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Abstract: This paper proposes a model and a related algorithm for generating optimal
cyclic schedules of hoist moves with time window constraints in a printed circuit board
(PCB) electroplating facility. The algorithm is based on the branch and bound approach
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These LPPs are equivalent to the problems of the cycle time evaluation in bi-valued
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1. INTRODUCTION

Many industrial processes employ a computer-controlled hoist for material handling.
The hoist is programed to perform a fixed sequence of moves repeatedly. Each repetition
of the sequence of moves is called a cycle. A typical application is an automated
electroplating line for processing PCBs. This line consists of a sequence of tanks (see
Figure 1). A chemical or plating treatment is performed on the PCBs in each tank.
Treatments have to be pertformed in a given order. A tank contains at most one PCB at a
time. Due to the nature of chemical treatments, the time a PCB spends in a tank is upper
and lower bounded. This imposes time window constraints on the hoist moves. The
hoist moves either from a tank to the next one to carry a PCB, or from one tank to any
other if it is idle.

The fixed sequence of moves that the hoist performs in each cycle is defined by a
cyclic schedule. In this paper, we consider simple cyclic schedules (Lei and Wang
1989a, Phillips and Unger 1976, Shapiro and Nuttle 1988). In a simple cyclic schedule,
exactly one PCB is removed from each tank in a cycle; and therefore, one PCB enters
and one PCB leaves the system in a cycle. The total time required by the hoist to
complete a cycle is the cycle time. The objective of the hoist scheduling problem is to

minimize the cycle time, which is equivalent to maximize the throughput rate.

This hoist scheduling problem has been proved to be NP-complete (Lei and Wang
1989b). All the existing approaches (Lei and Wang 1989a, 1991, Phillips and Unger
1976, Shapiro and Nuttle 1988, Hanen and Munier 1993) are branch-and-bound like.
However, the efficiency of a branch-and-bound algorithm is very dependent on the
quality of the lower bounds, the computation burden to obtain this lower bound, and the

branching strategy .

---------------- Hoist R }
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Fig. 1. Layout of an automated electroplating line for manutacturing PCBs



In this paper, we propose a model and a related algorithm for generating optimal
cyclic schedules of hoist moves with time window constraints in a PCB electroplating
facility. The algorithm is based on a branch and bound approach, which requires the
solution of a specific class of linear programming problems.

Two branch-and-bound procedures are used. Procedure A implicitly enumerates all
the possible initial PCB distributions in a cycle, knowing that : 1) the loading station
always contains one PCB, and 2) the first move in a cycle consists of transporting a PCB
~from the loading station to tank 1. Some numerical constraints related to the processing

times of the PCBs are used to reduce the number of initial PCB distributions. Procedure
"B implicitly enumerates the sequences of hoist moves for each potentially feasible initial
PCB distribution.

The LPPs related to lower bound computation for the branch-and-bound algorithm in
procedures A and B are transformed into cycle time evaluation problems in bi-valued
graphs. These problems are solved usihg a graph-based iterative algorithm.

Computational experience on some benchmark pfoblems 1s presented to compare the
results obtained using this new algorithm with the results provided by the algorithms
proposed in the literature. ‘

The remainder of this paper is organized as follows. The hoist scheduling problem is
formulated in Section 2. In Section 3, an upper bound of the maximal number of PCBs at
the beginning of a cycle is proposed. The branch-and-bound algorithm is presented in
Section 4. Section S is devoted to the solution of the linear programming problems.
Section 6 gives computational results, and Section 7 is the conclusion.

2. PROBLEM FORMULATION

Consider a production process with N+2 stations (tanks), S = {Sg, Sy, S2, -..., SN»
Sn+1}s where Sp, Sn,q are respectively the loading station and the unloading station,

and a hoist that moves PCBs between stations (see Figure 2). For simplicity, the move of
a PCB from §;j to S;,; is called the move i, i=0,1,....,N. The times for the hoist to

perform move i, denoted by 9}, O<i<N, and the time needed to travel from §; to Sy,

denoted by 6?k, 0<j, k&N+1, are given. These times are supposed to be constant.

Station §;, I<i<N, can process at most one PCB at a time, and each PCB must be
processed in §; in a time t; which is lower bounded by a; and upper bounded by b,, i.c.,
a; <t;<b;. The values of a; and by, 1=1,2,....,N are given and constant . They impose time
window constraints on the moves. That is, given that a PCB is put in Sy at time t, the

hoist must be ready to remove that PCB from Sy within [t+ay, t+by]. In addition, we



assume that Sy (the loading station) contains an infinite number of identical PCBs, that
ap=0 and bg=c, that no PCB is allowed to wait between stations, and that no treatment

can be preempted. As mentioned above, we only consider simple cyclic schedules.

(ar.b (a2,b7) (anN-1bN-D) (anbN)
loading unloading
station : ) station

Fig. 2: The PCB flow through a system with N+2 stations.

As mentioned in the introduction, we only consider simple cyclic schedules. Simple .
cyclic schedules possess properties which n-cyclic schedules (n>1) generally do not. For
a simple cyclic schedule with a cycle time x, the time between successive introductions of
PCBs into the system is always x. Furthermore, one PCB is introduced into the system
and another one leaves the system, and one PCB (not necessarily the same) is introduced
in and removed from each tank during each cycle. Moreover, the treatment time in a
given tank is the same for each PCB. Figure 3 illustrates a simple cyclic schedule for a 6-
station system. The crosshatched areas correspond to' moves, when the hoist is busy.

The intervals between moves represent treatment times.
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Fig. 3: A simple cyclic schedule for a 6-station system.

Let us consider a simple cycle the first move of which is the move () as shown in
Figure 3 and denote by s; the starting time of move 1 during the cycle, i=0,1,2,...,N, and
by x the cycle time. We assume that sy=0 (Note that if s3>0, we can change the origin of
the time axis such that sy=0). According to the previous notations, (x, {s;,i=0,1,...,N})
((x,s) for short) defines a cyclic schedule. A cyclic schedule (x, {s;.1=0,1,...,N}) is



feasible if and only if it satisfies the following constraints:

1. The time a PCB spends in tank S; is lower bounded by a; and upper bounded by
b;, i=1,2,...,N. ‘

2. Stations S;, 1=1,2,...,N, must be empty when'a PCB arrives at Si.

3. There must be sufficient time for a hoist to travel between successive assigned
tanks. '

These three kinds of constraints are referred to as time window constraints, tank

capacity constraints and hoist capacity constraint respectively.

Let C = {cg.c1......cN}» Where ¢; = 1 if the station i contains a PCB at the beginning

N 4

of a cycle and 0 otherwise, and K(C) = Zci. C is called the initial PCB distribution
: i=0

related to the cycle, and K(C) is the number ot PCBs which are serviced by the hoist in

the cycle. Note that ¢y is always equal to 1 since we assume that a PCB is always

available at the loading station. In the example of Figure 3, we have K=3, cg=cp=cyq=1,

ci1=c3=c5=0. Using the previous notations, the time window constraints can be

formulated as:

a; <8 +CiX - 851 - B < by, i=1,2,...N @2.1)

The tank capacity constraints can be formulated as

Si+6f +00 1 <sic1. for any i with ¢;=1 2.2)

Let o=<]gpl;.....In—1ln > be the sequence of moves corresponding to the cyclic

schedule. Then the hoist capacity constraint can be formulated by means of (2.3) and
(2.4)

<s
,li+| ]i+l

51, +6) +6,) i=0,1,.....N-1 (2.3)

5 +60 +0800<x, i=0,1,.....N , 2.4)

1

Constraints (2.3) can be equivalently replaced by the following constraints

Si+6] +00, <si. ifsi< s, i i j=0.1...N 2.3

Constraints (2.3’) are obvious if §; is the station visited after move i; otherwise, the



constraints still hold since the hoist will arrive at Si later than the time it would armive at Si
if Si were the station visited after move 1.

Constraints (2.4) complement constraints (2.3) for the last hoist move in the cycle.
Then, the hoist cyclic scheduling problem can be formulated as
Ppee: minx '
s.t. (2.1) to (2.4)
3. UPPER BOUND OF THE MAXIMAL NUMBER OF PCBS -
In this section, we give an upper bound of the maximal number of PCBs which can
~be serviced by the hoist in a cycle. The upper bound will be used to reduce the solution

space of the branch and bound algorithm introduced in the next section.

Let k be the number of PCBs which are serviced by the hoist in a cycle and x the
cycle time, the following inequalities hold:

N
>V ol in 80 ‘
X _Eoe, + ie{T.l.?N}e"O | . 3.1)
N N
kx2 Yol + 35 +69, 0 (3.2)
i=0 i=1
N-1 N
k-Dx<Yol+Yy _91(,)N (3.3)
i=1 i=1 .
aj <t; < by, i=1,2,.....N 3.4)
t<x-8];-6/-080,; |, i=12....N (3.5)

where the variable t; represents the treatment time of each PCB in station §;, i=1,...,N.

Inequality (3.1) means that the cycle time is greater than or equal to the sum of the
times necessary for the hoist to transport the PCBs and the minimal time for the hoist to

come back to the loading station in a cycle.

Inequality (3.2) reflects the fact that the first introduced PCB will leave the system
before the end of the k-th cycle. In Figure 3, this means that AG=kx=AF+FG,

N N ‘
AF=Y 61 + 31, FG»8,, o (Note that in Figure 3, N=5, k=3).
i=0 i=1



Inequality (3.3) reflects the fact that the first introduced PCB will leave the system
during the k-th cycle and that at least the move N of the hoist will happen during the k-th

cycle. In Figure 3, this means AC=(k-1)x=AF-CD-DE-EF, CD=6}, 6, <DE, EF= 6}.

Inequality (3.5) means that the cycle time is greater than or equal to the sum of the
times of move i-1 and move i, and the time for the hoist to travel from §; to S;_; (this

result 1s easy to be found when one considers a cycle starting from move 1).

Let K.« be the upper bound. Since K € {1,2,...,N}, K.« can be obtained by
solving inequalities (3.1) to (3.5) successively for k =N, N-1, ...., until the first solution
is obtained. This solution is K ,,4. This needs to solve at most N-1 linear inequality

problems.
4. BRANCH AND BOUND ALGORITHM

In this section, we introduce a branch and bound algorithm for generating an optimal
cyclic schedule for hoist scheduling problems. The algorithm consists of two branch-
and-bound procedures A and B . Procedure A implicitly enumerates all the possible initial
PCB distributions in a cycle. Procedure B implicitly enumerates the sequences of hoist

moves for each initial PCB distribution.

Let C = {cy, ¢1, .... cN} be an initial PCB distribution. For each k<N,
k
Cx = {cg, .., ¢k} is called a partial initial (PCB) distribution. Let K(Ck) = Zci .
. i=0

In Procedure A, each node corresponds to a partial initial distribution. For a given
partial initial distribution Cy = {cg, ...., ¢k}, a lower bound of the cycle time can be
obtained by relaxing part of the time window constraints (2.1) and the tank capacity
constraints (2.2) corresponding to the i’s for which c; is unknown, and by relaxing the
hoist capacity constraint (2.3’). In other words, the lower bound can be obtained by
solving the following linear programming problem:

Pc,: _

o min X

A< S+ CX -8 - 6}_1 < bi’ i<k ‘ (4. 1)

Si + 6} + ei(il,i—l <sip s for any i<k with ¢;=1 4.2)



5i+6+00, ) <x, i=0,1,....N 4.3)

where constraints (4.3) are constraints (2.4).

If there is no solution to this problem, then the partial initial distribution cannot lead
to a feasible cyclic schedule, and thus the corresponding node can be eliminated.
Otherwise, the optimal objective value of this problem provides a lower bound of the

cycle time.

Note that if Procedure A reaches a partial initial distribution Cy such that K(Ck) 1s

larger than K., then the node can be eliminated.

When Procedure A reaches a complete initial and potentially feasible PCB
distribution C (C=Cp), if the solution (x,{sg,5}....,SN}) Of the problem P satisfies
constraints (2.3”), then the solution is an optimal cyclic schedule with respect to the given
initial PCB distribution. Otherwise, the solution violates part of the constraint (2.3°).

Procedure B looks for an optimal cyclic schedule for a given initial PCB distribution
C (C=CN). In Procedure B, each node is associated with a set of partial precedence
constraints between two hoist moves, denoted by O, together with the constraints of
problem Pg (this node is denoted by (C,0)) - At the root node, O = @. The lower bound
of the cycle time corresponding to this node can be obtained by solving the following

linear programming problem:
Pco: min X

1 0 .

and constraints (4.1), (4.2) and (4.3) of P¢ .

If Pc o has no solution, then the given set of partial precedence constraints cannot
lead to a feasible solution, and thus the corresponding node can be eliminated.

Otherwise, a lower bound of the cycle time is obtained.

It the solution of problem P¢ () satisfies constraints (2.3°), a feasible cyclic schedule
with respect to the given initial distribution C is obtained. Otherwise, two subnodes are

derived from node (C,0). The two subnodes and their associated partial precedence
constraint sets are generated according to the solution of problem Pc . That s, if Pc g

has a solution, say (x(C,0),s(C,0)), and if (x(C,0),s(C,0)) satisfies constraints (2.3’),
then we find a feasible cyclic schedule for the given initial distribution C. Otherwise,



there is a pair of (i*j") such that:
5.+ (C, 0)+e’ +e° > 87(C.0)and 52 (C.0) <5,(C.0)

(in this case, moves i" ,i" are called a pair of overlapping moves). Then, two partial
precedence constraint sets associated with the two subnodes are generated by adding 10 O
. . Lk Lk LK ¥ .

either a precedence constraint (i ,j ) or (j ,i").

- It should be noted that the number of elements in O 1s upper bounded by (N-1)N/2 -
(N-1), where (N-1)N/2 is the maximal number of precedence constraints which can be
assigned to N moves (move | to move N), and N-1 is the number of precedence
constraints which are fixed by constraints of problem Pc .

The total number of nodes enumerated in Procedure B closely depends on the
maximal number of elements in the partial precedence constraint sets reached by
Procedure B. In practice, this maximal number is much smaller than (N-1)N/2 - (N-1)
since the sequences of hoist moves are largely restricted by the time window constraints
when the initial PCB distribution is specified.

In the tollowing, we describe in detail procedures A and B in the branch and bound
algorithm.

Enumeration Tree:
(0,1)

(1,0)

(i,j) 2<=i<N,
j=0 or 1
(2,1)
& \ (i+1,000 (i+1,1)
(3, OO (3 (3,0 (3 1
(a) enum. tree A (b) subnodes

Fig.4: The enumeration tree for procedure A of the branch and bound algorithm
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(C.e)

leaf of enum. tree A

(i1,j1) {j1.i1)

(i2,j2 (j2.i2) (i2',j2'yY (j2',i2")

L ©. ®.

Fig. 5: The enumeration tree for procedure B of the branch and bound algorithm

Figure 4 (a) and Figure 5 show respectively the enumeration tree for procedure A
and procedure B in the branch and bound algorithm (we will call them enumeration tree A
and enumeration tree B respectively). Figure 4 (b) gives the general rule for creating
subnodes from a node in the enumeration tree A. In enumeration tree A, a node with label
(1,0) means that the station S, is empty at the beginning of a cycle. Conversely, a node
with label (i,1) means that the station S; has a PCB at the beginning of the cycle. Note
that since we assume that the tirst move of the cycle is move 0, station 1 should be empty
~at the beginning of the cycle. As a consequence, node (1,1) does not exist. The wree stdps ,
growing if the initial PCB distribution of all stations is assigned. It a partial initial
distribution Cy related to a node is such that K(Cy) = K, then Cy can be completed to
obtain a complete initial distribution by setting ¢;=0 for all i>k, and the node does not

generate any subnode furthermore.

The root node of enumeration tree B is a leat of enumeration tree A (a node in an
cnumeration tree is called a leaf if the node has no subnode). Like cqumcration tree A, the
branching (the growth of subnodes) of a node in enumeration tree B is also a dichotomy.
In the case when there exists two moves 1 and j which do not satisty constraints (2.3°),
we generate two new nodes by adding respectively precedence constraints (i,j) and (j,1)
to the set of partial precedence constraints O. In Figure 5, a label beside a line linking a
node to its subnode represents such a precedence constraint . The tree stops growing if
the solution of the relaxed problem for a node does not exhibit overlapping moves or if

the relaxed problem has no solution.
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Lower Bounds:

Enumeration tree A .

For any node (k, jk) (k=0 or 1) in the enumeration tree A such that (0,1) ->(1,0) ->
(2,j2) > ... -> (k, ji) is the path from the root of the tree to the node, then the lower
bound corresponding to the node is obtained by solving the linear programming problerri

PC o where Ck = { 1*0’j2"“’jk}'

Enumeration tree B

If a node of enumeration tree B is derived {rom the root node (C,&) (C is an initial
PCB distribution) by successively adding precedence constraints (iy,j1), (i2.12), -...
(ipJp)s then the lower bound corresponding to the node is obtained by solving the linear '
programming problem P¢ o, where O = {(iy,j1), (i2,12), ..., (if.i) }’.

Pruning Criteria:

In both procedures, the pruning conditions are:

1. Infeasiblity: the relaxed problem tor a node has no solution;

2. Value dominance: Let xX be the optimal objective value of the relaxed problem for
a node o and X the objective value of a feasible solution to Py Then, if x§ > X, the

node can be eliminated.
Node Selection:

In the branch and bound algorithm, we use the depth-first search plus backtracking
rule or the depth-first search plus best lower bound rule to select the node which should

be considered next.
5. SOLUTION OF THE RELAXED PROBLEMS: A GRAPH-BASED ALGORITHM

In the previous section, we proposed a branch and bound algorithm for generating
an optimal cyclic schedule for hoist scheduling problems, where the lower bounds in
procedures A and B are the solutions of specific lin'ear programming problems (LPPs).
In these LPPs (i.e., Pe, . P, In Section 4), each linear inequality constraint can be
equivalently formulated as s; - s; + hjix 2 1jj for hy; = 0,1or-1, lii € E, where R is the

set of real numbers.
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In this paper, we propose a graph-based algorithm to solve this class of LPPs. This
algorithm is based on the computation of the cycle time of bi-valued graphs including
negative heights. First, we give the definition of bi-valued graphs and show that LPPs
can be transformed into the cycle time evaluation of bi-valued graphs, and then we
provide the graph-based algorithm. The convergence and computation complexity

analysis of the graph-based algorithm can be tound in Appendix.
5.1. Bi-Valued Graphs

Definition 5.1: A bi-valued graph is 4-tuple G =(V, A, |, h), where V ={1, 2, ..., n} is
the set of vertices. A = {a', az, ..., a™} is the set of the arcs. 1 : A — R defines the
lengths of the arcs. h : A — R detines the heights of arcs.

We assume that the origin and the extremity of any arc in G are distinct, i.e., there is
no re-entrant arc in G, but G may have two arcs with the same origin and the same

extremity.

In the following, we denote by o(a) (resp. e(a)) the origin (resp. extremity) of arc a.
Arc a is called a forward (resp. backward) arc if o(a)<e(a), i.e., the label number of its
origin is smaller than the one of its extremity (resp. o(a)>e(a), 1.e., the label number of
its origin is larger than the one of its extremity). B denotes the number of backward arcs,
and B = min {B, n-1}. For each vertex k, I, = { a |e(@) =k }, Fly = { a|e(a) = k,
o(a)<k },Bly=1{a ] e(a) = k, o(a)>k } denote the set of incident arcs, the set of tforward

incident arcs, the set of backward incident arcs respectively.

Let us denote the length (resp. height) of a path (circuit) ® in the bi-valued graph G
by L(m) (resp. H(m)). The length (resp. height) is the sum of the lengths (resp. heights)

of the arcs in this path (circuit).

Definition 5.2: The cycle time of the bi-valued graph G is defined as the optimal objective
value x* of the following problem it this problem has a solution
Problem P. Min x

subject to
L(y)—-xxH(y) <0, for any ye I', where I is the set of (5.1
elementary circuits
x> 0. v (5.2)

12
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Note that if all the arcs of the bi-valued graph have non negative heights and all
elementary circuits have positive heights, then x = max{L(y)/H(y)}, where G is the set
yel’

of elementary circuits.

It should be noticed that for a bi-valued graph with negative heights, the problem P
may not have a solution, since there may exist circuits with negative heights.

5.2. Bi-Valued Ggraphs for Solving Pc, and Pc o

According to (Chrétienne 1984), any linear programming problem with an objective
tunction x and whose linear constraints can be written as s; - s; + hyix 2 j; (hji€ Z, ljj€
R, and Z is the set of integers) can be transformed into the cycle time evaluation problem
of a bi-valued graph. Therefore, the LPPs met in the computation of the lower bounds in
the branch and bound algorithm (i.e., P¢ . PCo in Section 4) can be solved using the
bi-valued graph defined as follows: |

- n=N+1, V={01,..N};
- for each constraint a;, ) < 8,7 - Sj - 6} < by, . there is an arc from vertex i to

vertex 1+1 the length and the height of which are ai+1+9} and O respectively, and an arc
from vertex i+1 to vertex i the length and the height of which are -b“l—B%_ and 0
respectively.

- for each constraint a;,1 < 8;, 1+ X-S; - 8} < by, there is an arc from vertex i to
vertex i+1 the length and the height ot which are ai+1+6% and | respectively, and an arc

from vertex i+1 to vertex 1 the length and the height ot which are -biH—Oil and -1

respectively.

- for each constraint s; +'6i] + ei(il { S8j. there is an arc from vertex j to vertex i the
length and the height of which are Gil + ei(il,j and 0 respectively.
0

1+

- for each constraint s; + 9} + ei(-)ﬂ o Sx (e, sj—-sp+ (-)} +6

1.0 $X), there is an

arc from vertex i to vertex () the length and the height of which are Gil +9i(il o and 1

respectively.

13



5.3. An Algorithm for Evaluating the Cycle Time of Bi-Valued Graphs

In what follows, we develop an algorithm to check if the cycle time ot a bi-valued
graph exists, and possibly, to compute its value. This algorithm is based on the Ford-
Bellman's algorithm used to check the existence of positive length circuits in an ordinary

graph.

Assume that a lower bound of x*, say LB, is known (Such a lower bound always
exists, since () is a lower bound according to (5.2)). We can construct an ordinary graph
G' y derived from G =(V, A, I, h) in which the length of any arc a is
I' g(a) =1(a) - h(a)-LB, i.e., G' 5 = (V, A, I'). If L'LB(“{) denotes the length of a circuit
Yel' in G'; . then we have : .

Lyp(y)=L(y)-H(y)-LB (5.3)

If for any ye T, L‘LB (y) <0, then x* = LB. In other words, LB is the optimal cycle

time in this case.

If there is a circuit y* such that L'LB(y*) > (), or equivalently L(y*)-H(y*)-LB > 0,
then two cases may happen. It H(y*) < (), then for any x 2 LB, we have L(y*)-H(y*)-x 2
L(Y“)-H(y*)-LB > (). This means that the problem P has no solution. It H(y*) > 0,
according to (5.1), we have x* 2 L(y*)/H(y*) > LB, then a better lower bound has
been found, which is L(y*)/H(y*). In this way, we can find the optimal cycle time or

prove that the problem P has no solution.

Therefore, in order to get the optimal cycle time, it is necessary to detect it there is a
circuit of positive length in an ordinary graph. This problem can be solved by a Ford-like

algorithm as follows.

Ford-Like Algorithm FLA:

Step 1.i:=0; A1) :=0; k) :=-00, V 1<k<n.

Step 2. It 1 > B/, there is no positive length circuit, STOP.
Step3. Fork=1,2,..,n

| 3.1.Foranyae Iy

If A(o(a)) + 1'(a) > Ak)
begin
latk) :=a;
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pc := CHECK_CIRCUIT(k);
if pc = TRUE, a positive-length circuit is tound, STOP.
else A(k) := Ao(a)) + 1'(a).
end
Step4.i:=i+ 1, GOTO Step 2.

Function CHECK-CIRCUIT(k):

Step 1. pc := FALSE, v := k.

Step 2. v := o(la(v)).

Step 3. If v = k then pc := TRUE, GOTO Step 5.
Step 4. If v 1, GOTO Step 2.

Step 5. RETURN pec.

The proof of the comrectness of algorithm FLA is in Appendix.

Using FLA, an algorithm to compute the cycle time of a bi-valued graph is as
follows:

Cycle Time Evaluation Algorithm CTE:
Step 1. LB = LBY, LB is a lower bound of the minimum cycle time x* of G.
Step 2. Check if there is a positive-length circuit in the ordinary graph G’ by using the
algorithm FLA.
If not, then x* = LB , stop; otherwise, denote this circuit by y*, and go to Step 3.
Step 3. If H(y*) < 0, then there is no feasible cycle time for G, stop; otherwise,
. set LB = L(y*)/H(y*), and go to Step 2.

. 'The computation complexity of algorithm CTE in the worst case is O( n*.m2). In the
branch and bound algorithm, the lower bound of the cycle time related to a subnode is
greater than or cqual to the one related to its ascendent node. Thus, when we use
algorithm CTE to solve the LPP related to the subnode, we can take the initial lower
bound LB as the lower bound related to its ascendent node. This makes algorithm CTE

very efticient in practice.

It should be noted that the algorithm CTE can also be used to solve any LPP which

can be transtormed into the cycle time evaluation of a hi-valued graph.



6. COMPUTATIONAI RESULTS

We have applied our algorithm to five problems. These problems were solved on an
IBM 6091/19 computer. Our algorithm uses the depth first search plus backtracking rule
to select the next node and the algorithm CTE to solve all relaxed problems. The results

are summarnized in Table 1.

Table 1. Summary of Test Results

Problem Number of Upperbound ~ Number of Solution Average time Optimal
tested tanks of K LPP’s solved time tor one LPP cycle time
’ (CPU (CPU
seconds) millisec)

Philu 13 6 991 0.52 0.525 521
Ligne 17 13 6 1341 0.76 0.567 393
Ligne 2" 14 5 622 0.25 0.402 712
Biack

Oxide 1* 12 -7 570 0.24 0.421 2819
Black

Oxide 2° 12 7 243 0.08 0.329 279.3

The problems Philu, Black Oxide 1 and Black Oxide 2 are taken from Shapiro and
Nuttle (1988). Compared with the computational results reported in that paper, the
number of LPP’s to be solved is much less (no more than 1/3 of the number reported in
that paper). The problems Ligne I and Ligne 2 are taken from Manier-Lacoste (1994),
the computation times of these two examples reported in that paper are 48 minutes and 53
seconds, and 1 minute and 45 seconds respectively. The average time for solving one-
LPP at the solution of the tive problems is about ().5 milliseconds. We also solve these
LPP’s by the simplex method, the average time for solving onc is about 14.9
milliseconds. So, by taking advantages of both the branch and bound approach and the
algorithm CTE developed in the paper, the total CPU times for solving these problems

have been drastically reduced.
7. CONCLUSION
In this paper, we propose a branch and bound algorithm for generating an optimal

cyclic schedule for hoist scheduling problems with time window constraints in PCB

electroplating facilities. Furthermore, we propose a graph-based algorithm for solving the
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LPP’s. Computation results show that by taking advantages of both the branch and
bound approach and the graph-based algorithm, the total CPU times tor solving the
problems are drastically reduced. The graph-based algorithm can also be used to solve
any LPP which can be transformed into the cycle time evaluation of a bi-valued graph.

Further rescarches will be conducted to solve hoist scheduling problems with
multiple product types and to attack hoist scheduling problems with a large number of

tanks.
APPENDIX

Proof of the Correcmess of Algorithm FLA:

Let A;(k) denote the value of A(k) obtained at the end of loop 3.1 and I1;(k) the set
of paths jointing vertex 1 to k and containing at most 1 backward arcs. We first claim that
Ai(k)= max L(m). In the following, a path jointing vertex | to vertex k is referred to

7tel'1,~ (k) A
as 1->k path and each element in IT; (k) is considered as a string of arcs.

Algorithm FLA can be expressed as:

I1,(k) = max {A;_;(k), max {A;_j(o(a))+1(a)}, max {A;(0o(a))+1(a)}} (5.4)

aeBI, aeFly

It is easy to sce that:

Hi(k)zﬂi‘l(k)u U ni_,,l(O(il))OilU
BI(k)

ae

U TII(o(a))oa
aelFI(k)
where o denotes the concatenation, so:

max L(n) = max {A;_1(k), max {A;_j(o(a))+1(a)}, max {A;(o(a))+ 1(a)}}
nell, (k) aeBIy A aeFI,

= A;(k)

Now we can prove the correctness of the algorithm.

If function CHECK_CIRCUIT returns a value TRUE , then the graph has a circuit
of positive length. Otherwise, the algorithm will terminate when i > B'.

Note that B' is the maximal number of backward arcs in the ¢lementary circuits of
the graph , so if the algorithm terminates when i>B', it means that all elementary circuits
of the graph have been examined.

Theretore, the algorithm can correctly detect if there is a circuit of positive length in
an ordinary graph.

It should be noted that before algorithm FLA terminates, none of the longest 1->k

paths (k=1,2,...,n) found by the algorithm contains circuits.

17



Convergence of Algorithm CTE:
Since for any circuit y* of positive length belonging to G' 5, LB' = L(y*)/H(y*),

we have L’LB'(Y*) = L(y*)-H(y*)-LB' = (), 1.e., ¥Y* is no longer a circuit of positive

length of G'[;. , thus the convergence of algorithm CTE is the consequence of the fact

that there is a finite number of elementary circuits in the graph.

Computation Complexity of Algorithm CTE:

Firstly, we show that the computation complexity of FLA is O(n?.m). At each
execution of FLA, i takes at most n-1 values, and tor each value of i, we perform an
addition, a comparison, and at most one call ot function CHECK_CIRCUIT for each of
the m arcs of the graph. Since the computation complexity of function
CHECK_CIRCUIT is O(n), thus the computation complexity of FLA is O(nz- m).

Secondly, we show that if the height of each arc of the bi-valued graph is 0, -1 or 1,

2 m times.

then algorithm CTE calls FLA at most n

Let T1(i,k) denote the set of paths and circuits considered by FLA before and at
iteration i, k. Then , [1(i",k") 2 I1(i,k) tor any i'21, k' k.

Suppose that at two successive calls of FLA in an execution of CTE, FLA finds a
circuit y of positive length of G',; at iteration 1, k, and a circuit ¥ of positive length of
G'\p at iteration i', k' respectively, then we have 121, k'> k, where LB = L(y)/H(y),
H(y) >b, H(y) >0. If it is not true, then y'e I1(i,k — 1) it k>1, or y'e [1(i - L,n)) it k=1.
Since LB'>LB, L(y)=H(y')-LB2L(y)—H(Y')-LB >0 and ¥ is a circuit of positive
length of G' 4, ¥ should be found by FLA before iteration 1, k.

Now, suppose that i'=1, k'= k. Then, since 7y is one of the longest 1 -> k paths
among all 1 -> k paths of G'; tn T1(i,k), we have

L(Y) - H(y)- LB < L(y) - H(Y)- LB

ie., L(y)-L(y)-(H(Y)-H(y))-LB <0 (5.5)
From L(y )~ H(y')-LB >0 and L(y)- H(y)-LB =0,

we obtain ) | | _
L(Y)~L(Y) - (H(Y) - H(y))- LB> 0 | (5.6)

From (5.5) and (5.6), we can derive

(H(Y)-H(y))- (LB -LB) <0),
so H(Y) < H(y).

Since the height of any clementary circuit is no greater than n, the situation 124,
k'2 k occurs at most m times. After that, either i'>1, or i'=1 and k'> k. So, algorithm
CTE calls FLA at most n.m times.
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To sum up, the computation complexity of algorithm CTE in the worst case 1s
O(n4~m2).
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