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Abstract

The public-key cryptography has become dangerously dependent on the
difficulty of a single problem: factoring. We need therefore to study other
difficult problems which could be applied to public-key cryptography in or-
der to anticipate an important progress in factoring methods. McEliece’s
cryptosystem is an alternative to RSA although the size of the required
public keys is too large for pratical uses. It relies on the NP-completeness
of the general decoding problem for linear codes. The known best general
decoding algorithm for [n, k, d]-linear codes proposed by Lee and Brickell
consists in repeatedly selecting at random a set of k bits, called an in- -
formation window, from the n-bit corrupted vector until the number of
errors in the window is small enough to recover the correct message. In
this paper we propose an iterative algorithm which modifies only one bit of
the information window at each iteration instead of choosing a completely
new set so that the number of operations in each iteration is reduced by
a factor k. A theorical calculation of the average work factor and a great
number of simulations show that the use of linear code of length 512 for
cryptographic purposes is not secure. Then we can notably conclude that
it is not possible to reduce the key-size in McEliece’s system by using codes
of length 512. ' '
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75015 Paris, FRANCE; email: Anne.Canteaut@inria.fr

tInstitut National de Recherche en Informatique et Automatique, projet Codes, Domaine
de Voluceau, 78153 Le Chesnay Cedex, FRANCE



Une améliofa,tion supplémentaire
du facteur de travail dans P'attaque
du cryptosystéme de McEliece

Résumé

La cryptographie & clef publique est devenue de.nos jours dangeureuse-
ment dépendante de la difficulté d’un unique probleme, celui de la fac-
torisation. L’étude d’autres problémes difficiles applicables a la cryptogra-
phie .3 clef publique est donc indispensable afin de se prémunir contre
d’importants progrés dans.le domaine de la factorisation. Le cryptosys-
téme de McEliece constitue une alternative & RSA bien que la taille trés
élevée des clefs publiques qu’il requiert soit dissuasive pour son utilisa-
tion. Il repose sur la NP-complétude du probléeme général de décodage des
_codes linéaires. Le meilleur algorithme connu pour décoder un code linéaire
[n, k, d] quelconque est celui de Lee et Brickell ; il consiste a sélectionner
successivement au hasard parmi les n bits du vecteur corrompu des en-
‘sembles de k bits, appelés fenétres d’information, jusqu’a ce que la fenétre
choisie contienne un nombre d’erreurs suffisamment faible pour retrouver
le message correct. Dans cet article, nous proposons un algorithme itératif
qui ne modifie qu’un seul bit de la fenétre d’information a chaque itération
au lieu de choisir un ensemble complétement nouveau, ce qui permet de
diviser le nombre d’opérations lors de chaque itération par un facteur k.
Un calcul théorique du facteur de travail moyen et un grand nombre de
simulations montrent que P'utilisation de codes linéaires de longueur 512
dans des applications cryptographiques n’est pas siire. Nous avons ainsi
prouvé qu’il est impossible de réduire la taille des clefs dans le systeme de
McEliece en utilisant des codes de longueur 512.
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1 Introduction

We propose a method for decoding linear binary codes. Finding im-
provements of the running-time for decoding may lead to a cryptanalysis
of McEliece cryptosystem [9].

Let C be a [n, k, d}-linear binary code and G its generator matrlx, i-e a
set of k vectors which generates C.

An information window is a subset {i;,---,ix} C N = {1,---,n} such
that the columns Gj,,---,Gj, are lineary independent. The complemen-
tary set of an information window in N is a redundancy window. It is
well-known that when the support of an error is included in a redundancy
window we may recover the transmitted bits [6]. ‘

Following Lee and Brickell [5] we want to explore the set of all informa-
tion windows of a code replacing at each iteration an information column
by a redundancy one. This method was first investigated by Omura [10].

An advantage of such a method is to perform each iteration in roughly
k? operations; another one is to have to deal only with information windows
and to be able to reach all information windows.

Using Markov chains theory we give the average number of iterations.
We obtain even better practical results. For example, it appears to be
insecure to use linear binary codes of length 512 for cryptographic purposes.
On the other hand our procedure is to our knowledge the best way for
decoding without using structure of codes.

2 The decoding problem

Consider the vector space GF(2)" with the Hamming metric, and C a
k-dimensional subspace of GF(2)".

The weight of a vector z in GF(2)" is the number of non-zero entries
of z; it is denoted by w(z). Leét d denotes the smallest of the weights of
the non-zero elements of C.

C is a [n,k, d]-linear binary code where n is the length of the code, k
the dimension and d the minimal distance.

Let ¢ be a codeword, e a n-dimensional binary error vector, and y = c+e

 the received vector. The decoding problem is to find from y the codeword

¢ or equivalently the error e.

Put ¢ = [451]. As the coset {e+c, ¢ € C} contains at most one clement
of weight less than or equal to ¢, it is possible to solve the decodmg problem
without ambiguity when w(e) < ¢.

An obvious decoding algorithm is to pick at random k bits of vector Y
in hope that none of this bits are in error:



Algorithm 1: (as described in [9] [1])
Let G be a generator matrix of the code
1. Select k positions from n

e project y = ¢ + e onto these positions »
e take the k x k-submatrix of G, V, composed of the k correspond-
ing columns

2. If the choosen positions do not contain any error positions, and if V'
is inversible, inverse V' to obtain the codeword c.

Adams and Meijer [1] show the inefficiency of Algorithm 1 against the
McEliece cryptosystem. In the next section we introduce several improve-

ments.

3 An iterative decoding algorithm

Our algorithm is based as Algorithm 1, but it chooses the submatrices
V such that they always are inversible and that V1! can be fast computed

Let G be a fixed generator matrix of the code C.

Put N ={1,---,n}.

Let I bea subset of N with k elements, and J = N \ I the complemen-
tary set of I in N.

We denote G = (W, V) the decomposxtlon of G onto I, that means

= (G;)jes and V = (G;)ier where (Gy,---,Gy,) is the columns’ decom-

position of G. '

Definition 1 An information window is a subset I of N with k ele-
ments such that G = (W, V) where V is inversible. '
The complementary set J = N \ I is called redundancy window.

We can immediatly affirm that such information windows exist because
of the following result from coding theory:

Propos1t10n 1 Every set of n — d + 1 coordinate positions contains an
information window.

~ proof: Let X be a set of s coordinate positions, and G = (4, B)x.
Suppose X does not contain any information window. Then the column
rank of B, and hence the row rank of B is less than k. Hence there exists a
linear combination of rows of B which egals 0, and a codeword ¢ which is
0 on these s positions. As we have w(c)>d,n—s>d. Thens<n—d.

Definition 2 Two information windows I and I’ are close if

I\ = |7\ J| =2



In other terms we obtain I’ by exchanging an element of I with an element

of J.

Remark 1: The information windows of a linear binary code form the
bases of a binary matroid [4].

The following result motivates the use of close information windows:

Propomtmn 2 Let I and I' be two information windows. There ezists a
sequence of close information windows from I to I'.

proof: It is a classical result of matroid theory: consider the matroid
introduced in Remark 1 and the graph whose vertices are the basis of this
matroid and where two vertices are bound if you can pass from one to the
other by the exchange property. Then this graph is connected [7] [8].

The decoding algorithm consists therefore of covering a set of close
information windows and searching I which contains no error position.

It is easy to find close windows thanks to the following proposition:

Proposition 3 (Condition of closeness) Let I and I' be two informa-
tion windows and G = (W,V); = (W', V')p.
I and I are close iff:

o 3lel, 3peJ such that I' = I\ {I} U {p}.
o if 7 = VW = (zij)iel,jeJ, we have 21p = 1.

The proof is in [10].

We can check if an information window contains no error position with
the method proposed in [5]:

Proposition 4 Let I be an information window, G = (W,V); and Y=
c+e=(y5,90)1
Put z = y+ y/V™'G, then I contains no error posztwn iff w(z) <t
In this case we have e = z.

proof: Let y be mG + e. Let C(e) = {c +e,c € C}.
As y;V~1G is a codeword, z is an element of the coset C(e) and C(e)
contains a unique word whose weight is less than or egal to t.

‘We index rows of Z with I using V-1G = (Z,1d)r and we denote by
Z* the ith row of Z.

The following propesition shows how to update the matrix Z and the
" vector  between two close information windows.

Proposition 5 Let I and I' be two close information windows such that
- I'=T1\{i}u{p}.

Consider Z = V=W and Z' = V'"'W' where G = (W, V); = (W’ V')p
.and consider z = y+ y;V~1G and ' = y + ypV'"1G.’

" Then we have
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Z' is obtained from Z by:
vzr=7 ,
o if2,=0then Z" = Z'. -
o ifzi,=1thenZi=2'+ 7', ieI\{l}

2. 2’ =z + Z'z,.

1.

~ proof:

AsG = (W, V)ris a generatot matrix of the code and as V is in-
versible,

code. .

We get G' = (Z',Id)p by exchanging the lth and pth columns of G.
It is a simple pivoting operations in (I, p) position.

Thus we replace every row of G by pivoting and we obtain:

Vi€ I\{p}, 6" = &'+ 2,C' and &7 = &

. We get the second point by makmg the same pivoting operation on

vector z.

Therefore we only need to store matrix Z and vector z at each 'iterati'on.

To improve thls decoding algorithm, we want to allow one error position

in the information window as suggested by Lee and Brickell [5]. Hence we
will test at each iteration the weight of all the vectors 2’ obtained from z
" by exchanging 2 columns in the generator matrix, i-e by adding one row

of G.

We may easily check if w(z’) <t:

Proposition 6 Let 2’ = z + G'z,.
A condition for w(z') < t is w(z) + w(Z') - 2w(z;.Z2") +1< ¢

where T = (z7,z1)1 and a.b denotes the inner product in GF(2)~.

proof:

o Ifz,=0, u)(:v’)_;: w(z).
o If:vi,=1,z'=:t+Z'.

Thus we have w(z') = w(z) + w(G') - 2w(z.G").

But G' = (Z, (61,5)jeD)r and z; = 0 where &, denotes the Kro-
necker’s symbol.

Hence we have w(G') = w(Z') + 1 and z. G = - z5.2".

We obtain w(z’) = w(z) + w(2') — 2w(z;.2") + 1.

G = V-G = (Z,1d); is a generator matrix in standard form of the -

T
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Therefore we propose the following algorithm:

Algorithm 2:
Choose an information window I, compute Z = V-!W and z = Y + yrZ +
yr. While w(z) >t

1. For each ! in I, compute oy = w(z) + w(Z') — 2w(zs.Z") + 1.
o if oy <t search p such that z;, =1 and z, = 1.
o else select at random / € I and p € J such that z;, =1 .

2. I = (I\{Hu{p}
3. update matrix Z (proposition 5 (1))
4. update vector z (proposition 5 (2))

Remark 2: Selecting at random ! and p may encounter cycles. In practice,
for large n, such problems do not appear.

Remark 3: We may have the dual approach to Algorithm 2 by _working
with parity check matrices of the code instead of generator matrices (this
is Omura’s approach). A parity check matrix of Cis a (n — k) x k bmary
matrix H such that H'G = 0.

We call information window a set I such that H = (B, R)r where B is
inversible and syndrome the vector s = y*H = e'H.

¥G=(Z,Id)isa genera.tor matrix of the code, then H = (Id,Y) is
a parity check matrix with Y =* Z.

Thus we can deduce similar results for the dual algorithm:

- o I' = I'\ {I} U {p} is an information window iff Ypg = 1. ’
o We can check whether I contains some error positions by the classical
way used in permutation decoding [6]:
Let H = (B, R); and z = (s*(B~1),0);.
supp(e) C J iff w(z) < t. In this case e = z.
o We pass from I to I’ by the same pivoting operation as in Algorithm 2.
Remark 4: We may try different heuristics in order to speed up compu-
tations. For example Omura in [10] uses a ”simplex” method that means

he wants to decrease the weight of z at each iteration. We do not notice
any improvement with this heuristic and we give it up.

4 Theorical running time for algorithm 2

We here obtain an explicit and computable expression for the expected
running time of Algorithm 2.



4.1  Work factor involved in each iteration

This work factor is the average number of operations required for each
iteration.

As we only make blna.ry additions we can store each k-dimensional
binary vector as a ;-dlmensmna.l vector of integers where a@ = 32 or a = 64
according to the internal representation of integers (we will use o = 32).

o We assume that the cost for computing the weight of a k-dimensional

binary vector is -’5 since we have stored the weight of all a-dimensional

vectors in a table Therefore the work factor involved in step 1 is 2"

e The work factor involved in step 3 is w( Zp)f because the row Z* does -
not change if 2z;, = 0.

e The work factor involved in step 4 is cﬁ where e =z, =0 or 1.

Assuming that the average weight of Z? is % we have for each iteration:
k5
<2 (2
wy < . ( 2k +1)

Remark 5: If z, = 0 the vector z does not change. Therefore it is not
necessary to compute o; at the next iteration if Z! has not changed, i-e if
zl’p = 0

4.2 Expected number of executions

Let the random variable X; represent the number of error positions in
the redundancy window J at step i, X; € {1,---,t}.

The next redundancy window J' = J \{p}U{l } is obtained by replacing
a redundancy position p by an information position I. Therefore we may
remove r = 0 or 1 error posmon from J according to whether p is in
supp(e) or not, and we may add r’ = 0 or 1 error position in J' according
to whether [ is in supp(e) or not. Then we have for s <t —1:

. n—k-—s t; : k—t+s
Pr[Xiy1 =48 /Xi= 3] = E ( : )7(,’_1];' ) ( rv’a ) (k 1—¢ )
sell,

Thanks to our test (step 1) we have Pr[X;41 =t /X = t—1]=1,and
PriXip=t/Xi=1]=1
Since these proba.blhtles do not depend from the previous iterations and

from index i, the sequence of random variables (X,) is an homogeneous
Markov chain whose transition matrix P is defined by:

Vs<t,Vs'<t, Poy=Pr[Xip1=8/Xi=s]"



We wish to evaluate the expectation of the number n of executions we -
have to make to reach X,, =¢t. As X,, = tiff X,_; =t — 1, we have to
\ estimate:

- .
daPrXp=t-1,X,1<t=1/Xo=1i]

N; =
n=1
oo n-—-1
= > ) PriXp=t-1,Xp1<t—1/X0=4]
. n=1 m=0

Fubini’s theorem applies since all terms are non-negative, and we ob-

tain: ’
00 o -
Ne = Y Y PriXp=t-—1,Xp1<t=1/Xo=1]
m=0 n=m+1
- .
= Y Pr{3j>m, X;j=t-1,Xn<t—-1/Xo=1]
m=0
(o o]
= Y PriXm<t-1/Xo=i]
m=0
oo t—2
= Y Y Pr{Xp=j/Xo=i]
m=0 j=0

Let Q denote the submatrix (P ;) ¢ <i<t-2
0 < i< <t-2
It is easy to see that Pr(X,, = j /Xo = 1] = (Q™ )ij-

Therefore the quantity Zm—o Pr[X,,, =7 [/Xo=1]is the (i,j)-entry of
matrix R where

R=I1d+Q+Q*+...=(Id- Q)™

Then we have N; = Y522 R, ; .
The probability that there are exactly i errors among the 1mt1al redun-

dancy window is:
| (D)
| | (.2)

Since N;—; = 1 and N; = 0, the expected number of executions N is given
by:. ‘

t—2
N= Z Nipi + pt—1
=0
Remark 6: We observe that the numerical value of N; scarcely changes
as 7 varies. It shows that the choice of initial window doesn’t play any role
in the algorithm. :



Figure 1 shows the evolution of the overall work factor Wy = ‘N wy of
Algorithm 2 (we use for wy the upper bound obtained at 4.1) for random
[n, k,d]-linear codes where ;ﬁ = 1 and d is obtained with the Gilbert-
Varshamov’s bound: ' :

% —1- Hg(g) with Hy() = —zlogy(z) — (1 — )logy(1 — @)

70 T ' T T
60 - - - =
50 i
log, Wy gg i R
‘ 20 | -
10 *"I/ -

L g i 1
128 256 512 768 1024

length of the code
Figure 1: evolution of the work factor for Algorithm 2

4.3 Comparison with other decoding algorithms

Let us compare for different parameters this work factor with those
found for Algorithm 1 in [1] and for Algorithm 1bis which is the attack
proposed in [5]; this is a variant of Algorithm 1 which uses Proposmon 4
for checking whether I contains some errors and allows 2 errors in I.

e n=512, k=256, t=28 : it corresponds to a [512,256]-random linear
code whose minimal distance is obta.med by the Gilbert-Varshamov’s

_ bound. . .

e n=1024, k=524, t==50 : these are the original parameters in
McEliece’s cryptosystem which uses Goppa codes.

e n=1024, k=654, t=37 : optimal value of ¢ for McEliece’s system
which maximizes the work factor for Algorithm 1 [1].

Algorithm 1| Algorithm 1bis | Algorithm

, 2
n =512, k = 256, = 28 2531 243 2398
n = 1024,k = 524,t = 50 280.7 2706 2653
n = 1024, k = 654,t = 37 28T 2734 - 2683

Remark 7: If we allow 2 errors in the information window in Algorithm‘2
(that means that the test at Step 1 involves 2 rows of matrlx Z) then the
overall work factor increases (for n = 512,k = 256,t = 28, we find 2427
instead of 2398),

10
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5 - Simulation results

We simulated Algorithm 2 on a Sparc station 2 which performs 28.5

Mips.

We made a great number of s1mula.t10ns for small lengths in order to
~ get some statistical results on the number of required iterations:

theorical | experimental | min | max | standart | median
average average deviation |
128, 64, 13] 156 141 0 1480 153 93
256, 128, 25] 6031 5518 1 | 40049 5635 3759

We can notice that the variance of the number of iterations is very high
because of the random selection of the [ and p columns at each iteration
and that the median number of iterations is quite smaller than the average
as it appears in Figure 2.

% of
successfu}
decoding

15 median

5F

0

i i

0 .

N 10000 20000
number of iterations

30000 40000

Figure 2: Distribution of the number of iterations for [256,128]-codes with ¢t = 12

For n =512, k = 256, t = 28 we made simulations for 5 different error
patterns (with different generator matrices) and we succeeded in decoding
3 of them in less than 10 days (one in 2 days, one in 3 days and one in 10

days).

We observe that the running-time follows the previsions given in Fig-
ure 1 and confirms the validity of the previous theory.
Although the theorical average number of iterations is very high (191
millions) it is not necessary to perform so many executions in order to

decode an important percentage of all messages.

For example we have

determined the average number of iterations required for decoding at least
1% of them: if you eliminate 64 randomly choosen columns of G you have
more than one chance in 50 that you have eliminated no error positions.
Then you can apply Algorithm 2 with the restricted [448,192,57]-linear
code which requires 5.6 millions iterations in average; it represents 12 hours

11




on our system. Assuming that the median number of iterations is less
than the average number we may suppose that 1% of all messages will
be decoded with less than 5.6 millions iterations. With the corresponding
simulation we have decoded 3 messages among 100 after 12 hours.

6 Conclusion

We have defined a method for exploring the set of all information win-
dows without using the matrix inversion. Then we have suggested an
improved decoding algorithm which is more efficient than the previously
known best attack and we have shown that the use of [512,256]-random
linear codes is not secure for a cryptosystem because we are able to decode
in 12 hours more than 1% of all messages corrupted with a random error
of weight 28.

Although that time depends exponentially on the size of the code our
algorithm seems to be the best way for decoding any linear code without

using the structure of the code. The work factor is still too high to attack

McEliece’s cryptosystem but since our method can easily be parallelized
(because it only uses independent additions) and since the variance of the
number of iterations is very high we could expect to speed up the execution
by using a parallel computer.

’
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