoidal
perturbation. The full Navier-Stokes equations are solved numerically for
this problem.

The choice of the numerical methodology is of great importance for this
subject, where tiny effects can become, due to amplification, very important.
Different concurrent numerical methods were applied to shear-flow, namely
spectral-methods, finite-volume or finite-difference methods and Padé-schemes.

The choice of spectral methods in this issue is obvious. It is well-known,
that spectral-methods delivier high-order spatial approximations and do not
need explicit numerical viscosity for stable algortihms. Normally, for time-
dicretization second- or third-order accurate schemes are used. So if numer-
ical errors appear, they are normally attributed to time-discretization. So
there is some hope that especially at the beginning of the computation, when
small perturbations are amplified, trustful results are given and a benchmark-
ing is provided. But spectral methods fail if shocks appear. On the contrary
finite-volume or finite-difference schemes allow to treat shocks, but it is nec-
essary to introduce numerical dissipation terms, that can become dominant,
especially if small structures are investigated. Most finite-volume or finite-
difference schemes are only first- or second-order accurate.

There exist several numerical simulations that were carried out with spectral-
methods. In a second part of their study, Sandham and Reynolds [18] ap-
ply a spectral-like scheme in x-direction and a high-order Padé scheme in
y-direction. L; is choosen to be A,,,; where )4, is the most amplified wave-
length according to linear analysis of stability. The Mach number Ma, taken
at freestream-conditions, is Ma = 0.6. One vortex should be created, what
is indeed observed. The numerical amplification-rates correspond well to the
theoretical predictions.

Guillard et al. [7] investigated compressible shear-flow at transonic Mach
numbers with an adaptive spectral-method before appearance of shocks. The
test-case is basically the same as above, but the Mach number (defined as
before) is increased to Ma = 0.8 and length and width of the computational

.
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domain are adapted to the corresponding most amplified wavelength. In [12]
the results obtained with the algorithm of Guillard et al. are compared with
those of a 2nd order MUSCL method at different Mach numbers for deter-
ministic and random perturbations. In all cases a good agreement is obtained
if the initial condition consists of perturbations with sufficiently high ampli-
tudes.

In a second study, carried out with H. C. Yee, Sandham [19] investigates
the transonic shear-layer with second-order TVD-schemes. Their conclusion
is that the limiters, inherent to most TV D-schemes influence, enormously the
results. The most striking result is that for the integral quantity vorticity
thickness (what is a measure fort the growth of the shear-layer) differences
of up to 50 % are observed depending on the TVD-viscosity that was used.

Atkins [2] continues to exploit the results of linear analysis of stability. He
uses the same test-case as before, but a Mach number of Ma = 0.5 and uses
Ly =2 Mgz (Amaz is the most amplified wavelength at Ma = 0.5). He only
exites the mode A = A,,,;, all other distrubances vanish, including the inter-
action forcing mode. So two vortices should emerge and eventually interact.
Atkins observes indeed the creation of two vortices. With an analysis of the
time-evolution of the kinetic energy-spectra, he shows that the mode that
forces the vortices to interact is amplified in a non-physical way due to the
numerical dissipation. ,

Similar experiences have been made in [12] at Ma = 0.8.

The results of the numerical experiences can be summarized as:

o Linear analysis of stability is valuable tool for analysing shear-flow at
subsonic as well as at transonic Mach numbers.

e For subsonic shear-layers and determinitsic perturbations with suffi-
ciently high amplitudes the results of the different numerical schemes
(Padé, spectral, MUSCL) do not differ very much and coincide well
with the predictions of linear analysis of stability.

o If the amplitudes of the perturbations tend towards zero unphysical
amplification-rates are observed with finite-volume schemes. The rea-
son for this is numerical dissipation inherent in most finite-volume



schemes

o If shocks appear severe problemes come up as the TVD-viscosity influ-
ences enormously the results.

This shows a definite necessity for the development of finite-volume schemes
that are

e less dissipative as conventional TVD-schemes
e and can handle shocks without limitation

The most promising conception of less dissipative schemes that can handle
shocks is the ENO-conception of Harten [9], Shu [20] and their co-workers.
The goal of this study is to apply a high-order ENO-scheme that can han-
dle shocks and should be less dissipative than conventional MUSCL-schemes.
The results will be compared with the predictions of linear analysis of sta-
bility and MUSCL- and spectral computatxons The effects of numerical
dissipation will be discussed.

3 Numerical method

3.1 Finite-Volume discretisation

Now, the two principal points of the high-order ENO-scheme, the reconstruc-
tion and the choice of the stencil, will be given. A detailed description of
these schemes can be found in [5], [8] and [13].

Let us look at the two-dimensional advection-equation

du , 9f(w) , dgw)

ot ' oz 5y 0 (11)

with boundary-conditions (to be specified later) and initial conditions u(z, y, 0).
It is well known, that the solution of eq. (11) can develop discontinuities,
even for smooth initial conditions. In [5] a numerical procedure for high-
order approximations of smooth solutions of (11) is presented.

10



For the sake of simplicity, use a cartesian grid with gridpoints z;,y;. A
computational cell is given by (see Fig. 3)
dz;_1 dz; dy;_i dy;
Cij=[zi— —.—2—’1‘{ + 7] X [y; — -5—,?/:' + 7’] (12)
dzi = (Tiy1 — T4) dy; = (¥i+1 — ¥;) (13)

The cell-average of u over the cell C; ; is:

(t) / ‘ 2"' / j 2:l—. ({ ) é ( )
1,7 . . u bl 77, t d d’? ]- 1
i AJ:" M ij T dz; 1 yj—-dy2 1

with Az; = %(dm;_l + dz;) and an analogous definition for Ay;. This cell-
- average satisfies, in a semi-discrete notation

du; ; 1 A ; . ,
dtJ = Az Ay, iv1s®) = fisg s @) + 8i 51 (8) — §i5_0(D)) - (15)

even if weak solutions appear. The (exact) fluxes fi+%,]~(t),g}'~’j+%(t) -+ - have
the form

" yj+d_:j' d.’L',' :
f;'.}.%,j(t) = / dyj1 f(u(xi + 77 ﬂ,t))dﬂ (16)

Yy— 2
dz.
zit 5t

- dy;
Gy = [ e, 96y + 22, )dE (17)

Ty— 2

Eq. (15) suggests a "method of lines” approach in time. For every t = const
line eq. (15) can be written as

du; ;(t") - '
— = L@(th) (18)

’

so time-integration and spatial derivation can be treated separately.

Only the most important steps (reconstruction and choice of the stencil)
. will be explained in the next section.

11
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3.2 Reconstruction with a rectangular stencil

In this section a reconstruction procedure for a two-dimensional function on a
structured grid will be given. The extension of ENO-schemes to unstructured
grids is not evident and will not be shown here. The reader is referred to [1].
This reconstruction procedure, uses two one-dimensional interpolations. In
a first step the mean-values of u e. g. in y-direction are computed. These
mean-values are the starting points for the reconstruction in y-direction.- This
reconstruction procedure was introduced by Casper and Atkins [5].

Start with the definition of the mean-value of u over the cell Cy;

_ 1 ot Sh eyt U ded 19
uk,l—m/ dxl/y‘ 7 u(§,m)dédn (19)

(with dzy and dy; as in eq. (13), Az = I(dzy_y + dzg). )
Define now a primitive function Uj(z)

T~

m+—1 o
0@ = [ [ e w6 (20)
The exact values of this primitive functlon are known along the lines
1 d d
They = Tk + ATk Y — yé =, U+ % (21)

and the values of the primitive function are obtained from (19)
,+% 1 yi+
,;Z Aep-wii= [ [ (e n)dedn (22)

With Newton’s divided difference interpolation formula [11] a polynomial
P (z), that approximates Uj(z) to (r + 1)-th order can be found. One has

P{(z) = Ti(z) + O(Az)™! (23)
The derivatives of P/ and Uj(x) satisfy the following relations:

d —— d i+ vi+1dy
ST = o [ [ i ey =

Ay: vi—Ldyiy

1 yz+%dyl _
Ao L waagmdn =) (21)

w—3dviy

H(@) = P (z) = -(Oi(x) + OBy ™) = m(a) + O(A2)  (29)
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Each polynomial of the set {p],! = 0, jmaz} is a high-order approximation
of the corresponding function of the set {u;,{ = 0, jmaz}. For fixed z the
polynomials of the set {p],! = 0, ymaz} are one-dimensional cell-averages in
y-direction on the interval [yJ__, y”n] of a piecewise smooth function p(z, y).
One wants to find a pointwise hlgh ‘order reconstruction of p in y-direction.
Therefore define an associated primitive function by:

H(z,y) = /y p(z,n)dn (26)

The exact values of Il are known on the half-points of the grid, they are
J v
> si(@)au= [ pan)dn (27)
I:jo Jo

The new primitive function II(z,y) can be approximated by a new interpo-
lation polynomial Q"(z,y), which satisfies

Q"(z,y) = I(z,y) + O(Ay)™! (28)

The derivative of II gives the desired function p(z,y). The derivatives of -
H(z,y) and Q"(z,y) satisfy:

v = g [[ e = uiew) (29)
L@@ =P OB (30)

Applying the error- and reconstruction-relations above shows that %Q’(x, Y)
in eq. (30) is a r-th order reconstruction of u(z,y).

Note, that the explicit computation of the primitive functions Uj(z) and
II(z,y) is not necessary, since we are only interested in their derivatives
u(z) and p(z,y). Consider e. g. the interpolation polynomial P?(z). One
possible stencxl that can be used for reconstruction is {:1:,_1, Tiypls x,+3} P?
is then

14



PH() = Til,_y] o)+ Tileee yap ) (2)+ Tty 214 20 ) (@) (31)
The derivative of Pj(z) is

d — T /
=Py = Uile () + Tileie i gl (2) 4 Tiy2ig g 003 ) w4 (0) (32)

The coefficients Uifz;_ 141 ] can be obtained immediately from:

Aza; = Uziy) — Ulziy) (33)
- Uileigy) = Oi(z;y)
U= 2A.’z,~ = Ul[m‘—%x'+%] (34)
and the polynomials w(z) are given by:
(4)0((1:) = 1
wa(2) = wat(T—Ti_pyny) P21 (35)

Their derivatives are computed recursively by:

P {0 Hfn=0

w:‘(m) = 53;[(4)7;_1'(12—1,“-_%_'_“)] = 1 - 3 if n =1
-1 (.’B - xi_%+n_1) + Wwn_1 ifn>2
(36)

Choice of the stencil

Now, the choice of the stencil, i. e. the set of the cells, used for the re-
construction is going to be described. Harten et al. [8] pointed out that
an adaptive stencil must be used in order to stabilize the algorithm. It is
selected according to the smoothness of the function and its derivatives. The
criterion is, that in the vicinity of the cell Ci; the part of the function must
be used where the function and its derivatives are smoothest. The informa-
tion about the smoothness of u can be extracted from the table of the divided
differences. Especially, the divided differences have the following properties

8], [9:

15



o If uis Cw in [z, zi3x| then

1 o*
u[z; - Tigk] = —@u(&,la), z; < ik < Tigk (37)

k!
o If u exhibits a discontinuity in the p-th derivative within [z;, z;44], then
for0<p<k '

ulzi -+ zis] = O(Az) ™ [w!)] (38)

[w(P)] denotes the jump in the p-th derivative. Eq. (37) and (38) allow to
estimate the smoothness of u and its derivatives. This can be seen as follows:
suppose that u is smooth in (z; , =i, +x) but discontinous in (z;,, z;,+&) then
|ulzs, -+ - zi+4]] < |w[zi, - - 2iy44]| for Az sufficiently small. If u or one of
its derivatives has a jump, this will be reflected in the corresponding divided
difference. This shows that the task of choosing the smoothest part of u is
closely related to the task of finding the set of points where the absolute
values of the divided differences are smoothest.

Since for the reconstruction procedure two one-dimensional interpolations
are used, it is sufficient to find the "minimising” stencil for each direction.
The choice of the "minimising” stencil for the interpolation in x-direction is
now descripted. The same procedure is used for the choice of the stencil in
y-direction.

The divided differences can be computed recursively from (see [11]):

Ullz;_s] = Ui(z;y) (39)
- : Uilz;_1) — Uiz;ys :
Ul[a:‘._%x‘.*'%] = [1: 21 —- T [1 +2] (40)
t+5 -3

— UI[I‘+lI'+§] - Ul[x'_lx'_*.l]
Ullziyizigiziyg] = ‘ 2;: 23 e 1‘ 2 (41)
TR

- =

Denote the leftmost point of the stencil by ireci(z), where the index  indicates
the x-coordinate and [ indicates the y-coordinate of the cell within u is to be
reconstructed. Start with irec;(z) = ¢. To obtain the next-higher order one

16



can add the two cells z;_; and z;4,. The choice, which one is to be used will
depend on the absolute values of the corresponding devided differences

[Ui[z;_azi_1zipa]| and [Uilz;_yzipi2i:]| (42)
Apply now:
ireci(z) = treq(t) — 1
endif

The stencil is shifted to the left, if the absolute value of |U1[zi_%a:,~_%:v,»+%]| is

smaller than lUI[m.'_%f.'+%$.'+é]|- If not the point z;,1 is added. Repeat this
procedure until the stencil is determined. Visibly the same procedure can be
applied for the reconstruction in y-direction.

3.3 Evaluation of the fluxes

The fluxes to be approximated numerically are (e. g. in x-direction) from
eq. (16)

R vt =t Az;
funs®= [, S+ S5m0 (43)

In order to stabilize the numerical scheme, it is necessary to introduce a
certain amount of artificial viscosity. It is supposed that the numerical fluxes
satisfy R

f=T7+0(Az",Ay") (44)
where f is the numerical flux defined in the next section. So integral (16)
becomes

utd O r41
[ s femdn = [0, Ttz m)dn+ 0(aey ™ (a5)
) T2

This integral is computed numerically with a GauB quadrature formula. It
is well-known that (see [11])

1= [ fn)dn = 3 esfm) + Balf) (46)

i=1

is an approximation of order 2n to [ if:

17



1. n points n; € [a, b] are used for the numerical integration.

2. an interpolation formula is used for the computation of the discrete

values f(7;).

3. f has 2n continuous derivatives.

Then the error E,.{f} is found to be

FEM
E.f = / Pi(n (47)

with ; € (a,b) and Pa(n) = (7—n0)- (1 —m)" - - (1 = Nn-1), where the n; are
the points used for the interpolation formula. The coefficients ¢; of eq. (46)
can be computed by

1 5 P2(n)
= T o)

The set of points 7; that are used for the Gaul quadrature can be choosen
arbitrarily within (a,b). But for certain points, the coefficients a; become
very simple. For an equidistant mesh (Ay; = Ay;_,Vj) choose e. g.

a+b 1 b—a 1%

= (Y= =y — 49
" ) \/ﬁ( D) ) Y; V3 2 (49)
_a+b 1 b—a 1 ij
The corresponding coeflicients a; and a,; become
1 1
o = §Ay,~ az = §ij (51)

For sufficiently smooth functions I is approximated to 4“‘ order, if the f(n;)
are approx1mated to 4** order.

3.4 Artificial viscosity

To stabilize the algorithm, artificial viscosity has to be introduced. In this-
work, a Roe-type numerical viscosity is used [16]. For the simple advection
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. equation the numerical fluxes in x-direction at ¢ = z; + %Am; are:

T (zeryr15) = 5 U @0 95)) + S (@i00,9) ~ Nt w5 (s = )}
52)

with the notation

‘ 1 g
uf = u(zi+ %Af‘i) Uiy = u(Tinn - §Axi) a(uf,uyy,) = # (53)

For the case

f(z,y)) = e u(z,y) (54)
9(u(z,y)) = &-u(z,y) (55)

the scheme simplifies to

i

—n 1 - -

F(@irgr95) = gleaw (@i y5)+ear™ (s, yi) = lleall(u™ (i, 33)—u* (20, 9)))
(56)

The calculation of the numerical fluxes is done in the following steps

1. Reconstruction of the function u(z,y) form its mean-values %; ; within
the Cell C; ; at the eight GauB-points

P1=(fvi—é2—:£,yj—%%q) 2=($i—Az,y1 \}—A‘?y)’
P3=($i+%,yj_%%) P4=(x.~+%£,y, \}—iy)
PS:(L“%%,%’_%) FPs = (z; \}_A;c’y] A2y)
Pr=( a—%%f,yﬁ%ﬁ) Py = \lfA;,yﬁAy)

For this, the reconstruction procedure of section 3.2 is used.

2. Calculation of the numerical fluxes (e. g. in x-direction) at = = z; +
3Az with

o o 1 A 1 Ay, 1,
T@ig) = [ (oap = 0+ T @ap it 5500 508 (67)
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The extension of this algorithm to the system of the Euler equations is
straightforward. For the Euler equations, a first-order numerical flux-function
is defined by:

Fleipys) = 5IF@h) + F(r) - |4 — ) (59)

where W, is the vector of the primitive vaiables at the point (z;41,y;), W
the corresponding vector at the point (z;,y;) and A is the Roe-matrice [16].
Evidently, a high-order approximation of the numerical fluxes at the Gaufl-
point P; is given by:

F(Py) = IR (@0,(P0) + F(L(P)) — AN, - 3 (59)

Here w7, , ;(Ps) denotes the value of the reconstruction polynomial of the cell
Ci,; (as given in section 3.2) at the GauB-point P;. The numerical fluxes are
then computed by

F(ziyy) = [F(P) + F(P)] - 58y (60)

[T

with fourth-order accuracy, if the reconstruction is fourth-order accurate.

3.5 Computation of the viscous fluxes

The final goal of the study is to solve numerically the Navier-Stokes equa-
tions. In the last sections, the implementation of the convective fluxes and
the artificial viscosity was given. Now, a fourth-order accurate finite-volume
formulation for the implementation of the viscous fluxes is shown.

The most natural way to approximate the viscous fluxes is to use centred
formulae. Doing this properly requires to reconstruct the primitive variables
for a second time with a centred stencil. This second reconstruction of the
primitive variables doubles the CPU-cost. In order to avoid this, one would
like to use the already computed piecewise constant reconstruction polyno-
mials for the computation of the viscous fluxes.

One can not exclude, that the use of the reconstruction-polynomials of the
computation of the Euler-fluxes for the computation of the viscous fluxes
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causes trouble. The first reason for this is, that if one uses these recon-
struction polynomials for the computation of the viscous fluxes, very often
non-centred formulae will be used, which is not wanted. Furthermore these
reconstruction polynomials are - by construction - discontinuous at the cell-
interfaces. For the computation of the viscous fluxes, a discontinuous recon-
struction is not reasonable. It is true, that choosing the mean-value of the
two approximations at a cell-interface gives a high-order approximation of
the value of the function be reconstructed at the cell-interface, but this does
not remove the discontinuous character of the reconstruction.

Those are the reasons, why the primitive variables are reconstructed for a
second time with a centred stencil. There should be some more efficient
possiblities to obtain high-order accurate approximations of the primitive
variables at the cell-interfaces with centred formulae, but they are not in-
stantly visible. This point needs in any case further investigation.

For the computation of the shear-stresses, the derivatives of the velocities
and the temperature must be known with fourth-order accuracy at the cell-
interfaces. They will be obtained with high-order centred differences formu-
lae. The starting-points of these formulae are the high-order approximations
of the primitive variables at the GauB-points. The distribution of the Gaus8-
points, denoted by g¢; 1 j, gi,2,j, is shown in Fig. 4 For the computation of the

first derivative 2¥|,,, ; the following formula is used.

Ou | TUgg,,; T Bugiv1n,; — Bug_y ., + Uy

8z 12- Az

For the computation of g—“lgi,,d a similar formula is used. But one has to take

into account, that the da.uﬁ-points are not equidistantly distributed even
if an equidistant grid is used. There are two possibilities to overcome this
difficulty: The first is to use fourth-order accurate finite-differences formulae,
adapted for variable grids. Those formulae can be obtained with computer-
algebra, but they are extremely long and consequently time-consuming. The
second possibility is to use only every second GauB-point for the computation
of the derivaties. These points are equidistant if a equidistant grid is used.
One finds (for a fourth-order approximation).

=21+ O(Azx)? (61)

6_“ — —Ugi 1542 + Suy!',l,jﬂ - 8“5].‘,1,,‘-1 + Ugir,5-2
Jdy 12 Ay

+ O(Ay)* (62)
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Figure 4: Computational grid and GauB-points for the computation of the
viscous fluxes

Now the integral of the viscous fluxes can be evaluated with fourth-order
accuracy as in the previous section.

3.6 Time-integration

The simplest method for time-integration is an explicit Runge-Kutta-Multistep
scheme. In general, these schemes provide a possibility to solve numerically
equations of the ODE-type
i ;
ot

Here L is a spatial operator. The discretized form of eq. (63) is

= L(ui ;) (63)

W = A + At L(T) (6

‘.Yj

where L(%7;) is a numerical approximation of £(%; ;). The general explicit
Runge-Kutta multistep scheme for eq. (64) is

-1
o) =7+ AtY cuL@®)  I=1-m (65)
k=0
o) = a{) 7™ = gt
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The number of intermediate steps is denoted by m. The number of interme-
diate steps and the coefficients ¢, x (to be specified) determine the properties
of the scheme. The schemes used in this report were obtained by Shu and
Osher [20] under the constraints that the whole scheme (understood as tem-
poral and spatial discretization) is TVD and of the desired order of accuracy
in space and time. The restriction on the maximum time-step Aty due to
the CFL-condition inherent in all explicit time-stepping schemes was also
considered. More precisely, they have shown, that if the scheme (64) is TVD
for At < aAtq, where the number « is detemined by the ¢ 4’s. Now, we give
some examples that have been used for the computations of this report.

Shu and Osher found the following 2nd order Runge-Kutta 2-step method,
denoted by RK2 in the future. It is stable under the condition a@ = 1 (there
is no additional restriction of the time step).

W, = u (66)
#) = @ - Al (67)
) = 2—‘°’+2‘“)+ ~AtL(aY) (68)
o = @) (69)

In -[20] a third order Runge-Kutta 3-step scheme in time is presented. It will
be denoted by RK3. 1t is

) = . ‘ (70)
—(fj) = ) — AtL(E?) (71)
7l = %ﬁﬁf})+iﬂff,~)+iAtL(ﬂ5,lj)) (72)
W= g Ju o+ Ja) 7
T : (74)

Stability is obtained without any additional condition (i. e. @ = 1)
For practical calculations, we have assumed that a linear analysis of stability

was valid. This means that the linear Courant-Friedrichs-Levy criterion was
used. For the simple advection equation it is given by At < |c|Ax.
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3.7 Stability properties of ENO-schemes

As ENO schemes use an adaptive stencil, a rigoréus analysis of stability is
complicated. A rigorous analysis of stability of third-order accurate ENO-
scheme was done in [14], using the linear one-dimensional advection equation

Ou  Ou

E + Ca =0 (75)
It was shown that for ¢ > 0 the scheme is always stable if the CFL-number
fullfills the condition CF'L < 0.6.

In {13] a different approach to this issue is shown. If one uses as initial
condition the function

u(z) = u’(z) = exp(~1) (76)
the ENO-procedure is going to use at the beginning of the computation a
stencil that is oriented to the right. So a linear analysis of stability can be
done at least for the first time-steps of the computation with a fixed stencil.
For details see [13]. The results of the stability analysis reported there for
2nd order ENO-schemes can be resumed as:

e for ¢ > 0, fixed stencil schemes are always instable, but the amplifica-
tion factors do not exceed much the critical value

e for ¢ < 0, stability is obtained for CFL < 0.5

Computations with fixed stencils show an obvious tendency to instability,
while adaptive stencil computations deliver stable results [13]. This indicates
that the adaptation of the stencil ensures the stability of ENO-schemes.

3.8 On the precision of ENO-schemes

Formally, ENO-schemes can be extended to any desired order of accuracy.
But there are some well-known cases, where even for the linear advection
equation (75) severe problems come up and ENO-schemes do not have the
desired order of accuracy. The loss of precision is can only be seen if relatively
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fine grids are used in grid—reﬁnement-.studies. There are two well-known test-
problems for this subject:

u(z,0) = sin*(z) or u(z,0) = exp(—z) (77)

One instructive explanation for this behaviour was given by Shu [21]. He
observed for cases like u(z,0) = exp(—z), that the ENO-adaption procedure
uses for a certain time an unstable stencil. So oscillations occur during com-
putation. Only when the oscillations become too severe, the ENO-scheme
is going to stabilize the scheme automatically by changeing the stencil. The
price that one has to pay for this stabilisation of the scheme is a loss of pre-
cision.

Several remedies are proposed to overcome this difficulty. It seems, that un-
til now, no standard-remedy was found. There are several concurrent ideas
which all have in common, that the choice of the stencil must be changed in
a way, that the stencil is biased towards a stencil that is stable in the sense
of linear analysis of stability. For details see [17], [21] and [3], where the
authors report more or less encouraging results.

The extension of ENO-schemes to the Euler- or Navier-Stokes equations and
its application to fluid-mechanics seems sometimes to make problems. Er-
lebacher et al. [6] report, that they cannot use the Navier-Stokes equations in
conservative form to get reasonable results in shear-flow problems. Atkins (3]
shows good results on shear-flow problems with 3rd- and 5th order ENQ, but
does not report 4th order results. He uses a modified ENO scheme. Casper
and Atkins [5] show good results for flow over a ramp with 3rd order ENO.

4 Results

4.1 Physical problem

The basic flow is defined by a hyperbolic tangent velocity profile and is given
by:

1 : .
up = §tanh(2y) (78)
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2 2
= (80)
P =7
1
P yMa? (81)
A small deterministic perturbation is added to this basic flow:
- B n ¥ _1l.e
U= g sin( 3 ) - exp( 1Oy) (82)
€ 2rz 1,
v = 5-cos(—)-exp(—759°) (83)

It is easily verified that ¥V - @ = 0. A is the dimensionless wavelength of the
perturbation. € = 0.1 is the amplitude of the deterministic perturbation.

The boundary conditions are the following:
e periodic in x:

oq

oq
ﬂx:O = ﬂ:c:L, axn

- n
o0 oz

(84)

z=Ls

e slip conditions on the upper and lower boundary

dp Ou
= 5;— = 0 'Uly::tby = 0

y=xL,y

(85)
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Treatment of the cells close to the boundaries for the third-order
ENO-scheme:

In x-direction, no special treatment of the cells near the boundaries ‘is nec-
essary, as periodicity of the n-th derivative is supposed. On the contrary, in
y-direction the order of reconstruction must be reduced to second order for
for the cells y = 1 and 37 = jmazx — 1. For the cell ; = 0 and j = jmaz, the
solution of j = 1 and j = jmax — 1 is linaerly extrapolated with first order
accuracy. '

The reason for this reduction is the following: As shown in section 3.7 a re-
construction with a fixed stencil can produce instabilities. For the cell 1 =1
the stencil cannot be shifted two times downwards, as the cell j = —1 does
not exist. But a correct treatment of the ENO-procedure requires the pos-
sibility of shifting two-times downwards. On the other side, a second-order
reconstruction is possible as for the cell 7 = 1 as the ENO-reconstruction only
requires one shift. A similar treatment is applied to the cell j = jmaz — 1

In all computations a cartesian mesh was used. The grid is uniform in the
x-direction and either uniform or stretched in the y-direction. So one gets
for the mesh-sizes:

Ly
Az = N= const. (86)
while Ay is either
Ay = 21'\,]“ = const. (87)

v

or defined by a stretching parameter (see section 4.4) and N, and N, are the
number of points in horizontal and vertical direction. The number of points
varied from 101 to 251 points in x- and from 101 to 201 points in y-direction.
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4.2 Tools for analysing the flow-field
The flow will be analysed with energy-spectra. They are obtained by:

s L k) 4 (k)
o)) = 5= [ k) + loCk, )Py (38)

where 4(k,y) and ©(k,y) are the Fourier-transforms of the horizontal and
vertical components of the velocity-vector:

u(k,y) = LL /OIJ; u(z,y) - exp(ikz)de (89)
1” Ly
o(k,y) = E/a v(z,y) - exp(ikz)dz (90)

The coeficients 4(k,y) and (&, y) are approximated numerically with a fast-
Fourier-routine (FFT). The integral e(k) is approached by a simple quadra-
ture formula. The numerical approximation of e(k) is F;, where the index
l is a normalised wave-number. The relation between ! and k is | = é’;f - k.
In the future especially the time-evolution of the mode I =1 (F;(t)) will be
investigated. ‘
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4.3 Simulations at transonic Mach numbers with one
vortex

The parameters for those simulations are

Ma=16 (i.e.Ma.=0.8), Re = 400, Pr=1.0, (91)
L, =20, L, = 10, A = 20.

~ An often-used measure for the shear-layer thickness is the vorticity thickness,
defined as .
8, = S T (92)
la'{lmar
The grid is cartesian, equidistant in x- and y-direction. Fig. 5 shows the
time-evolution of the vorticity thickness of a 3rd order ENO-scheme, a 2nd
order MUSCL-scheme and a spectral method (before shocks appear). Until
T ~ 40 (the time when shocks comes up and spectral methods fail), the three
schemes show the same results. When shocks appear, a small difference be-
tween ENO- and MUSCL-schemes is observed. ENO detects the maximum
vorticity-thickness at 7' ~ 72 while MUSCL detects it at T ~ 78. In the
same figure, several runs with ENO-schemes and refined grids are shown. It
seems that computations with 151 * 151 grid-points are grid-independent.

The Fig. 6 shows the contour-lines of density, temperature, Mach num-
ber and entropy at the time T = 80 obtained with a MUSCL-scheme, Fig. 7
shows the corresponding contour-lines for a 3rd order ENO computation. The
shocks are well resolved with both schemes, the oscillations are small. But
obviously, the 3rd order ENO-scheme is less oscillatory than the MUSCL-
scheme. It seems also that the contact-discontinuities are better resolved
with ENO-schemes.
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Figufe 5: Evolution of vorticity thickness for MUSCL, ENO and spectral,
Ma, = 0.8, Re = 400, Pr = 1.0, L, = 20 - &;
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Figure 6: Contour-lines of MUSCL-scheme, 101*101 points, Ma. = 0.8,
Re = 400, Pr = 1.0, L, = 20- 6, t = 80
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Figure 7: Contour-lines of 3rd order ENO, 101*101 points, Ma, = 0.8, Re =
400, Pr=1.0, L, =20 - &;, t = 80 '
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4.4 Simulations at transonic Mach numbers with two
vortices '

The parameters of the simulations are

Ma=1.6 (i.e.Ma.=0.8), Re = 1000, Pr=0.7, (93)
L, =22.52, L, =22.52  A=11.26

The grid is a cartesian grid, equidistant in x-direction, and stretched in y-
direction. The stretching in y-direction is obtained by a transformation of
co-ordinates:
2
. (94)
Afy .
y = Lfl-o)-yi+a-y] (95)

The parameter a determines the stretching of the grid. In this simulation,
a = 0.5 was used. The number of grid-points is N; = 101 and N, = 101
points. This grid was used in the spectral-computations of [7], where the
parameter a was adjusted by the auto-adaptive spectral method presented
in this work.

51

In this computation, only the mode A = 11.26 is exited. Especially the
mode A = L, = 22.52, the mode which forces the pairing, is not exited. One
is interested, whether the pairing-forcing mode is amplified in an unphysical
way due to numerical dissipation, as it was already abserved in [2] and [12]..
If so, one wants to know, how behaves the ENO-scheme.

Fig. 8 shows the time-history of the vorticity-thickness for a 2nd order
~MUSCL- and a 3rd order ENO-scheme. There is a clear separation of the
curves. Until T' ~ 80 the two graphs give nearly the same results: a small
peak appears at T =~ 60 indicating the creation of two distinct vortices,
* what is expected from linear analysis of stability. Afterwards the graphs
differ enormously. But the two curves exhibit a big maximum at a later
time, indicating the vortex-pairing. This is shown in Fig. 9 and 10 where
the contour-lines of density and vorticity for MUSCL- and ENO-schems at
the times 7" = 180 (for MUSCL-schemes) and T = 300 (3rd order ENO)
are shown. It seems that the time when the vortex-pairing occurs depends
essentially on the precision of the numerical method.
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Figure 8: Evolution of vorticity thickness for MUSCL, ENO, Ma. = 0.8,
Re = 1000, Pr = %7, L, =15.06-¢

MUSCL, 101*101 points —
7t 3rd order ENOA~101*101 points ----

Vorticity thickness

0 50 100 150 200 250 300 350
Time

34



Figure 9: Contour-lines of the MUSCL-scheme, 101 x 101 points, Ma, = 0.8,
Re =1000, Pr =0.7T L, =22.52-6;, T =180
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Figure 10: Contour-lines of 3rd order ENQ, 101 points in x-direction, Ma, =
0.8, Re = 1000, Pr = 0.7, L, = 22.52 - é;, t = 300




These results compare well with those of [2] and [12]. Now, have a look
at the energy-spectra for a more detailed investigation of this issue.

Fig. 11 shows the time-evolution of the mode £, which is the interaction-
forcing mode, for MUSCL- and ENO-schemes for a 101 +101 points computa-
tion on a semi-logarithmic scale. The difference between MUSCL- and ENO-
schemes is obvious. The MUSCL-scheme exhibits an unphysical amplification-
rate at the beginning of the computation. After a certain threshold, linear
growth starts. ENO also shows a nonphysical amplification-rate at the begin-
ning of the computation, but develops a plateau at a very low level (much less
than the truncation error) and then linear growth starts. These observations
suggest that

e the more precise the solution is, the later the vortex-pairing starts
e MUSCL- and ENO-schemes behave differentely

This will be investigated in the next section at subsonic Mach numbers with
grid-refinement studies.
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Figure 11: Time-evolution of the mode E; for MUSCL and ENO, Ma, = 0.8,
Re = 1000, Pr = 0.7, Ly = 15.06 - é;, 101 x 101 points
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4.5 Simulations at subsonic Mach numbers with two
vortices

There are two reasons why these simulations are carried out. The first is
that one wants to verify whether the experiences made at Ma = 1.6 will also
be made qualitatively at Ma = 0.6. This should be the case if the governing
effect is the artificial viscosity. The second reason is that reference com-
putations with high-resolving spectral-methods, where no explicit numerical
dissipation terms are present, can be done.

The dimensionless parameters of the simulations are

Ma=0.6 (i.e. Ma.=0.3), Re = 1000, Pr =07, (96)
« = 15.06, L,=T1. A=1.53

The grids are equidistant in x- and y-direction. The number of points varied
from N, = 101 to N, = 251 in x- and in y-direction for the MUSCL-scheme.
For ENO, in x-direction the number of points varied from N, = 101 to
"Nz = 201 and in y-direction from N, = 101 to N, = 121. Fig. 12 shows the
time-evolution of the vorticity thickness for MUSCL- and ENO-schemes for
refined grids. Again a clear separation of the curves can be observed. Until
T ~ 35 all curves do not differ, especially the small peak at T ~ 20, indicat-
ing the creation of two distinct vortices is represented in the same way by
all curves. Afterwards, separation is observed. The position of the second,
big peak indicating the vortex-pairing depends essentially on the precision of
the solution. Again it seems that the more precise the solution is, the later
the vortex-pairing occurs. It seems also, that MUSCL- and ENO-schemes
behave in a different way, what was already suspected.

This is confirmed, if one looks at the time-evolution of the pairing-forcing
mode E; (Fig. 13). For the MUSCL-scheme, the unphysical behaviour of
E, at the beginning of the computation is obvious. When the amplitude
exceeds a certain threshold a linear growth, that is in reasonable agreement
with linear theory of stability, starts. It can also be seen from the Figure 13
that the threshold, that has to be trespassed for the start of linear growth
becomes lower. :
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ENO-schemes also show an unphysical behaviour at the beginning of the
computation that stops at a relatively low level and is followed by a plateau.
Later linear growth, in good agreement with linear theory of stabiliy starts.
Grid refinement in Figure 13 shows that the plateau before linear growth
starts is lower for finer grids. So indeed, ENO-schemes and MUSCL-schemes
behave differentely.

Fig. 14 shows the contour-lines of density, temperature, Mach number and
entropy at the time 7' = 140, i. e. when the vortex-pairing was accom-
plished. The solutions are smooth, without oscillations, all structures are
well-resolved.

Note, that the origin of the vortex-pairing, accomplished at 7' = 140 is com-
pletely unphysical (numerical dissipation). Fig. 13 and 14 suggest that any
kind of perturbation, regardless how was generated, behaves like a physical
structure if it is only sufficiently amplified.
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Figure 12: Vorticity-thickness for MUSCL and ENO, Ma. = 0.3, Re = 1000,

Pr=0.7, L, = 15.06 - §;
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Figure 13: Time history of the mode E, for MUSCL, ENO, Ma. = 0.3,
Re =1000, Pr =0.7, L, = 15.06 - §;
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Figure 14: Contour-lines of 3rd order ENO, 101 x 101 points, Ma. = 0.3,

~ Re=1000, Pr =0.7, L, = 15.06 - §;, t = 140
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4.6 Simulations with 4th-order ENO-schemes

Here some results obtained with a 4th-order ENO-scheme are shown. The
simulation is the same as in section 4.3, so the parameters of the simulation
are:

Ma=1.6 (i.e. Ma.=0.8), Re = 400, Pr=1.0, (97
L. = 20, L, = 10, A =20

Fig. 16 shows the contour lines of density, temperature, Mach number and
entropy on a 151 x 151 points grid at the time 7" = 40. In all plots, the oscil-
lations are obvious. No biasing of the stencil was used. This coincides with
the experiences of several authors who already have reported difficulties with
4% order accurate ENO-schemes and therefore introduced stencil-biasing [3],
[21]. For a 101 x 101-points grid, reasonable results were obtained. Fig. 15
shows the evolution of the vorticity thickness of 3rd- and 4th-order ENO-
schemes with refined grids. The 4th-order ENO computation on a 101 x 101
points grid coincides well with the 3rd-order computations, while the 4th-
order computation on a 151 x 151 points is not stable for times T > 70.
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Figure 15: Vorticity-thickness for 3rd- and 4th-order ENO, Ma, = 0.8, Re =
400, Pr=1.0, L, = 20 - §;
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Figure 16: Contour-lines of 4th-order ENO, 151 x 151 points, Ma. = 0.8,
Re = 400, Pr = 1.0, L, = 20. - &;, t = 40
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5 Conclusion

In this report the influence of different numerical schemes on the results of
direct numerical simulation of shear-flow was investigated. In a first part,
some results from linear analysis of stability were reported. These results
were exploited by several authors for direct numerical simulations. They ob-
served an enormous influence of the numerical viscosity and the precision of
the numerical method on the results, if usual 2nd-order accurate MUSCL-
or TVD-schemes are used. As high-order schemes should be less dissipative
than the usual 2nd order schemes it is natural to apply higher-order schemes
to this kind of flow.

In a second section, high-order ENO-schemes and some of their most im-
portant properties were given. The most important steps, the reconstruction
procedure and the choice of the stencil were discussed. An attempt to un-
derstand the stability properties of this new kind of scheme was done. Also,
it was reported, that ENO-schemes with higher orders (e. g. 4, 5,..) can not
have the desired accuracy.

The algorithm was applied to the full, compressible Navier-Stokes equations
in two dimensions. The results of 3rd-order accurate ENO-computations with
one structure compare well with those of MUSCL- and spectral-methods.

As for computations with two structures, where only the most amplified
mode is exited and the amplitudes of all other modes vanish, it seems that
ENO-schemes do not behave in the same manner as MUSCL-schemes. There
is a certain tendency indicating, that the more precise the solution is, more
trustfull results are obtained. But unfortunately, no grid-independent results
can be obtained with ENQO-schemes. Computations with spectral-methods
on this subject are foreseen.

The computations with 4th-order ENO-schemes make problemes. At the
moment computations on fine grids can not be done. It might be that the
procedure of adapting the stencil must be changed as it was suggested by
several authors. Also the implementation of the computation of the viscous
fluxes must be investigated, as the actual procedure doubles the CPU-cost.
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