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Abstract: The so-called synthesis problem for nets, which consists in deciding
whether a given graph is isomorphic to the case graph of some net, and then
constructing the net, has been solved in the litterature for various types of
nets, ranging from elementary nets to Petri nets. The common principle for
the synthesis is the idea of regions in graphs, representing possible extensions
of places in nets. However, no practical algorithm has been defined so far
for the synthesis. We give here explicit algorithms solving in polynomial time
the synthesis problem for bounded nets from regular languages or from finite
automata.
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Algorithmes polynomiaux pour la synthese
de réseaux bornés

Résumé : Le probleme de synthese de réseaux, qui consiste a décider pour
un graphe donné s’il est isomorphe a un graphe de marquage d’un réseau, est
résolu pour diverses classes de réseaux allant des réseaux élémentaires aux ré-
seaux de Petri. Le principe général est de caractériser les sous ensembles du
graphe, appelés régions, qui représentent les extensions des places du réseau a
synthétiser. Cependant la complexité théorique de la solution est exponentielle
et aucune optimisation menant a des algorithmes utilisables n’a été présentée
jusqu’a lors. Nous présentons ici des algorithmes explicites qui résolvent en
temps polynomial le probleme de synthese de réseaux bornés a partir de lan-
gages réguliers ou a partir d’automates finis.

Mots-clé : Synthese de réseaux, réseaux de Petri, régions, algorithmes
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1 Introduction

Ehrenfeucht and Rozenberg addressed in [ER90] the problem of characterizing
axiomatically the class of simple directed graphs labeled on arcs which may
be represented unambiguously by a set of subsets of an overall coding set
together with a set of mutual differences between them. Central to that work
is the concept of region in a graph, defined as a set of vertices which are entered,
exited, or left invariant by all arcs with an identical label. The overall coding
set for a graph may always be chosen as its set of regions. A region is a property
of the vertices it contains. Conversely, a vertex may be represented as the set of
regions which it belongs to, and that representation is unambiguous if and only
if every pair of vertices is separated in the usual sense by some region. Since all
arcs with an identical label carry the same change of properties, a label may be
represented as the mutual difference between the respective sets of properties
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4 E. Badouel, L. Bernardinello & Ph. Darondeau

of the source and target vertices of any arc associated with that label in the
graph, and that representation is unambiguous due to simpleness. The graph
may be reconstructed from the set of mutual differences if each vertex which
is not the origin of any arc with a given label is separated from that label
by some region, which means that the region contains all the origins of the
arcs carrying that label, but not the considered vertex. The so-called regional
azxioms specify those two different requirements of separation. Ehrenfeucht
and Rozenberg applied the regional axioms to solve the synthesis problem for
elementary nets in [ER90]. Given a simple directed graph labeled on arcs, they
construct from that graph an elementary net with one place per region, one
transition per label, and with flow relations between places and transitions laid
down according to the mutual differences between vertices seen as sets of places,
or markings. The case graph of the net assembled in this way is isomorphic to
the given graph if and only if that graph is an elementary transition system,
which implies essentially that the two regional axioms are satisfied. It is worth
noting that in case the given graph is the case graph of an elementary net, the
construction leads to a saturated version of that net, where extra places have
been added without disturbing the behaviour but only copies of those places
can still be added. Desel and Reisig observed in [DR92] that one may optimize
the solution of the synthesis problem by computing any reduced set of regions
sufficient to ensure satisfaction of the regional axioms in the graph. Along a
similar line, Bernardinello proved in [Ber93] that the set of minimal regions
(w.r.t. set inclusion) is adequate for that purpose. Unfortunately, this result
does not seem to lead specially to practical algorithms with low complexity.
We will show that standard techniques of linear algebra lead to smooth
algorithms for the synthesis of bounded nets in the extended framework of
general regions, which were introduced under variant forms by Droste and
Shortt [DS93], Mukund [Muk93], and Bernardinello, De Michelis and Petruni
[BDP93]. General regions are multisets where regions are sets. A general re-
gion in a labeled graph is a multiset of vertices whose rank of membership is
modified by a uniform translation along all arcs with an identical label. Since
ranks of membership are whole numbers, uniform translations on ranks are
defined by relative numbers. A general region is a property which may be sa-
tisfied at different degrees, measured by ranks of membership of vertices. In a
dual way, a vertex may be represented as the multiset of properties which it
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Polynomial Algorithms for the Synthesis of Bounded Nets 5

satisfies at some positive rank. Given a simple directed graph labeled on arcs,
one can construct an induced place transition net with one place per general
region, one transition per label, and with arcs between places and transitions
weighted by norms of uniform translations and directed according to the signs
of their defining numbers. Here again, the place transition net assembled in
this way is a saturated net and its case graph is isomorphic to the given graph
if and only if that graph satisfies the two regional axioms, restated in terms of
ranked membership.

The object of this paper is to provide practical algorithms for deciding
satisfaction of the regional axioms in a finite graph and for computing in
that case just enough general regions to induce a place transition net with
an isomorphic case graph. We leave for further study possible extensions to
particular classes of infinite graphs. For sure, a finite graph is never the case
graph of an unbounded Net. We shall therefore deal exclusively with bounded
nets, whose precise definition is given in section 2.

We tackle in a first stage a relaxation of the synthesis problem for boun-
ded nets, which is addressed in section 3 for languages defined by regular
expressions. A language closed under left factors may be identified with a de-
terministic labeled tree. Regions in a language may therefore be defined as
general regions in the underlying tree. Of special interest since we deal with
bounded nets are general regions with bounded rank of membership, which we
call bounded regions. The synthesis problem for languages is not quite the same
as for labeled graphs: the sole constraint on the net assembled from regions
in a language is to behave according to that language, which is significantly
weaker than having a case graph isomorphic to the underlying tree. This wea-
ker requirement is met if and only if that tree satisfies the second regional
axiom, which was observed by Hoogers, Kleijn and Thiagarajan in the context
of trace languages [HKT92]. A region in a language is totally determined by
an offset, which is the rank of membership of the empty word, and by a vector
of displacements, which are relative numbers defining the uniform translations
attached to labels. Abstracting a little more, one may forget about offsets and
consider abstract regions defined as vectors of relative numbers, or yet equiva-
lently as morphisms from the free monoid over the set of labels to the additive
monoid of relative numbers. The abstract regions which are the projections of
the bounded regions in a regular language form a module of finite dimension
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6 E. Badouel, L. Bernardinello & Ph. Darondeau

over Z. We will show that deciding whether a regular language satisfies the se-
cond regional axiom and computing in that case a bounded net with equivalent
behaviour may be reduced to solving finite linear systems over the integers,
uniform in the regular expression. We evolve therefrom a practical method for
the synthesis of bounded nets, based on polynomial algorithms discovered in
the late seventies for linear programming over the rational field. Altogether,
we obtain a polynomial algorithm for the synthesis of nets from regular ex-
pressions in the so-called failures tree form (which in particular means they
are represented by trees labeled with action symbols and starred expressions).

We tackle in a second stage the general synthesis problem for bounded
nets, which is addressed in section 4 for finite automata. Since we are back
in the framework of labeled graphs, the first regional axiom is re-imposed. A
general region in a finite automaton is determined by an offset, which is the
rank of membership of the initial state, and by a vector of relative numbers
which associate uniform translations to labels. A region in a finite automaton
is always a region in the language of the automaton, but the converse is not
true. The set of abstract regions in a finite automaton is a submodule of the
module of abstract regions in the language of the automaton. The abstract
regions which are projections of bounded regions are the solutions of a sys-
tem of linear equations which express equality constraints relative to states,
stronger in general than the boundedness constraints relative to the language
of the automaton. Altogether, one retrieves the constraints set on synchronic
distances in [BDP93], which shows that abstract regions are in a one-one cor-
respondence with synchronic distances. The advantage of the more algebraic
view taken here is to lead directly to algorithms. We will show that deciding
whether a finite automaton satisfies the two regional axiom and then compu-
ting a bounded net with equivalent behaviour, reduce again to solving finite
linear systems over the rational field, uniform in the automaton. Altogether, we
obtain a polynomial algorithm for the synthesis of nets from finite automata.

2 Notations for Petri Nets

We adopt in this paper a notation for Place/Transition nets slightly different
from the usual one; this should not cause confusion.

INRIA



Polynomial Algorithms for the Synthesis of Bounded Nets 7

Definition 2.1 (Nets) A net is a structure N = (P,T,W), where P and T
are disjoint sets, of places and transitions respectively, and W : P x T — Z
is the weight function. The set of input (resp. output) places of a transition t
is the set *t (resp. t*) of places p such that W(p,t) <0 (resp. W(p,t) >0). A
marking of N s a map m : P — IN.

Nets are usually equipped with a flow relation F' C (P x T)U (T x P)
and a weight function W : F — IN*. We can adopt here a more compact
notation because we consider exclusively pure nets, i.e. nets such that

Ve,y € PUT (z,y)€ F = (y,2)¢ F.

The overall behaviour of a Place/Transition net is determined by the so-called
firing rule which tells that a transition is enabled at a marking if that marking
supplies enough resources in each of its input places.

Definition 2.2 (Firing rule) Let N = (P,T,W) be a net and M a marking
of N; a transition t € T is enabled at m if Vp e P M(p) + W(p,t) > 0. If
transition t is enabled at marking M, then it can fire; in doing so, it produces
a new marking M', defined by ¥Vp € P M'(p) = M(p) + W(p,t). This firing
step is denoted M[t>M'. A sequence of transitions u = tity-- -1, is enabled
at a marking Mo of AM;,... M, such that M;_1[t;>M;, for alli =1,... n.
This firing sequence is denoted Molu > M,,.

While the overall behaviour of a Place/Transition net reflects its whole struc-
ture, one is most often interested in restricted behaviours induced by initial
markings.

Definition 2.3 (Marked net) A marked net is a structure N = (P, T, W, M),
where (P, T,W) is a net and My : P — IN is the initial marking. The set of
reachable markings of N is the smallest set M(N) of markings such that

1. My € M(N),

2. if M € M(N) and M[t>M' then M' € M(N).

The marking graph of N is the labeled transition system ng(N) with set of
states M(N), initial state My, set of labels T, and set of labeled transitions
Tr(N) C M(N)xT x M(N) defined by

(M,t,M") € Tr(N) & M[t>M'. The language of net N, or equivalently the
language of the marking graph ng(N), is the set of all sequences of transitions
enabled at My (thus this language is prefix closed).
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8 E. Badouel, L. Bernardinello & Ph. Darondeau

Of special interest in this paper are marked nets with finite sets of reachable
markings. A relaxed form of finiteness may be defined as follows.

Definition 2.4 (Bounded net) A place p of a marked net N = (P, T, W, My)
is bounded if the set {M(p)|M € M(N)} is finite. A marked net with bounded

places is called a bounded net.

Droste and Shortt observed in [DS92] that a bounded net with finitely many
transitions must have a finite set of reachable markings. Hence any bounded
net with finite dimension may be transformed into a finite equivalent net.

3 Regions in Regular Languages
The goal of the section is to solve the following problem:

Problem 3.1 Given a prefiz-closed language L C A*, decide whether there
exists a marked net with language L and if so, construct such a net.

We will present a polynomial algorithm which answers this problem for regular
languages. The basic constituent of the proposed solution is the principle of
abstract regions which may in fact be applied to arbitrary languages. We shall
therefore cast the definition of regions in a general context, and subsequently
focus on regular languages.

Throughout the section, let I denote a prefiz-closed language over a finite
alphabet A = {ay,...,a,}, ranged over by a, and for any map p : A — Z,
let p: A* — Z denote the monoid morphism p(ua) = p(u) + p(a). Thus in
particular 0 € p(L), where p(L) = {p(u) | u € L}.

3.1 Regions in Formal Languages

An abstract region in a prefix-closed language L over alphabet A is a mor-
phism from A* to Z, satisfying the requirement that L should be mapped to
an interval of Z bounded from below. If one imagines the morphic image of a
word in L as the measure of variation of an abstract resource through a deter-
ministic process, the requirement guarantees that starvation may be avoided
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Polynomial Algorithms for the Synthesis of Bounded Nets 9

globally by feeding in every process in L with a fixed amount of initial resource.
Bounded abstract regions, which will play an essential role in our study of re-
gular languages, satisfy the stronger requirement that L should be mapped to
a finite interval of Z, reflecting the intuition that a language considered as a
non-deterministic process can only produce a bounded amount of resource.

Definition 3.2 (Regions of a language) A region of L is a map p : A —
Z such that the set {p(w) | w € L} has an infimum. A bounded region of L
is a region p of L such that the set {p(w) | w € L} has also a supremum. Let
Ry, resp. BRy, denote the set of regions, resp. bounded regions of L.

The algebraic properties of abstract regions which follow immediately from the
definition are gathered below.

Fact 3.3 The sets Ry, and BRy, are closed under pointwise sum of maps, and
the null region pg with constant value po(a) = 0 is the neutral element for sum.
Moreover, the set BRy, is closed under inverses. Thus Ry is a monoid, and
BRy, is an abelian group.

As already observed in [BDP93], the bounded regions of a language over alpha-
bet A are a subgroup of the free abelian group of maps from A to Z, which
is finitely generated since A is finite. As a consequence, BRy is also a free
group with a finite set of generators, which is tantamount to a module of finite
dimension over Z. In order to recover concrete regions from abstract regions,
it suffices to attach to each abstract region p € Ry the minimal offset My (p)
such that any possible displacement p(u) associated with some word u € L
leads therefrom to a non negative value My (p)+ p(u). The term region is used
in all the sequel as an abbreviation for abstract region.

We are now in a position to derive marked nets from prefix-closed lan-
guages: the transitions are the symbols in the alphabet, the places are regions,
and the weight functions are set in agreement with the values of regions.

Definition 3.4 (INets derived from languages)

1. The saturated net N'(L) derived from L is the net (R, A, W, M), where
Wip,a) = pla) for p € Ry, and My(p) = —inf{p(u) | u € L}.

RR n-°2316



10 E. Badouel, L. Bernardinello & Ph. Darondeau

2. For any set of regions R C Ry, the R-net derived from L is the sub-net
of N(L) with set of places R.

3. In particular, the saturated bounded net BN(L) derived from L is the
sub-net of N'(L) with set of places BRy,.

We are mostly interested in determining the necessary and sufficient conditions
under which the languages of the nets A(L) or BA(L) coincide with the
language L. Those conditions may be stated in terms of the following properties
of separation.

Definition 3.5 (Separation properties for languages) Let R C Ry, be a
subset of regions of L, then L is said to be separated by R if and only if for all
word u, (u g L = dp e R Mp(p) + p(u) <0). The language L is separated
if it is separated by Ry, and boundedly separated if it is separated by BRy,.

Remark 3.6 We say that a region p of L kills the word ua whenever My (p)+
plua) < 0 whereas My (p) + p(u) > 0. Thefore a prefiz-closed language L is
separated by R if and only if every faulty word w-a € (L - A)\ L is killed by
some region of R.

Example 3.7

1. Let L be the (prefiz-closed) regular language a* + a*b then necessarily
p(a) > 0 for every region p of L, thus no region p € Ry, kills the word ba
and L is not separated (since b € L and ba ¢ L ).

2. Let L be the (prefiz-closed) regular language a* + a(a*)b(a*) then L is
separated, but L is not boundedly separated, since any region p of L which
kills the word b ¢ L satisfies p(a) > 0 (any region p of L must satisfy
My (p) + plab) > 0)

3. Let L be the prefiz-closure of the language {(a.@)"b(c.€)"|n € IN}, which
is algebraic but not reqular, then L is separated by a finite set of regions
but it cannot be separated by any set of bounded regions (if it was, L
would be regular according to the remark of Droste and Schortt).

INRIA
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The places of a net may always be identified with regions in the language of
that net, moreover the language of a net is separated by the set of regions
associated with places in the net, even though My (p) does not necessarily
coincide with the value of the initial marking of the net at the place associated
with p.

Proposition 3.8 A prefiz-closed language L coincides with the language of
the R-net derived from L iff it is separated by R.

Proof: Let notations as follows: N(L, R) denotes the R-net derived from
language L, Mp denotes the initial marking of N(L, R), that is My,
restricted to R, and £(N ) denotes the language of net N. Observe that,
by definition, the language of a net is prefix-closed. In order to establish
the proposition, we will use a lemma which follows straightforwardly

from the definition of N(L, R):

Lemma 3.9 Let u € L(N(L,R)), then for each p € R, Mplu>M
implies M(p) = Mp(p) + p(u).

With the help of that lemma, we prove that L C L(N(L, R)) for any
subset R of regions of L. The proof is by induction on the length of
w€ L. If [u| =0, i.e. u = ¢, then clearly u € L(N(L, R)). Suppose that
w € L implies uw € L(N (L, R)) for |u| < n, and let w.a € L, with |u| =n
and e € A. By definition of regions in L, Mgr(p) + p(u)+ pa > 0 for any
p € Ry, and by induction hypothesis, v € L(N(L, R)), hence Mp[u>M
where M(p) = Mgr(p)+ p(u) and the above inequality shows that a is
enabled at M. We prove now that L = L(N(L, R)) if L is separated by
R. Let uw € L, then by the first part of the proof, u € L(N(L, R)), and
by definition of separatedness:

wa €L & [Vpe R Mp(p)+ p(u.a) > 0] < ais enabled at M,

where M is the marking such that Mp[u>M in N(L,R), and therefore
L = L(N(L,R)). We prove finally that L # L(N(L,R)) if L is not
separated by R. If so, by definition of separatedness, there must exist
v € L and ¢ € A such that uw.a ¢ L although Mg(p) + p(u.a) > 0
for every p € R. But in that case, uv.a € L(N(L,R)), and therefore
L # L(N(L,R)). |
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12 E. Badouel, L. Bernardinello & Ph. Darondeau

Corollary 3.10

1. A prefiz-closed language L coincides with the language of the saturated
net N'(L) iff it is separated.

2. A prefiz-closed language L coincides with the language of the saturated
bounded net BN (L) iff it is boundedly separated.

Observe that no place (except places obtained from existing places by possibly
increasing their values at the initial marking) can be added to the saturated net
N (L) derived from a separated language L without modifying its behaviour
(and similarly for bounded places w.r.t saturated bounded nets and boundedly
separated languages). In the rest of the section, we concentrate on the problem
of synthesizing bounded nets from regular expressions.

3.2 Computing a Basis for Bounded Regions in a Re-
gular Language

We already observed (see Fact. 3.3) that the bounded regions of a prefix-closed
language form a module of finite dimension over Z. Our purpose is now to
design an algorithm which computes in polynomial time a basis of that module
for any prefix-closed and regular language given by a regular expression. Let
us fix the notation.

Definition 3.11 (Regular expressions) A regular expression over alphabet
A is an expression F in the B.N.F. syntaz F :=¢|a | E+ E | E X E| E*
where a € A.

Regular expressions E are mapped to regular languages |E| by the obvious
morphism | - |, which is onto. By abuse of notations, we shall often extend
to regular expressions notations defined for their languages, for instance BRg
will stand for the module of bounded regions of the language |E|. From now
on, F is a fixed regular expression denoting a prefix-closed language. We will
show that the module of regions BRg is the kernel of a linear system over
Z, obtained by decomposing F into so-called eyelic factors, next translated
independently to equations whose unknown are the values p(ay)...p(a,) of an
abstract region.

INRIA
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Definition 3.12 (Cyclic factors of a regular expression) A cyclicfactor
of the reqular expression E is the image of an iterated sub-expression F of K
(i.e. such that F* appears in F') by the shortcut operator -® with inductive
definition as follows: (E*)® = ¢ , (E x E')® = (E)® x (E)®, (E + E)® =
(E)® +(E"®, d® = a, € = ¢. Let CF(E) denote the set of cyclic factors of
E.

Observation 3.13 The sum of sizes of the cyclic factors of E is bounded from
above by the size of E.

Proposition 3.14 A map p : A — Z is a bounded region of the language
defined by E iff p(E;) = {0} for every cyclic factor E; of E.

Proof: Let p € BRg, and F be an iterated subexpression of F. Let
u € |F®|. Then |E| contains for each n € IN, a word of the form
uy.u™ . ug, where uy, ug € A*. Then p(u) = 0 since p is bounded. Conver-
sely, we first notice that if p(£;) = {0} for each cyclic factor of F, then
p(F) = {0} for each iterated subexpression of F. Hence, to evaluate
p(u) for u € |E|, we can delete segments of u generated by iterated su-

bexpressions of E. What is left is an element of E®; since the language
|E®| is finite, p(E) is a bounded set. |

Proposition 3.14 shows that the module BRg of bounded regions of F is the
kernel Ker(Mg) of a linear map Mg : Z" — ZI™, operating on n-vectors p' =
< p(ay),...,p(ay) > which represent maps p : A — Z, where A = {ay...a,}.
For each cyclic factor E; of E, the condition p(F£;) = {0} laid down by the
proposition may in fact be translated in polynomial time to an equivalent
condition M;(p) = 6, where M; is a linear map from Z" to Z™ for some finite
dimension m; bounded from above by the size of F;. The overall dimension

m =Y {m;|E; € CF(E)} is then bounded from above by the size of E.

We give here the sketch of a polynomial algorithm computing the integer
matrix M; from the cyclic factor £;. Let F; ; be an enumeration of the
regular sub-expressions of F;, where F; = F;p and 0 < 7 < p;, and
let {z; | 0 < j < p;} be a set of integer variables. Each variable z;
is aimed at representing the contents of the corresponding set p(£; ;),

RR n~°2316



14 E. Badouel, L. Bernardinello & Ph. Darondeau

which must be a singleton set in order that condition p(F;) = {0} may
be satisfied. Let {yx | 1 < k& < n} be another set of integer variables,
aimed at representing the values p(ay). By iterating the following step
indexed by j, one assembles a system of linear equations in variables z;
and yg.

For each j € {0,...,p;}:

1. if E; ; = ¢, write the equation z; = 0;
2. if F; ; = ag, write the equation z; = yi;
3. if B;; = E;;, X B ;,, write the equation z; = z;, + z;,;
4. if B;; = F;; + F;;,, write the pair of equations z; = z;, and
Tj = Tj,
Let the equation zg = 0 be added to the system assembled in this

way. The operator M; is finally obtained by gaussian elimination of the
variables z;.

Once an (m; X n) matrix M; such that M; j'= 0 iff p(E;) = {0} has been obtai-
ned for each cyclic factor F; of E, it only remains to pile up all the matrices M;
in order to form an (m x n) matrix Mg satisfying BRgy = {p'| Mgp = 6} At
this stage, the algorithm of von zur Gathen and Sieveking (see [Sch86] p.58)
may be used to compute in polynomial time a family of vectors pj ... p; of
integers such that

{FIMgp=0} = {Mp+...+ N5 | M,.... € Z)

with py ... p; linearly independent. In the sequel, {p ... p;} is assumed to be
a fixed basis of the module of bounded regions of the language defined by the
expression F.

3.3 Deciding upon Separatedness of a Regular Lan-
guage

Resting upon the availability of computable bases for modules of regions, we
now intend to design an algorithm deciding whether a prefix-closed and regular
language is boundedly separated or equivalently, whether it coincides with the
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Polynomial Algorithms for the Synthesis of Bounded Nets 15

language of a bounded net. We do not know how solving this problem in
polynomial time for arbitrary regular expressions. We shall therefore focus on
a special form of regular expressions, allowing to decide on separatedness in
polynomial time. These expressions may be seen as trees, labeled on arcs with
action symbols or starred expressions, such that any restriction of a tree T
to a particular branch induces a regular language where all words are failure
equivalent in |7T'].

Definition 3.15 (Regular expressions in tree form) A regular expression
in tree form s a reqular expression T written according to the restricted syntax

Ti=e¢|axT | E*xT | TH+T,

where E is a reqular expression. The branches of T' are the reqular expressions

in the set br(T') defined as

br(e)={e} br(Ty +13) =br(1y)Ubr(1y)
bria xT)={ax B|Bebr(T)} br(E*xT)={E*x B|Bebr(T)}

Clearly, every regular expression may be set in tree form, but that transfor-
mation may induce an exponential increase in size.

Consider for instance the indexed family of regular expressions F, =
(e+a+b)x .. x(e+a+b), where E, contains n occurrences of
the symbol a (or b). The language |E,| contains exactly the words of
length less than or equal to n over the alphabet {a,b}. The tree-like
expansion of F,, contains 2" — 1 occurrences of the symbol a (or b), and
the minimal words on two letters which do not belong to |E,|, i.e. the
words of length n + 1, are 2"t in number. Our algorithm will take one
step for each of these faulty words, and thus altogether 27t steps, for
deciding on separatedness, when the constant region p(a) = p(b) = —1
with offset Mp(p) = n suffices to separate |E,|!

Definition 3.16 (Regular expressions in failures tree form) A reqular ez-
pression in tailures tree form is a reqular expression T in tree form such that

VB € br(T) Vu,u' € |B| YVa€ A u-a€|T| & v -a€|T|
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16 E. Badouel, L. Bernardinello & Ph. Darondeau

One can naturally decide whether a regular expression is in failures tree form,
but the decision algorithm is exponential. In order to show that every regular
expression may be set in failures tree form, we sketch below an (exponential)
algorithm which produces such expressions from deterministic finite automata.

Let A= (Q,A,T,qo, F) be a deterministic automaton, with initial state
go € @ and final states F' C @, recognizing a regular language L. For
¢,¢ € Qand R C @, let qu, denote the set of non-empty words a; . ..a,

labeling sequences of transitions o = ¢1 =2 ¢2 ... ¢n_1 == ¢, such that
go=¢,q € Rfor1<i<n-1, and ¢, = ¢'. Similarly, let Lf denote the
set which contains the empty word if ¢ € F, and in any case the non-
empty words a; .. .a, labeling sequences of transitions go = ¢1 =2 ¢5 ...
Gn_1 2 @, such that qo = ¢, ¢; € Rfor 1<i<n-1, and ¢, € F N R.
Then the following equations

L = 1LY

e+ > a’-Lff, if ¢geF

@ 11
9—9q,q9 €ER

LE = if ¢¢R
> a - Lf, otherwise

a 1
9—49,9 €ER

produce a regular expression in failures tree form for language L, with

branches
(LRO ) -ay - (LR1 ) ay.. .(LR" Ve

90,90 91,91 dn,qn
such that go = ¢1 = g2 ... ¢no1 = ¢, ¢is1 € Ri = Q \ {qo....,¢i—1},
and ¢, € F.

The main interest of the failures tree form lies in the next two propositions.
From now on, let 7' be a fixed regular expression in failures tree form, denoting
a prefix-closed language over A = {ay,...,a,}.

Proposition 3.17 {j(w) | w € T} = {p(w) | w € T®} for every bounded
region p of T' (where -® is the shortcut operator, see Def. 3.12).
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Proof: From Prop. 3.14, p( E;) = {0} for each cyclic factor F; of F, the-
refore, for each u € |T|, we can find u' € |T®| such that p(u) = p(u’).
On the other hand T® C T, where the regular expressions are viewed
as languages. [ |

Proposition 3.18 T is boundedly separated iff every faulty word w € (T®A\
T) is killed by some bounded region of T'.

Proof: Assume that T is boundedly separated and let w € T®A\ T}
then w = w.a, where w € T®(C T) and @ € A. Since T is boundedly
separated, and since u € T and w.a € T, there must exist some region
p € BRp that kills w.a. Conversely, assume that T is not boundedly
separated, and let w € T and a € A be such that w.a € T but no boun-
ded region in T kills u.a. Let B € br(7T') be a branch of 7" such that
u € |B], and let u' be a word obtained by erasing the occurrences of
the outermost starred subexpressions of B in u (there may be several
possible words u, as u may belong to |B| in more than one way). Then
u' € T® and p(u) = p(u') for every bounded region p of T, hence no
bounded region kills u'.a. However, u’.a ¢ T, since otherwise u.a would
belong to T by definition of regular expressions in failures tree form.
Hence u'.a is a faulty word, but it is not killed by any bounded region.

Let {u, | 1 < h < Hr} be an enumeration of 7'®, and let {v; | 1 < k < K7} be
an enumeration of (T®A\ T). Hy and Kr are clearly bounded from above by
linear functions of the size of T'. In view of Def. 3.5, a bounded region p € BRp
kills a faulty word vy, iff Mp(p)+p(vi) < 0, with Mr(p) = —inf{p(w) | w € T'}.
In view of Prop. 3.17, Mz(p) = —inf{p(us) | up € T®}. Thus, by Prop. 3.18,
T is boundedly separated iff the following problem may be solved for every k
(with 1 <k < Kyp):

Problem 3.19 Find a linear combination p= Ay py + ...+ A\ pr of the base
vectors of the module BRy such that p(vy) — p(up) < 0 for every h (with
1 < h < Hy).
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18 E. Badouel, L. Bernardinello & Ph. Darondeau

We address now the above problem for a fixed word vy, € (T®A\ T). Let &
=< 1,...&, > be the Parikh image of vy, where z; counts the occurrences of
a;. Similarly, let i, be the Parikh image of uj. Each condition p(vg) — p(up) < 0
induces a corresponding constraint on the unknown A=< M, N > (€ 2,
viz. the inequation: Ay gy (Z —4h) + ...+ X ot (£ — ) < 0. Assembling the
constraints for 1 < h < Hp, one obtains a linear system

MpA < (=1)fr (1)

where M is an integral matrix and (=17 =< —1,..., -1 > (€ Z"7). We
claim that (1) has an integral solution iff it has a rational solution. A rational
solution A =< z1/n1, ..., 2¢/ny > gives indeed rise to an integral solution nA
for any common multiple n of the denominators n;. At this stage, the method
of Khachiyan (see [Sch86] p.170) may be used to decide the feasability of (1)
and to compute an explicit solution, if it exists, in polynomial time. Thus, every
instance of Prob. 3.19 is solved explicitly, or shown unfeasible, in polynomial
time.

Now, deciding whether 7' is boundedly separated takes polynomial time,
since it reduces to solving Kp instances of Prob. 3.19.

3.4 Computing a Finite Net from a Regular Language

Let 7" be a boundedly separated, prefix-closed, and regular language. Thus,
every faulty word v, € (T®A\ T) is killed by some region p), € BRr. Let
R={p, |1 <k < Kr}, where p} kills vg. In view of Prop. 3.8, T' coincides
with the language of the R-net derived from L, i.e. the finite net (R, A, W, M)
with W(p),a) = pl(a) and M(p},) = —inf{p}(ur) | 1 < h < Hr}. Hence the
results of the section may be summarized as follows.

Theorem 3.20 Let T be a prefiz-closed language given by a reqular expres-
ston in failures tree form, then one may decide whether |T'| coincides with the
language of some finite net and construct that net in polynomial time.

4 Regions in Finite Graphs

The goal of the section is to solve the following problem:
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Problem 4.1 Given an A-labeled graph G, decide whether there exists a mar-
ked net with marking graph isomorphic to G and if so, construct such a net.

We will present a polynomial algorithm answering this problem for finite
graphs. The basic constituent of the proposed solution is again the principle
of abstract regions, but regions in graphs are more tightly constrained than
regions in languages, as will appear soon. Since equality of languages is strictly
weaker than isomorphism of graphs, the synthesis problem for languages is a
weakening of the synthesis problem for graphs. Nevertheless, we do not know
any polynomial reduction of one problem to the other. We propose therefore
two variant but not directly related algorithms for solving the two different
synthesis problems.

The principle of regions applies more generally to infinite graphs. We shall
therefore introduce regions for general graphs, and then focus on finite graphs.

4.1 Some Graph Terminology

Definition 4.2 (Graphs) A graph G = [S,T] is given by a set S of nodes,
a set T of transitions (or arcs), together with two maps 3°,0' : T — S,
indicating respectively the source and target of transitions. A path in G is a
finite sequence of transitions ty ...ty where 9*(t;) = 0°(tiz1) for i < k. Nodes
°(t1) and 0'(tx) are the extremities, or respectively the initial and terminal
nodes of the path. A chain in G is a path in the graph [S,T + T™'], where
(™) = 9 (t) and ' (t71) = 8°(t) fort € T. A cycle is a chain with identical
extremities. A cycle which is a path is directed. A rooted graph is a graph with
a distinguished node, called the initial node. Paths from the initial node are
initial paths. An accessible graph is a rooted graph in which every node, to the
possible exception of the initial node, is the terminal node of some initial path.

Definition 4.3 (Labeled Graphs) A labeled graph G = [S,T,A,l] is a
graph [S,T] enriched with a labeling function | : T' — A, where A is the
set of actions. A labeled graph is deterministic if (9°(¢t) = 9°(t') A l(t) = I(t'))
= 9'(t) = 9Y(t'). The label of chain ¢, denoted l(c), is the sequence of actions
a and inverse actions a~! labeling arcs on that chain. The Parikh image of
a chain ¢, denoted w(c), is the evaluation of its label I(c) in the commutative
group Fog(A) freely generated by A. The language L(G) C A* of graph G is
the set of labels of initial paths in G.
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Observe that Frg(A) can be identified with the set of maps p : A — Z
equipped with pointwise sum, which permits to represent the elements of the
commutative group as A-indexed vectors of integers. Henceforth, for any map
p:A— Z et p: Fog(A) — Z denote the group morphism p(ua) = p(u) +
p(a), where u € Fog(A) and a € A (C Fog(A)). Thus in particular, p(a™") =
—pla) = —p(a). The map (~) is related to the map (A) used in the preceding
section by the formula

Observation 4.4 p(u) = p(ev(u)), where ev (the evaluation map mentioned
in Def.4.3) takes a word u € (A + A™Y)* (i.e. a sequence of actions and in-
verse actions) to the vector whose component in a is the difference between the
respective numbers of occurrences of a and a™* in u: ev(u)(a) = f,(a)—f.(a™t).

4.2 Regions in Accessible Graphs with Deterministic
Labeling

An abstract region in an accessible graph represents a resource, measured at
each node by a displacement (w.r.t. the initial amount) which must be the
same through any initial path leading to that node.

Definition 4.5 (Regions in accessible graphs with deterministic labe-
ling) A region of G is a region of L(G) which gives identical value to all labels
of initial paths having the same terminal node, i.e. p € Ry, and for every
initial paths py, pa, [0'(p1) = 0 (p2) = p(l(p1)) = p(l(p2)). Let Re, resp. BRg
denote the set of regions, resp. bounded regions of G.

Again, Rg is a monoid, BR¢ is an abelian group, and concrete regions p : S —
IN may be derived from abstract regions p : A — Z, where G = [S,T, A,l],
by assigning to each node s € S, reached by some initial path p,, the value

Ma(p) + p(7(ps)) (=Ma(p) + p(l(ps)) by Obs. 4.4) where Ma(p) = Mrc)(p)-
Likewise, nets derived from graphs are defined by a straightforward adaptation

of Def.3.4.

Definition 4.6 (Nets derived from graphs)

1. The saturated net N'(G) derived from G is the net (Rg, A, W, M), where
Wip,a) = p(a) for p € Rg, and M¢(p) = —inf{p(u) | v € L(G)}.
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2. For any set of regions R C Rg, the R-net derived from G is the sub-net
of N(G) with set of places R.

3. In particular, the saturated bounded net BN(G) derived from G is the
sub-net of N (G) with set of places BRg.

However, it does not suffice, for obtaining the necessary and sufficient condi-
tions under which the marking graphs of nets N'(G) or BA(G) are isomorphic
to the given graph G, to translate literally to graph terminology the properties
of separation defined earlier for languages, because isomorphism of graphs is
stronger than equality of languages. The adequate properties for graphs are
the following.

Definition 4.7 (Separation properties for graphs) Let G = [S, T, A,].
Two nodes s, s’ € S are separated by a region p € R if p(u) # p(u’) for some
words u,u’ labeling initial paths with terminal nodes s,s’. Let R C Rg be a
subset of regions of G. Graph G is separated by R if L(G) is separated by R
and every non identical pair s,s' € S is separated by some p € R. Graph G is
separated if it is separated by R, and boundedly separated if it is separated
by BRG

Since the places of a net may always be identified with regions of its marking
graph, the marking graph of a net is necessarily separated. The converse is
stated in Prop. 4.9 and its corollary. In order to prove this result, we first

notice the following lemma in which ANg(G) denotes the R-net derived from
G.

Lemma 4.8 L(G) C L(Ng(G)).

Proof: By induction on the length of u € L(G). If |u| = 0, then u = ¢
and € € L(Ng(G)) by definition. Take u -a € L(G) —whence u € L(G)-
such that |u| = n. By induction hypothesis, u € L(Ng(G)). Let M be
the marking reached after the execution of u; for each p € R we have
M(p) = Mg(p)+p(u). From u-a € L(G) it follows Mg (p)+p(uw)+p(a) >
0 for each p € R, hence a is enabled at M, and u-a € L(NR(G)). N
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Proposition 4.9 An accessible graph with deterministic labeling is isomorphic
to the derived R-net if, and only if, it is separated by R.

Proof: (=) Suppose G is not separated by R. Then, either L(G) is
not separated by R, or there exist two distinct nodes s and s’, which
are not separated by any region p € R. In the first case, there exists
u-a € (L(G)-A)\ L(G) such that Mq(p)+ p(u-a) > 0 for each p € R.
Then, by the above lemma, v € L(NgR(G)), hence also u-a € LINR(G))
and G is not isomorphic to the marking graph of Nr(G). In the second
case, take two words, u and «’, labeling initial paths terminating respec-
tively at s and s’. By hypothesis, for each p € R, p(u) = p(u’), whence
M = M’ where M and M’ are the markings reached after executing
respectively u and «’, and G is not isomorphic to the marking graph of
Nr(G) since s # '

(<) Suppose G is separated. To each node s of G, let us associate the
map s : B — IN defined as follows: Vp € R 75,(p) = Ma(p), where sg
is the initial node of G and 7vs(p) = Mag(p) + p(u), where u labels an
(arbitrary) initial path terminating in s. So 7, is a potential marking
of Nr(G); in particular, v, coincides with the initial marking. Notice
that, 75 # 7y for s # s’ since G is separated. Suppose now that ac-
tion a is enabled at marking vs. This implies Mq(p) + p(u) + p(a) > 0
for each p € R, where u labels an initial path terminating in s, whence
u-a € L(G), since L(G) is separated by R. Therefore, by determinacy of
G, there exists a node s’ such that s = s'. By definition of the mapping
v, vs[a>~s. Hence, every reachable marking is of the form ~; for some
s € S, and the marking graph of Nr(G) is isomorphic to G because the
latter is an accessible graph. [ |

Corollary 4.10 Given an accessible graph G with deterministic labeling:

1. G is isomorphic to the marking graph of the saturated net N(G) iff it is
separated;

2. G is isomorphic to the marking graph of the saturated bounded net BN(G)
iff it s boundedly separated.

Observing that every region in a finite graph is finite, we concentrate in the
rest of the section on the problem of synthesizing finite nets from finite graphs.
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4.3 Regions in Finite Accessible Graphs with Deter-
ministic Labeling

From now on, G = [S,T, A,l] is a finite accessible graph with deterministic
labeling on A = {ay,...,a,}. Therefore, Rz = BRg, and this module is a
sub-module of the finite dimensional Z-module BRy (). In a first stage, we
will provide an algorithm which computes in polynomial time a basis for the
module of regions R¢. Let us start with an algebraic characterization of regions.

Proposition 4.11

1. Amap p: A — Z is a bounded region of the language L(G) iff p(x(c)) =
0 for every directed cycle ¢ in G.

2. A map p: A — Z is a bounded region of graph G iff p(x(c)) = 0 for
every cycle ¢ in G.

Proof: The first assertion is immediate from Obs. 4.4 which tells us that
p(m(c)) = p(I(c)) for every directed cycle ¢ in G. A fortiori, considering
now the second assertion, any map p : A — Z such that p(w(c)) =0
for every cycle ¢ in G is a bounded region of the language L(G). Moreo-
ver, a map p as above must be a bounded region of G because p; -p2_1
is a cycle whenever two initial paths p; and py have the same termi-
nal node, which entails [p(I(p1)) = p(7(p1)) = plr(p2)) = p(l(p2))].
Conversely, let p be a bounded region of G, and let ¢ = (tg,...,{5—1)
be a cycle (i.e. {; € T + T71). Since G is an accessible graph, one
can find initial paths p; with d'(p;) = 9°(¢;); since p is a bounded
region of G, () = A(T(Psymod &) — A(pi)); thus f(x(c)) =
Fr(t0)) + .o+ AT (1)) = 0. '

Proposition 4.11 tells us that R, the module of regions of G represented as
n-vectors < p(aq), ..., p(an) >, is the kernel of a linear transformation from Z"
to Z" for a equal to the cardinal of the set of cycles in G. Surely, @ may be
infinite, but there are at most n linearly independent constraints 7(c) - p'= 0
imposed by cycles ¢ on regions p. According to a usual practice in graph theory
(see e.g. [Ber70]), let us represent a cycle ¢ as a vector ¢ € (T' — Z). It is a well
known fact that all vectors representing cycles in G may be generated from
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a basis of v(G) linearly independent vectors, with v(G) = |T'| — | S| + 1. Let
us observe that 7 is a linear operator from Feo(T) (= (T — Z)) to Fea(A)
(= (A — Z)). Therefore, v(G) equations of the form 7(¢) - f = 0 suffice to
generate all of them! Summing up, the following proposition holds.

Proposition 4.12 Let {¢...¢ )} be a basis of cycles of G = [S,T,A,l],
where T'= {t; ...t} and A ={ay...a,}, then R is the kernel of the linear
transformation defined by the (v(G) X n) matriz Mg with integral elements:

Ma(i,j) = S{(t) | (1< k< m) A1) = a)}.

If we can compute the integral matrix Mg, the algorithm of von zur Gathen
and Sieveking yields now in polynomial time a basis of linearly independent
vectors {p) ... p;} for the module of regions Ry.

4.4 Computing a Spanning Tree and a Basis of Cycles
for G

We show here how computing (in polynomial time) a basis of cycles for a finite
and accessible graph G =[S, T]. In view of the following proposition, borrowed
from [GMS85], this task reduces to constructing a spanning tree in graph G.

Proposition 4.13 (Gondran and Minoux) Let G = [S,T] be a finite graph
with p connected components. Let F = [S,U] be a mazimal forest (i.e. graph
without cycle) in G. Fort € (T —U), let ¢! be the cycle with set of arcs U+ {t}
(this cycle is unique up to reversal). Cycles ¢, fort ranging over (T'—U), form

a basis of cycles of G, with dimension v(G) = |T|—|S|+ p.

In case when G is an accessible graph, the maximal forest of the proposi-
tion may naturally be chosen among the spanning trees rooted at the initial
node of the graph. Constructing a spanning tree takes polynomial time, hence
computing a basis of cycles for G takes polynomial time.
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4.5 Deciding upon Separatedness of a Finite Acces-
sible Graph

Let G = [S,T, A,l] be a finite accessible graph, and let Span(G) be a spanning
tree of G. By Def. 4.7, graph G is separated if and only if the following problems
are solvable:

Problem 4.14 For each non identical pair of initial paths p,p’ in Span(G),
including the empty path ¢, find a linear combination g = M p1 + ...+ X\ f
of the base vectors of the module R such that p(w(p)) # p(=(p')).

Problem 4.15 For each action a € A and for each initial path p in Span(G)
such that (I(p) - a) & L(G), where possibly p = ¢, find a linear combination
p=M pr+...+ X i of the base vectors of the module Rg such that p(w(p))+
pla) — p(x(p")) < 0 for every path p' in Span(G).

Now Prob. 4.14 is trivial, whereas Prob. 4.15 may be solved in polynomial time
following Khachiyan’s method (along the same lines as in section 3.3). Hence,
we can sum up the section as follows.

Theorem 4.16 Let G be a finite and accessible graph with deterministic labe-
ling, then one may decide whether G is isomorphic to the case graph of some
finite (and irreducible) net, and construct that net, in polynomial time.

5 Conclusion

In the introduction the notion of synchronic distance is briefly mentioned; it
was introduced, in the context of net theory, by C.A. Petri as a tool to mea-
sure the relative degree of freedom between sets of transitions in a concurrent
system. The close relation between synchronic distances and regions has been
discussed in some detail in [BDP93] ~where further references can be found-.
In brief, to each region in a separated graph corresponds a finite synchronic
distance and vice versa. Actually, the existence of a bounded abstract region
in a language or in a graph implies a constraint on the relative frequence of
execution of the transitions affecting the region itself. The range of variation
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of the region, that is, the difference between its minimum and maximum va-
lues, is a measure of the reciprocal independence: higher values mean looser
constraints. This is in agreement with the interpretation of regions as abstract
resources shared by transitions, given in this paper. Hence, the algorithms pre-
sented here can be seen as a way to compute efficiently synchronic distances.
A slightly different approach to synchronic relations in Petri nets was set out
in [SC88], where linear programming techniques are used to compute upper
bounds of so-called synchronic invariants in a given net.

We should finally explain why the algorithmic methods which have been
proposed in this paper cannot, in our opinion, be adapted to the synthesis of
condition-event nets or elementary nets. In the notation of section 4, a region p
in a graph G may be identified with a condition iff |p(7(p)) — p(#(p"))| < 1 for
any pair p,p’ of initial paths in the spanning tree of G. With the synthesis of
condition-event nets in view, that constraint on regions must be accounted for
in a stronger statement of Prob. 4.15. As a result, one obtains a linear system
MA < (—1)H,N/_\) > (—=1) with unknown the integral vector K, where M
and N are integral matrices. That system may still be solved in the rational
field, but we can no more derive integral solutions from rational solutions by
arbitrary multiplications, since the two comparisons are in opposite directions.
This leaves no hope to adapt the algorithms to condition-event nets.
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