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An Analysis of the Gaussian Algorithm
for Lattice Reduction

Hervé DAUDE, Philippe FLAJOLET, Brigitte VALLEE

Abstract. The Gaussian algorithm for lattice reduction in dimension 2 (under both the standard
version and the centered version) is analysed. It is found that, when applied to random inputs, the
complexity is asymptotically constant, the probability distribution decays geometrically, and the
dynamics is characterized by a conditional invariant measure. The proofs make use of connections
between lattice reduction, continued fractions, continuants, and functional operators. Detailed
numerical data are also presented.

Une analyse de l'algorithme de Gauss
pour la réduction des réseaux

Résumé. L’algorithme de Gauss pour la réduction des réseaux en dimension 2 est analysé sous
ses deux formes, standard et centrée. Il s’avére que sur des données aléatoires, la complexité
de 'algorithme est asymptotiquement constante, la distribution de probabilité des coiits décroit
géométriquement, et la dynamique de ’algorithme est caractérisée par une distribution invariante
conditionnelle. Les preuves font appel aux rapports existant entre fractions continues, continuants,
et certains opérateurs fonctionnels associés. Des résultats numériques détaillés sont également
présentés.

Paper presented at the Algorithmic Number Theory Symposium (ANTS’94), Cornell University, May 1994.
Proceedings are to be published in the Lecture Notes in Computer Science series, Springer-Verlag, L. Adleman
editor.
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Abstract. The Gaussian algorithm for lattice reduction in dimension 2
(under both the standard version and the centered version) is analysed. It
is found that, when applied to random inputs, the complexity is asymp-
totically constant, the probability distribution decays geometrically, and
the dynamics is characterized by a conditional invariant measure. The
proofs make use of connections between lattice reduction, continued frac-
tions, continuants, and functional operators. Detailed numerical data are
also presented.

1 Introduction

The lattice reduction problem consists in finding a short basis of a lattice of
Euclidean space given a (usually skew) basis. This reduction problem is well-
known to be central to many areas of approximation and optimization with
deep consequences in computational number theory, cryptography, and symbolic
computation.

In dimension d = 1, lattice reduction may be viewed as a mere avatar of
the Euclidean GCD algorithm and of continued fraction expansions. Lattice
reduction per se really started with Gauss who gave an algorithm that solves
the problem exactly using what resembles a lifting of the Euclidean algorithm
to 2-dimensional lattices. In recent times, an important discovery was made
by Lenstra, Lenstra and Lovasz in 1982 [4, 12, 25]; their algorithm, called the
LLL algorithm, is able to find reduced bases in all dimensions d > 3. The LLL
algorithm itself proceeds by stages based on the Gaussian algorithm as the main
reduction step.

The Euclidean algorithm and the continued fraction algorithm are by now
reasonably well understood as regards complexity questions. Knuth’s book [10]
provides a detailed account till 1981. From results of Lamé, Dupré, Heilbronn,
Dixon, Wirsing, Babenko, and Hensley, the following facts are known. The worst
case complexity of the Euclidean algorithm is O(log N) when applied to inte-
gers at most N (Lamé and Dupré); the average case on random inputs is also
logarithmic (Dixon); the distribution of the number of iterations obeys in the
asymptotic limit a normal law with a variance that is logarithmic (a recent result
of Hensley).



There are some deep connections between these properties and an invariant
measure for the continued fraction transformation whose existence was first con-
jectured by Gauss and proved in this century by Lévy and Kuzmin. Most of
these results are obtained by means of functional operators related to continued
fractions and continuants of which extensive use will be made here. We refer in
particular to the works of Wirsing [24], Babenko [1], Mayer [16, 17, 14, 15], and
Hensley [8].

This paper provides a detailed analysis of the Gaussian algorithm, both in
the average case and in probability. Like its one-dimensional counterpart, the
algorithm i1s known to be of worst—case logarithmic complexity, a result due to
Lagarias [11], with best possible bounds being provided by Vallée [21] and Kaib-
Schnorr [9]. The probabilistic behaviour of the Gaussian algorithm turns out to
be appreciably different however. The main results of the paper are as follows.

— The average—case complexity of the Gaussian algorithm (measured in the
number of iterations performed) is asymptotically constant, and thus essen-
tially independent on the size of the input vectors.

— The distribution of the number of iterations is closely approximated by a.
geometric law.

— The dynamics of the algorithm is governed by a conditional invariant mea-
sure that constitutes the analogue of the invariant measure first observed by
Gauss for continued fractions.

Precise characterizations of the behaviour of the algorithm are given here. In
particular the geometric rate of decrease of the distribution of costs and the con-
ditional invariant measure are expressed simply in terms of spectral properties
of an operator that generalizes the operator associated with Euclid’s algorithm.

In this paper, we mostly focus on the analysis of what we call the “standard”
version of the Gaussian reduction algorithm, which generalizes the standard Eu-
clidean algorithm. Another often encountered version, called here the “centered”
version, i1s analogous to the centered Euclidean algorithm and is amenable to a
similar treatment as we briefly explain at the end of the paper.

Our analytic results are naturally expressed as multiple infinite sums involv-
ing the continuants of continued fraction theory. As such sums tend to be rather
slowly convergent, some attention is also paid to obtaining precise estimates by
means of simple convergence acceleration techniques. For instance, we estab-
lish that the average case complexity of the “inner part” of the algorithm is
asymptotic to the constant g = 1.3511315744 .. ..

On average, the Gaussian algorithm is thus of complexity O(1), which is of
an order different from the worst-case. The case of dimension d = 2 therefore
departs significantly from its 1-dimensional analogue, and it would be of in-
terest to determine to which extent such a phenomenon propagates to higher
dimensions. Qur analytic knowledge of the LLL algorithm in higher dimensions
1s of course less advanced, but Daudé and Vallée [6] already succeeded in prov-
ing that the LLL algorithm, when applied to d-dimensional lattices, has an
average—case complexity that is bounded from above by a constant K4, where
K4 = O(d*logd). The present work thus fits as a component of a more global



Fig.1. A lattice and two of its bases represented by the parallelogram they span. The
first basis is skew, the second one is reduced.

enterprise whose aim is to understand theoretically why the LLL algorithm per-
forms in practice much better than worst-case bounds predict, and to quantify
precisely the probabilistic behaviour of lattice reduction in higher dimensions.

2 Lattice reduction in dimension 2

Lattices and bases.This paper addresses specifically the reduction of 2-
dimensional lattices. A lattice of rank 2 in the complex plane (C 1s the set £
of elements of C (“vectors”) defined by

L=Zu®Zv={du+pv | Apn€Z),

where (u,v), called a basis, is a pair of R-linearly independent elements of C.

A lattice is generated by infinitely many bases that are related to each other
by integer matrices of determinant +1. Amongst all the bases of £, some, called
minimal, enjoy the property of being formed with a shortest vector u of the
lattice and another vector v which is shortest in the set of all vectors independent
of u. Minimality is the specialization to dimension 2 of the general notion of
reduced basis in arbitrary dimensions. A minimal basis (u,v), when it is in
addition acute, is characterized by the two simultaneous conditions:

(L) : |§|21 and (1) o<se() ; (1)

The angle between the two vectors of a mmlmal acute basis thus lies between I

w 3
and

The Gausstan reduction schema. A reduction algorithm takes an arbitrary basis
of a lattice and determines another basis that is minimal. The Gaussian algo-
rithm is a reduction algorithm whose principle consists in satisfying the two
simultaneous conditions of (1). Condition I; is satisfied by exchanges between
vectors, then condition I is satisfied by an integral translation of the longer
vector v parallel to the shorter vector u. The schema underlying this reduction
process is then the following.



Input: an acute basis (u,v) of L.
Output: a minimal acute basis (u,v) of L.
repeat
(i). If |u| > |v|, then exchange u and v so as to satisfy condition I;;
(i1). Translate v parallel to u: v := v — mu for some m € N, so as
to satisfy condition I2; if (u,v) is not acute then change v to —v;
until |v| > |u|.

The complezx framework. Many structural characteristics of lattices and bases
are invariant under linear transformations —similarity transformations in ge-
ometric terms— of the form Sy, : 2z — Az with A € C. An instance is
the characterization of minimal acute bases that only depends on the ratio
v/u. It is thus natural to consider lattices and bases taken up to equivalence
under linear transformation (similarity). For such similarity invariant proper-
ties, it is sufficient to restrict attention to lattices generated by a basis of the
form (1,z). In that case, the property for a basis to be minimal and acute
corresponds to the fact that z belongs to the so—called fundamental domain
F={z | |z >1 and 0 < R(z) < 1}. Such a domain is familiar from the the-
ory of modular forms [20] or the reduction theory of quadratic forms [19].

The Gaussian algorithm precisely has the property that its execution trace
is invariant under lattice similarity. Let (ug, vo),. . ., (u;;, vg) be the sequence of
bases constructed by the Gaussian algorithm. We associate to it the sequence
(1,20),...,(1, 2x) where z; = v; /u;. The geometric transformation effected by
the each step of the algorithm consists of an exchange (u,v) — (v, u), a transla-
tion v — v—mu, and a possible sign change v — ev with ¢ = £1. In the complex
framework, this corresponds to an inversion S : z — 1/z, followed by a transla-
tion z — T~™2z with T(z) = z+1, and by a possible sign change z — J,z where
Je(z) = €z. In this context, the Gaussian algorithm aims at realizing directly
the conditions by bringing z = v/u in the strip B = {0 < R(z) < 1}.

The Gaussian reduction schema that we have just described involves a sign-
changing operation (v — —v). We introduce below a variant of the algorithm
—the “standard” algorithm— that has the advantage of avoiding this operation
whose presence complicates the analysis. We propose to return to the original
Gaussian algorithm in Section 7.

The standard algorithm. The next sections are devoted to the analysis of a vari-
ant of the Gaussian algorithm that is directed towards bringing z inside the strip
B = {0 < R(z) £ 1}. In order to do so, it suffices to consider a transformation U
formed with an inversion S and a translation ™™ aimed at bringing z into B.
It is readily realized that this is achieved by the transformation

U = ;- IR,

“with |u] the integer part of u. This transformation U is an extension to the com-
plex domain of the operation defining standard continued fraction expansions.

In the rest of the paper, we assume that the Gaussian algorithm is applied
to complex numbers z such that 3(z) # 0, which corresponds to nondegenerate
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lattices. One also operates with bases that are acute, so that z belongs to the half-
plane R(z) > 0. For reasons explained below, see Eq. (2), it suffices to consider
the situation where the reduction algorithm takes as input complex numbers
from the disk D of diameter [0, 1]. The transformation U is then iterated till exit
from that disk. This defines an algorithm called the standard Gaussian algorithm
(SG A) because of its close connection with standard continued fractions and the
standard Euclidean algorithm.

Algorithm SGA(z : complex) [Standard Gaussian Algorithm]
Input: 2z € D (the disk of diameter {0, 1})

while (z € D) do z := U(z);
Output: z € B\ D. (the strip B is defined by 0 < R(z) < 1)

For this algorithm, upon exit from the main iteration loop, it is no longer
true that z belongs to the fundamental domain F. However, z then lies in the
union of six simple transforms of F, namely

B\D=FUSFUSIFUSTFUTJFUSTJF. (2)

Thus simply adding a 6-way test produces an algorithm whose output is an
element of . In addition, the analysis of the full reduction algorithm obtained in
this way is then only a trivial variant of the analysis of the core algorithm SGA.

Probabilistic models. The question addressed here is the estimation of the num-
ber L of iterations performed by the standard algorithm. The model considered
is in essence equivalent to applying the reduction algorithm to random bases,
where similar bases are identified.

The continuous model is defined by the fact that the inputs are taken uni-
formly over the definition domain D. The eventual goal is to analyse the be-
haviour of the algorithm under a discrete model where inputs are members of
Q(%) of the form QtN)(3) = {* +i% | b3# 0}, suitably restricted to D. The ran-
dom variable L{¥) then depends on N. However, as N gets large, it converges,
both in moments and distribution, to its continuous counterparts, a fact to be
proved in Section 5. ’

Thus, the results to be enounced later for the continuous model —that the
average number of iterations is constant and that the probability distribution
admits exponential tails — carries over to the more accurate discrete model.
In other words, the behaviour of lattice reduction in dimension 2 is essentially
insensitive to the size of the input vectors. This is a notable difference with the
one—dimensional case of Euclid’s algorithm.

3 Continued fractions and lattice reduction

The Gaussian algorithm is closely related to the linear fractional transformations
(also called homographies) that are associated to continued fractions, and thus
also to the classical continuant polynomials. In this way, a first analysis of the
probability distribution and of the average cost of the algorithm can be given.



The fundamental disks. In its complex formulation, the algorithm SG A produces
a sequence zg, 2y, ..., z¢ of transforms of zg € D obtained by iterating the trans-
formation U. As we saw, each step corresponds to a particular transformation

1

Zip] = —mM; + — or = —. 3
7+ J Z J mj + zj41 ( )

While z; is in D, 1/2; lies in the exterior of D and it satisfies £(1/2;) > 1, so that

we have the condition m; > 1. Thus, from (3), there results that an execution

of the Gaussian algorithm on input zg translates into a terminating “continued

fraction” expansion

zZ0 = 1 ) (4)

where the expansion is stopped as soon as z; lies in B\ D. The number of
iterations, L, then assumes the value k. All the m; are at least 1.

This leads to introducing the set Hi of linear fractional transformations of
depth k (for k > 1) defined as the collection of all h(z) of the form

: 1
hn(z) = hny n,,.ni(2) = 1 ) (5)
mot———7—
noy +

ng :F z
where the n; e N={1,2,.. }.
From the preceding discussion, we thus have the equivalence
2 = U*(20) = 3n € N* (20 = hn(z)).
The event {L > k + 1} coincides with the set of complex z such that all the
Ul(z),for j =0,...,k, liein D. Thus, defining Dy = U(=*¥}(D) with Dy = D, we
have {L > k+1} = D;. By definition, these domains form an infinite descending

chain, Dy D Dy, D Dy D ---. We also have that each Dy is the disjoint union of
transforms of D by the transformations of Hy of (5),

D =UCHD) = (] hn(D).
nenN*

From elementary properties of geometrical inversion, hn(P) is the disk of di-
ameter [hAn(0), hn(1)]. Within the theory of continued fractions, the interval
[hn(0), kn(1)] is known as a fundamental interval. A rendering of the domains,

also called the fundamental disks, is given in Figure 2.
These considerations imply that, under the uniform probabilistic model of
use, the probability w; that the algorithm performs at least k£ + 1 iterations is

_ Dl _ 4
™= o] = 7 2_ It @)l (6)

NeENk

where ||A|| denotes the area of a domain A of the plane.



Fig. 2. The domains Do\ Dy, D1\ D,, D2\ D3, D3\ D4, D4\ Ds represented alternatively
in black and white. (The largest disk is Do = D which is the disk of diameter [0, 1].)

Continuants. Homographies of H;. are naturally associated with continued frac-
tions of depth k themselves expressible in terms of continuants, see for instance
the books by Knuth [10, p. 340] or by Rockett and Sziisz [18]. The continuant
polynomials are defined by

Qn(xl’z% .. -yzn) = ann—l(zly e wrn—l) + Qn—2($1, .. ~)xn)y

with Qo = 1, Q1(z1) = z;. Classically, a function hn € Hi withn = (n;,...,ng)
admits the expression
P+ 2Py

Qi+ 2Qx-1’ 0
Qr =Qr(n,...,nk), Qi-1=Qi-1(n1,...,nk_1),

Pe = Qr-1(n2, -, nk), Pro1 = Qi-2(nz,...,nk_1).

h(z) =

where

(8)

As is well-known the continuant polynomial Qu(zi,...,z,) is also the
sum of all monomials that obtain by crossing out pairs z;z;4; of consecu-
tive variables in the product z,z,-.-z,. Continuants thus satisfy the sym-
metry property Qx(z1,...,%1) = Qe(Zk,...,z1) and the determinant identity
QrPr_1 — Qi1 Pe = (—1)F1.

Probabilistic analysis. The previous considerations permit to express the prob-
ability distribution of the Gaussian algorithm in terms of continuants. '

Theorem 1. The probability w; that algorithm SGA performs more than k it-
erations on a random nputl 2 € D is expresstble as

> :
Qi (Qk + Qi—1)*’

Ny, Nk

o = Pr{lL>k+1}=



where Qr = Qix(n1,....,nk), Qi—1 = Qk—1(n1,...,nk_1), and the sum is over
all integers n; > 1.

The following table displays the probability distribution of SGA computed
by Theorem 1 and the numerical methods of Section 5 against the result of 108
simulations of the algorithm.

Pr{L > k}|Simulations
0.28986  10.28984361
0.04848 0.04847104
0.01027 0.01027170
0.00200 0.00200478
0.00040 |0.00040299
0.00008 |0.00008031
0.00002 0.00001569
Expectation:|1.35113 1.351094

N U W =

Average-case analysis. Elementary number-theoretic considerations permit to
express the expected cost of the Gaussian algorithm under a form no longer
involving continuants. We have:

Theorem 2. The mean number of iterations of algorithm SGA applied to a

random z € D 1s 180
E{L}="= Z Z

d>l d<e< 2d

Dynamic analysis. We have already mentioned the importance of the invariant
measure of Gauss that has density @ 1—-;—:’ in the 1-dimensional case. No such
invariant measure can exist here as the reduction algorithm terminates. However,
a rdle quite similar to the invariant measure of Gauss is played by a function that
describes the distribution of successive transforms of the input as the reduction
algorithms proceeds.

Initially, the input distribution is uniform in the disk D, so that to zg is
associated the constant density function over D. Assume now that the algorithm
performs at least k 4 1 iterations. Then the kth iterate is well defined and is
an element of D. A natural question is to determine its distribution inside D.
The corresponding conditional density function Fi(z) must be proportional to
llmp_.o Pr{z: € D(z,p)}, where D(z, p) is the disk of center 2z and radius p.
The proportnonallty factor must be taken so as to ensure that the integral of the
den81ty over D equals 1, so that the legitimate definition of the density function

is
1 Pr{z € D(z )}

o wp? Pr{z € D}

We shall call F} the dynamic denszty (of order k) of the algorithm.

Fe(2) = llm

Theorem 3. The dynamic density Fy 1s given by

F h =Pr{L > k+1}.
w(z) = n%;k T 1z+le4, where g t{L>k+1}



Furthermore, a functional relation holds for real z, -

Wk +1 _ 1 1
o] Fen(=) = mZ;‘ (m+2z)4 Fk(m + r)'

Thus, assuming that F; admits a limit Fo, and @i4; /™, converges to some
constant A, the quantities A and Fo, must be an eigenvalue and a corresponding
eigenvector of the operator defined by the right hand side. This sharply moti-
vates the introduction of the operator G in the next section, where we shall also
establish the assumptions regarding Fy and w.

4 The G operator

The complete analysis of the probability distribution and of the dynamics of

the Gaussian algorithm depends on the introduction of an operator G, formally
defined by
1 1

(m+t)’f(m+t

AHIOEDY

m>1

), (9)

and more specifically on the instance s = 4 that we simply denote by G = G,.
(Continued fractions and the Euclidean algorithm correspond to the case s = 2.) -
Let V denote the open disk of center 1 and radius % For all s with R(s) > 1,
the operator G, acts on the space A (V) of functions f that are holomorphic
in V and continuous on the closure V of V. The set A.{V) endowed with the
sup-norm [|f|| = sup,cy | f(¢)] is a Banach space.

Such operators permit to “invert” the continued fraction operator U, and
at the same time their functional analysis properties (related to the Perron—
Frobenius theory) have useful consequences for the Gaussian algorithm. There
is a close relationship between the iterates of G, and continuants.

Lemmad. The iterales of G, generate the continuants of depth k in the follow-
ing sense: )

Qi1
o)
(10)

1 Pe_1t+ P
g:[f](t) - Z (Qk—1t+Qk)’f(Q:-1t+Q’;); gf[f](O)z Z

n.Ng ny..Nk

1
Qi

(

The quantities involved in Theorems 1, 3 precisely admit such expressions:

_ 1

1 T (1+1)?

Fe(z) = ;—g"[v,,(t)](O) where v, () =
k

@y = Pr{L > k + 1} = G¥[u](0) where u(t)

Q+ 220 + 12

Spectral properties of the G, operators have been investigated in detail by
Mayer and we globally refer to [17] and references therein. For s such that



R(s) > 1, the operators G, are nuclear of order 0. In other words, they have
a discrete spectrum and admit a spectral decomposition:

GLAW = 3 Niei [fles(0), (11)

i=1

where the A; are the eigenvalues, {e;} is a basis of eigenfunctions, and the coef-
ficients {e}} are the dual basis of {e;}; in addition the A; are p-summable for all
real p > 0: 3, |Ai|? < +00. (These quantities implicitly depend on s.)

For real s > 1 (we need the case s = 4), the operator G, is in addition a
Perron—-Frobenius operator [17]: it has a unique positive dominant eigenvalue
A1, the corresponding eigenfunction e;(2) is strictly positive on V NR, and e}[f]
is strictly positive if f is itself positive on V NIR. In particular, if Ay denotes the
second eigenvalue (in order of absolute values), and if f is positive on V UR, one

has .
IG5 A1 — PLAN < A1l - |22 (12)
Y = |

where P[f] denotes projection on the dominant eigensubspace: P[f](t) =
Aei[flen(t).

These considerations (with s = 4) apply to the continuant form of the prob-
ability distribution and to the (conditional) invariant measure of the Gaussian
algorithm.

Theorem 5. There ezxist real numbers ¢; and A; with Ay > |Az] > |As] > -,
such that

o]
Pr{L>k+1} =) ¢Af
j=1

In particular, with ¢; = 1.3, A} = 0.1993, and A, € [—2—10,—1—10], one has asymp-
totically:

Pr{L > k+1} =c; M} [1 + 0((%)*)] 4

This theorem is in accordance with observation of the numerical data following
Theorem 1, as the probabilities decay roughly like (%)"

Theorem 6. The dynaemic density Fy(z) converges geometrically to a (condi-
tional) invariant density Foy:

1
Foolz 4 iy) = a/ (1 — w?) [es(z + iyw) + e, (2 — iyw)] dw.
0

There, €1 1s the eigenfunction of G corresponding to the dominant eigenvalue Ay,
and o the normalization constant determined by [[ Foo dz dy = 1. In particular,
on the real azis, the invariant density Fo, is proportional to the eigenfunction
€. ’

10
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Density at z = a#i b

Fig. 3. The conditional invariant density F.

5 The discrete model

The analysis of the standard algorithm under the discrete model where inputs
are taken from the discrete set

{ a b

' M@y ={=+i= | b#£0 13
is solved by a combination of two arguments: (i) by “Gauss’s principle” a circle
of radius z contains 7N2z2 + @(zN + 1) lattice points of Q{V)(3); (ii) from
worst—case bounds, the reduction algorithm performs pumber of iterations at

most O(log N).

Theorem 7. Let LN} be the number of iterations of the standard Gaussian
algorithm applied to random inputs from Q¥ N D. The random variable L™
converges in moments and tn distribution to the random variable L associated
with the continuous model. In particular, the mean value satisfies

‘ logN)
N °

™ = B(LM) = 4 0(

6 Numerical estimates

We have already cited some numerical estimates for the mean and the probability
distribution of the Gaussian algorithm, as well as the approximate value A\, =~
0.1993. Most of the expressions involve slowly converging sums. The purpose
of this section is to give indications on series transformations that permit to
evaluate some of these quantities to great accuracy, as well as on ways in which
precise bounds can be proved on A; using trace formulae.

A real number « is said to be polynomial time computable if there exists an
integer r such that an approximation of a to accuracy 10~¢ can be computed

11



in time O(d"). We let P denote the class of such numbers. A major problem is
to find which of the constants of this paper are polynomial time computable.
Effective numerical procedures usually result from proofs of membership in P.

The expected cost. The expected number of iterations of the Gaussian algorithm
admits an expression as a sum which, once truncated till terms of order m,
results in an error of O(:1;). This sum can be expressed instead as a definite
integral involving the dilogarithm function, Lis(z) = Y o | Z—:, itself amenable
to series representations (involving Bernoulli numbers) that exhibit geometric

convergence.

Theorem 8. (7). The mean number of iterations of the Gaussian algorithm SGA
admits the integral representation

3 + 180 /°° Liz(e™*) — Liz(e™?)
0

"z"Z md l1—et

tdt. (14)

(#3). The number p lies in the class P of polynomial time computable numbers:
p = 1.35113 15744 91659 00179 38680 05256 46466 84404 7897085087 + 10~ 5°.

Probability distribution. The probability distribution of the Gaussian algorithm
can be expressed in terms of complicated series involving the zeta function, the
resulting expressions being useful for small values of k.

Theorem 9. The probability distribution of the number of ilerations of the
Gaussian algorithm has initial values: Pr{L > 1} =1, Pr{L > 2} = '—; -3,

Pr{L>3}=-5+ 27”2 —20(3) +2 i(—l)"(n F1)C(n+)(n +2) - 1).

n=0

In general, each @y = Pr{L > k + 1} is in the class P,

The proof is based on the fact that summations of analytic functions of
several complex variables at integer points,

_ O AL
‘P'— nl)nzv"'nk)

ny,.. . nx=1

can be represented as multiple sums of zeta functions at the integers. (See for
instance [23] for the univariate case.) The following values have been determined
in this way to great accuracy:

71 = 0.28986 81336 96452 87294
w2 = 0.04848 08014 49463 63270
w3 = 0.01027 81647 79066 59643.

12



Figenvalues. The last numerical task is to estimate the dominant and subdom-
inant eigenvalues, Ay and A; that determine the rate of geometric decay of the
probabilities wy. A first class of bounds is obtained by a nonlinear optimization
problem based on Wirsing’s approach [24] and the specific “test functions” pairs:

B 1
Yalt) = 1 +at)(1+ (a+ 1)t)(l+(a+2)t)(1+(a+3)t) (15)
da(t) = Ga](t) =

3 (z+a+l)(z+a+2)(z+a+3)

With a = 0.487, the ration ¢4(¢)/¥4(t) lies in [0.170,0.205] for t € [0, 1]. By
iterating G, a first bound
0.170 < Ay < 0.205

is then obtained. The more refined estimates mentioned in Theorem 5 are derived
from adapting trace formulae originally due to Babenko and Mayer.

Theorem 10. (i). The trace of the operator G satisfies

Tegt =N = S Ty @t P - V@R

= 2 T z

(16)

(if). Each TrG* is computable in polynomial time. In particular TrG admits
the explicit form

7 The centered Gaussian algorithm

The centered Gaussian algorithm constitutes the classical implementation of the
general reduction schema described in Section 2. The aim of the algorithm is to

bring z in the strip B = {z | 0 < R(z) < 1} by means of the transformation
2 := U(2) where

U(z) = e( )(— - 1R ),

with [u] the integer nearest to u; and €(u) the sign of R(u) — |R(u)].

As was done with the standard algorithm, it is sufficient to restrict consid-
eration to the core algorithm

Algorithm CG’A( :'complex) [Centered Gaussian Algorithm]
Input: z € D (the disk of diameter [0, 3))

while (z € D) do z := U(z),
Output: z € B\ D (B is the strip 0 < R(z) < 1)

13



An analysis of the average case has been given in [22]. Methods of this paper
lead to a complete analysis. The theory develops with linear fractional transfor-
mations related to centered continued fraction expansions,

1
hme(2) = - , (17)
m, + z2
my +

Mp + €k2

and the corresponding continuants ék. In (17), the pairs (m;,€;) satisfy the
basic condition:

ife >0then m>2; ife <0then m>3. (18)

The corresponding functional operator is then

G1A) = Z(

K

m+1

where the pair (m, €) satisfies the conditions (18). The operator can be proved
to enjoy properties similar to those of G, (discrete spectrum, nuclearity; Perron-
Frobenius properties for even integral s). This is summarized by the following
statement:

Theorem 11. (t). The mean number of iterations of the centered Gaussian al-
gorithm CGA satisfies

_a0 1 MK
i=E =23 2w  withe=(1+VE)/2
d=1 " e=fag-7

(#%). The probability distribution decays exponentially:
@ =E{L>k+1}~-X*  with A=0.077.
(iiz). The algorithm admits a limit conditional invariant density.

It is a perhaps surprising fact that, despite its “nonanalytical” character, the
average—case constant g can be computed in polynomial time. For § € (0,1)
with convergent sequence {5—"—}, one has:

co (deé]

_ =n"
ZZ c2d? E pn +Pn+1) (gn + gnt1)?

d=1 c=1

log zlog y
5 Pnii Inti dz dy,
xvn+rn+1 yqn+v..+1 ) (1 —zPntrag yqn In41 >

a formula that results from identities of Mahler and Borwein-Borwein [13, 3).
From this, we find

1= 1.08922 1474095380 . ..
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