
HAL Id: inria-00074435
https://hal.inria.fr/inria-00074435

Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Object oriented simulation : Highlighs on the PROSIT :
parallel discrete event simulator

Patrick Ferrante, Philippe Mussi, Günther Siegel, Lionel Mallet

To cite this version:
Patrick Ferrante, Philippe Mussi, Günther Siegel, Lionel Mallet. Object oriented simulation : Highlighs
on the PROSIT : parallel discrete event simulator. [Research Report] RR-2235, INRIA. 1994. �inria-
00074435�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50450387?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00074435
https://hal.archives-ouvertes.fr

IS
S

N
 0

24
9-

63
99

appor t
de r ech er ch e

1 9 9 4

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE

Object Oriented Simulation:
Highlights on The PROSIT

Parallel Discrete Event Simulator

Patrick Ferrante, Philippe Mussi, Günther Siegel, and Lionel Mallet

N˚ 2235
Avril 1994

PROGRAMME 1

Architectures parallèles,

bases de données,

réseaux et systèmes distribués

Object Oriented Simulation:
Highlights on The PROSIT

Parallel Discrete Event Simulator

Patrick Ferrante, Philippe Mussi, Günther Siegel
�
, and Lionel Mallet

���

Programme 1 — Architectures parallèles, bases de données, réseaux
et systèmes distribués

Projet Mistral

Rapport de recherche n˚2235 — Avril 1994 — 24 pages

Abstract: The Prosit project, launched in 1991, is devoted to the development
of a new discrete event simulation system based on the object paradigm. Object
orientation is used to ensure two main concerns:

� performance on both conventional and multi-processor machines

� versatility and ease of use.

The project described in this paper is a joint effort of Simulog, INRIA and GEC-Alsthom and
has been partially supported by French Ministry for Research. A version of this report has been
presented at Western Simulation Conference, Tempe (Arizona), January 1994

���
Philippe.Mussi � ,

�
Gunther.Siegel � @sophia.inria.fr���

Simulog S.A., Les Taissounières HB2, Route des Dolines, F-06560 Valbonne(FRANCE),
Lionel.Mallet@sophia.inria.fr

Unité de recherche INRIA Sophia-Antipolis

2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex (France)

Téléphone : (33) 93 65 77 77 – Télécopie : (33) 93 65 77 65

2 P. Ferrante, P. Mussi, G. Siegel & L. Mallet

In particular, Prosit user programs (models and experiment descriptions) should need
only a new compilation so as to run efficiently on either a single mono-processor
workstation, a cluster of workstations or a multi-processor machine.

This paper describes the design status of the project. It discusses the imple-
mentation strategies for several key aspects of the project. Rather than the model
architecture that was presented and discussed in [MM93], it details the Prosit sim-
ulation environment architecture and addresses many aspects of distributed object
oriented programming.

Key-words: Discrete event simulation, Distributed Simulation, Object Oriented
Simulation

(Résumé : tsvp)

Inria

Simulation orientée objets:
Une introduction au système PROSIT

Résumé : Le projet PROSIT , entamé en 1991, est consacré au développement d’un
nouveau système de simulation à événements discrets basé sur le paradigme objets.
L’orientation objets a été choisie pour répondre à deux critères principaux:

� la performance, à la fois sur des machines conventionnelles et sur des archi-
tectures multi-processeurs

� la versatilité et la facilité d’utilisation.

En particulier, les programmes-utilisateur Prosit (modèles et expériences) ne doi-
vent nécessiter qu’une recompilation pour assurer une exécution efficace sur une
station de travail classique, un cluster de stations de travail ou une machine multi-
processeurs.

Ce rapport décrit l’état d’avancement et les choix de conception du projet. Il
ne décrit que sommairement l’architecture de modèles (détaillée dans [MM93]),
mais détaille l’architecture de l’environnement de simulation et les problèmes de
programmation répartie rencontrés.

Mots-clé : Simulation à événements discrets, Simulation répartie, Simulation orien-
tée objets

4 P. Ferrante, P. Mussi, G. Siegel & L. Mallet

1 Introduction

It is a well known fact that Discrete Event Simulation and Object Oriented Languages
have a long common history. Many authors even consider Simula [Lam88], one of
the first simulation languages, as the first real object oriented programming language.
However, that common story did not stop back in 1967, as shown by simulation
environments like ModSim2 or Sim++ [Ros92].

The authors’ organizations have acquired a great experience in discrete event
simulation by developing and enhancing the QNAP2[VP85] package, especially in
the field of queueing networks. This package has incorporated, over the years,
many up to date features, including object oriented enhancements, but its overall
architecture made its extension to distributed simulation unlikely.

The Prosit project, described in this paper, is devoted to the development of a
brand new discrete event simulation system, designed from the grounds up with
distributed simulation in mind. Its design is based on the object paradigm, from
which naturally derive several interesting features:

1. Modularity and reusability, allowing both Prosit programmers and end-users
to develop high-level model libraries. These libraries may include sub-models
for high-level subsystems, or highly optimized simulation classes for com-
monly used sub-systems.

2. Target independence: distributed simulation (in both optimistic and conser-
vative variants) and parallel replication is implemented in such a way that
application programmers do not have to take it into account. Their simulation
classes inherit parallel methods only if needed, and the choice of sequential
or parallel implementation will only be made at the final compilation stage.
Furthermore, simulation classes and user programs are independent of the
simulation method used.

3. Extensibility: various tools may be incorporated, with little or no changes
in basic or user written classes. These tools include statistics gathering and
processing, automatic load-balancing, animation, sub-model aggregation, ana-
lytical solvers, etc.

The design philosophy and the modeling process of Prosit have been detailed
in [MM93]. In this paper, we focus on the implementation strategies used in this

Inria

PROSIT Highlights 5

project. We first describe the hardware and software environments on which we
build Prosit and we briefly explain the changes we had to make to the basic Sather
compiler. In section 3, we detail the Prosit user interface. Section 4 is devoted to the
specific parallel features that we plan to introduce, in order to efficiently implement
parallel discrete events simulation in an object oriented environment.

2 Environment

The first Prosit prototype is developed in an extended version of the Sather Object
Oriented Language [Omo92], and the target system is a Meiko machine.

2.1 Sather

Sather [Omo92] is an object-oriented language designed and implemented at the
International Computer Science Institute in Berkeley. It compiles into C and is
intended to allow development of object-oriented, reusable software while retaining
C’s efficiency and portability. It offers different facilities, including a simple and
powerful mechanism to interface Sather to C, and an integrated garbage collector.

Our Sather extensions include:
� Cross-compilation, allowing generation of Transputer and Intel i860 execu-

table code from a Sun workstation

� Facilities for parallelism expression and efficient use (transparent calls to
remote objects, ability to move objects between processors, parallel virtual
memory, etc)

� Light-weight processes and synchronization mechanisms

� A process migration mechanism.

2.2 Meiko

The Meiko machine is a MIMD Computing Surface made of 51 Inmos’ Transputers
and 16 Intel i860 processors. This system is hosted by a Sun Sparc workstation.
The process and inter-process communications are managed by CSN (Computing
Surface Network).

RR n˚2235

6 P. Ferrante, P. Mussi, G. Siegel & L. Mallet

3 Simulation Model Compilation and Execution

Let us recall [MM93] that a running simulator is organized in cooperating sub-
simulators and a simulation supervisor. Each sub-simulator has a simulation kernel
and is in charge of simulating a group of stations of the model. Sub-simulators
interact together following a given time management method (e.g., Chandy-Misra,
Time Warp). The supervisor is in charge of loading the model and of managing
the user interface (animation, display of variables, etc) while the simulation is in
progress. The supervisor is also used for global communication and other service
tasks (debugging, trace facilities, load balancing, etc).

1

SIMULATOR

SUB

SIMULATOR

SUB

STATION

CUSTOMER

CUSTOMER

PROFILE

STATION
2

SUB

SIMULATOR

3

SUPERVISOR

USER

KERNEL

Figure 1: Overall Architecture

3.1 Compilation of the Simulation Model

As described in [MM93], the user builds his model by assembling class instances.
But coding a simulation model introduces not only one new dimension, time, but
also simulation specific semantics. These constitute the motivation for the Prosit
language above Sather.

Inria

PROSIT Highlights 7

To analyze this language and generate raw Sather code, we can, like many
other simulation packages, preprocess the model. But many problems arise from
this kind of approach: ambiguous error-messages referring to the preprocessed code
which is different from the user code, insufficient compilation checks leading to
system-failure at runtime, among others.

Instead, in order to avoid these drawbacks, we have adopted a 2 level compilation:
� The code is pre-compiled by the Prosit compiler, which validates the simu-

lation semantics of the program and converts the simulation extensions from
the Prosit language into raw Sather code.

� The target (Sather) compiler is extended to support parallel primitives. Those
primitives are used in an explicit way.

It allows as complete as possible syntactic and semantic validations, from a simu-
lation point of view, of the user code. Furthermore, precompilation allows to hide
the distributed aspect of the simulation program, hence providing a higher level of
abstraction.

TARGET LANGUAGE
TARGET

COMPILER
Interfaces

Modified Compiler
Libraries

EXPLICIT MECHANISMS

PROSIT LANGUAGE
Specific Extensions
For Simulation IMPLICIT MECHANISMS

New Syntax
New Keywords PROSIT

COMPILER

Figure 2: Prosit and Target Languages

In the first prototype, both compilers are implemented as separate programs.
The Prosit compiler generates intermediate files which are processed by the target
compiler. In the next generation, both compilers will be merged in order to optimize
compilation and offer better error checking.

We propose a single program1 (SPMD) approach based on a generic sub-
simulator which can potentially manage all stations. This generic sub-simulator

1In an heterogeneous environment, we have one executable for each processor family (our Sather
port can generate multiple binaries from a single source code), but in an homogeneous environment
we have a single executable.

RR n˚2235

8 P. Ferrante, P. Mussi, G. Siegel & L. Mallet

SPECIFICATION BASIC CLASSES

EXECUTABLE(S)

Parameters

File

USER CLASSES

PROFILES STATIONS

SOURCE FILE(S)

TARGET

PROSIT
Compiler

Compiler

Figure 3: PROSIT Compilation Scheme

Inria

PROSIT Highlights 9

is configured at runtime with a list of stations it has to manage. In addition, we
are able to dynamically move and create stations. Station migration is an important
issue because it allows processor load balancing and decreasing synchronization
overheads. Furthermore, having the same classes everywhere is necessary for data
exchange and for processes migration.

One can argue that the single executable is bigger than a specific one (containing
only the code for the stations managed by the sub-simulator), but in fact the size
only depends on the number of station classes, as there is no code duplication for
instances in Sather.

During compilation, a configuration file is generated. The simulation supervisor
uses this file to know how many sub-simulators to load, on which processing unit,
and how to configure them. This information comes from the user code or takes
default values. The user can customize the file.

3.2 Execution of the Simulation Program

To execute the simulation, the user runs the supervisor passing the simulation name
as a parameter. The supervisor reads the corresponding configuration file and the
network resource file (this file lists the processing units available, their architecture,
and associated cost values), and then loads and configures as many sub-simulators
as specified.

Processing units may be selected according to three different schemes:

� the transparent scheme for which the sub-simulators are automatically assi-
gned to the most appropriate site,

� the architecture-dependent scheme for which the user may indicate a specific
architecture onto which execute a sub-simulator,

� the machine-specific scheme for which the user can choose the machine onto
which a sub-simulator will be loaded.

A graphical display system is integrated with the supervisor. It displays on-line
figures of simulation statistics (server response time, throughput, etc) and execution
statistics (available memory, processor load, etc). The interface also provides a
debug mode allowing to trace the execution at both user (service execution, buffer
queue, etc) and system (communication, processes activities, etc) levels.

RR n˚2235

10 P. Ferrante, P. Mussi, G. Siegel & L. Mallet

MACHINES FILE

COST MATRIX

File

Parameters
EXECUTABLE

Supervisor

Figure 4: Execution Schemes

4 Parallel Features

4.1 Process Management

Generally, discrete event simulators have to manage the execution of many concur-
rent entities (stations, sources, etc), and that is particularly true in a customer
architecture [MM93], where every customer is an active entity. Furthermore, some
simulation methods must be re-entrant (e.g., multi-server stations methods).

A simple and clear way to achieve the first two constraints (concurrent entities
management and re-entrant methods) is to implement entities as light-weight pro-
cesses. We chose to implement customers as processes and stations as objects shared
by customers. This way, customers concurrency is managed by the underlying ope-
rating system, and an execution stack for each customer allows reentrance on station
methods. Furthermore, to stick with the customer architecture paradigm, as calling
a method of a station means moving the customer to the station and requesting the
service associated with that method, we need to be able to migrate the associated
process to the processing unit where the station is managed. We could also sim-
ply use some sort of Remote Method Call but we would loose a major benefit of
migrating processes: the ability to balance the load of available processing units.

To summarize, Prosit simulation environment needs to be able to:

Inria

PROSIT Highlights 11

� Create and terminate processes

� Suspend (for a simulation time period) and reactivate the execution of pro-
cesses

� Synchronize processes

� Migrate processes.

4.1.1 Prosit Processes

In Object Oriented Languages, processes can be implemented in two ways, either
by process-objects [Car91] or by process-methods. In the process-objects approach,
the programmer declares an object as a process by deriving from a special class
(e.g., PROCESS OBJ), and runs this process by calling an activation method (e.g.,
create, live or activate). In the process-methods approach, the programmer can run
any method as a process simply by calling the method in a particular way2. We
choose this solution for two reasons. It allows a more fine-grained parallelism than
the process-objects solution, and it is easier to use.

Our implementation introduces three new system classes : the process handler
classes PHANDLER0 and PHANDLER, and the GUARD class. Process handlers
are used for the process management, and GUARD objects are used for process
synchronizations. Every process created by the user may be attached to a process
handler. The parameterized PHANDLER must be used to handle process methods
which return values. Similarly, PHANDLER0 is designed to handle process methods
that do not return values. Process creation is performed by the special assignment
operator : � which attaches a process handler to the created process. If the pro-
grammer is not interested in managing the created process, or retrieving the result,
he can create processes using the anonymous handler identifier . Otherwise, the
process result can be retrieved synchronously with the blocking take method of the
PHANDLER class.

Processes are created into a system queue (the ACTIVE queue), and are executed
in a round robin fashion. The running process can suspend its execution in three
ways:

2This solution is offered by pSather [FLR92]

RR n˚2235

12 P. Ferrante, P. Mussi, G. Siegel & L. Mallet

p : PHANDLER{INT}; -- INT process handler
i : INT;

p :- foo.compute; -- foo.compute process
_ :- foo.clear_screen; -- foo.clear_screen anon process
i := p.take; -- wait for the process result
i := i + 1; -- now we can use it!

Figure 5: Example of Process Use

� by a schedule call: the process looses the execution control, and it is inserted
at the end of the ACTIVE process queue

� by a suspend call: the running process is suspended, it is taken out from the
ACTIVE process queue, and stays suspended until another process awakes it
by an activate call

� by a wait call: the running process is suspended until the selected guard wakes
it up.

The guard is a kind of explicit monitor, made of a counter and a process queue.
The counter value can be set either at the guard creation, or by the set counter me-
thod. When a process calls the wait method on the guard, its execution is suspended,
and it is inserted into the guard process queue. Each call to the signal() method of
the guard, makes the guard counter decrements by one. When the counter reaches
0, all the processes in the guard queue are reactivated.

The PHANDLER method kill is used to force a process to terminate. The
PHANDLER method current returns the process handler of the running process.
Finally, the PHANDLER method status returns the status of a process (ACTIVE,
SUSPENDED, GUARDED, FINISHED). The PHANDLER migrate method is des-
cribed later. Figure 7 summarizes the primitives available to the programmer.

This rather simple light–weight processes management system seems to be
general enough to implement simulation mechanisms needed by Prosit (e.g., the
simulation scheduler is implemented by a suspended–processes queue ordered by
processes activation times).

Inria

PROSIT Highlights 13

g : GUARD; -- declaration of GUARD
p : PHANDLER0; -- no-return process handler

g := g.create(1); -- initialize guard with counter = 1
p :- foo.child(g); -- foo.child process, pass the guard
g.wait; -- suspend execution until reception

-- of 1 signal from child process
foo.compute; -- proceed
g.set_counter(2); -- set the guard counter to 2
g.wait; -- suspend execution until reception

-- of 2 signals from child process

Figure 6: Example of guard use

4.1.2 Process Migration

As said above, a customer should be able to reach remote station services. This can
be achieved by either RMC (Remote Method Call), or a process migration. As the
process migration mechanism is usually a heavy task, it should be used only when it
is really useful. Usually, migration is interesting either if the remote method involves
heavy computations, or if the same remote method has to be called many times. But
it is quite difficult (almost impossible) to foresee the execution of a method. That is
why it is difficult to find a good migration use strategy.

Our migration design takes into account several major constraints: the use of the
migration mechanism should be hidden from the user (the simulation model designer
doesn’t know the actual distribution of simulation entities between sub-simulators)
; the implementation should be as much as possible architecture–independent (only
C standard code) and efficient, with an additional cost to the normal execution (with
no migrations) as low as possible ; and finally, process migration should be possible
in a heterogeneous environment (different machines with different architectures).

The solution we are currently studying is based on the introduction of the method
migrate(destination-sub-simulator) in the PHANDLER Sather system class. A
process (e.g., a customer) can use this method either on itself, or on another process.
The process, on which the method is applied, stops its execution and is inserted
into the ACTIVE process queue of the destination sub-simulator. As we want to

RR n˚2235

14 P. Ferrante, P. Mussi, G. Siegel & L. Mallet

phandler :- method_call -- process creation.

class PHANDLER{RES_TYPE : GENERIC} is
suspend -- process suspension
schedule -- process reschedule
activate -- process reactivation
is_finished : BOOL -- process termination test
take : RES_TYPE -- return process result
current : PHANDLER -- return the running process
status : STATUS -- return process status
kill -- kill a process
migrate(simulator : ID) -- process migration

end

class GUARD is
wait -- process suspension on a GUARD
create(nb) -- create a new GUARD with counter
set_counter(nb) -- set the GUARD counter
signal -- send a signal to the GUARD

end

Figure 7: Process management primitives

Inria

PROSIT Highlights 15

hide parallelism to the model programmer, internal tricks like calls to the migrate
method should be hidden to him. In order to mask this method call to the model
programmer, we are currently studying two strategies based on the Prosit compiler.

In the first strategy, the Prosit compiler adds in the customer code a migration call
before each station service method call. This strategy implies a semantic analysis of
the whole Prosit program in order to detect station methods 3 which are tagged as
services. Of course, it is not sure that the choice to migrate for every remote service
call is always the best choice. Furthermore, with this strategy the customer never
migrates for non-service methods calls, even if it could be convenient.

In the second strategy, the Prosit compiler adds into the customer code a migra-
tion call before each remote station method call. The simulation classes programmer
is able to optimize the use of the migration mechanism by tagging the methods known
to be fast. These tags are taken into account by the Prosit compiler, and fast methods
are called by RMC.

The main problems we have encountered in our process migration developments
were due to the heterogeneous environment :

� basic data types (integers, floats, pointers, etc) could be different in size and
in memory representation (little indians, big indians, etc)

� stack management (growing stack or decreasing stack).

� some compiler optimizations (local variables allocation into registers instead
of the stack, etc).

4.2 Distributed Objects Mechanisms

This section deals with another important issue in distributed object oriented simu-
lation: distributed objects access and management. It details some of the features
added to the Sather language and handled by the Prosit compiler to hide them to
the model programmer. Along this section, the “user” refers to either the user of the
extended Sather language or the Prosit compiler.

3Methods of class which inherit from STATION class

RR n˚2235

16 P. Ferrante, P. Mussi, G. Siegel & L. Mallet

4.2.1 The Remote-Object model

Our first model for distributed objects management is based on the concept of remote
object and on multiple inheritance.

A remote object is a special entity that is used to access an object, called the
foreign object, physically located on a remote processor. Methods activation or at-
tributes manipulation, on the remote object, are performed through communication.
Programs are organized in cooperating sub-tasks (written in the same programming
language and having the same classes). A sub-task willing to share an object must
export it to the object manager, and a sub-task who wants to use a foreign exported
object must import it.

1

4 2

3

OBJECTS
MANAGER

OK OK

PROCESSOR A PROCESSOR B

LOCAL MANAGERLOCAL MANAGER

IMPORT EXPORT

Remote Object
STATION X STATION X

Figure 8: Export/Import Mechanism

The object manager is in charge of the import/export operations. When exporting
an object, the manager checks that no object with the same id has already been
exported. At importation, if there is an object corresponding to that id, it checks that
the types are compatible.

We want to manipulate a remote object as a local one and we must guarantee
that it is associated with a foreign object and that the method call or the attribute

Inria

PROSIT Highlights 17

manipulation is valid. The semantic check can be performed by the compiler if the
remote and foreign objects have the same interface. The difference is that in the
remote object, the code is replaced by a communication stub. Those mechanisms
are implemented through multiple inheritance.

STATIONREMOTE

REMOTE_STATION

EXPORT

EXPORT_STATION

STUB

STUBCODE

CODE

SERVICE1 ()

SERVICE2 ()SERVICE2 ()

SERVICE1 ()

REMOTE_MACHINE
CLASSCLASS

MACHINE

Figure 9: Remote Objects Mechanism Classes

To be exportable an object has to inherit (directly or indirectly) from EXPORT.
If the user (in fact the Prosit compiler) wants to export an object of class XXX, he
will only have to declare the class EXPORT XXX (subtype of EXPORT and XXX)
and declare his object as instances of EXPORT XXX.

class EXPORT is
registering_status : STATUS -- object status
id : IDENTIFICATION -- object identifier

register() : BOOL -- export object
un_register() : BOOL -- cancel export

end

Figure 10: The EXPORT Class features

In the EXPORT class there is an id attribute that stores the object identifier, a
registering status attribute that indicates the object’s status (exported, not exported,
error), and two methods handling the exportation (register()) and un-exportation

RR n˚2235

18 P. Ferrante, P. Mussi, G. Siegel & L. Mallet

(un register()) of the object. Other methods are used only by the runtime environ-
ment, in order to handle remote requests.

Similarly, if the user needs a remote object of class XXX, he has to declare the
class REMOTE XXX (heritage of REMOTE and XXX), to create an instance of
that class, to initialize it with the id of the remote object, and finally to call the import
method on it.

class REMOTE is
registering_status : STATUS -- object status
id : IDENTIFICATION -- object identifier

import() : BOOL -- import object
blocking_import() -- blocking import
release() : BOOL -- unimport object

end

Figure 11: The REMOTE Class features

We want to code the operations on remote object as remote procedure call to the
foreign object. In the EXPORT XXX classes, the compiler adds, for each attribute,
a reader and a writer method (cf. CLOS and Sather v1.0).
For the REMOTE XXX classes, the compiler replaces the XXX method’s code with
communication stubs and also adds the reader/writer stubs.

4.2.2 The virtual memory model

The virtual memory model is much more general and powerful than the previous
one. It offers a shared address space between processes running on separate hosts
and supports a shared-memory abstraction. The model is based on the pSather
[FLM91, FLR92], dpSather [Sch92] programming languages and on the Bird-
Meertens operators [Ski90].

The user distributes his program by creating a cluster object on each computer
and by starting sub-tasks among those clusters. An object can be created on the local
cluster or on a remote one, the runtime environment offers a global memory address
space on top of the clusters. Some objects can be replicated on each cluster allowing

Inria

PROSIT Highlights 19

data-parallel programming, others can migrate between clusters. All those parallel
extensions are introduced through new system classes and through new syntactic
constructions.

The cluster The cluster is the abstract entity that the programmer manipulates
to represent a processor and its memory. To create a new cluster, on a remote
machine, the programmer has to instantiate the system class CLUSTER, with the
target computer as a parameter. To specify the target machine, he uses the persistent
class4 HOST which is used to store the network resources. This class offers various
selection primitives: specific host, less loaded, etc.

Class HOST
Inherits from : PERSIST_OBJ

list : HASH{PROC} -- list of available
-- processors

add(id : PROC) : BOOL -- add a processor
remove(id : PROC) : BOOL -- remove a processor
specific(name : STRING) : PROC -- specific processor
best() : PROC -- less loaded proc.
any() : PROC -- any processor
arch(type : ARCH_ID) : PROC -- specific arch.
test(name : STRING) : C_STATUS -- test a processor

end

Figure 12: The HOST Class

An address in the global memory address space (long address) consists of two
parts: the cluster number and the object address (short address) in the cluster memory.

When an object is created on a cluster, by default it will be on the local cluster,
but we can specify the target location (cf. figure 13).

With such a global addressing scheme, remote objects are accessed and used just
as if they all were local, thus greatly simplifying remote objects method call.

4this class has a single instance loaded at the beginning of the execution

RR n˚2235

20 P. Ferrante, P. Mussi, G. Siegel & L. Mallet

i, j : FOO;
.....
i := FOO::new; -- local
j := FOO::cluster_new(node1); -- on cluster node1

Figure 13: Example of Remote-object Creation

Replicated object A replicated object is an object that is copied on all clusters.
A process can read/write its own copy of the local variable or perform combine
operations on all the values. The combine operations are based on the Bird-Meertens
operators [Ski90] (map, reduce, prefix).

The programmer creates replicated classes by inheriting from REPLICATE OBJ.
If an attribute is declared with the update qualifier, a modification on a copy is per-
formed on all the replicated variables (by a reliable broadcasting protocol that
guarantees that all processes experience changes in the same order).

Replication is useful to reduce communication overheads and to more easily
program global combine operations (e.g., scatter, gather).

Such objects are used for simulation statistical results.

Migrating object Migrating classes are created by inheriting from RELOCA-
TE OBJ. To migrate an object, the programmer simply calls the relocate method on
this object, with the target cluster as a parameter.

Migration is useful to balance the load of the different processors from the
supervisor. Simulation performances can also be improved this way.

The virtual memory model allows better static inconsistency check of the mo-
del and provides more flexibility to the model programmer. The communication
overhead it implies is roughly balanced by the possibilities it offers to dynamically
accommodate the simulation.

4.3 Distributed Garbage Collection

A useful capability offered by the Sather compiler is its integrated garbage collector
(GC). At the same time it simplifies the dynamic memory management to the user,

Inria

PROSIT Highlights 21

and it reduces the unused-memory leaks usually induced by an explicit memory
deallocation.

Unfortunately, the original Sather GC has been designed for sequential applica-
tions, so it is not fully compatible with the Prosit distributed environment. In fact it
does not take into account references on remote objects introduced by both Prosit
implementation models (remote objects, virtual shared memory).

This is why we are currently studying different existing distributed garbage
collection algorithms [Hug85, DRM93, SDP92] and the modifications they require
in order to make a suitable GC for our simulation system.

5 Conclusion

The Prosit project, originally devoted to distributed simulation now also addresses
very interesting topics in distributed object oriented languages. In fact, distributed
object oriented languages probably aren’t mature enough to be directly used in such
a project. Instead of focusing on the distributed simulation problems (Time Warp
optimizations, Chandy-Misra improvements and both methods implementations),
we also have to concentrate on the language itself. But this has helped us better
specify and design the Prosit simulator.

Sather seems to be a good choice as it is still evolving and quite open to user
suggestions. Hopefully and probably because of that choice, we do not spend to
much time on implementing the Sather extensions.

We are now expecting very interesting figures from the Prosit simulator to help us
improve it and determine the real interest and feasability of an industrial distributed
object oriented queueing network discrete event simulator.

References

[Car91] Denis Caromel. Programmation parallèle asynchrone et impérative:
études et propositions (Une extension parallèle du langage objet Eiffel).
PhD thesis, Université de Nancy I Centre de Recherche en Informatique
de Nancy (INRIA Lorraine), 1991.

RR n˚2235

22 P. Ferrante, P. Mussi, G. Siegel & L. Mallet

[DRM93] Cédric Dumoulin, Jean-François Roos, and Jean-François Mehaut. Le
ramasse-miettes du projet PVC-BOX. In 5èmes rencontres sur le paral-
lélisme. Laboratoire informatique de Brest, May 1993.

[FLM91] J. Feldman, C. Lim, and F. Mazzanti. Parallel SATHER, language design
and application experience. Technical report, International Computer
Institute, U.C. Berkeley, 1991.

[FLR92] J. Feldman, C. Lim, and T. Rauber. The shared-memory language pSA-
THER on a distributed-memory multiprocessor. Technical report, Inter-
national Computer Institute, U.C. Berkeley, 1992.

[Hug85] John Hughes. A distributed garbage collection algorithm. In Functio-
nal Language an Computer Architectures, pages 256–272. Jean-Pierre
Jouannaud, September 1985.

[Lam88] Guenther Lamprecht. SIMULA - Einfuehrung in die Programmiers-
prache. F. Vieweg und Sohn, Braunschweig ; Wiesbaden, 1988.

[MM93] L. Mallet and P. Mussi. Object oriented parallel discrete event simulation:
The prosit approach. In Modelling and Simulation FSM 93, june 7-9,
LYON. SCS, June 1993.

[Omo92] S. Omohundro. The Sather language. Technical report, International
Computer Institute, U.C. Berkeley, 1992.

[Ros92] Ortwin Rose. SIM++ An object-oriented langage for process-oriented
discrete-event simulation User-Manual. University of Karlsruhe Insitute
of Telematics, Febrary 1992.

[Sch92] H. Schmidt. Data-parallel object-oriented programming. In Fifth Aus-
tralian Supercomputer Conference, pages 263–272, 1992.

[SDP92] Marc Shapiro, Peter Dickman, and David Plainfosse. SSP CHAINS: Ro-
bust, distributed references supporting acyclic garbage collection. Tech-
nical Report 1799, INRIA, November 1992.

[Ski90] D. Skillicorn. Architecture-independant parallel computation. IEEE
Computer, pages 38–50, December 1990.

Inria

PROSIT Highlights 23

[VP85] M. Véran and D. Potier. Qnap: a portable environment for queueing
systems modelling. In North Holland, editor, Modelling Techniques and
Tools for Performance Analysis, 1985.

List of Figures

1 Overall Architecture ��� 6
2 Prosit and Target Languages ��������������������������������������� 7
3 PROSIT Compilation Scheme ������������������������������������� 8
4 Execution Schemes ��� 10
5 Example of Process Use ��� 12
6 Example of guard use ��� 13
7 Process management primitives ����������������������������������� 14
8 Export/Import Mechanism ��� 16
9 Remote Objects Mechanism Classes ������������������������������� 17
10 The EXPORT Class features ��������������������������������������� 17
11 The REMOTE Class features ������������������������������������� 18
12 The HOST Class ��� 19
13 Example of Remote-object Creation ������������������������������� 20

Contents

1 Introduction 4

2 Environment 5
2.1 Sather ��� 5
2.2 Meiko ��� 5

3 Simulation Model Compilation and Execution 6
3.1 Compilation of the Simulation Model ����������������������������� 6
3.2 Execution of the Simulation Program ����������������������������� 9

RR n˚2235

24 P. Ferrante, P. Mussi, G. Siegel & L. Mallet

4 Parallel Features 10
4.1 Process Management ��� 10

4.1.1 Prosit Processes ��� 11
4.1.2 Process Migration ��� 13

4.2 Distributed Objects Mechanisms ����������������������������������� 15
4.2.1 The Remote-Object model ��������������������������������� 16
4.2.2 The virtual memory model ��������������������������������� 18

4.3 Distributed Garbage Collection ����������������������������������� 20

5 Conclusion 21

Inria

Unité de recherche INRIA Lorraine, Technôpole de Nancy-Brabois, Campus scientifique,
615 rue de Jardin Botanique, BP 101, 54600 VILLERS LÈS NANCY

Unité de recherche INRIA Rennes, IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhône-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex 1

Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Éditeur

INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)

ISSN 0249-6399

