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Abstract: We study here Grobner bases of ideals which define toric varieties. We
connect these ideals with the sub-lattices of Z¢, then deduce properties on their
Grobner bases, and give applications of these results. The main contributions of
the report are a bound on the degree of the Grébner bases, the fact that they
contain Minkowski successive minima of a lattice (in particular shortest vector),
and the algorithm (derived from Buchberger algorithm), which starts with ideal of
polynomials with less variables than usual .
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Bases de Grobner d’idéaux toriques

Résumé : Nous étudions ici les bases de Grobner d’idéaux définissant des variétés
toriques. Nous mettons en relation ces idéaux avec les sous-réseaux de Z¢, dédui-
sons des propriétés de leurs bases de Grébner , et donnons des applications de ces
résultats. Les principales contributions de ce rapport sont une borne sur le degré des
bases de Grobner | le fait qu’elles contiennent les minimaux successifs de Minkowski
d’un réseau (en particulier le plus court vecteur), et ’algorithme (dérivé de celui de
Buchberger), qui prend en entrée un idéal de polynémes ayant moins de variables
qu’usuellement.

Mots-clé : Bases standard, bases de Grébner , variétés toriques, minimaux sucessifs



Grobner bases of toric ideals 3

1 Toric varieties and toric ideals

We will consider here only toric varieties as algebraic varieties parametrized by
monomials (see [14] or [6] for general studies of toric varieties):

X ={(Xy,.., Xp)eC"| X, =T",.., X, =T, Th,...,T,eC} CC"

where a; are points in Z.
The variety X is the zero-set of the ideal I, kernel of the map

6 E[X] — k[TH]
X;, — T%

Such a prime ideal is called now "toric ideal”.
To the set A = {ay,...,a,} we associate the integer lattice H = {v € Z"| ), v;a; =
0}, which is related to I by the

Proposition 1
X*—XPel] <= a-p€cH

As a consequence, we have:

Proposition 2
XO-XPel = X0 _ x5~ ¢y
where vT denotes the vector v in which the negative coordinates are set to zero, and
v” = (—v)t.
Basic properties of toric ideals can be found in [11]. We recall some of them:

Proposition 3 [11] I is generated by the binomials Xv" — XV where v e H.
Reduced Grébner bases of I contains only binomials X" — XV where v € H, and
have degree lesser than n(n — d)a® where a = sup{||a;||}.

2 Properties of Grobner bases of toric ideals

First we recall the definition of a Grébner basis of an ideal.

Let < be a total order on monomials, compatible with multiplication (e.g. lexicogra-
phic order, reverse lexicographic order,etc). We denote in(f) the greatest monomial
of a polynomial f. In the following, when a polynomial is written X* 4+ ..., we
suppose that X* is the greatest monomial.

RR n~° 2224



4 Loic Pottier

Definition 1 A familly F of polynomials of an ideal J is a Grobner basis of J iff
the set in(F') = {in(f)|f € F} generales the ideal in(J) = {in(f)|f € J}.

The basis is "reduced” if no monomial of its polynomials is a multiple of the greatest
monomial of one of its polynomials.

2.1 Degree of toric Grobner bases

In general the degree of Grobner basis is doubly exponential in the number of va-
riables [7]. But in the toric case this complexity falls to a simply exponential degree,
as mentionned above ([11]). We prove now another simply exponential bound:

Theorem 1 Let A be the d X n matriz whose columns are the a;s, with generic term
a;;. Then any reduced Gréobner basis of I has degree lesser than

H(1+Z|%|)

7

Proof : Let Ht the set of vectors of H with positive coordinates. It is a monoid of
finite type (by Gordan’s lemma), generated by its minimal elements for the order
v<w <= Vi <w.

In [8] is proved that these minimal elements verify:

Z'Uz‘ < H(l + E |aij])

More generally consider now the vectors of H with any given choice for the signs of
their coordinates. They form a monoid to which the previous results can be applied
(just change the sign of the corresponding columns of A): they are finitely generated
by minimal vectors verifying >, |v;| < TT;(1+ 3=, |aij])

Suppose now that X" — X isin a reduced Grébner basis of I, with Xt > xo.
The vector a belongs to one of the previous monoids. If it is not minimal, there we can
write ot = g+ 44+ and o= = 8~ +~~, with 8,7 € H — {0}. Because X** > X~
we can suppose X > X7 But XPP - XPT € 1,50 ot = 37,0 = 3~ because
the Grobner basis is reduced, and then v = 0, which contradicts the hypotheses.
So a is minimal and then verify 3=, a; <T[;(1+ 3=, |ay;]) O.

Inria



Grobner bases of toric ideals 5

2.2 Geometric caracterization

We show here how any reduced Grébner basis of the ideal I can be read on the lattice
H, giving an explicit caracterization which does not use Buchberger algorithm.

Let Hy the part of H constitued with vectors v of H such that XU >, XY (for
example, with lexicographic ordering, those vectors are vectors with first non zero
coordinate which is positive).

Theorem 2 Let B be a part of Hy such that Vv € Hy,3w € B,w™ <ot .
Then the familly {X*" — X" | v € B} is a Grébner basis of 1.

To prove this assertion, we will need some intermediate propositions.
First, a direct consequence of the definition of a Grébner basis:

Proposition 4 F' is a Grébner basis of an ideal J iff every monomial of in(J) is
divided by a monomial in(f) where f € F.

Let H the familly of polynomials {X*" — Xv™ | v € Hy}.
Proposition 5 Fvery monomial of in(I) is divided by a monomial of in(H).

Proof : Let P a non zero polynomial of I. By definition of I and H,, H generates
I, P can be written P =37, aiX%(XU:r — X% ) where the v;s are in H.
The following lemma precises this:

+
Lemma 1 One can choose such an expression of P such that in(P) = X" X" for
a certain j.

Proof : By induction on p, the number of terms of the expression of P.

For p = 1 this is clear.

Forp>1,let Q =3,y , 1 aZ-XW(X”:r — XU ).

By induction hypothesis, in(Q) = X" XY for a certain j < p.

If in(Q) < XX , then in(P) = X"®X% O

If in(Q) > X» X, then in(P) = in(Q) = XH X" D

If in(Q) = XwX% and a, + a; # 0, then in(P) = XWX O

Finally if in(Q) = XwX% = X1XY and ay +a; =0, then P = a,( X" X" —
XWX ) & Yict petis 4 XWX - X)),

RR n~° 2224



6 Loic Pottier

But a,(X"% X" — X% X" ) can be written +a, X (X" =XV ) with v = +(v,—v;) €
H,; the expression of P has then p — 1 terms, and we conclude by the induction
hypothesis O

Now, we come back to the proposition: by the lemma, in(P) = X%ij, we have
XU e in(H), and then in(P) is divided by a monomial of in(H) O
We now prove the theorem: the definition of B shows that every monomial of in(H)

is divided by a monomial Xv" where v is in B. Then property 4 gives the conclusion
O

Definition 2 We call ”Grébner basis of H” (for the ordering <,, on monomials),
the part Bs(H,<,,) of Hy whose elements are vectors v of H verifying:

o ()Vue Hy,ut vt — ut =0T
o (i))Vue Hy,ut A v~
This definition is justified by the

Theorem 3 The familly {X"" — XV" | v € Bs(H,<,)} is the reduced Grébner
basis of I for the order <,, on monomials.

which is an easy consequence of the previous theorem.

3 Algorithms for toric Grobner bases

3.1 A good ideal to begin with

The usual techniques, used in [4] or [10], is to compute a Grobner basis of the ideals
J=(X1-T%,... . X, ~ T T/, 1,1, T, —1),or J = (X1 —T™,..., X, —
T UTy ... TX1...X, — 1), with Buchberger algorithm and an order eliminating
U,T; and Tj_l , and then keep the binomials where U,T; and Tj_l do not appear,
which form a Grobner basis for 1.

These methods use Grobner bases computations with n + 2d or n + d + 1 variables.
We present here a method which uses only n 4+ 1 variables, and then is much more
efficient in practice.

Theorem 4 Let {vy,...,v,} be a basis of the lattice H . Let J be the ideal
(X% — X, X% — X%, UX;... X, — 1)

Let B be a Grobner basis of J for an order eliminaling the variable U. Then the
binomials of B where U does nol appear form a Grobner basis of I.

Inria



Grobner bases of toric ideals 7

Proof :
Consider the morphisms
¢1 P2 ¢3
kK[ X] — KX, Ul)(UX;...X,—1) — E[ X% —  k[T*]
X; +— X; — X; — T;%
U -— XX,

We have I = Ker(¢s o ¢z 0 ¢1) (¢ is an isomorphism keeping the X;s invariant).
Let J = Ker(¢3). Then I = ¢y (J) N k[X], and J = (X° — 1),en.

Now, we prove that J = (X" —1,..., X" — 1), which gives the result, because that
it implies J = (X% — XU,..., X% — X%)

Let v =}, a;v; a vector of H.

We have XV — 1 = XEJ w1

— ()(Z] Yyv X'quj) + (XOA1U1 _ 1)

= X (X2 Y 1) 4 (Xua 1)

if @1 is nonnegative, (X — 1) divides X¥1% — 1, otherwise (X" — 1) divides
Xver 1,

Then we are led to the same problem for the vector 3.~ @;v;, and by induction we
conclude XV —-1¢ (X" —-1,..., X" -1)0O

The computation of a basis of H can be performed in polynomial time (by computing
the Hermite normal form of the matrix A) but coefficients of the v; can be very
large in regard with those of the matrix A. However, in practice the reduction of the
number of variables in the binomials suffices to drastically reduce the time of the
computations.

3.2 Improving Buchberger algorithm for the toric case

Buchberger algorithm [2] works with general polynomials. But the toric case is very
specific:

Remark 1 Polynomials are only binomials, and reductions of binomials are again
binomuals.

Remark 2 Binomials of the ideal I have no variable in common: if X%te — Xb+e
belongs to I then X — X° belongs to I. So we can perform these simplifications at

any step of the algorithm. More, we can then represent (and implement) a binomial
X — Xt of I by the vector a — b of H.

RR n~° 2224



8 Loic Pottier

Remark 3 Divisions of binomials correspond to additions or subtractions in H :

o if X' divides X**, then X°* — X reduces to X(@="" — X(a=)" We denote

this property on vectors by a e, a—b.

o if X*" divides X*7, then X*" — X% reduces to X(@+0)* — X (@)™ We de-

note this property on vectors by a — a + b.

o The S-polynomial (called also critical pair) of two binomials X"~ X% and
Xt - xbT corresponds to the vector a — b.

Then we have the

Lemma 2 Let B be a set of binomials.

If aq e P N a, — ... — a; by binomials of B,

if a, is irreducible for any reduction =+, by binomials of B, and a; is irreducible for
any reduction — by binomials of B,

then a; is irrecucible by the binomials of B.

This lemma discards many unnecessary tests for division.

Each couple of binomial P; and P; gives a critical pair, ties to a monomial denoted
lemg;, which is the lem of the two leading monomials of in(P;) and in(P;).

It is well-known [2] that a critical pair between P; and P; can be discarded in
essentially two cases:

e in(F;) and in(P;) are relatively prime (no variable in common).

o lcmyy strictly divides lem;;, i.e. lem;; is not minimal for the component-wise
order.

4 Applications

4.1 Successive minima of a lattice

We show here how the Minkowski successive minima of the lattice H are given by a
Grobner basis of 1.

Given a norm on [R", the successive minima Aq,..., A, of a lattice H of dimension p
are defined in the following way: A is the radius of the smallest ball (for the choosen
norm) contaning k independant vectors of H.

In[3], general results on successive minima and lattices are given.

Inria



Grobner bases of toric ideals 9

One can show that there exists a free familly »; of H such that [|v;]] = A;.

The second fondamental theorem of Minkowski’s geometry of numbers gives upper
and lower bounds on [[; A; for the euclidian norm.

Here, we will use two norms:

the Inorm: ||z||1 = >_; | i |

and the -1norm: ||z||—1 = sup(||z*]||1, ||z~ |]1)

Some easy remarks will be useful:

Remark 4 Suppose that X* — X° reduces to 0 by binomials {X™ — X" .. . X% —
X%}, Then the vectors a —b,a; — by, .. ., g — by are not independant.

We note lad(I) “the ladder of I “, i.e. the minimal monomials (for the partial order
of division of monomials) of in([).

Remark 5 Let X%~ X° be a binomial of I such that X € lad(Z).Then a = (a—b)*
and b= (a—0b)".

Theorem 5 (Homogeneous case) Suppose that H is "homogeneous”,i.e. contai-
ned in the hyperplane z1 + ...+ z, = 0.

Let Ay, ..., A, be the successive minima of H for the Inorm.

Let B be a Grébner basis of I for <(y,_ 1) (i-e. lotal degree order).

Then there exists independant vectors ay, . ..,a, of H such that Vk, ||ag|y = A and
X% — X% is in B.

In other terms, a Grobner basis of I for <(q,. 1) conlains the successive minima of
H for the 1norm.

Proof : First remark that H is homogeneous, then the ideal I is also homogeneous,
so for all binomial X¥* — XV of I, we have deg(X"") = deg(XV") = ||v]|1/2.
We will build the vectors aq,...,a, by induction.

o Case k =1:

Let @ in H such that ||aljy = A;. The binomial X%* — X2 is in I, then there
exists a binomial X% — X of B such that X € lad(I). Then X divides
X" and deg(X“;r) < deg(X“"). By definition of Ay, we have then [|ay||; = Ay,
soa=a; € B0O

o Case k > 1:

RR n°2224



10 Loic Pottier

Let ay,...,a;_1 giving the successive minima Ay, ..., A;y_1, then there exists
a in H such that |||y = Ag, and @ independent of aq,...,ax_1 (such an a
exists).

Let By, be the part of B formed by the binomials X — XP7 where a1,...,a5_1,b
are not independent.

If the binomial X*" — X%~ reduces to 0 by division by binomials of Bj, by
Remark 4, aq,...,a;_1,a are not independent. Then X" — X% reduced by
By, is a non zero binomial X** — X%~ irreducible by By, with ||a/|; = ||a|; =
Ak because the binomials of B are homogeneous.

As X9 — X' ¢ Z, there exists a binomial X% — X% of B — By, such that
X% € lad(1), X% divides X', and deg(X“:) < deg(XY, Nlaglls < M.
But aq,...,ar_1,a; are independant vectors, and then by definition of Ag,
HakHl =X, ar € BO

We can easily generalize the theorem to the non homogeneous case:

Theorem 6 (General case) Suppose H is not necessarily homogeneous. A Grob-
ner basis of I for <(y 1) conlains the successive minima of H for the -Inorm.

4.2 Delaunay triangulation

A triangulation of the set of points a1, ..., a, of Z% is said "regular” iff there exists
a vector w of IR™ such that this triangulation is obtained as the projection of the
lower convex envelop of the points (ay,w), ..., (@, w,) of RI*L,

A theorem of Sturmfels [10] gives relations between regular triangulations of aq, ..., a,
and the Grobner bases of the toric ideal 1.

Suppose that the points a1, ..., a, are in an affine hyperplane and generate Z¢. Let
A, be the triangulation defined by w € IR™. Let In be the ideal generated by the
monomials X, ...X,, where {01,...,0,} is not a face of A, (the Stanley-Reisner

ideal of A,) .
Theorem 7 ([10]) Ia is the radical of in,(I)

The Delaunay triangulation is regular, as obtained with the vector (||a;]|?, ..., [|ax||?)-
Then, a consequence of the theorem is:

Corollary 1 Let w = (||a1||?, ..., ||@n||?), then a Grébner basis of I for <., gives the
Delaunay triangulation of a4, ..., a,.

Inria



Grobner bases of toric ideals 11

The complexity of this computation depends directly from the degree of the Grobner
basis, bounded by (14na)? where @ is the maximum coordinate of the a;s. We cannot
a priori compete with specialized algorithms for Delaunay triangulation (which have
however a theoretical complexity of the same order), but we can expect to interpret
them in the context of polynomials.

Example:

Let a; = (0,0,1),a2 = (6,0,1),a3 = (5,2,1),a4 = (1,4,1),a5 = (2,2,1),a6 =
(4,3,1) in the plane identified to {z = 1} in IR®.

Computations with softwares Macaulay [1] or bastat [9], give a Grébner basis for I
with initial monomials

{XTXE, X1 X, X§, X1 X3, X1 X3 Xy, XFXE, X§X7, Xy Xy, X3XF, X3X [ X5}

and then IA = (X1X6, AXV1X3, AXVQXE;, AXV3X4, 4X2X4),

the Delaunay triangulation is A = {{1,2,5},{1,4,5},{2,3,5},{3,5,6},{4,5,6}}.
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