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Abstract: This paper addresses the problem of distributed program synthesis. In the first part,
we formalize the distribution process and prove its correctness, i.e. that the initial centralized
program’s behavior is equivalent to the corresponding distributed’s one. In order to achieve
that, we first represent the program by a finite transition system, labeled by the program’s
actions. Then we derive an independence relation over the actions from the control and data
dependencies. This leads to represent the program by an order-automaton, whose transitions
are labeled partial orders coding for an action and its dependencies with other actions. In
the second part, we show how such an order-automaton can be practically used to derive a
distributed program.
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Répartition d’Automates pour un
Réseau Asynchrone de Processeurs

Résumé : Cet article porte sur le probleme de la construction des programmes répartis. Dans
la premiére partie, nous formalisons le processus de répartition et nous prouvons sa correction,
c’est-a-dire que le comportement du programme centralisé initial est équivalent a celui du
programme réparti correspondant. Dans ce but, nous représentons le programme par un systéme
de transitions étiquetées par les actions du programme. Puis nous établissons une relation de
commutation sur les actions en fonction des dépendances de controle et de données. Ceci nous
ameéne a représenter le programme sous la forme d’un automate d’ordres, dont les transitions
sont étiquetées par des ordres partiels exprimant les liens de dépendence entre une actions et les
autres actions du programme. Dans la seconde partie, nous montrons comment un tel automate
d’ordres peut étre utilisé en pratique pour obtenir un programme réparti.

Mots-clé : théorie de la répartition, automates et langages formels



1 Introduction

We consider the problem of distributed program synthesis, which becomes of paramount
importance for the design of programs on distributed computers or networks of processors.

In distributed machines, each process has its own memory and processes must communicate
explicitly by sending and receiving messages. As a result, the programmer faces the enormously
difficult task of managing the entire parallel execution: he has to design the different codes and
data to be distributed on the processors, and to manage communication among tasks. This, in
addition to being error-prone and time-consuming, generally leads to non-portable code. Hence,
parallelizing compilers for distributed machines have been an active area of research recently.

Research has benefited from progress in compiler technology which permits to forecast different
and large application areas:

e Automated distribution of sequential programs: the programming model, imperative
sequential programming (e.g. Fortran) is left unchanged, but a compiler is required to
express its work in terms of a distributed execution model. The goal is to obtain better
performances. Currently, the main parallelization technique in this area is the “data-
driven” approach, which consists in automatically creating communicating processes from
sequential code plus data decomposition specifications. The most usual code generation
is based on the Single Program Multiple Data principle [6] and on the standard notion of
“refresh” of remote variables [1]. The correctness of the distribution is achieved when, given
corresponding initial data, either the source sequential code and the parallel generated one
produce corresponding results, or both of them diverge [3].

e Automated distribution of reactive systems: in that case, increasing performances is not
the only motivation, distribution can be driven by the location of sensors and actuators.
Synchronous languages are good candidates to program reactive systems [5, 4]. They
demand a deterministic style of programming, which simplifies the development process.
But, in contrast with the distribution of sequential imperative programs, reactivity must
be carefully preserved by the distributed implementation [7].

e Protocol synthesis: the starting point is the service specification. The distributed protocol
is then synthesized by applying general transformations which preserve the original
semantics. This domain is the most difficult to automatize, due to the usual non-
determinism of protocol service specifications [12, 16].

All these application areas, listed by increasing complexity, require a formal treatment in order
to be able to define transformations rigorously and to prove their properties. We are involved
in the formal characterization of the distributed behaviors obtained by applying
these transformations. The major goal of this paper is to give a first contribution to a sound
theoretical foundation.

Formal works on automated distribution are still young. For this reason, they are all based
on simple models like automata or nets [11]. We chose to dig this way by using finite transition
systems, which appeared well suited to capture the control structures of the programs we
consider. Consequently, we focus on the problem of formalizing the distribution process and on
the characterization of the generated distributed behaviors. Starting from a single automaton,
we decide to create parallelism by using some given independence relation between the elements
of the alphabet. This knowledge is usually deduced from a static analysis of the source program,
identifying the control and data dependencies. Since independence is generally not symmetric
(e.g. considering read and write operations on variables), we use the generalization of the
well-known theory of trace-languages [14, 9] to semi-commutations [8].



The independence relation identifies the different admissible re-orderings of transitions that
can occur in the distributed implementation. This will be formally captured by the notion of
word and language closure. The main result of this paper is to show how the distribution
process is able to generate a code whose behaviors are as close as possible to the set of
admissible behaviors. We show the consequences of message synchronization and the difficulty
of non-deterministic choices. To do that, we use an original intermediate representation: order-
automata.

Apart from the applications mentioned in the beginning, there are some related works on
models. As far as we know, the closest contribution comes from A. Petit [15].

In this related work a new characterization of recognizable trace languages is given: a trace
language is recognizable if and only if it is recognized by a so-called “distributed automaton”.
The key point of this work is that distributed automata can easily be mapped onto parallel
architectures!. However these automata hardly suit distributed architectures because of the
existence of a process in charge of every processor synchronization. Moreover the case of rational
trace languages cannot be addressed with this method. Finally “distributed automata” are
tightly coupled to trace theory. Its generalization to non-symmetric independence relations
seems very unlikely.

The paper is organized as follows.

We first present a theoretical model based on labeled partial orders. This model allows us to
code with a labeled partial order the closure of words modulo an independence relation. Then
we propose two algorithms generating order-automata. To some extent, these order-automata
recognize closure of regular languages modulo an independence relation. The last part of the
paper shows that our formal model can be applied to practical distribution applications.

2 Labeled Partial Orders

Partial order theory helps in formalizing automata distribution. This section deals with some
basic tools on partial orders. Usual definitions and concepts of partial order theory are used
whenever possible [10]. All along this section, concepts and properties will be illustrated by small
examples. These examples are based on a synchronous reactive program [5, 4], represented by
the following automaton with guarded commands on the transitions:

[true] — X:=x+1;

[not e] — y:i=y+1;

[e] — Z:=y-X; y:=0;

This program is controlled by the environment through event e. At each trigger, e can be
either true or false. The transitions are labeled a, b and ¢, according to the following table:

action label
true] — x:=x+1; a
e] — z:=y-x; y:=0; b
[not e] — y:=y+1; ¢

From now on, we consider the corresponding automaton P over the alphabet ¥ = {a,b, ¢}:

1Such as shared memory multiprocessors.
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State 1 is the initial state and only accepting state of P, denoted by small curved arrows.

The set of states of automaton P is denoted Qp, qp € Qp denotes the initial state of
P, Fp C Qp denotes the set of accepting (or final) states, Xp is the action alphabet of P
and ——p C @Qp X Xp X QQp denotes its transition relation. For the sake of simplicity, only
deterministic automata will be considered.

The distribution of automaton P relies on an independence (or commutation) relation: this
relation o< is derived from the data and control dependencies in the program. For each action,
we define the sets USE and DEF of variables respectively used and assigned by this action.
For the example, we have:

action USE DEF
a | {2}
b {z,y} | {y. 2}
4 1y} 1y}

The independence relation is defined by the following rule:
Vo, €Y, ax B < DEF(a)NUSE(B)=0and o # 3

Thus, < = {(a, c),(c,a),(b,a)}, which is clearly not symmetric. Hence the dependence relation
k= X2\  is:

For the sake of clarity the edges of the dependence graph are labeled by greek letters: A, i, v.

The rewriting relation (or semi-commutation [8]) — on X* generated by , is the transitive
and reflexive closure of the relation —;. Relation —; is the least relation verifying: Vu,v €
Y Va,beXju-a-b-v—yu-b-a-v < (a,b)€x. For any pair of words u,v € ¥*, u — v
means that v is an implementation of u, according to the commutation relation . Notice that
relation — is not symmetric in general: this is the very reason why it is called semi-commutation.

The right-closure by — of a word u € ¥* and of a language A C X* are denoted [u]_ =
{ulu — v} and [A]L = Uy [u]_.

The length of a word u € X* is denoted |u|, and for any i = 1...|u|, u; denotes the 0 letter
of u.

The language of automaton P, denoted ||P||, is (ac*b)*. The right-closure of ||P|| by the
rewriting relation — is accepted by the following transition system:



This transition system is minimal, therefore the right-closure of the language of P is not
regular.

This example shows that it is, in general, not possible to code the right-closure of the language
of an automaton by a finite transition system on words. This is the very reason why a formalism
based on partial orders is introduced.

A labeled partial order (l.p.o. for short) is the triple ® = (Fo, <o, pe), where <g is a
partial order relation over Eg and g : Fg — X a labeling of elements of Eg. A l.p.o. is non-
autoconcurrent if and only if every pair of elements labeled by the same letter are comparable.

The projection of a l.p.o. © on A C X is the sub-order consisting in all elements of Fg
labeled by letters in A: ©]4 = (go(gl(A), <o N(pg'(4) x pg'(A)) ’50®|¢;1(A))'

An ideal (resp. filter) of a partial order < on E, is a subset I C E (resp. F' C E) closed by
precedence (resp. closed by precedence of the reverse order): Vie I,e € E, e <i= e €I and
VfeFeecF, f<e=eeck.

For any word u € ¥*, 4 denotes the Lp.o. ({1,...,u|},<wy,i— w;). Informally, ¥ is a
totally ordered set labeled by the successive letters of u.

For any mapping f : A — B and any binary relation p C B?, relation %, ; C A? is defined
as follows: Va,b € A, (a,b) € R, < (f(a), f(b)) € p.

The linear (total orders) extensions language of a finite l.p.o. © is the language £(0©) C X*
such that: Yu € ¥*, u € £(©) <= i is isomorphic to a linear extension of ©. More generally,
words and labeled total orders will be used indifferently. For any set of labeled partial orders
A, L(A) = Ugea £(O) denotes the set of all linear extensions of orders of A.

The following lemma justifies the use of partial orders. It states that the right-closure of a
word by the rewriting relation — is the set of linear extensions of a l.p.o.:

Lemma 1 Let u € ¥* and xC X2. The rewriting on ¥* generated by o is denoted —.

[ul = £ (Tux)

Where I'y ¢ = (Eﬁ, (Sa 0%9@#’«1)* , 3’01;).

This lemma extends a result given in [9, 17] for the particular case of a symmetric
independence relation.

Notice that the l.p.o. coding for the right-closure of a word modulo an irreflexive
independence relation is non-autoconcurrent. From now on the independence relation is assumed
to be irreflexive.

The covering graph of such a labeled partial order is called dependence graph. For

instance, the dependence graph of the order coding for the right-closure by — of the word
u=ac...chbac...chb...ac...chis:
S~ = S~

¢ c-—cC ¢’ c-—cC ¢’ . ¢ c-—cC ¢’ .
B . B R o P .



Informally, this graph is the “concatenation” of tiles. Moreover, each tile can be decomposed
in smaller patterns:

e e - = = = = - - - - - ~ - - - - - -
——} —va——
\ \
—l =
- - b > - ~---4 b > -~ -
¢y c—c > ¢« c_".
N N ;\/;/ N
\\ \ \\ N
N N . ~ N
N <

In order to achieve this tile composition, a concatenation on orders is defined:

Definition 1 Let © and ® be two non-autoconcurrent l.p.o. The concatenation of © and @,
denoted © - ® s the least non-autoconcurrent l.p.o. A such that Ex = Fo @ Fg, <xD<e @ <g
and pp = po ® pa, admitting Eg as an ideal and Eg as a filter”.

In other words, the concatenation of ® and @ is such that any element of ® labeled with a
letter a is greater than any occurrence of the letter a in ©.

The set of non-autoconcurrent l.p.o. over alphabet ¥, with the order concatenation - is a
monoid. The neutral element is the empty l.p.o.: €= (0,0, ?). Associativity of the concatenation
is easily checked.

An order-automaton is an automaton with transitions labeled by labeled partial orders. The
language [|@|| of an order-automaton @ is the set of concatenations (as defined above) of labels
of all accepting sequences — in its usual meaning.

The concatenation of orders and a synchronization alphabet (A, y, v in the example) are used
jointly in order to compose the tiles given below:

For instance the word v = ccacbeab is a rewriting of the word u = acccbach € || P|| with the

relation —. The lp.o. 4 =a-¢-¢-é-b-a-é- b is:

< - - - -"-"- - - - = - - = Y - -~ - - - =-=- - = - - - = N
\ a a \
\ \ \ \\
N !’7777‘\ !’77771\ !’7777‘\\
' A = ! AL '
' | | \ | \
\ \ \
s e %b R A /b )
v~ \ - \
\\ CZV CZV = \V \ \ C7V \V \ \
— — \
Y — Y NV M= R [N

The word v is a linear extension of the projection of @ on X:

20 being the exclusive union between sets



Finally, it should be noticed that the closure of || P[| by the relation — is the set of all linear
extensions of the projection on X of the language of the order-automaton P:

More formally: [||P]|]_ = £ (HPH ‘E)

3 Synthesis of Order-Automata

In the previous section, order-automata have been introduced. With the help of a small example,
it has been stated that the right-closure of a regular language modulo the rewriting relation
generated by an independence relation could be coded by an order-automaton.

This section is entirely devoted to the synthesis of such order-automata. The first part of
this section deals with the basic synthesis of order-automata. The second part deals with the
synthesis of optimized order-automata. The third and last part address the correctness issues
of these transformations.

In the first place and for the sake of clarity, a few notations must be introduced. For any
binary relations v, ¢ over alphabet X, and any letter a € X, the following three relations are
defined: pa = ¢ N (X x {a}) denotes the couples of ¢ ending with the letter a. The set of
couples of ¢ starting with the letter a is denoted ap = ¢ N ({a} x X). The transitive one-step
composition of the relations ¢ and ¢ is: ¢ - ¢ = {(u, v)|Fw € X, (u, w) € ¢, (w,v) € ¥}.

3.1 Basic Order-Automata

A synchronization alphabet enables to preserve dependencies between letters of X, according to
the dependence relation g¢t= Y2\ oc. This alphabet is merely the dependence relation without
the self-dependence couples: p =¢t \ {(a,a)},c5. Therefore the labels of the transitions of the
order-automaton are labeled partial orders over the alphabet X & p.

The order-automaton F(P) is defined by replacing each transition qu’ of automaton P

Fla
by the transition q#q’, where the label of the transition is:

V¢ € pa Vx € ap
3 X
) N y :

a

Fla) =

Accepting states and the initial state are unchanged.
The order-automaton P given at the end of section 2 is produced by this algorithm.



Unfortunately the algorithm produces useless synchronizations. For instance, the image of
the word abe through morphism® F with an empty independence relation is the l.p.o. F(a) -
F(b)- F(e):

the synchronization a — (a,¢) — (a,¢) — c is useless since the path ¢ — (a,b) — (a,b) —
b— (b,c) — (b,¢) — c already ensures the comparability of the occurrences of letters a and c.

3.2 Optimized Order-Automata

The aim of the optimization is to reduce the number of synchronizations as much as possible.
More precisely a synchronization will be generated only when required, that is when the
synchronization ensures a new comparability between the occurrences of two letters in X.

For this purpose, some information on the “past” of a computation that has left the order-
automaton in a given state must be coded in this state. That information, called contezt, is the

set of synchronizations that might occur in a transition starting from this state.
Order-automaton F’(P) is defined as follows:

Qrpy = Qpx2°
qr Py = (QP, @)
F]:/(P) = FP x 2°
—— ) = Upear Fo(——p)

Transition labels of the order-automaton are labeled partial orders over alphabet X @ p. For
any context p and transition (¢, a, ¢') a transition of the order-automaton is generated:

TIP(Qa a, q/) = ((Q,P) :]:lp(a)’ (q,Ca(p)))

The new context is: Co(p) = (p — pa — (pa - ap)) Uap. Notice that synchronizations in p are
retained in the new context if and only if they are not covered by new synchronizations. The
label of the transition is:

V¢ € pa Vx € ap
€ X
. N Py .

a

f/p(a) =

Only reachable states should be considered. They are in finite number since alphabet X is
finite. The algorithm for generating all of them relies on a traversal of the transition graph.

Informally the optimization of the distribution of behavior u € ¥* is roughly the computation
of the covering graph of the order F(u)|y where each edge denotes a synchronization.

The order-automaton given below is the optimized distribution of automaton P and
independence relation  as given in section 2:

3Function F induces a monoid morphism from X* to the set of labeled partial orders over ¥ @ p. This
morphism is also denoted F.
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3.3 Correctness

Beforehand, we generalize 7', to words. For all p € 27, its inductive definition is: F',(¢) = €
and Ya € ¥,Yu € ¥, F'p(au) = F'y(a) - F'c,(p)(u). When the context is omitted, the empty
one is assumed: F'(u) = F'y(u).

Mapping C is also extended: Vp € 2°,a € ¥, u € ¥*, Cau(p) = (Cy 0 Cq) (p). And Cc(p) = p.

In this section function f denotes either F or F’.

Lemma 2 f([|P|)) = [IF(P)[|-

proof Tt is sufficient to prove that f maps onto [|f(P)|| and is surjective.
. . Ui Us Un
e Let u € ||P||. There exists an accepting sequence : ¢g q1 qs . .. ¢n where qq
is the initial state and ¢, is an accepting state. Since the automaton P is deterministic,
this sequence is unique.

A unique sequence of the order-automaton is associated with this sequence:

More precisely:

— if f = F then ¢} = ¢; and 4; = F(u;).
— if f = F' then ¢} = (g;,¢;) where (¢;);_; ,
Vi = 1...n, 'fti = flc,_l(ui); C; = Cu,(ci—l) .

is a sequence of contexts, ¢g = (0 and

The existence of this sequence implies that f(P) accepts the order f(u).

e For any order S} € [|£(P)]l, there exists an
accepting sequence: qq o1 q1 %2 qa ... on qn. Where qg is the initial state of f(P),
qn is an accepting state of f(P) and © = oy - ... 0,. This sequence can be projected

on alphabet ¥. Also, to each state of the sequence corresponds a unique state of the
automaton P. Since each order o; contains exactly one occurrence of a letter of ¥, we
obtain the following sequence: g ! 71 e qh. .. Un g, withVi=1...n, u; = o;]x.

States of the new sequence are:

— if f = F then ¢} = ¢;.
— if f = F' then ¢; = (¢}, &).

10



Actually this sequence is the accepting sequence of the word u by the automaton P.

Lemma 3 Let u € X*.
flu)|lg = Tuy

proof  This lemma will be proved by induction on the size of the word u. Let u € ¥* with
|u| <k, k>0. For alla € X.

e If f = F then the following holds by definition of F: F(u-a)ls = (F(u) - F(a))|s.
g

Concatenation of F(u) and F(a) establishes comparabilities between the occurrence of
letter @ in F(a) and elements of F(u) whose labels are related to a by the dependence

*

relation. More precisely: <(z(u).F(a))s = (W0 N Ry o)
o If f=F' then F'(ua)ls = (F'y(u) - F'p(a))|s with p = Cu(0).

Concatenation of F'y(u) and F',(a) establishes comparabilities between the occurrence
of letter a and elements of F'¢(u) that are dependent upon letter a: S(Frou)yFry(a)ls =
(uan %of,vu-a)*~
Which proves the lemma for words of size at most k£ + 1. Finally the lemma is valid for the
empty word.

Theorem 1 Languages of P and f(P) are linked by the following equality:
P = LA P)ls)

Proof With the help of lemma 1:
IIPIN= = U £(@Tuw)

ue| Pl

Lemma 3 allows the compilation function f to be introduced:

P- = U ey = | U flu)]ls

ue| Pl ue| Pl

We conclude with lemma 2.

P~ = £dAIFPI=)

4 Synthesis of Distributed Programs

Automaton distribution is only partially achieved when the order-automaton has been produced.
As a matter of fact, only dependence and synchronization problems are solved. Since the order-
automaton codes for the behavior of an optimal distribution, it is now used to derive a distributed
program (4.1). Its behavior should match the behavior of the order-automaton.

This distributed program is intended for a network of processors 7 = 1...n. Actually, since
we are not concerned by the physical implementation, we will talk of processes rather than
processors. The distribution is parametrized by the place where each action of alphabet X is
assigned. This place is defined by the mapping 7 : ¥ — [.

Synchronizations between actions placed on different processes are achieved by
communications. These communications take place through a fully connected network of
FIFO channels. This ultimate stage is explained throughout an example: the distribution
of a sequential imperative program.

Finally the methodology of correctness proof of this stage is shortly described (4.2). It is
based on the results of a previous work [3] which can be easily adapted to reactive systems.

11



4.1 Imperative Programs
4.1.1 Rationale

Let us now consider an imperative sequential program computing over a set of variables V. The
following example will be used throughout this section:

aj:: u<—0 P 3
b as
b/=b::  if b then / \
—2 =9 4

as:: Ve—u+v

fi —b

The control graph of this program can be represented by an automaton P. Its action alphabet
Y. is the set of statements that compose the program. Each action is either a variable assignment
or the predicate evaluation of a control statement (if, while, etc). For the example, ¥ =
{al, b, _|b, ag}.

The distribution is done on a data-driven basis: each variable is placed on a process.
Accordingly, the set of variables V is partitioned over the network of processes I, i.e. into
n subsets. For the example, V = {u, b, v}, which is partitioned into V; = {u} and V5 = {b, v}.

All the generated processes execute identical code with respect to the control structure, but
each assignment is only replicated on the process which owns the left-hand-side variable (owner
compute rule [6]). In short, communication code is generated in order to implement access to
remote variables: a copy of each referenced variable is to be sent by its owner towards the process
that needs it [1, 3, 7]. However our only concern is distribution of control. Data exchange is not
under consideration. Action IS}, (resp. ?Sf_,j) is a message send (resp. receive) from process i
to process j with value a. Forallt € I, A; = {75]‘»LZ», !qu—*j}aez:,jel
actions on process i. The set of all communication actions is denoted by A = Uie] A;.

The partitioning of variables induces a partitioning of the action alphabet. The place where
each predicate is evaluated can be chosen arbitrarily. The mapping 7 : ¥ & A — I defines
this partitioning. For the example, according to the data distribution, w(a;) = 1, w(aq3) = 2,
w(b) =2, m(—b) = 2 and Va € X, n(1S{_,,) = 1, etc.

The independence relation oc follows the rules of data and control dependencies.
Dependencies between assignments and communication actions are also considered. Actions

1s the set of communication

placed on the same process are dependent. Predicate evaluations can not commute with
any action: a total synchronization of the distributed system occurs each time a predicate
is evaluated. For the example, the graph of the dependence relation is:

aq

"

In order to keep the figure readable, dependencies with communication actions and self-
dependencies are omitted.
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4.1.2 Distributed System Synthesis

Let us now consider the optimized order-automaton obtained from the automaton P and the
independence relation o (section 3.2). The task is now to synthesize a distributed program from

this order-automaton:

P 3,{(a1, a2), (b, as), ; 4,{(az,b), (az, b),
,70), (b a1)s a1, D)} | (an,az) = 20 6,2), 6 ) (a1, )
(b,CLQ) (b,(lQ) 7 A (az,_'b)

N\
} (b,al) %

1,0 2,{(&1,&2), 4,{(—|b,a1),(a1,a2),
P (@1,0) | (a1, 8), (ar, b)) 7 (=b, 1) (mb, az), (=b,b), (a1, b)}
N (a1, a2) (a,b) ==b N (—b, az)
(a1, —b) (—b,b)

The automaton P has some structural properties: it contains only binary choices and each
choice is local to a process. The automaton has exactly one accepting state which is a maximal
state (sink state). Most structural properties are preserved by order-automaton synthesis: the
order-automaton contains only binary choices and sink accepting states.

Communications are now inserted in the order-automaton. Basically, two matching
dependencies linking actions belonging to two distinct processes are replaced by a message
exchange. For instance, let us consider the transition from state 3 to state 4 of the example.
There are two upstream dependencies, (b, as) — a2 and (a1, as) — as. They match respectively
the two downstream dependencies b — (b,as) and a; — (a1,a2). As w(b) = m(az) = 2, the
matching dependencies (b, as) lead to no communication at all. On the contrary, w(a;1) = 1 #
7(as), thus the matching dependencies (a1, as) are turned into a communication from process
w(a1), i.e. 1, to process w(az), i.e. 2. Moreover, in order to ensure that each message sent is
actually expected, we insert both send and receive actions where they are needed. Thus the
upstream dependency (a1, a2) — ag is turned into a send/receive:

Beforehand, in order to ensure that messages are expected in the order of their sending,
each transition label is replaced by one of its linear extensions. The particular choice of the
linear extension is a matter of implementation. For the sake of clarity, linear extensions will be
represented by words in (X @ A® k)*.

Then the order-automaton is projected on each process. For each ¢ € I, only actions that
belong to process i are retained. Thus all transition labels are projected on the alphabet
771(i). The projected order-automaton has transitions labeled by total orders. For the example,

13



771 1) = {ay,157%,,288_1,757% 1} and 77 1(2) = {aa, b,—b, 7571, 1S5, 1578 1}, Thus the
two projected order-automata are:

! aL2 % ?Sal_a . a9 %
P Py
1 2 4 1 2 4
ay 2870, —b 1550

Such order-automata are easily transformed into non-deterministic automata over alphabets
Y@ A; and X @ Ay respectively:

1921

3 HM1l—2 37

?SV \
a

2 2gb 4. =

—1

P =1

b ay
!SZ—>1 37 7 1—2

¢ 9
2 - 2 o 4 =

—1

Py =1

The ultimate stage of the distribution is the determinization of these automata. It should
be noticed that (from a control point of view) only communications which correspond to a
synchronization with a predicate evaluation should transmit a value.

With regard to the example, the final distributed program, where we have suppressed the

transitions without any label, is:
3
?SV \il_a
ay

2 7550, b

P o> 1

b a
!SZ—J 37 ? 11—»2 377

¢ by
2 " 2 15 4 =

—1

Py =1

4.2 Correctness Proof Issues
4.2.1 Imperative Programs

The distribution of a sequential imperative program produces a distributed system. It consists in
a set of automata communicating through FIFO channels. The communication medium can be
represented by a transition system, and the whole system is the product of these transition
systems. The correctness proof of the transformation technique relies on the study of the
properties of this product transition system. The proof is divided into two parts:
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1. Distributed systems generated by this algorithm have the diamond property [3]. Hence
the distributed system has exactly one maximal state unless there exists an infinite

computation. In the latter case there is no finite maximal computation (Newman’s
theorem [2]).

2. Therefore it is sufficient to prove the correctness on a particular computation of the
distributed system. This is done by comparing a behavior of the order-automaton with
the causality order of this particular computation.

For further details, see [3] in which a detailed proof of a close result can be found.

4.2.2 Synchronous Reactive Programs

Synchronous reactive programs are not very different from sequential imperative programs.
The only significant difference is the existence of communications with the environment. In
other respects, there are internal variables and control statements, as in sequential imperative
programs.

For all these reasons, the distribution of imperative and synchronous reactive programs is
based on the same principles.

Communications with the environment are specific to reactive systems. They imply a
major difference in the correctness proof of the distribution: infinite fair computation must
be considered.

Consequently, concatenation of orders must be generalized to infinite orders. However
difficult points are avoided because only fair computations are considered. Likewise, confluence
must be generalized to infinite computations. This is achieved with the help of a measure on
labeled partial orders. It gives a complete metric space structure to the set of labeled partial
orders [13].

In spite of that, the principles of the correctness proofs are identical.

5 Conclusion

We have presented in this paper a formal approach to automata distribution. This approach
is based on the synthesis of an order-automaton which codes the set of semantics preserving
computations, modulo an independence relation. Then the order-automaton is mapped onto a
distributed architecture and transformed into a set of communicating finite state machines.

This mapping is application dependent. An application is presented: the distribution of
sequential imperative program.

The distributed system is considered as a product of labeled and partially deterministic
transition systems, allowing the comparison of the behaviors accepted by the order-automaton
and the possible behaviors of the distributed system. The combinatorics of the proof is mastered
thanks to the diamond property of the generated distributed systems.

The outstanding unity of the fundamental problems encountered when considering two
different distribution examples leads to a unified theory of distribution. The automaton
distribution technique presented in the paper is a first attempt towards such a theory. In
addition, our contribution may serve as a basis for designing and proving other (and new)
parallelizing rules on several applications.
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