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SINGLE MACHINE SCHEDULING WITH CHAIN
STRUCTURED PRECEDENCE CONSTRAINTS AND
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Abstract. We consider a single machine scheduling problem. This problem has been solved
for a medical laboratory. It comprises not only chain-structured precedence constraints, but also
minimal and maximal times separating successive jobs in the same chain. The criterion to be
. minimized is the makespan. This problem arises particularly in systems where chemical
processes are involved. Consider a chemical plant in which every chemical process is a
sequence of chemical reactions the duration of which is up'per and lower bounded. Between °
two successive chemical reactions which are performed in different locations, a transportation
system such as robot is used to carry the product from place to place. In this kind of plant, jobs
are transportation operations and production processes can be modeled as chains. Therefore the
problem studied in this paper is of practical importance. We first prove that the problem is NP-
complete. As a consequence, we propose heuristics for large size problems and a branch and
bound based algorithm for small size problems. Computational results are reported.

Keywords. Single Machine Scheduling, Makespan, Chain Structured Precedence

Constraints, Minimal and Maximal Separation Times.



ORDONNANCEMENT A UNE MACHINE AVEC CONTRAINTES
DE PRECEDENCE EN STRUCTURE DE CHAINES ET
TEMPS DE SEPARATION MINIMAUX ET MAXIMAUX

Chengbin Chul and Jean-Marie Prothl;2

1. Projet SAGEP, INRIA-Lorraine, CESCOM Technopdle Metz 2000, 4 rue Marconi, 57070
Metz, France.
2. Institute for Systems Research, University of Maryland, College Park, MD 20742, USA.

Résumé : Nous considérons un probleme d'ordonnancement a une machine que nous avons
résolu pour un laboratoire d'analyses médicales. Dans ce probléme, il y a non seulement des
contraintes de précédence en structure de chaines, mais aussi des temps minimaux et maximaux
- séparant deux taches successives d'une méme chaine. Le critére est de minimiser la durée de
I'ordonnancement ou "makespan”. Des problémes de ce type se posent en particulier dans des
systemes ou des processus chimiques interviennent. Considérons une usine chimique dans
laquelle chaque processus est une séquence de réactions chimiques dont la durée est bornée
inférieurement et supérieurement. Entre deux réactions chimiques successives qui ont lieu dans
différentes cuves, le systeme de transport est utilis€ pour transférer le produit d'une cuve a
l'autre. Dans ce type de systemes, les taches sont les opérations de manutention des produits
alors que les processus chimiques peuvent étre modélisés par des chaines. Par conséquent, le
probleme étudié€ dans ce papier a une importance pratique. Nous démontrons tout d'abord que
le probléme est NP-complet. De ce fait, nous proposons des méthodes heuristiques pour
résoudre les problemes de grande taille, et une méthode basée sur la procédure par séparation et
évaluation pour résoudre les problémes de petite taille. Nous présentons également des
applications numériques. |

Mots Clés : Ordonnancement a une machine, Makespan, Contraintes de précédence, Chaines,

Temps de séparation minimaux et maximaux.
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v 1. INTRODUCTION

In this paper, we consider a single machine scheduling problem which was solved for a
medical laboratory. The problem formulation can be summarized as follows. A set J of N jobs
available at time 0 should be scheduled on a single machine that can process at most one job at a

time. There are chain-structured precedence constraints between jobs. Let n be the number of

chains and m; the number of jobs in the chain i. The total number of jobs is then N=Y"_ m;.
We denote by (z J) the jth job in the chain i. Its processing requires i units of time. pij is
called processing time. The processing of a job cannot be interrupted, that is, there is no
preemption of jobs. Besides the precedence constraints, the completion of job (i, j) and the
beginning of job (i, j+1) should be separated by a time belonging to [/; j, L; ;. /; j and L; ; are
respectively the minimal and the maximal separation time between jobs (i, j) and (i, j+1). We
are looking for a schedule which minimizes the makespan. If C; J(s) denotes the completion time
of job (i, ) in a schedule s (when there is no ambiguity, we write simply C;;), then the

problem can be formulated as follows:

Min maxC;, N
{C..} i !

LY}

subject to
Cijr1=Cij2pijur+hj. Vj<m, Vi, )
Ci; —Ci,jf] 2-p;jv—Lij, Vj<mi, Vi, | (3)
Cijzpij, | | Vj<m, Vi, “)
Ci‘j —C‘-"j- 2p;; or G

"j' _C“] 2 p""j" Y V(iyj) # (i"j')' (5)

Constraints (2) and (3) are introduced to ensure that the separation time between two
successive jobs in the same chain is bounded. Constraints (4) say that the jobs cannot be -
processed before time 0. Constraints (5) express the fact that the machine can perform at most
one job at a time. The fact that no preemption is allowed is implicitly taken into account in
constraints (2) — (5).

The problem studied here arises particularly in systems where chemical processes are



involved. Consider a chemical plant in which every chemical process is a sequence of chemical
reactions the duration of which is upper and lower bounded. Between two successive chemical
reactions which are performed in different locations, a transportation system is used to carry the .
product from place to place. In this kind of plant, jobs are transportation operations and
production processes can be modeled as chains. Therefore the problem studied in this paper is
of practical importance.

Single machine scheduling problems have been extensively studied under various
assumptions and criteria. Gupta and Kyparisis (1987) and Lawler et al. (1989) survey
hundreds of papers. After these surveys, a lot of new papers were published. However, to our
knowledge, no work has been published on the problem studied in this paper.

Some authors consider hoist scheduling problems in electroplating systems. In these
systems, products have to visit a number of tanks in a given order. The transportation from one
tank tank is carried out by hoists. In each tank, a product has to stay for a time which is upper
and lower bounded. The problems studied so far concerns mono-product and cyclic
production. Lei and Wang (1989a, 1989b), Phillips and Unger (1976), and Shapiro and Nuttle
(1988) examine the problem with single hoist. The problem with two hoists is studied by Lei
and Wang (1991) using a minimum common cycle algorithm and the results obtained for single
hoist scheduling problems.

Our problem can be considered as a non cyclic multi-product hoist scheduling problem in
which the capacity of each tank is infinite. From this remark, one can see that the results
published in hoist scheduling problem cannot be used to solve our problem.

We show in Section 2 that the problem is NP-complete. Therefore, the existence of a
polynomially bounded algorithm is unlikely. For large size problems, only heuristics can be
used. We propose three heuristics based on priority rules in Section 3. For small size problems,
we develop in Section 4 a branch and bound based algorithm.

2. NP-COMPLETENESS

In this'section, we show that the problem formulated in Section 1 is NP-complete (for the
definition of NP-completeness, see Garey and Johnson 1979). We show that the knapsack
problem is reducible to our problem. The knapsack problem is well known to be NP-complete.
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"Theorem 1. The single machine scheduling problem with chain-structured precedence

constraints and minimal and maximal separation times between successive jobs in the same

chain to minimize the makespan is NP-complete.

. . t ) .
Proof. Given integers a,, a,, ..., a,;, b, A QZM a;, we define a corresponding instance of
the considered problem by

n=t+1,

mi=l, Pi1 = 4, VlSi<n,

m, =2, Pni1=Pn2= 1, ln,l =L, =b.

n1

If Y. .ga;, =b for some ScT={1, 2, .., 1},ie. if the knapsack problem has a
solution, then a schedule with a makespan less than or equal to A + 2 is obtained by scheduling
the jobs in the following order (n, 1), {(i, Dl € S}, (n, 2), {G, i e T - S}.

For any feasible processing order, T can be decomposed into three subsets S, S,, and
T -5, -85, such that jobs of §;,5,,and T - §; - §, are respectively processed before
(n, 1), between (n, 1) and (n, 2), and after (n, 2). For the order to be feasible, it is necessary

that Zies.ai <b. If the knapsack problem has no solution, we have ), ¢ a;<b. The
makespan of this scheduleisthen 3, ca; +2+b+ Y, + ¢ ¢ @ >, ca;+2+ 3, ca +
YieT-5,-5, % = Lier®i +2=A+2.

This means that the considered problem has a solution such that the makespan is less than
or equal to A + 2 if and only if the knapsack problem has a solution. Q.ED.

Since the problem considered is NP-complete, it is necessary to use an enumerative

algorithm to obtain an optimal solution, which is irrealistic for large size problems. Therefore,
we propose heuristics to cope with the complexity of large size problems.

3. HEURISTICS

In this section, we present some heuristic algorithms. They are based on priority rules.

First of all, we show how to calculate the completion times for a given sequence of jobs s, or to



detect the unfeasibility of this sequence. Since the separation time between two successive jobs
in the same chain is upper bounded, this calculation is not straightforward. Let ¢,(s) and w,(s)

be respectively the chain and the job number in this chain of the job processed at the kth

position in the sequence s. We are looking for completion times C (5w, (s)» & = 1, 2, ..., N

such that the makespan is minimized. This problem, denoted by P1 can be formulated as
follows by replacing disjunctive constraints (5) by conjunctive ones.

Problem P1. Min C; (5)w, (s) ‘ (6)

e} *

subject to

Ce, (53w, ()~ Cey (), ()1 2 Pe, (), () Le, (5w, (5)-1 » V' k such that wy(s) > 1, (7)
CC‘(S),W‘(S)—I b c, ()W, (s) 2 _pc‘(s).w.(s) - LC‘(S)'W‘ (s)-1» ¥V k such that Wk(S) > 1, (8)
Cc,(s),w, (s) 2 pcl (s)w (s) ) . i (9)

Ccl (Sow,(s) — Cc,,,(s),wH(s) 2 pc. (5).w,(s) > : V 1<k<N. (10)

Clearly, this is a linear programming problem. However, due to the particular structure of
the problem, that is, in each constraint except one (i.e. (9)) one coefficient of the variables is 1

and the other one is -1, this problem can be represented by a directed graph with N + 1 vertices
{0, 1, 2, ..., N}. If we denote by =; i) the position taken by the job (i, j) in sequence s then,
in this graph, for any k such that w,(s) > 1, there are, an arc with length

De,(s)w, (5) + b, (s)ow, (s)-1 from vertex m. (g, (s)-1(8) to vertex &, and an arc with length
= De,(s)w, (s) ~ Lc, (s)ow, (5)-1 fTOM VEIIEX k 1O VErtex 7 (5, (5)-1(5). For 1 <k <N, there is an
arc with length p (5) w, (5) from vertex & - I to veriex . According to Roy (1970), this prob.lcm

has a feasible solution if and only if there is no circuit with positive length. In that case, one of
the optimal solutions is such that forany £ (1 Sk <N), Cc‘(s),w‘(s) is the length of the longest
path from vertex O to vertex k. The computation of these lengths and detection of existence of

circuits with positive length can be solved by the algorithm due to Bellman (Gondran and
Minoux 1979). Applied to our problem, this algorithm, called TIMING, is as follows:



Procedure TIMING
I i=1C(gws) =0,V k=0,1,..,N.

2. Céo(s)'wo(s) = 0;
For k from 1 to N do
. a - .
Ce, (s)w, (s) "= max{cé,_,(s),w,_,(s) + P, (s)w (s> X ¥ }
where
0 if wy(s)=1,
X =3¢ +1 herwi
¢, (5)w, (s)-1 1 P, (s)w,(s) T lc,(s)w,(s)-1 ~ Otherwise.

0 ) ifWk(S)-_—mc‘(S) ,
Y=

-1

c (5w, (s)+1 pc,(s).w,(s)+1 T e (shw () otherwise.

done
3. If Cé‘(s)’w.(s) = Cé:(ls)'w‘ (s) for any O < k < N then STOP, otherwise if i <N then i =i+

1 and go to 2, otherwise there is no feasible solution.

Let [CZ j}and {C}_ ;) be respectively the solution obtained by Procedure TIMING and a

feasible solution of P1. As a consequence from the process used to compute {C: i1, the

following property holds, which is important to the computation of the lower bound in the next
section.

Property 1. CZ P C, i

Vi<j<m, Vi
The Procedure TIMING will be used in the heuristics presented hereafter and the branch

and bound algorithm developed in the next section.

In all the heuristics, at each iteration, a chain is scheduled. After having scheduled a subset
of chains, we have to decide which chain to be scheduled next and how to schedule it. The
selected chain is the one the first job of which can start the earliest. If more than one chain lead
to this minimum, the ties are broken according to three policies presented afterwards. These
three policies lead to three heuristics.

Let sy denote a partial schedule, and s; the schedule obtained by adding the chain i to s,,.



The general scheme of the heuristic is given below. We denote by I the set of unscheduled
- chains and by x; the first position in the schedule that the jth job of a chain of / can occupy.

General scheme .
1. I:={1,2,..,n},x;:=1,5:=0.
2. Whilel#@do
' 2 := +oo;
Foranyie Ido
Jj=10p=5;
While j < m; do
2.1. Find a position y; for job (i, /), construct a schedule oj by inserting
(i, j) at the position y; and calculate the completion times using
Procedure TIMING.
2.2. If o; is not feasible then reschedule job (i, j -1) at the next subiteration:
Xjp =Y, Xy =Yg+ 1,j:=j- 1 otherwise consider job (i, + 1) at the
next subiteration: x;; :=y; + 1, j:=j + 1.
done
$; 1= Op .
IfC; \(s;) <zthenz:=C; (s), i* :=i.
done
S 1= S, Xy 1= Mg (8) + 1, [ =1 -{i*).
done '

When we schedule job (i, /), we try to construct a schedule o; based on schedule o;_; in

which the job (i, j - 1) has already been scheduled. In our algorithm, the scheduling of job
(i, j) 1s not fixed. It may change if the scheduling of (i, j + 1) fails. However, it is easy to see

that the completion time cannot decrease from one scheduling to the next.

While scheduling job (i, ), we compute the “earliest” and the “latest” starting times r, , and

d, , as follows for each scheduled job and job (i, j).

1,j=

0 if j=1,
Ci,j—l (Gj—l ) + 1“]_1 OtherWise .

Tuyy = Cu,v(aj—l )A— Puvs ’ Vo(u,v) # 3, ).



o)

J +o0 . if v=1, v
Wy C“,V_l(O'j_l) + L“'v__l Othchise, (u’ V)‘

We then determine the position y; to put the job (i, /), that is the first y such that
y 2 Xj )
and

[ Te,(0,.)w,(0,,) > Py OF (’c,(o,_,)»«,(o,_.>=;0y and  de (5w (0,,) > i) ) ]

Where py = max{cc,_l (o/" )'wy—l (O"_,) ’ ri'j}.

In fact p, is the earliest time that (i, j) can start if it 1s the yth job in the schedule. If the job

(cy(0j_1), wy(0;_y)) can start earlier, then it takes the position y, otherwise the most urgent

takes this position, the most-urgent being the one with the smallest latest starting times. The
idea behind this choice is from the well known Schrage’s algorithm which is used to minimize
the maximum tardiness.

As one can see, when two chains lead to the same starting time of their first job, we have to
select one of them. This is done using one of the following three policies.

1. A chain with a larger A value has a higher priority, where
m, m,—1
Ai=Xpij+ X b
j=1 j=1

A chain with a larger sum of job processing times has a higher priority.
3. A chain whose first job has a longer processing time has higher priority. If two chains give
the same value, the chain whose second job has a longer processing time has higher

priority, and so on.

It should be noticed that a po‘licy plays an important part in the performance of the
algorithms, since choices should be done very often especially at the beginning of the
scheduling and the scheduling of the first chains has a very important impact on that of
subsequent chains.



4. BRANCH AND BOUND ALGORITHM

In practice, there may be situations where the number of jobs to be scheduled is small. In

this case, an enumerative algorithm applies. For this purpose, we first show how to calculate

lower bounds and to identify unfeasible solutions. Based on these results, we develop a branch

and bound algorithm. The computational experiences are reported in Section 5.

Let s be a partial schedule in which, if a job is scheduled, then all its predecessors in the

same chain are scheduled, or equivalently, its immediate predecessor, if any, is scheduled. Let
S denote the set of scheduled jobs in s. For any chain i, let z; be the number of scheduled jobs

in this chain. The set of unscheduled jobs is then J - §. The problem of scheduling the jobs

belong to J - § after scheduling the jobs of S in order to minimize the makespan can be

formulated as follows.

Problem P2, Min max G,

{c,;} irz<m,

subject to (2), (3) and

CC.(x).W.(s) 2 Pe,(s)w,(s) >

Ce, (s)m(s) = Cep (5)owy, (5) 2 Pey(s)w, (5) »

Cij = Coy(s)cy() Z Pij >

Ci.j - Ci'.j' 2 p“‘j or Ci',j' -

Cij2pij

(1)
(12)
vV 1<k<ls], (13)
V (i,)eJ-S, “(14)

YV (,j)eJ-S, ¥V (i',jYeJ=S and (i, )=, ). (19

Constraints (2) and (3) can be rewritten as

C
C

Cij—Cijazpij+l,

e, (s)w,(s) ~ C, (53w, (s3-1 2 Pe (s)w,(s) F e, (s)w, (5)-1 »

(9w, (-1~ Ce (51w, (5) 2 ~Pe (), () ™ L, (s)ow, (5)-1 >

V k< |S| and wy(s) > 1, (16)
V k< |S| and wy(s) > 1, (17)

Vj>1and (i,j)e J-S, (18)
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Ci,j—l —C“']‘ 2_pi.j —'Li,j—l , V_] > 1 and (l,]) eJ-S. (19)

Constraints (14) and (18) lead to

. 1
G2 max{ci,z, +lig, s Ccm(s),wm(s)} +pjt X (li,j' + pi,j') ,

J=z,+1

V z;<j<m;, Visuchthatz; 21, (20)

Jj-1
Cij2Co oy +Pij+ X (hj+pij), ¥ 1Sj<m, Visuchthatz =0, (21)
j=1
m
Ci.mi > C,-'j + Y (li‘j-_l + pi'j-), V (i,j) e J-S, Visuchthat z; <m;. (22)

J=j+l

Therefore, the criterion value of the following problem is a lower bound of Problem P.

Problem P3. Min max {Cij+ 3 (Lja+piy | 23)
‘ {c.} (i.j)ej_s{ " j'§+1( J1 ) )}

subject to (12), (13), (15) — (17), (20) and (21).

One can notice that the constraints (12), (13), (16) and (17) are the same as (7) - (10),
except that N is replaced by |S)|. If these constraints lead to a feasible solution then according to

Property 1, when we replace C;. (5w, (s) Y C'¢, (s)w,(s) I (20) and (21), where C'¢ (), (5) 1
the completion time obtained using Procedure TIMING on the jobs of S, the objective function

of the resulting problem gives a lower bound to Problem P3, and consequently to Problem P2.
This problem, denoted by P4, can be formulated as follows.

Problem P4, Min max {c‘,ﬁ > (1i‘j._1+p‘.,j.)} (24)

{c., 1. et} (i.el-S ji=j+l

subject to (15) and

Jj-1
Ci,j 2 maX{C'i‘z. +[i'z. ,C Cm(x)‘wl.ﬂ(")} + pi,j + A Z ([lj + [)‘j) ’

J'=z,+1
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Vz;<j<m; Visuchthatz; 21, (25)

J-l 4
C‘-] = C'cm(s).wm(s) +p“j + Z (Ii,j' + pi‘j-) s A\ Sj < m;, Vi such that z; = 0. (26)
j=1

Problem P4 is exactly the single machine scheduling problem to minimize makespan with

release dates and delivery tymes, where the release dates r; ; and delivery times g; ; are

respectively,

j-1

rl..j' = maX{C'i'Zi +1‘.‘Z.‘ , C'CM (S),Wm(s)} + Z (Ii.j' + pi.j') N
J=z,+1
V z;<j<m;, Visuchthatz; 21, (27)
il . .
nj= C'cm(s),wm(s) + z_: (1‘.4.. + p‘.,]..) , VO<j<m,, Vz‘such thatz; =0, (28)
m;
g;= % (Lj1+pij) » V(i,j)e J-S. (29)
J=j+l ' '

This problem has been extensively studied in the literature (Bratley et al. 1973, Baker and
Su 1974, McMahon and Florian 1975, Carlier 1982, Grabowski et al. 1986, Dessouky and
Margenthaler 1972, Hall and Rhee 1986, Lageweg et al. 1976, Larson et al. 1985).
Unfortunately, the problem is still NP-hard. But if we further relax the non preemption
constraints, the problem can be polynomially solved by the following algorithm (Baker and Su
1974): When we have to select a job among the available unscheduled ones, the one with the
largest delivery time is chosen. Furthermore, an arriving job preempts the job being processed
if the delivery time of the new arrival is strictly smaller than that of the job in process.

Therefore the following result holds.

Theorem 2. If there is a feasible solution to constraints (12), (13), (16) and (17), the criterion
value of Problem P4 without non preemption constraints is a lower bound of Problem P2.

In addition, we have the following theorem.

Theorem 3. If there is no feasible solution to constraints (12), (13), (16) \and (17), any

o~
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schedule o such that (c,(0), wi(0)) = (ci(s), wi(s)), V 1 < k < |S] is not feasible.

Proof. Assume that there is such a feasible schedule 0. In this case, the completion times of
the jobs § in o satisfy the constraints (12), (13), (16) and (17). This is in contradiction with the
assumption that there is no feasible solution to constraints (12), (13), (16) and (17). Q.E.D.

We develop a branch and bound algorithm using Theorems 2 and 3. In this algorithm, each
node is defined by a partial sequence s. Initially, s is empty. Each descendant node 1s obtained
by adding, behind the partial sequence s, a new job (i, j) chosen among the unscheduled jobs.
Procedure TIMINIG is then used to compute the completion times of the jobs in s completed by
Jjob (i, j). If this new partial sequence is unfeasible, all the descendant nodes of s are eliminated
according to Theorem 3. Otherwise, a new node is created with a lower bound computed using
Theorem 2 and we continue by considei'ing other descendant nodes with other unscheduled
jobs.

Heuristics presented in Section 3 are used to provide an initial upper bound. The upper
bound is updated each time a better complete schedule is found. The selection of the node to
branch next is performed with the depth first policy, because with this policy, the application of
Theorem 3 can be easily implemented and requires a reasonable storage core.

We can improve the Theorem 3 taking into account the following remark. We know from
(14) and (19) that for a partial schedule s in which S is the set of scheduled jobs,

Ccm(s)'wm(s) < Ci.j + Li.j s v (l, j) e Sand (l,j+1) e -S. (29)

This means that in the directed graph defined in Section 3 there is an arc with length -L; ;
from vertex [S| to vertex 7; ;(s). If this graph contains circuits with positive length, there is no

feasible complete sequence starting by the partial sequence s, thus the node represented by the
partial sequence s can be eliminated.

5. COMPUTATIONAL RESULTS

In order to evaluate the performance of the algorithms, we randomly generate 50 test
examples. For each example n = 10. The m; values are randomly generated from 1 to 3. The p; J

and [; ; values are randomly generated from 10 to 40 and from 100 to 400, respectively. L, jis
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setto 1.1/ ;.

The algorithms are implemented in C codes on a SUN SPARC 1+ workstation. For 9
examples, the branch and bound al goﬁthm is stopped because the optimal solution is not found
after 10 000 branchings. Except for these examples, the mean number of nodes considered is
124.24, the mean number of branchings is 653.37 and the mean computation time is 725.51
CPU milliseconds. It should be noticed that for 23 problems out of 50, the heuristics give the

optimal solutions.

The mean computation time of the heuristics is 6.42 CPU milliseconds. The deviation of

-the sum of criterion values obtained by the heuristics from the sum of criterion values by the

branch and bound algorithm is 1.86%. That is, (szl h=Y200 ) / 3% 0;= 0.0186, where ;

i=1Y
and o; are the criterion values obtained respectively with the heuristics and the branch and
bound algorithm (If it is stopped before the optimal solution is found, o; is taken as the minimal

lower bounds of the nodes in the list. Therefore o; is smaller than the optimal solution). The

mean deviation from the optimum is 1.92%. That is, (Z‘.Sfl(hi —0; )/o,-)/SO: 0.0192.

When the heuristics are applied to real life problems of the company we worked for, the
service ratio (ratio between the total processing time and the makespan) is between 75%—95%.
The size of these problems is very large: The number of jobs is between 100 and 400 and each
chain contains 3 or 4 jobs. It is difficult to evaluate the performance of the heuristics for large
size problems. Of course, it is always possible to compare the heuristic solution with the lower
bound. However, the lower bound could be quite far away from the optimum. One can imagine
to improve the lower bound using Lagrangian relaxation technique as done by Luh and
Hoitomt. (1993). Unfortunately, the computation time and storage core used by this method
increase with the considered time horizon which should be larger than the makespan and thus
than the total processing time. For the real life problem we studied, total processing time could
be 40 000 seconds. It is also impossible to change time unit, because the processing time of

each job is between 19 and 53 seconds.

6. CONCLUSION

We study a real life sequencing problem with chain structured constraints and minimal and

maximal separation times between jobs. Heuristic and branch and bound algorithms are
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developed to solve respectively large and small size problems. Computational results show that
the heuristics are quite effective.

Comparéd to classical scheduling problems issued from manufacturing systems, our
problem arises in systems where chemical processes are involved and the transportation times
are not negligible with respect to operation processing times. We think that this kind of
scheduling problems need more attention from researchers, because transportation facilities are
expensive and thus are used to service several machines. In that case, the assumption with
negligible transportation times does not hold any more. '
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