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parsing a source text, by the recognition of some construct. It is shown that
dynamic grammars have the formal power of Turing machines. For a given
source text, a dynamic grammar, when non ambiguous, may be seen as a
sequence of usual context-free grammars specialized by this source text: an
initial grammar is modified, little by little, while the program is parsed and is
used to continue the parsing process. An experimental system which imple-
ments a non ambiguous dynamic parser is sketched and applications of this
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Grammaires dynamiques
et
analyse sémantique

Résumé : Nous définissons une grammaire dynamique comme un dispositif
qui peut engendrer un nombre non borné de grammaires indépendantes du
contexte, chacune de ces grammaires étant produite, au cours de ’analyse
d’un texte source, par la reconnaissance de constructions particulieres. On
montre que les grammaires dynamiques ont la puissance formelle des machines
de Turing. Pour un texte source donné, une grammaire dynamique, lorsqu’elle
est non ambigué, peut étre vue comme une séquence de grammaires usuelles,
spécialisées par I'analyse de ce texte: une grammaire initiale est modifiée au
fur et a mesure de ’analyse du programme et est utilisée pour en poursuivre
I’analyse. Un systeme expérimental, qui implante un analyseur dynamique non
ambigu est esquissé et des applications de ce systeme a la résolution de quelques
problemes d’analyse sémantique sont proposés. Certains de ces exemples sont
non triviaux (résolution de surcharge, types dérivés, polymorphisme, ...) et
indiquent que cette méthode peut partiellement concurrencer les techniques
bien connues utilisées en controle de type.

Mots-clé : analyse, incrémental, extensible, LR, pré-vision non bornée,
indépendant du contexte, dépendant du contexte, ambiguité, controle de type.



Dynamic grammars & semantic analysis 3

1 Introduction

In the sequel we assume that the reader is familiar with the LR-method and
terminology (see [1] for example).
This paper is divided into three main parts:

1. the concept of dynamic grammars;
2. an implementation into an experimental system;
3. its usage in type checking.

In the first part, we give a formal definition of the notion of dynamic gram-
mars. Intuitively, we first may thought of a dynamic grammar as a set of usual
context-free grammars, but these grammars are not statically known (except
the first one which is called the initial grammar), but are rather computed
while a given source text is analysed. A bottom-up dynamic grammar, which
is the concept defined in this paper, used a kind of Shift-Reduce parsing algo-
rithm: as usual, terminal symbols are shifted within the current grammar (a
grammar in the set), while the reduction process works as follow. The reco-
gnition of a production (handle) is performed on a (dynamic) right-sentential
form defined in the current grammar, this recognition induces the creation of a
new grammar, and the replacement of the right-hand side of the handle by its
left-hand side non-terminal leads to a new right-sentential form whose viable
prefixes must be defined in the new grammar. In fact, a dynamic grammar
is not the set of CF-grammars but the device which allows the generation of
these grammars during the analysis of source texts. It is shown that dynamic
grammars have the formal power of Turing machines.

In the second part, an experimental system which implements a dynamic
parser (i.e. a device which can analyse texts written in a language defined by a
dynamic grammar) is sketched. In fact, the domains where dynamic grammars
can be used, seems rather extensive. In this paper we will only concentrate
on context-sensitive features (i.e. type checking) of programming languages
and therefore we restrict our system to non-ambiguous dynamic grammars.
Our implementation is based upon LR(0)-parsers whose automata are lazily
generated, when needed, while an input text is parsed. Since the analysis of
this text may affect the grammar itself, the corresponding modifications are
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4 Pierre Boullier

themselves incrementally taking in account. The parsing actions of these au-
tomata are deterministically performed by using a look-ahead oracle which is
responsible for the choice of a unique action, choice which may necessitate an
unbounded look-ahead process.

The third part is devoted to an application of dynamic grammars in the
semantic analysis phase of translators. This section is based upon a language
which is (partly) defined by a dynamic grammar which expresses, besides the
usual concrete syntax, its type constraints. This sample language collects a
medley of caracteristic problems with which the user is usually confronted
when dealing with type checking. Note that each of these problems has been
(successfuly) processed by our experimental dynamic parser. Some of the pre-
sented examples (overloading resolution, subtyping, polymorphism, ...), are
not trivial and demonstrate the power of the method and system. In particu-
lar, the (unique) identification of overloaded names is performed without any
resolution algorithm.

This paper ends by a brief overview of some other researches in this field
and by a concluded section.

2 Dynamic Grammars: A Formal Definition

In context-free grammars, rightmost derivations are defined which lead from
the start symbol to sentences through right-sentential forms. These derivations
always refer to a single grammar. We are going to define a similar notion which
relies, not on a single grammar, but on a set of grammars, each derivation being
performed using a grammar in this set.

Let G = {G; | Gi = (N;,T;, P;,S)} be an enumerable set of context-free

graminars where:

o (7y denotes an initial grammar.

e N = N; is a non-empty finite or infinite set of non-terminal symbols.

e Vi, S € N, is the (common) start symbol.

o T'=JT;is anon-empty finite or infinite set of terminal symbols. N and

T are disjoint.

INRIA



Dynamic grammars & semantic analysis 5

o V.=N,UT;,and V = UViis the vocabulary.

e P, C N; x V* is the set of rule (for ;). Each rule is denoted by A — a.

o P=UPF.

We define, on each G, two binary relations. The first one named extended
rightmost derivation and denoted =- as being:

1,7

BAx = fax

Gi,rm

where A — a € P, p € V.* and x € T*. This relation is closed to the
traditional one, except that the suffix x is defined on the terminal vocabulary
T and not only on the local terminal vocabulary 7.

The second one named prefixed rightmost derivation and denoted = is

Gi,pr
defined by:

BAz = PBa (1)
Gi,pr

BAz = 8 (2)
Gi,pr

where a, 8 € V., A € N; and x € T7. Case (1) stands iff 34 — o € P,
while case (2) occurs iff AA — a € P,.
Its G:*> o, any prefix of the string o is called a dynamic viable prefix for

i pr
G;.

RR n"2322



6 Pierre Boullier

If there is a sequence of grammars G,,, G,,_1, ..., Gpy1, Gy, ..., G; such
that:
S G:> Tn = Oy = ﬂn—lAn—lxn—l
n, T
o Yn—1 = ,Bn—lan—lxn—l = /Bn—QAn—QIn—Q
n—1,T1M
Tor1 = Bprioppitp = Bpdpay
Gp+l,’l‘m
= Yo = Bpapzy = Bp-1Ap-12p
Gp,rm
= Vi = Biogwi
Gi,rm

where, for each string ~,, its prefix 8,c, is a dynamic viable prefix for G,
the string ~; is called a dynamic right-sentential form.

When a dynamic right-sentential form z is an element of 7 and when it last
has been produced by a extended rightmost derivation in the initial grammar
(ie. S = ... o Yo = x), it is called an dynamic right sentence.

0,Tm

It ’yp_:i = B,A,x, 1s a dynamic right-sentential form, ~, 44 o e = By,
and 7, is also a dynamic right-sentential form then the rule le — o, € P, at
that position, is call a dynamic handle. Though =, is not a right-sentential form
for 7, since z, may be a string which is not in T, we may however speak of
(dynamic) handles and hence rewrite a string by performing reductions within
different grammars.

In fact, two consecutive grammars (G,41 and G, in a given sequence, should
be related. Assume that we have 5,4,z, Gp:im Byopx,, we know that 8,4, is a

dynamic viable prefix for GG,41 and 3, is a dynamic viable prefix for G, and
hence that 3, is a dynamic viable prefix for both grammars.

The language defined by G is the set of all its dynamic right sentences.
However, since the number of grammars in G may be unbounded, a dynamic
grammar will be defined, not as G, but rather as being a device which can
generate this set of context-free grammars.

Let us define more notions and notations.

e (G, 7w, a,x): where 7 is an element of P*, « is an element of V;* and z
an element of T* is a dynamic configuration.

INRIA



Dynamic grammars & semantic analysis 7

(G;, 7, a, ) is a dynamic viable configuration when « is a dynamic viable
prefix for G;.

e ¢y = (Go,¢,¢,2): is an initial dynamic viable configuration.
o ¢c; = (Gy, 7,5, ¢€): is a final dynamic viable configuration.

e (G;,m,af,x): is a dynamic viable configuration reduceable by B — [

when 3B — 3 € P, (B — 3 is a dynamic handle).

Let M be a turing machine called the rule engine. This machine takes as
input a dynamic viable configuration ¢; = (G;, 7, a3, x) reduceable by B — 3
and generates, upon acceptance, a context-free grammar ;41 (i.e. Giyq =
M(Ci, B — ﬁ))

On dynamic viable configurations we define two binary relations:

name scan emit
denotation ~— 7\4»

— = {(¢,d) | e=(Gi,m,atx) N = (G, 7, at,z)}

This scan is the analog of a shift action in a Shift-Reduce parser. As a
consequence, the scan relation may only be applied if the symbol ¢ is an element

of T:.

IXA} = {(Ci7ci+1) | ¢ = (Ghﬂ—aa/gax) A Cit1 = (Gi+177rB - /3,0[3,$)}

If ¢; is reduceable by B — ( and G341 = M(c¢;;, B — [3) then we have
¢ 7 Cit1- Emit is analog to a reduce action in a Shift-Reduce parser where

the right-hand side of a dynamic handle is recognized within grammar G;
and the transition upon the left-hand side non-terminal is performed within
grammar (;41.

By composing +— and o we define a binary relation denoted by =~ and

called bottom-up dynamic reduce:

j:}i)/\,)
M M

RR n"2322



8 Pierre Boullier

Intuitively the scan relation performs reading in the source text (for a given
grammar) while emit captures both the notion of reduction and the generation
of a (new) grammar: a (dynamic) handle is chosen, the rule engine performs
the generation of a new grammar and then the reduction using this handle is
done.

A dynamic viable configuration ¢; is valid iff we have ¢y = % ¢; where ¢ is

an initial configuration. In the sequel only valid dynamic viable configurations
are considered and simply called configurations.

Definition 1 We call context-free bottom-up dynamic grammar (dynamic
grammar for short)* the couple (M, Gy).
The language defined by a dynamic grammar (M, Gy) is:

’C(MaGO) = {$ | (G0767 67:[;) /:;> cf}

Where ¢; = (G4, 7,5, €) is a final configuration and « is a dynamic right
parse for x w.r.t. (M, Go)?. We note that the ith element (from left to right)
in 7 is a rule in grammar G;_;.

If co = (Go,€,¢,2), ¢ % clf = (G},’/T/,S, €) and ¢ % c;: = (G;,’/T”,S, €)
such that 7' # 7", the string  is ambiguous w.r.t (M, Gy) and the dynamic
grammar is also said to be ambiguous.

We see that if the rule engine M is such that we have Gy = ... = G; =
... = Gy then L(M,Gy) is the context-free language L£(Gy) and 7 is a right
parse for x in the usual sense.

The following theorem shows that dynamic grammars have the same formal
power as Turing machines.

Theorem 1 Let L be a recursively enumerable set. There exists a dynamic

grammar (M, Gyo) such that L = L(M,Gy).

!This paper defined dynamic grammars as a device oriented toward bottom-up parsing;
of course, a similar notion of context-free top-down dynamic grammar could be defined.

In fact, this definition captures both the notion of language (as a set of strings) and
the way a string could be (bottom-up) parsed (or recognized when the second field of a
configuration, which contains a partial dynamic right parse, is omitted).

INRIA



Dynamic grammars & semantic analysis 9

Proof: Consider T' the alphabet of L, N = {S}U{A4; |¢=0,1,2,...} and

the (infinite) regular grammar whose rule set is:

S — Agr
Pi{ Ay — ¢
P, Al — A
S — Az
b Ay — A
S = A
Ai — Ai—l

Where the z;’s are the elements of L. We see that this infinite device
describes L. Since L is a recursively enumerable set, there exists a Turing
machine which enumerates each word z; in L exactly once. The rule set
Py of the initial grammar Gy is such that Py = P, and z;, in the first
rule, is the first word of I which has been enumerated by a first call
to the Turing machine. Let  be a word in L. The initial configuration
co is (Go,€,€,x). The first step of this parsing process is the following:
o, the reduceable initial configuration by Ay — € is given to M which
produces GGy = Gy and the emit machine generates the configuration

c1 = (Gl,ﬂ'l = Ao — G,Ao,l’).

After this initialization step, the rule engine M will work as follows: it
accepts ¢; any reduceable configuration by some rule as input, calls the
Turing machine which enumerates the (next) word z,41 and emits the
grammar (7,41 whose rule set is P;1;.

Let ¢; = (G;, 7, Ai—1, ) be the configuration produced after the ;th

by the emit machine.

step

Then two cases can occur:

1. if x = z; then the scan machine produces from ¢; the configuration
i = (G, 7, Ai—1x4, €), ¢ is given to the emit machine which returns
a final configuration ¢;y1 = (Giy1 = Gy, 7S — Ai_12i,5,¢€). The
parser may then stop.

RR n"2322



10 Pierre Boullier

2. if x # x, then ¢; is given to the emit machine which calls M(¢;, A; —
A;_1), the turing machine is called, the word ;41 is enumerated, the
grammar (7,11 is generated and the configuration ¢;41 = (Gig1, 741 =
miA; — Ai_1, Ai, x) is finally returned.

We see that the previous process can be iterated until the Turing machine
enumerates .

Conversely, if € L(M, Gy), by definition there exists ¢g = (Go, €, €, &) %

¢; = ¢, = (G, 7, S, €) which shows that x is the nth enumerated word

of L.

<

We can observe that the grammars G, G4, ..., G, ... used in the proof of
theorem 1 are such that their rule set P; form an increasing sequence Py =
P, C...C P, C.... This shows that the power of Turing machines may be
reached by a regular grammar whose rule set (and right-hand side lengths)
are not bounded. It also shows that the power of dynamic grammars may be
reached with a rule engine which (only) adds rule to its input grammar without
any deletion. However, for practical purposes, our rule engines will be able to
both add and delete rules.

In this proof, the idea of having a Turing machine, the rule engine, which
uses another one seems artificial, but a similar method could be used in prac-
tical cases. An example could be found in paragraph 4.8 where the problem of
forward references in goto statements are treated in a similar way: since the
rule engine knows the various grammars seen so far Go, GGy, ... G;, the various
prefixes, partial parses, etc ..., it can, for taking its current decision, reactivate
another dynamic parser and, by this means, perform several (partial) passes
over the source text.

3 A Dynamic Parser

We call dynamic parser a device which, from a dynamic grammar and a string
x is capable of computing configurations. This parser (among other things)
uses scan/emit machines which computes the scan/emit relations and the rule

INRIA



Dynamic grammars & semantic analysis 11

engine of a dynamic grammar. It is allowed to halt on reaching a final confi-
guration.

As in usual context-free parsing, for efficiency reasons, dynamic parsers
may only handle subclasses of dynamic grammars. In this section we sketch
a dynamic parser implementation which works with (almost) non ambiguous
dynamic grammars. More precisely, even with an ambiguous dynamic gram-
mar, for any initial configuration it will produce at most a single dynamic right
parse. The main reason behind this restriction choice, stems from the fact that
our system is intended to demonstrate its power during the semantic analy-
sis phase of programming languages (see section 4), which, by nature, should
lead to unambiguous parse of sentences. Note that an implementation using a
graph-structured stack, as in ([14]), [15] or [13]), should lead to an unrestricted
dynamic grammar implementation. This means that the whole process should
work deterministically and that at most a single dynamic right parse can be
built for any source string. Therefore, every grammar produced by the rule
engine should be unambiguous or, to be more accurate, if an ambiguity, in a
given grammar, is exhibited during an analysis, the system should be able to
choose a single action among all these possibilities.

We define a bottom-up parsing process in which the choice of a dynamic
handle must be done without any look-ahead since x, the last component of a
configuration, is a string which is not necessarily an element in 7. Hence an
implementation based upon an LR(0) parser seems a good choice. However,
the various (&; are dynamically generated and the constraint for each one to be
LR(0) is (in practice) far too strong. It even seems that, ideally, this parsing
process should not be constrained by the class of grammar produced by the
rule engine, i.e. (&; could be a (general) context-free grammar and therefore the
underlying parsing algorithm must be able to handle it. In order to conciliate
these opposite points of view we proposed the following schema: an LR(0) based
parser which is equiped with a look-ahead oracle. Each time the LR(0) parser
falls into a non-LR(0) state (i.e. it exists a Shift/Reduce or a Reduce/Reduce
conflict), the oracle is called and is responsible for the choice of at most a single
parsing action. If the oracle returns no action, a syntactic error is detected
and the whole process stops (or an error recovery mecanism is invoked). If the
response of the oracle is a Shift action, the scan machine is called, if the action

RR n"2322



12 Pierre Boullier

is Reduce by some production (the oracle chooses a handle), the emit machine
is called with that production.

To perform this task, the look-ahead oracle must be able to resolve all the
situations and therefore it must use a general context-free parsing algorithm.
Moreover the parsing of the look-ahead string may rely upon various grammars
which must themselves be produced on each reduce action of this look-ahead
process. This means that the emit machine (and hence the rule engine) could
be called from this oracle. Since the answer of the oracle to its callee must be
unique, this process as a whole must be unambiguous even if the oracle must
be able to handle ambiguous situations and to choose among them a unique
action.

It is well known that, in some pathological cases, a non deterministic parser
based upon a Shift /Reduce algorithm may loop without consuming any input
symbol. This could happen in two ways:

e the parse-stack takes back a previous value,

o the parse-stack grows infinitely.

The first case occurs with cyclic grammars (i.e. when A = A) and involves
an unbounded ambiguity. The second case occurs when A =& oAz and o = .

If = = ¢, we fall back to the previous case. If x # ¢, this ggrivation does not
imply any ambiguity but the grammar at hand is not LR(k) for any k (it
is not even LR(7w)— see [9] for a definition). The unbounded growth of the
parse-stack is due to the existence of a cycle (which spells «) in the underlying
automaton. In the framework of a single grammar such situations may be
solved by implementing the parse-stack as a graph with cycles that express
its potentially unbounded growth. But, with dynamic grammars, this type of
solution cannot resolve all problems: consider a current grammar where A = A
and say, to simplify, that it contains the rule A — A which has been chosen as
dynamic handle by the emit machine. Since the rule engine may or may not
delete this rule (and by the fact suppress the problem), the parser does not
know whether the process is going to loop or not. To avoid this disagreement,
we decide to put a (minor) restriction upon the rule engine and to require a
more deterministic behavior. Three attitudes are possible:

INRIA



Dynamic grammars & semantic analysis 13

1. assume that the rule engine will not endlessly return a grammar which
presents this problem,

2. assume that the rule engine will never return such grammars,

3. or, on the contrary, assume that the same grammar will always be pro-
duced, when the rule engine is placed in similar situations.

Choice (1), from the parser’s point of view is the most comfortable but
do not seem to be very reasonable since no test in the parser can check its
conformity. In our experimental system, choice (2) has been taken and the
conformity with this restriction of each output grammar is performed. If this
restriction seems too heavy for practical purposes we intend to move to the next
choice. Choice (3) assumes that, when the rule engine is called on reductions
performed while traversing empty cycles, it will return identical grammars.
It should be noticed that this restriction do not prohibit the rule engine to
generate those kinds of grammars, but only assumes that it will generate the
same grammar in similar situations. As already mentioned, the handling of
choice (3) will necessitate the usage of a graph-structured parse-stack.

In our current experimental system the look-ahead oracle works as follow.
We first try to solve the LR(0) conflict with k& symbols of look-ahead, k being
a parameter which can be adjusted dynamically. Then the set of all paths that
use these k symbols is explored depth-first. Each time an error is detected the
current path is given up. If only paths corresponding to a single parsing action
have been found, this action is returned. This mecanism is in fact a dynamic
LR(k) method using different grammars for checking the look-ahead string.
If no path is found, no action is returned. If paths associated with different
parsing actions are valid, the LR(0) conflict cannot be resolved with k tokens
of look-ahead. By extension we say that the dynamic grammar is not LR(k).
Conversely, if a source text is successfully analysed by this dynamic parser we
can only say that no LR(k) conflict has been detected. Notice that nothing
can be said about the class of the dynamic grammar since another source text
might well bring out an LR problem.

In fact there is (theoretically) no reason to stop after k tokens, this process
may be continued on the whole suffix z. In such a case, if the oracle used a
general context-free algorithm, real ambiguities could be detected, for (local)

RR n"2322



14 Pierre Boullier

non-determinism which led to error would be automatically rejected by this
mecanism when it fell into a dead-end path. In practice, this costly method may
be modified, without loosing too much power, in the following way. Languages
usually possess what is called key-terminals which are high level sentences se-
parators (or terminators), such as —typically enough— a semi-colon. These
key-terminals are often used in error recovery methods to implement what is
called panic mode. We have used a similar notion for our purpose. Let = = ytz
be the current suffix and ¢ the first (from left to right) key-terminal in . Our
supposition is that, for a given language, a conflict which cannot be resolved
in using yt as lookahead could not be resolved either in using ytz. For a given
suffix , the value k = |yt| (or k = |z| if there is no key-terminal in ), will be
the current parameter of our look-ahead parser. If the conflict is not resolved
within this length, the source text (and hence the dynamic grammar) is said
to be quasi-ambiguous. This statically unbounded but dynamically constrai-
ned property seems a good trade-off. On the one hand, it keeps the process
computationally tractable while, on the other hand it is still powerful enough.
For example, it allows to solve (see 4.4), the non trivial problem of identifying
overloaded symbols.

If a text is quasi-ambiguous, (a special entry of) the rule engine may itself
participate to its resolution. Some brute force methods such as the disambi-
guation rules of YACC can be used when priorities and associativity kinds
have been assigned to rules and symbols and/or some other specific methods
depending upon the language and the conflict. If the rule engine does not solve
the current conflict, some parser built-in methods (e.g. priority is given to the
Shift action or else to the Reduce action by the longest right-hand side rule or
...) are performed and ultimately a single action is selected.

We have seen that each grammar G; is only used for a while (until the
next reduction) and hence a partial lazy generation of the LR(0) automaton
(as opposed to a full generation) seems adequate: only the part (states and
transitions) of the automaton which is used during this local analysis will be
constructed.

We note M? = (Q;, Vi, q?,6;, F;) the LR(0) automaton associated with G;.
When a new configuration ¢; = (G;,#B — (3,aB, ) is returned by the emit
machine, we only compute the part of M? whose path accounts for a B. We first
compute its initial state ¢? and if « = X; ... X, for each j € [1..p] we compute

INRIA



Dynamic grammars & semantic analysis 15

the states qf and the part of the transition function ¢ s.t. qg = 5(qg_1, X;). We
then compute ¢ = 6(¢7, B). The current parse-stack of the current LR(0) parser
is initialized with ¢?¢} ... ¢"q. If this construction is not possible (i.e. aB is not
a dynamic viable prefix), it means that the rule engine M is erroneous and
therefore (M, (Gy) is not a dynamic grammar.

The previous construction is not always necessary. This is trivially the case
when two successive grammars (; and ;1 are identical, the part of M? that
was constructed and the corresponding parse-stack can be reused as such for
M?,,. The idea to reuse (part of) the construction work already performed
may be extended. Without loss in generality let us assume that grammar G4
is a modification of G;, i.e. ;11 is obtained from G, by deleting and adding
rules. This view of modification of the input grammar is not a restriction since
it is always possible to get GG;11 from G; by first deleting (the rule set of) G,
and then adding (the rule set of) G;41. It is possible to incrementally modify
the part of M? being built so far, each time a rule is deleted or added in order
to get the corresponding part of M7, ;. Moreover the previous process must be
invertible when it is called from the look-ahead oracle since, when returning
from level ¢ + 1 to level ¢, the environment must be restored. (In fact the
only thing which is needed is the linear part of the LR(0) automaton which
spells aB and the corresponding parse-stack). Several approaches ranging from
complete storing of a given environment at level 7 to a complete [re]computing
of this level from level : — 1 or even level ¢ + 1 may be thought of.

In practice the view of grammars evolving by modifications and the corres-
ponding view of a single LR(0) automaton (and parse-stack) being modified
each time a rule is added or deleted seems reasonable for several reasons:

e In practice most reductions are not associated with grammar modifica-
tions.

e It is often the case that when a modification occurs, it does not alter the
part of the automaton corresponding to the parse-stack. For example
we will see in section 4 that the handling of the declaration part in our
sample language essentially modifies the statement part processing.

o It is well known that in programming languages, most grammatical
constructions are LR(1). In our framework this means that a look-ahead
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of one (or few) token(s) in the oracle is often sufficient to resolve a
conflict. If during this look-ahead check the modifications of the gram-
mar associated with the reductions involved do not alter the immediate
look-ahead string, it is not necessary to call the rule engine and hence to
do (and undo upon return) the automaton modification. In the examples
of section 4, the only time the oracle needs to call the rule engine in order
to get new grammars to parse the look-ahead is when a block is entered
and local labels and goto statements are processed.

3.1 Incremental Modifications of the LR(0) Automa-
ton

Assume that the rule engine M is called from the emit machine with confi-
guration ¢; = (G, 7,af,z) and rule B —  and that it returns the gram-
mar ;47 which is a modification of the grammar G; such that the rule set
of Giy1 is Pyy = (P \ P?) U P® where P is the set of rules to be deleted
and P? is the set of rules to be added. Before returning the configuration
¢iv1 = (Giy1, 7B — [,aB, ) to its caller, the emit machine performs some
updates on M? = (Q;,V;, ¢, 6, F;), the part of the LR(0) automaton which is
partially constructed so far, in order to get M?, |, a new automaton in which
the relevant modifications of P? and P? have been taken into acount. Re-
member that af spells a path in M? and that aB should spell a path in
M, . The lazy incremental LR(0) parsing algorithm guarantees that, for each
¢; = (G, 7, a, ) the corresponding automaton M? contains (at least), a (non
empty) initial state ¢?, a transition function § which leads from this initial state
to non empty states by transitions over any prefix of o (i.e. if @ = Xy -+ X},
Vi € [l.p], 6(¢?, X1 --- X;) # @), and that the corresponding parse-stack is

gl qigT gl

3.1.1 Add or Delete Rule A — «

The idea of the following algorithm is to minimize the influence of each indi-
vidual rule update (addition or deletion) during a grammatical modification
over the part of the LR(0) automaton being built so far and to postpone the
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reconstruction of states and transitions until the moment when they are nee-
ded.

When a rule defining the non-terminal symbol A (an A-production) is ad-
ded or deleted we first look for the states whose set of items would be modified
by such an update. Each (already computed) state ¢ with an item of the
form [B — [eA7] is selected. Afterwards, each such ¢ is not (immediately)
recomputed but only isolated from its predecessors (if any) by “cutting” all its
in-transitions. This means that every ¢ becomes unreachable from the initial
state and hence its successors are also unreachable from the initial state by
a path going through ¢. Note that a state ¢ which has been isolated may be
“reactivated” later on, thus allowing access to its successors (if they have not
been swept out by the garbage collector!). This isolation of a state from its
predecessors is simply performed by modifying the transition function 6.

Each rule in P? U P? is considered in turn and is passed as an argument to
the procedure update which is sketched in Table 1.

procedure cut-in-transitions (q)
for each (¢', X) € {(¢', X) [ é(¢', X) = ¢} do
1) ¢/, X) = @
end do

end procedure

procedure update (A — «)
for each state ¢ € ); do
if [B — [eA~| € ¢ then
(2) cut-in-transitions (q)
end if
end do

end procedure

Table 1: Algorithm for incremental addition/deletion of rules.
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1): The in-transitions for a particular state are erased from the transition
P q
function 6.

(2): Every ¢ which has an item ([B — [(eAy]) with an LR-marker before A

has its in-transitions erased.

3.1.2 Viable Prefix Checking

When the new grammar (G;4; has been built, we must check that aB is a
dynamic viable prefix for G;;1, recompute (if necessary) the transition function
0 and the corresponding states over B, and build the new parse-stack. This
work is performed by the function check-viable-prefixin Table 2 which is called
with B as an argument.

(1): When a transition from state ¢ over symbol X leads to an empty state,
this goal is (re)computed by advancing the LR(0) mark past X and by
calling the closure function on the resulting subset. If item-set is a set of
LR(0) items, then closure (item-set) is the set of items constructed from
item-set by the two rules:

L. closure (item-set) is initialized with item-set.

2. If [B — [eY7] is in closure (item-set) and Y — p is a production,
then add the item [Y — op] to closure (item-set), if it is not already
there. This rule is applied until no more new item can be added to
closure (item-set).

(2): The new initial state ¢}, is (re)computed from S, the start-symbol,
(3): ¢7,; should not be empty,
(4): The new parse-stack is initialized with the new initial state.

(5): Each state is (re)computed from its predecessor by transition over the
corresponding symbol of the viable prefix, and the transition function is
updated consequently (if needed).

6): An empty state indicates that the parameter is not a viable prefix for the
pty p p
current grammar.
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function next-state (¢, X) return state
g = 68(g, X)
if ¢ = ® then
8(q, X) := ¢’ := closure ({[A — aXef] | [A — aeX[] € ¢})
end if
return ¢’
end function

function check-viable-prefix (X; ... X,) return boolean
iy, = closure ({{[S — ea] | S — o € Piy1})
if ¢7,; = ® then return false end if
parse-stack 1= ¢\,
for y:=1topdo
qf_H := next-state (qf;l,Xj)
if qZH = ® then return false end if
parse-stack := parse-stack || qf_H
end do
return true
end function

Table 2: Algorithm for checking the viable prefix.

(7): The parse-stack grows concurrently.

As already stated, these general algorithms could be greatly improved in
order not to recompute things which do not need to have to. At some places
in the look-ahead oracle, if it is known that a call to the rule engine will not
change its result (i.e. the LR(0) conflict will be solved within a certain length
which will not modify the grammar), the checking of the look-ahead could be

performed within the same grammar. Hence the call to the rule engine could
be avoided, the LR(0) automaton does not need to be modified neither when
moving forward nor when returning backward.
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4 Type Checking

This section aims at showing the usage of dynamic grammars in performing
(part of) the semantic analysis phase in translators. Usually the syntax of
(programming) languages is context-sensitive. The simplest example is given
by identifiers which can be used only when they have been declared. It is known
that this simple constraint cannot be captured by a context-free grammar.
Traditionally, this inherently context-sensitive process is split in two parts: the
first part is specified by a (subclass of a) context-free grammar which describes
a super-set of our language (i.e. the CF grammar allows any identifier to occur
in an expression without being declared) and involves some well known parsing
method (LL, LR, ...); and a second part, called semantic analysis, checks
that the source text is really an element of our language. This second part is
traditionally described and implemented within some non syntactic formalism
(semantic actions, attribute grammars, ... ). This section will show, through
examples, that the dynamic grammar paradigm may be used to solve, within
a unified framework, some typical and non trivial semantic analysis problems.

In our system, the calls to the rule engine are an integral part of the way
production rules are written. The rule engine may be invoked by the so-called
syntactic predicates and syntactic actions. The code of these predicates and
actions are under the control of the dynamic grammar implementor who can
use the parser environment data structures and service routines. A syntactic
predicate is a boolean function whose name, denoted by a & followed by an
integer number, may follow any symbol in the right-hand side of a grammar
rule. It means that during syntactic analysis the grammar symbol with which
it is associated is recognized if and only if it is the symbol at hand and the
boolean function answers true. Such a symbol with a predicate is said to
be extended. A syntactic action is a procedure whose name, denoted by a @
followed by an integer number, may occur at any place in the right-hand side
of a grammar rule. This syntactic action is implemented as a non-terminal
symbol whose production definition has an empty right-hand side, the real call
to the rule engine being associated with this empty reduction. The couples
action/predicate usually work as follows: actions perform (if any) the grammar
modifications and may set global data structures which (later on) are examined
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by predicates which, in their turn, can influence the course of the parsing
process.

Syntactic actions are differentiated from the usual semantic actions called
on each reduce in order to allow our system to be coupled with an arbitrary
(further) syntax directed semantic processor.

In the current version, our experimental system is not linked with a “dy-
namic scanner” and, for a given language, only a (statically) bounded number
of tokens are known. Therefore, it seems that the rule engine cannot generate
rules with new terminal symbols. In fact syntactic predicates may be used to
(partly) get round this restriction. Assume for example that a particular iden-
tifier, say "foo”, has been recognized by the scanner as being an element of the
generic token class "ident” and that we want to use this name as a terminal
symbol in a new rule (say A — "foo”) with the meaning that only the iden-
tifier whose name is "foo” will match this terminal. Since each occurrence of
"foo” will be recognized by the scanner as being an ”ident” this production
will never be recognized. One solution is to generate the rule A — "ident”&1
where the predicate &1 answers true iff the name of the identifier is "foo”.
In fact, in order to facilitate the understanding of the generated rules we will
write A — "foo” though this situation is handled via predicates. Nevertheless,
new symbols like "foo” may themselves be extended with predicates which are
supposed to handle some other situations.

In the sequel we do not want to advocate solving semantic analysis problems
in the way it is done but rather to show than they can be solved within this
framework. In fact, for each problem there exists a large variety of ways (in
the very same sense that many grammars may describe the same language) of
solving it.

Our example is a block-structured language. Each block, bracketed by ”{”
and ”}” is an optional list of declarations followed by an optional list of sta-
tements. In the first initial grammar only integer and boolean scalar variables
may be declared. Besides block, empty statement and if statement our language
allows integer and boolean assignments. This mean that the left-hand side of
an integer assignment may only be an integer scalar and its right-hand side an
integer expression. Integer and boolean expressions are (separately) described
with (some of) their usual operators. The only difference with a usual descrip-
tion is that the only integer literals are the integer numbers and the boolean
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literals are true and false. This means that, for the time being, in this initial
grammar, the notion of applied occurrence of, say, integer variable is not speci-
fied. This notion occurs in the right-hand side of some productions (describing
integer expressions) but there is no rule with this notion as left-hand side.

4.1 Scalar Variables

Our first example is shown Table 3.

(1) int a;

(2) bool b;

3 |

(4) int a, b;
(5) a = b+1;
(6) 1}

(7)  a =b;

Table 3: Scalar Variables.

(1): Until the end of this declaration, the rule engine, via syntactic action
calls has accumulated information about the text seen so far, especially
the fact that a variable whose name is "a”, of type integer, has been
declared in block level #0. On 7;” a last call to the rule engine adds a
rule defining an integer variable as being "a”:

int-lhs — 7a” (3)

The fact that the type of this variable is integer is captured in the name
of the non-terminal symbol in the left-hand side of rule (3).

Up till now, according to the current grammar, the only variable name
which may appear in an integer expression or as left-hand side of an

integer assignment is "a”.
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(2): On 7;” the rule engine adds rule:
bool-lhs — 7b” (4)

Tests for the redeclaration (at the same block level) of variables are
performed in the rule engine.

(3): The block level #1 is entered.

(4): On”,” the rule engine generates the rule:

int-lhs — 7a” (5)

At this point the two rules (3) and (5) define "a” as an integer variable
and are identical. Our language says that ”a” in block level #1 hides the
”a” in block level #0. The ”a” declared at line (1) will only be visible

again at block exit after line (6). Here, two possibilities are conceivable:
e the rule (5) is not added by the rule engine and therefore will not
be deleted at block exit line (6),

e the rule (3) is first deleted and the (same) rule (5) is then added.
For the dynamic parser point of view, the first solution is simpler since
no grammar modification is implied. However the second solution has
been retained because it allows more systematic processing (the rules
which define hidden variables are deleted) and above all these rules do

not define the same variable and the semantic processing (though not
tackled here), could need this distinction.

Therefore, On ”7,” the rule engine deletes rule (3) and adds rule (5).

On 7;” the rule engine deletes rule (4) and adds rule:

int-lhs — 7b” (6)

From now on and until the end of the current block, "b” is an integer
variable.
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(5): Here, the identifier ”a” is recognized by rule (5) as an integer variable.
Since the left-hand side of the assignment operator is int-lhs, the right-
hand side must be a phrase of int-expr which means that syntactically the
only operands which are allowed are integer literals. Hence the identifier
"b” is recognized by rule (6).

(6): We quit block #1, and return back in block level #0. Variables which have
been declared inside that block become inaccessible so the rule engine
deletes rules (5) and (6) and the variables which have been hidden should

be accessible again, so the rule engine adds rule (3) and (4).

(7): Here, "a” is recognized as being the integer variable that was declared
at line (1), so the right-hand side of this assignment statement must be
an tnt-expr whose operands should be integer literals. The token in hand
"b” do not match any integer variable. So a syntax error is detected on
the identifier "b”.

4.2 Arrays & Functions

The notions of array and function is now added to our language. The elements
of arrays are integer or boolean, the size of an index must be an integer ex-
pression and the number of their indexes are not bounded. Any reference to an
array element must agree with its declaration (i.e. element type, indexes type
which must be integer and number of indexes). Functions may return integer
or boolean values and may have parameters whose type are integer or boolean.
A reference to a function must agree with its declaration, it cannot be used in
the left-hand side of an assignment statement.

The names of arrays and functions follow (for the time being) the same
scoping rules as the ones for scalar variables.

The next example is shown Table 4.

(1): On”,” the rule engine adds rule:

int-lhs — 717 (7)
On 7;” the rule engine adds rule:
int-lhs — 737 (8)
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() int 1, j;

(2) int a [4, 5];

(3) int £ (int, bool);

(4)  a [i1[3] = £ (1, i'=3);
( ) i=1f (i+j);

Table 4: Arrays & Functions.

(2): Until the end of this declaration, the rule engine has accumulated in-
formation about the text seen so far, especially the fact that an array
variable whose name is ”7a”, of type integer, with two indexes has been
declared in block level #0. On 7;” the rule engine adds rule:

Znt-ZhS — 77a77 ” [77 ZTLt-&TpT’ 77]77 ” [77 Znt_e:EpT, 77]77 (9)

After this declaration the only occurrence of an applied array identifier is
inside an integer expression or as left-hand side of an integer assignment
statement. The name of this array could only be "a”, and it must have
exactly two indexes of type integer.

(3): Here, the information gathered during the analysis of this declaration via
various syntactic action calls indicates that a function variable whose
name is "£”, of type integer, with two parameters has been declared in
block level #0. Moreover, the first parameter has type integer and the

second has type boolean. On ”7;” a last call to the rule engine adds rule:

int-fun — 7£7 77 int-expr”,” bool-expr 7)” (10)

Note that the left-hand side non-terminal name is int-fun and not int-lhs
which prevents the use of functions in left-hand side of assignments. Once
again, after this declaration the only occurrence of an applied function
identifier is inside an integer expression, the name of this function could
only be 7£”, and it must have exactly two parameters, the first one is of
type integer while the second is of type boolean.
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(4): Here, with the symbol ”a” in hand, the only production to be entered
is rule (9), 71” and ”j” are both int-expr (see rules (7) and (8)), and
the left-hand side of this assignment statement is recognized as being an
int-lhs by rule (9). Hence the right-hand side should be an int-expr. Since
"f” is a integer variable, rule (10) is entered. Its first parameter 717 is
an int-expr while the second parameter "1!=3" is recognized as a bool-
expr. The identifications of the various variables, number of parameters,
and types lead to the validation of rule (10). Finally, line (4) is parsed
by the rule in the initial grammar which defined an integer assignment
statement.

(5): Here ”1” is an integer variable (rule (7)) so the integer variable ”£” could
occur there if the suffix of rule (10) is validated. Its first parameter should
be an integer expression, so "i+j” is valid, but the lack of second para-
meter causes a syntax error to be detected on 7).

4.3 Extensible Language

A language is said to be extensible when it is able to increase its own syntax.
Of course, dynamic grammars seem very well suited to process such languages.
The following feature is borrowed from PROLOG. We added to our language
the possibility for a function with one or two parameters to be (also) used as
an operator. Such functions are declared with three extra attributes. The first
is an integer which gives its absolute precedence level (priority), the second
tells wether it can be used as a prefix, infix or postfix operator and the third
specifies its type of associativity (see line (2) of Table 5 for an example).

(1) int a [4];

(2) int £ (int, bool) (150, infix, left);
(3) a [1] = f (3 f true + 1, false);

(4) a [3f (1, true)] = 2;

Table 5: Extensible Language.
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(1): On 7;” the rule engine adds rule:

int-tlhs — 7a” 7 [ int-expr 717 (11)

(2): As in paragraph 4.2, after the first ”)”, the rule engine adds rule:
int-fun — 7£7 7 (" int-expr”,” bool-expr ”)” (12)

The last part of this function declaration specifies that ”£” may also be
used as an infix operator which is left associative and whose priority is
”150”. Since (by construction) in our language the additive operators
have priority 7100” while the multiplicative ones have priority 72007, we
see that ”*” has priority over 7£” which itself has priority over ”+”. The
rule engine adds rule:

int-expr — int-expr "£7 bool-expr (13)

We note that ”7£” has been used in both rules (12) and (13). The priority
value (here 7150”) and the left-associativity are coded into tables which
are used in the look-ahead oracle to resolve ambiguities (see section 3).
Rule (13) has in fact exactly the same form as the ones used in the
initial grammar to specify the predefined integer and boolean operators.
Because such rules may be inherently ambiguous (when they are both
left and right recursive), they are (statically) associated with the same
(but predefined) attributes (i.e. priority and associativity) as the dynamic
operators. The rules, wether they come from the original grammar or are
added by the rule engine, are all processed in a uniform manner.

It should be noted that our language becomes ambiguous. Imagine a
function "u” with a single (say integer) parameter which can also be
denoted as a prefix unary operator. The string "u(1)” denotes both the
functional and the operator form. Though, from a semantic point of view,
the choice does not matter, the look-ahead oracle (via the special entry
of the rule engine already mentioned in section 3) must be able to choose
among these possibilities.

: After 7= e right-hand side of this assignment must be an int-expr. The
3): After ”=", the right-hand side of thi ig t th mt-expr. Th
first ”£” can only be an occurrence of the functional form described by
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rule (12). Therefore the first parameter must be an int-expr and the se-
cond a bool-expr. Then ”3” is an integer operand and the second ”"£” could
only be the infix form. The remaining problem is wether 3 £ true + 1”7
must be seen as (3 f true) + 17 or as ’3 £ (true + 1)”. The first
form is chosen, due to the fact that "£” has higher priority than ”+”. In
fact the second form would also have been rejected since the first operand
of the operator ”+” must be an int-expr.

(4): Here, the occurrence of 7£” is identified as the infix operator. Its right
operand must be boolean and a syntax error is then detected on ”7,”

which is not a boolean operator.

4.4 Overloading of Symbols

The meaning of an overloaded symbol depends on its context. Overloading
resolution consists in determining a unique meaning for that symbol. Such a
resolution can involve a non trivial process. In ADA, for an expression, the
resolution with an attribute grammar can be implemented by making two
depth-first traversals (in fact one and a half) of a syntax tree. Within the
formalism of dynamic grammars, the resolution of the overloading of symbols
is for free. When a single meaning cannot be determined, the process results
in an ambiguity detection.

To demonstrate this, we extend our language with the possibility to over-
load array and function variables. A function never hides an array with the
same name (and vice versa). A function hides another function with the same
name if and only if it has the same profile and is declared in an inner block. It
is an error when it is declared at the same block level. An array hides another
array with the same name if and only if the type of their elements and the
number of their indexes are the same and the first one is declared in an inner
block. It is an error when both arrays are declared at the same block level.
Arrays or functions and scalar variables cannot overload. It is an error when
they are declared at the same block level. At different block levels, the inner
declaration hides the outer one.

So several functions and arrays with the same name may (co)exist at the
same point, the purpose of the resolution mecanism being to choose among
them at most one meaning.
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An example is shown in Table 6.
(1) int £ [5], f (int), f (bool), £ (int, bool);
(2) bool £ [5], f (int, int);
3) £ [11 =€ (£ [2], £ (4));
(4) £ [1]1 = £ (£ [2], £ [4D);
Table 6: Overloading of Symbols.
(1): On 7;” the rule engine has add rules:
int-lhs — 7£7 77 int-expr 1”7 (14)
int-fun — 7£7 7 (" int-expr”)” (15)
int-fun — 7£7 7 (" bool-expr”)” (16)
int-fun — 7£7 7 (" int-expr”,” bool-expr”)” (17)

(2): On 7;” the rule engine has add rules:

bool-lhs — 7£7 7[” int-expr”]”

bOOl—fun - PN ? (77 int-e:rpr ” ’77 z'nt-e:xpr )7))7

(18)
(19)

The overloading resolution will be performed on a context basis and not

(only) by the scoping rule mecanism.

(3): When the parser sees the first 7£”, rules (14)—(19) are entered, the first
”[”, reduces this set of possibilities to rules (14) and (18) which mean
that the previous ”£” can only be an array name whose elements type are
either integer or boolean. On the LR(0) automaton, the transition on 71"
leads to a state where a Reduce/Reduce conflict between rules (14) and
(18) exists. Therefore, the look-ahead oracle is called. Assume that the
current value of k, the number of look-ahead symbols, is 1. Since the cur-
rent conflict cannot be resolved within that length, the look-ahead oracle
enters its unbounded mode (i.e. it tries to resolve the conflict in using the
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(4):

look-ahead context until it founds a key terminal — here the ”;” at the
end of line (3)). In fact it will check whether 7= £ (£ [2], £ (4));”
is the suffix of an integer or boolean assignment statement. No answer
will result in a syntax error, a single answer in the conflict resolution
and both answers in a quasi-ambiguity detection. Though integer and
boolean assignments are tried successively (due to the depth-first stra-
tegy), the following explanations are given as if all the possibilities were
processed in parallel. Once again, the right-hand side of this assignment
starts with an ”£” and we enter rules (14)—(19). After seeing the first
7(”, this number is restricted to the four overloaded functions. Their
first parameter is integer or boolean and, therefore, the third ”£” is not
restricted until seeing the second ” [”, which indicates an array reference.
The types of its elements (integer or boolean) does not constrain the func-
tions denoted by the second occurrence of "£”. The ”,” indicates that
only functions with (at least) two parameters are allowed. Since the type
of their first parameter is integer, this completely identifies the third "£”
as being the one defined by rule (14). The type of the second parameter
may still be integer or boolean. The second ” (7, indicates that the last
7£” is one of the functions. The integer literal 74” reduces the number
of possible functions to three while the first ”)” reduces this number to
one since there is a single function with a single integer parameter. The
type of this function being integer, there is a single function with two
integer parameters, its type is boolean. At the end, since the type of the
right-hand side of the assignment statement is boolean, its left-hand side
should also be boolean and the look-ahead oracle successfully announces
that rule (18) has been chosen. The right-hand side of this assignment
statement is then parsed again as a bool-expr.

Here, the difference with the previous line occurs after the last "£”, the
7 [ indicates an array with boolean or integer elements so ”f [4]” is an
int-lhs by rule (14) or a bool-lhs by rule (18). Therefore, ”f (f [2], f
[41)” is recognized by both rules (17) and (19). Assignments between
integers or booleans being equally valid, the look-ahead oracle detects a

quasi-ambiguity on 7 ;7.
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We note that the overloading resolution is (naturally) performed by the
unbounded mecanism of the look-ahead oracle.

4.5 Derived Types an Inheritance

Once again, we extend our language with the notion of subtypes which are new
types derived from a (predefined) type or another previously defined subtype.
For example we may defined short as being a subtype of int. The semantics,
though irrelevant here, being that any value of type short is also of type int.
Each subtype inherits the properties of its father type: arithmetic and compa-

rison operators, assignment operator, constants, ..., which therefore induces

bl
a form of overloading. Wherever an element is valid, it could be replaced by
an element of one of its subtypes. Conversely, when a subtype is declared, it
allows for an explicit conversion from one of its ancestor type to its subtype
(i.e. 7(short) 1i”, where ”1” is a scalar variable of type "int”, designates
a short integer value). Note that in our language, the spaces of subtype and
variable names are disjoints so it is possible to declare ”"short short;”.

An example is shown in Table 7.

(1): On 7;” the rule engine adds rules:

basic-type-name — "short” (20)
short-var —  short-lhs (21)
short-var —  short-fun (22)

int-var —  short-var (23)

stmt — short-lhs "=" short-expr (24)
bool-expr —  short-expr " comp-op” short-expr (25)
short-expr —  short-expr "add-op” short-expr (26)
short-expr —  short-expr "mul-op” short-expr (27)
short-expr — “add-op” short-expr (28)
short-expr —  short-primary (29)
short-primary —  int-const (30)
short-primary —  short-var (31)
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subtype int short;
subtype short char;

int 1i;
short short;

char char, f (short);

i = char+short;
short = char+short;
short = 1+2+3;

if char!=short
then char = £ ((char) (short) (i)+(char)+char) ;
else short = £ ((char)i);

char = 1i;

Table 7: Derived Types an Inheritance

short-primary — 7 (” short-expr”)” (32)
short-primary — 7 (7 ”short” 7)” int-primary (33)
int-primary — 7 (" "short” ”)” int-primary (34)

Rule (20) specifies that the type named "short” may now be used to
declare variables or to be the father type of some other new subtype.
Rules (21) and (22) prepare for the declaration of future functions or
variables of type "short”. For the time being, there is no definition for
short-lhs or short-fun since no variable of type short has been decla-
red so far. Rule (23) allows for any short variable to occur where an
integer variable is valid. Rule (24) defines a new assignment statement
between short type. Rule (25) defines comparisons between short types
as being boolean expressions. Rules (26) to (29) inherit the arithmetic
operators of the father type. Though not shown here, the priority and as-
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sociativity of these operators are also inherited. Rule (30) indicates that
integer numbers are overloaded and are elements of both types ”int” and
”short”. Rules (31) and (32) complete the definition of short primaries.
Rule (33) defines the mandatory explicit conversion from a type to its
subtype whereas rule (34) says that even after an explicit conversion to
a short type, the result may be used as an integer primary.

We can remark that the languages of int-expr and short-expr are not dis-
joint and, therefore, our language is ambiguous since these two notions
may be seeked at several places. For example the overloading of the com-
parison operator 7 !'=" and the overloading of the integer literal constants
between short and integer types imply that the boolean expression 71
= 27 is ambiguous: is the operator ”'=" an integer or a short compara-
tor, and if it is an integer comparator, are 71”7 and ”2” integer or short
constants? Of course, the same problem arises with overloaded functions
whose profiles only differ between a type and one of its subtype. This
type of expressions will result in a quasi-ambiguity detection which is

handled by the rule engine (see the processing of line (9)).

(2): On 7;” the rule engine adds rules:

basic-type-name — " char” (35)
char-var —  char-lhs (36)
char-var —  char-fun (37)
short-var — char-var (38)

stmt —  char-lhs =" char-expr (39)
bool-expr —  char-expr "comp-op” char-expr (40)
char-expr —  char-expr "add-op” char-expr (41)
char-expr —  char-expr "mul-op” char-expr (42)
char-expr — “add-op” char-expr (43)
char-expr —  char-primary (44)

char-primary — inl-const (45)
char-primary — char-var (46)
char-primary — 7 char-expr”)” (47)
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char-primary — 7 (" "char” 7)” int-primary (48)
int-primary — 7 (” "char” 7)” int-primary (49)
short-primary — 7 (” "char” 7)” int-primary (50)

Rule (38) is the complement of rule (23) for a subsubtype and allows for
any char variable to occur where a short variable is valid. Rules (49) and
(50) say that even after an explicit conversion to a char type, the result
may be used as an integer or short primary. We see that the number of
rules to be added each time a subtype is declared is n + 13 where n is
the distance of the subtype to its base type.

(3):(4):(5): During these declarations the rule engine adds rules:

(6):

(7):

(8):

(9):

int-lhs — 717 (51)
short-lhs — 7"short” (52)
char-lhs — 7char” (53)
char-fun — 7£7 7 (" short-expr”)” (54)

Remember that variable and type names are managed in different spaces.

Since ”7i” is an integer variable, the right-hand side of this assignment

must be an int-expr. The token ”char” matches the right-hand side of
rule (53) and then rules (36), (38) and (23) apply and allow a char
variable to be an operand of the integer operator ”+”7. An analoguous
process happens for "short”.

Very similar to (6) except that ”+” operates on short types since the
left-hand side is "short”.

Constants 71”7, 72" and ”3” are short primaries (see rule (30)) and the
ambiguities in the order of evaluation is resolved by the fact that rule (26)
inherits the predefined left associativity of the integer operator 7+”.

”char” is initially recognized as a ” char-var” by the rules (53) and (36). Is
this " char-var” a ” char-primary” (rule (46)) or a ” short-var” (rule (38))?
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(10):

(11):

(12):

4.6

If "char” is a ”short-var” is it a ”short-primary” (rule (31)) or an ”int-
var” (rule (23))7 A look-ahead of one symbol is not sufficient since

="

the comparison operator is overloaded. Another symbol of look-
ahead (i.e. "short”) only eliminates the possibility for ”"char” to be a
7 char-primary”. The next look-ahead symbol which is "then”, defined
in our language as being a key-terminal, allows the detection of a quasi-
ambiguity. This non unique identification is reported by the rule engine
and the corresponding ambiguity is uniquely resolved by the look-ahead

oracle.

Rule (53) is first recognized and a char-expr (see rule (39)) is guessed
as right-hand side. Rule (54) is then entered and a short-expr parameter
is expected. The occurrences of "char” between parentheses may both
designate the subtype or the variable. A look-ahead of two symbols is
needed to discover that in the first case it means subtype while in the
second it is the variable. For the same reason, "short” is found to be a
subtype.

In 7 (char)i”, the conversion from ”int” to "char” is explicit while the
conversion to "short”, the parameter type, is implicit. In the same way
the result type of the function ”£” is "char” which is implicitly converted
to "short”, the type of the left-hand side.

Since there is no automatic conversion from ”int” to ”"char” (if there

was, the grammar would be cyclic) a syntax error is detected on ”1i”.

Polymorphism

The purpose of this paragraph is to show that the notion of dynamic grammars

may also be used to process some simple cases of polymorphism. Our language
is extended with a type constructor named listof which defines lists and ap-

plies to any (constructed) type, and with two predefined polymorphic functions

cons

RR n

and tail:

cons : Va. a X listof(a) +— listof(a)
tail : Va. listof(a) — listof(«)
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An example is given in Table 8.

(1) listof int 1;

(2) listof listof int f2 (listof int), 12;

(3) listof listof listof int a3 [3];

(4) int i;

(5) 1 = cons (i, O);

(6) if a3 [1] == cons (f2 (cons (i, O)), O)

(7) then a3 [1] = cons (cons (1, f2 (1)), a3 [2]);
(8) else 12 = tail (£2 (tail (())));

(9) a3 [1] = cons (i, 1);

Table 8: Polymorphism.

(1): On 7;” the rule engine adds:

listof*-int — 77 7)” (55)
listof *-int — "cons” 7 (" int-expr ”,” listof*-int ") (56)
listof'-int — 7tail” 7 (" listof'-int )" (57)
listof'-int — listof*-int-var (58)
listof'-int-var —  listof " -int-lhs (59)
listof*-int-var —  listof*-int-fun (60)
stmt —  listof'-int-lhs "=" listof'-int 7 ;” (61)
bool-expr — listof-int " comp-op” listof!-int (62)
listof'-int-lhs — 717 (63)

Rule (55)—(62) are only generated the first time a "1istof type”, for
a given "type”, is found. Rule (55) defines the empty list of integers.
Rules (56) and (57) define the fonctions "cons” and "tail” on "listof
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int”. Rules (61) and (62) define possible assignments and comparisons
and rule (63) that ”1” is a scalar variable of that type.

(2): On 7;” the rule engine adds:

listof?-int
listof*-int
listof*-int
listof?-int
listof*-int-var
listof*-int-var
stmt

bool-expr
listof?-int-fun
listof*-int-lhs

L A A

!

n(n ny
"cons” 7 (7 listof'-int 7, listof*-int 7)”
"tail” 7 (7 listof*-int 7)”

listof*-int-var

listof*-int-lhs

listof*-int-fun

listof*-int-lhs "=" listof*-int 7 ;"
listof?-int ” comp-op” listof*-int
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Rules (55), (64) and (74) show that empty lists have the same represen-
tation. The identification of the type of an empty list may then fail when

no outside context is available and when expressions involve only (func-

tions operating on) constants. For example in 7if () == cons ((),
()) then ...” the operands of the comparison operator "==" cannot be

uniquely typed and the syntax analysis will result in a quasi-ambiguity

detection.

(3): On 7;” the rule engine adds:

listof>-int
listof*-int
listof*-int
listof>-int
listof?-int-var
listof?-int-var
stmt

bool-expr
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listof*-int-lhs — 7a3” " [” int-expr 1" (82)

(4): On 7;” the rule engine adds:

int-lhs — 717 (83)

(5): Since "1” is identified by rule (63), the right-hand side of this assignment
is an listof'-int (see rule (61)) and hence, the first parameter of "cons”
must be an int-expr while the second must be a listof'-int. Therefore,
the empty list 7 ()7 is uniquely typed.

(6): Here, elements of "a3” are of type listof°-int so the first parameter of
”cons” must be a lz’ston-mt and the second a listofS-int. 7£2” and 7 ()”

agree with this typing, and so does the single parameter of "£2”.

(7):(8): Though theses expressions are not simple, the type checking causes
no problem.

(9): The first parameter of "cons” should be of type listof*-int, this is not

the case and a syntax error is detected on 71”.

4.7 Record Types

In Christiansen’s paper ([7]), several issues are quoted as being difficult to
resolved in the framework of adaptable grammars (its own view of dynamic
grammars). One is the problem raised by the “with statement” which gives
access to record declared somewhere else without spelling the complete path
leading to a field. The following example shows how it is processed with our
system. First, our language is extended with the declaration of record types
and record variables. A record type may contain scalar, array and record type
variables (see lines (1) to (7) in Table 9). The access to a given field is performed
by a dot notation (see line (9)) or via a with statement. A with statement is
any statement which is prefixed by the header "with rec-name do” where rec-
name designates a record variable name and which allows to access directly
any field of rec-name.
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The way this problem is processed shows a case where a generated rule
(see rule (88)) is itself capable, while it is parsed, to call the rule engine (via

parsing actions), and therefore to modify the grammar.
An example is shown Table 9.

(1) record fields {
(2) int i, j;

(3) 1

(4)  record struct {
(5) int i, j;
(6) fields f;

(M) s

(8)  struct s, a [4], f (fields);
(9) a [3].f.i = f (s.f).f.5;

(10) with a [1].f do

(11) i=3;

(12) with s do

(13) with £ do
(14) i=f.3;

Table 9: Record Types.

(1): The rule engine adds:

basic-type-name — "fields”
fields-var —  fields-lhs
fields-var —  fields-fun

stmt — fields-lhs ”=" fields-var
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stmt — 7with” fields-lhs "do” @1 stmt @2  (88)
bool-expr —  fields-var " comp-op” fields-var (89)

Rule (84) allows for the declaration of record variables and functions
whose type name is "fields” (see line (6)). In rules (85) and (86) fields-
lhs and fields-fun refer to notions which will (eventually) be defined la-
ter on when a variable of that type will be declared (see rule (100)).
Rules (87) and (89) allow the assignment and comparisons between
”fields” objects. Rule (88) defines a with statement. The syntactic ac-
tions @7 and @2 designate explicit calls to the rule engine. The @1 call
will generate rules wich allow the access to the fields declared in the re-
cord body without using a dot notation. These rules are in fact a copy of
the rules generated for a record body but only with the last suffix symbol
(see for example rules (90), (91) and rules (104), (105)). When the scope
of the with statement is exited, the @2 call deletes the rules generated
by the corresponding @1 call.

(2): We have:
int-lhs —  fields-var 7.7 71”7 (90)
int-lhs —  fields-var”.” 73”7 (91)
Rules (90) and (91) allow the access to fields ”1” and ”j” of the record
type "fields”.
(4): (5): Are very similar to (1) and (2):

basic-type-name — 7struct” (92)
struct-var —  struct-lhs (93)
struct-var —  struct-fun (94)

stmt —  struct-lhs "=" struct-var (95)
stmt — 7with” struct-lhs 7do” @1 stmt @2  (96)
bool-expr —  struct-var ”comp-op” struct-var (97)
int-lhs —  struct-var”.” 71”7 (98)
int-lhs —  struet-var”.” 73”7 (99)
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(6): We have:

fields-lhs —  struct-var”.” 7£” (100)

The rule (100) allows the access to the field named "£” in a variable whose
type name is "struct”, this field being itself of record type "fields”
and can be used in the left-hand side of an assignment statement.

(8): The rule engine adds:

struct-lhs — 7s” (101)
struct-lhs — 7a” 7 [” int-expr 717 (102)
struct-fun — 7£7 7 (" fields-var )" (103)

Remark that rule (103) prohibits the usage of a record object returned
by a function call to be used as left-hand side of an assignment statement
or as header of a with statement.

(9): Here "a [3]” is recognized by rule (102), then rule (93) is used, the
first ”.” is the middle terminal symbol in rules (98), (99) or (100), the
7" selects rule (100). fields-lhs is reduced to fields-var by rule (85) and
finally ”.1” is recognized by the suffix of rule (90). Therefore the right-
hand side of this assignment statement must be an int-expr. "s.£” is
recognized as a fields-var by the sequence of reductions: (101), (93), (100)
and (85). Rules (103) and (94) indicate that "f (s.f)” is a struct-var
and finally "f (s.f).f.j” is recognized as an int-lhs by the reduction
sequence (100), (85) and (91).

(10): Here "a [1].£” is recognized as a fields-lhs by rule (100) and "with a
[1].f do”, matches the beginning of rule (88). The rules engine, called
via the syntactic action @1, adds the rules:

int-lhs — 71”7 (104)
int-lhs — 737 (105)

which are similar with rules (90) and (91) where the field access mecanism
has been erased.
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(11): Here "1” and ”j” are recognized by rules (104) and (105). When the
with statement is exited, rules (104) and (105) are deleted by the call of
the syntactic action @2.

(12): The ”s” is recognized as a struct-lhs by rule (101) and the call of @7 in
rule (96) adds:

int-lhs — 717 (106)
int-lhs — 737 (107)
fields-lhs — 7£7 (108)

(13): The "£” is recognized as a fields-lhs by rule (108) and the call of @1 in
rule (88), as already explained in paragraph 4.1, deletes the rules (106)
and (107), and adds:

wmt-lhs — 717 (109)
int-lhs — 737 (110)

(14): Here 71” designates "s.f.1” and "f.j” stands for "s.f.j”. Though
the inner with statement gives access to the field names of "s.£”, these
names can still be denoted by a dot mecanism. In fact, at that position,
"s.f.37,7f.3” and ”7j” designate the same variable.

When the inner with statement is exited, the call of @2 in rule (88)
deletes the rules (109) and (110), and adds the rules (106) and (107).
When the outer with statement is exited, rules (106), (107) and (108)
are deleted by the call of @2 in rule (96).

4.8 Forward References

This example illustrates the possibility to have forward information which
influence the current parsing. Labels and "goto” statements are added to our
language with the following meaning: goto’s cannot enter inner blocks. Labels
are block-structured with at most one label name at a given level. It means
that if a label in an inner block hides an outer label, "goto”’s in the inner
block to that name refer to the inner label, even when this label occurs in the
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source text after the "goto”. Such a case is processed in using the multi-pass
possibility of our implementation. A first pass is performed over the source text
with a first (here static) grammar and the rule engine collects the information
about the fact that a given label occurs in a given block. The information
about labels, defined on each block, will be used during the second pass to
generate the rules for labeled and goto statements. In fact, during this second
pass, the dynamic parser reacts as if the predeclaration of labels at each block
level were mandatory.
An example is shown Table 10.

(2) goto A;

(3) {

(4) goto A;
(5) A: goto B;
(6) }

(9) B:goto A;

Table 10: Forward References.

(1): At block level #0, the rule engine adds:

label — 7B” 7.7 (111)
stmt — ”gOtO” "B” 77;77 (112)

where "B” designates the label at line (9). Note that goto statements are
not predefined in the initial grammar, they are generated (with references
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(2):
(3):

(4):
(5):

(6):

to good labels) only where the are allowed to be used. The initial gram-
mar only recorded the fact that statements may be labelled, it contains
the rules:

label-stmt —  label @3 label-stmt (113)
label-stmt —  stmt (114)

where @3 will delete the rule which has just produced the non-terminal
label occurring just before @3. (For an example see the processing of line

(5).)

When entering the first block, the rule engine adds:

label — 7A” 77 (115)
stmt — ”gOtO” " AP 77;77 (116)

where ”A” designates the label at line (7).
This goto statement is recognized by rule (116).

When entering the second block, the rule engine deletes rules (115) and
(116) since a new label with the same name ”A” will be defined at that

block level, and adds:

label — 7A” 77 (117)
stmt — ”gOtO” " AP 77;77 (118)

where ”A” designates the label at line (5).

This goto statement is recognized by rule (118).

The label ”A” is the one define by rule (117), which, when recognized,
is immediatly deleted by the rule engine via a call to @3. This prevents
another use of the same label in the same block. This goto statement is
recognized by rule (112).

At block exit, rule (118) is deleted and rules (115) and (116) are added.
Note that rule (117) has already been erased at line (5) since the same
label name cannot occur twice at the same block level.
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(7): The label "A” is the one define by rule (115). This rule is immediately
deleted by the rule engine via a call to @3.

(8): At block exit, rule (116) is deleted.

(9): The label "B” is the one define by rule (111) which is deleted by the rule
engine. But the only goto statement which is (still) valid is defined by
rule (112) and therefore a syntax error is detected on ”A”.

4.9 Permutation Phrases

Though not in the domain of semantic analysis, permutation phrases are
constructions frequently used in languages and which are not suitably proces-
sed by context-free grammars. A permutation phrase refer to any permutation
of a set of constituent elements. Among others, such free-order constructs can
be found in, attribute specifiers within C or C++ declarations, named para-
meter associations in ADA subprogram calls or generic instantiations, various
COBOL constructs, citation fields in BIBTEX bibliographies, and-group in the
SGML language for document representation, and command-line parameters
or options of various Unix programs. This free-word-order phenomenon also
occurs prominently in natural languages processing. A permutation phrase of
n constituent elements necessitates n! context-free rules to be described. We
shall see that this problem is solved by dynamic grammars with a linear com-
plexity. To be more realistic we will assume that some elements should occur
in any given permutation while some others are optional. Let M and O be a
partition of £, the set of constituent elements, where M stands for mandatory
and O for optional, and p = |M]|, ¢ = |O] and n = |E| be their cardinals
(p+ ¢ = n). A permutation phrase PP (among others) may be described by
the following (initial) grammar:

PP — PP? (119)
pP? — PPPl M (120)
PP? — PP? O (121)
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PP* — PPT'M (122)

PP' — PP'O (123)

PP! — PP°M (124)

PP' — PP'O (125)

PP° — PP°O (126)

PP° — ¢ (127)

M — my|...|m;|...|m1 (128)

O — o4]...l0k|...]01 (129)

Rule (119) indicates that any permutation contains the p mandatory ele-
ments. The rules such (120), ..., (122), ..., (124) define a permutation of i
elements as being formed by a permutation of ¢ — 1 elements followed by a
mandatory element, while rules (121), ..., (123), ..., (125) say that such a

permutation may also be composed by a permutation of 7 elements followed by
any number of optional elements. Rules (126) and (127) define (initial) permu-
tations only formed by optional elements. Rules (128) and (129) respectively
define the mandatory and optional elements. But, as such, this grammar does
not describe a permutation phrase since a given element may occur several
times in a given phrase. The dynamic grammar mecanism can handle this dif-
ficulty. Each time the rule engine is called after the recognition of an element
(rule (128) or (129)), this rule is deleted and therefore prohibits any further
recognition of the same element within the same permutation. The only thing
to do, on rule (119), is to restore the rules which have been deleted in order
to allow the parsing of other permutation phrases. We see that the resolution
of permutation phrases is easily performed, without any restriction, within
the framework of dynamic grammars. This should be contrasted with systems
(see [6]), specially dedicated to that purpose, and which impose some (severe)
restrictions.
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5 Other Works

Our work has been initiated by the papers of Burshteyn ([2], [3] and [4]),
Cabasino, Paolucci and Todesco ([5]), and Christiansen ([7]).

In ([2]), Burshteyn introduces the notion of modifiable grammar and some
of their applications. This notion is formalized and the parsing algorithm is
presented in ([3]). The name "rule engine” and the idea and proof of theorem 1
come from ([3]). This system is based upon a (dynamically produced) LR(1)
automaton, which is, in our opinion, inappropriate for at least two reasons:
grammars should have as few constrainst as possible, since they are dyna-
mically produced (for a real programming languages, to get a static LR(1)
grammar is not so easy so imagine the mess with a dynamic one ...) and the
status of this look-ahead symbol seems unclear. In fact, a method whose ba-
sic parsing algorithm uses some look-ahead does not seem to fit our goal: the
grammar for the look-ahead may be unavailable (not yet specified), or may
be modified (the vocabulary of the look-ahead string may even not belong
to the current grammar). Moreover, the restrictions upon modifications are
not clearly stated. Finally, in ([4]), Burshteyn describes a tool which accepts
definitions written in a metalanguage and gives several examples from C++.
It should be noted that a multipass mecanism is also available in modifiable
graminars.

The notion of evolving grammars is defined in ([5]). This formalism only
allows a grammar to grow (i.e. new grammar rules can only be added) and
though we have seen in the proof of theorem 1 that the formal descriptive
power is not decreased by this restriction, an order of magnitude can be lost in
the practical usage of such grammars. The authors themselves admit that “The
current conceptual framework shows several limitations in the area of “nega-
tive grammar changes”. Therefore we hardly face problems connected with
syntactic scope”. Moreover their parsing algorithm is not explicitly described.

In ([7]), Christiansen defines generative clause grammars which are an ex-
tension of definite clause grammars (see [8] and [12]). In Section 2, we can find
a short survey of approaches to extensible or adaptable grammar formalisms,
and Section 3 discusses more problematic issues with this approach and the
way they have been solved (or not). Its very declarative and functional style
of adaptable grammars is appealing but does not seem to be capable of the
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kind of fine-tuning needed to describe the wide variety of context-dependent
rules we can find in programming languages. On the other hand, the power of
our dynamic grammars partly relies upon the rule engine which is the gram-
mar definition of the language to be processed. The only output interface with
the dynamic parser are (only) context-free grammars but the way they are
generated is not part of the formalism. For example all the features (except
for the error handling which has not yet been considered in our system — see
section 6) quoted as difficult in ([7]) (and some others) have been processed
(see section 4) by our system.

A lazy and incremental parser generator has been studied in ([13]) in the
context of interactive language definition environments. In this thesis, Rekers
describes an LR-based parser generator for arbitrary context-free grammars
that generates parsers on demand and which handles modifications to its input
grammar by updating the parser it has generated so far. In ([10] and [11])
Horspool studied an incremental LALR(1) parsing generation method.

6 Conclusion and Future Works

We have described the theoretical basis for dynamic grammars and their corres-
ponding dynamic parsers. We also have presented both the rule engine, which
is the operational view of a dynamic grammar, and an experimental implemen-
tation of a dynamic parser which consists of, a lazy, incremental LR(0) parser
equiped with an unbounded look-ahead oracle. The intend of this system was
to demonstrate the practical capabilities of this formalism in the processing
of programming languages. Though our system accepts, with only few restric-
tions, any dynamic grammar, its global behavior is non ambiguous in order to
cope with its intend application field. This means that, for any input string,
at most a unique parse is produced, even when the dynamic grammar is am-
biguous. The dynamic parser and the rule engine are coupled via syntactic
action and predicate calls, and the consistency of any grammar modification
with the theory is checked (see Table 2). This experimental system has been
used on a sample of significative examples which demonstrate that this method
should be considered as a viable alternative solution to usual methods, as far
as context-sensitive properties are concerned.
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Of course, dynamic grammars are a syntactic device and, as such, are not
well suited to perform computations (the output is formally defined as being
a dynamic rightmost parse). So we do not claim that they can replace such
devices as attribute grammars, but they can be used when an attribute gram-
mar would only perform context-sensitive checking (typically type-checking).
Other more strictly semantic parts fall more naturally within the domain of
other methods.

A lot of related problems should still be investigated. What is the com-
pared performance (for both a theoritical and practical point of view) of a
dynamic parser versus a more usual method? What kind of error recovery
and repair strategies will work with dynamic grammars? In fact an impro-
vement of context-free methods is probably to be expected since much more
information is available. Any correction will both be syntactically valid and
typed-checked. It also seems possible to extend the spelling correction meca-
nisms from keywords to mere (applied occurrences of) identiers. As pointed
out in ([4]), dynamic grammars may be used as a generator device (instead of
a parser) and then produce texts which are (by nature) fully type-checked. It
should be noted that an attribute grammar which describes a given language
cannot be used as such to produce a test suite. If it appears that dynamic
grammars constitute a valuable practical concept, the way the rule engine is
actually written should be improved in a much more descriptive manner. A se-
mantic attribute based system such as the one in ([4]) could be thought of. The
same ideas have been used to implement a dynamic scanner but its integration
into a single system is not yet done.

We suspect that this unifying framework will facilitate the emergence of
other applications.
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