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Abstract

A slotted ring that allows simultaneous trasmissions of messages by different users is
considered. Such a ring network is commonly called ring with spatial resue. It can achieve
significantly higher throughtput than standard token rings but it also can lead to unfairness
problems. Policies that operate in cycles and quarantee that a certain number (quota) of
packets will be transmitted by every node in every cycle have been considered before to
alleviate the unfairness. We consider here the problem of designing a policy that will result
in a stable system whenever the arrival rates are within the stability region of a ring with
spatial reuse (the stability region is defined as the set of node arrival rates for which there
is a policy that makes the ring stable). We provide such a policy. No knowledge of arrival
rates or message destination probabilities are required. The policy is an adaptive version of
the quota policies and can be implemented with the same distributed mechanism. We shall
use Lyapunov test function techniques together with the regenerative approach to derive
our main results.

STRATEGIES ADAPTATIVES POUR LA REUTILISATION DU MEDIUM
SUR UN RESEAU EN ANNEAU

Résumé

On considére un anneau slotté qui permet la transmission simultanée de paquets par
différents utilisateurs. Un tel réseau est appelé généralement anneau avec réutilisation
spatiale. Ce réseau peut fournir un débit beaucoup plus grand que i’anneau a jeton mais
il ne fournit pas un service équitable. Nous considérons des stratégies qui sont basées sur
des services cycliques et qui garantissent & chaque cycle un certain quota pour chacun des
nceuds. Nous décrivons une politique qui conduit & un systéme stable quelques soient les
taux arrivées dans le domaine de stabilité de I’anneau a jeton avec réutilisation spatial (ce
domaine est défini comme ’ensemble des taux d’arrivée pour lesquels il existe une stratégie
stable). Aucune connaissance des taux d’arrivées ou de la distribution des destinations n’est
requise. Cette stratégie est une version adaptée des stratégies de type quota et peut étre
implémentée avec le méme mécanisme distribué. Nous utiliserons la fonction de Lyapounov
ainsi que ’approche régénérative pour démontrer nos résultats principaux. ‘

*This research was primary done while the author was visiting INRIA in Rocquencourt, France. The
author wishes to thank INRIA (projects ALGO, MEVAL and REFLECS) for a generous support. Additional
support was provided by NSF Grants NCR-9206315 and CCR-9201078 and INT-8912631, and from Grant
AFOSR-90-0107, and in part by NATO Grant 0057/89.



1 Introduction

We consider a ring with spatial reuse, Le., a ring in which multiple simultaneous transinis-
sions are allowed as long as they take place over different links (cf. [4, 5, 6]. Time is divided
in slots and each slot is equal to the smallest transmission unit, called packet. We assume
zero propagation delay. A node can transmit a packet at the outgoing link at the same
time that it receives another packet in the incoming link. A node receiving a packet with
destination another node in the ring, may retransmit the packet in the outgoing link in the

same slot, i.e., the ring has cut-through capabilities.

In [5], [4], a policy is proposed for the operation of the ring. Each node is assigned a
number called “quota” The policy operates in cycles. A node is allowed to transmit during
a cycle as long as the number of transmitted packets does not exceed its assigned quota. An
analysis of the throughput characteristics of this policy is provided in [6], where it is also
shown that that if the end-to-end throughput requirements result in aggregate traffic load
for each link of the network less than one, then the quotas can be selected to achieve these
throughput requirements. In order to compute the appropriate quota values, however, it is

necessary to know the end-to-end transmission rates a priori.

In this paper, we propose an adaptive version of the policy in [6]. The adaptive policy
does not need to preselect the quota hased on the end-to-end traffic requiremnents. During
the operation of the system, it continuously readjusts the quotas based on the backlogs. In

this manner it achieves any achievable traffic requirements. We denote such a policy as II.

More precisely, the proposed policy operates in cycles and is based ou the idea of al-
locating quotas to the nodes. At the beginning of a cycle it allocates “quota” to every
user that is a function of the number of messages at the user buffer. During a cycle a
node can transmit no more messages than the quota allocated to it. A cycle ends when
all nodes transmit their quota number of packets as well as all the packets that they may
have received through their incoming link and are destined to another node. The proposed
policy requires a distributed mechanism by which every node realizes that all the other

nodes completed their quota and thus a cycle ends. Such a mechauisin is provided in [5].

Policy II is shown to stabilize the network for any arrival rate vector in region R (section



2); this region contains all the arrival rate vectors which result in link utilization less than
one. A similar study has heen done in [2]. The stability of the ring was studied for
stationary arrival processes and a policy was proposed that stabilized the ring under the
same conditions for the arrival rates. The analysis that is done here is for a more restricted

arrival process but the policy II is considerably simpler than the one proposed in [2].

This paper is organized as follows. In the next section we present our main results and
their consequences. In particnlar, we establish stability region for the adaptive policy, and
show that it achieves the maximum possible node throughput. We delay all proofs until
section 3. It contains a fairly detailed analysis of the policy from the stability view point.
We use the Lyapunov test function method (cf. [7]) togetlier with regenerative approach

(cf. [I) to establish onr results.

2 The system model the policy and the main result

We consider a ring with spatial reuse, i.e., a ring in which mnltiple simultaneous transmis-
sions are allowed as long as they take place over different links. Time is divided in slots
and each slot is equal to the smallest transmission unit, called packet. We assume zero
propagation delay. A node can transiuit a packet at the outgoing link at the same time that
it receives another packet in the incoming link. A node receiving a packet with destination
another node in the ring, may retransmit the packet in the ontgoing link in the same slot,

i.e., the ring has eut-through capabilities.

Let M be the nnmber of nodes and set M = {1,..., M}. The operations i j and 16 j
denote respectively, addition and subtraction modulo M, with the convention that index
0 refers to node M. Furthermore, when 2, j refer to node indices we denote 3| . uxy :=
T+ Tigr + ...+ Tjo1 + 1. We assne that the nodes are arranged on the ring according
to their index so that the ontgoing link to node 7 is the incoming link for node 1@ L. Node
¢ may receive external traffic with destination any other node j in the system. Let R;;(1)
be the number of packets that arrive at node 7 from the outside with destination node j.
If : = 7, then it is assnmed that the packet has to cross all the nodes in the ring until it is

received by the originating node, 1.



Transmission policy II

The proposed policy operates in cycles and is based ou the idea of allocating quotas to the
nodes, proposed in [5],[4]. Let 74 be the begiuning of the kth cycle and set 71 = 1. At time
T each node allocates itself “quota” w(k) = Q;(71), where Q;() is the queue size of node
i at time t. Node i can transwit up to v;(k) packets during cycle & according to any fired
nonidling policy, i.e., the only restriction that is Imposed on the transmnissions is that the
node puts a packet in its outgoing link whenever eitlier its queue is nonemnpty, or a message
is received in the same slot in its incoming link with destination another node ou the ring.
Cycle k ends when all nodes transmit v;(k) packets as well as all the packets that they may

have received through their incoming link and are destined to another node.

Remarks:

L. The nost important nonidling transmission policy for applications, is the policy where
a node always gives nonpreemptive priority to the packets that arrive at the incoming
link with destination another node. This way, ouly a single huffer capable of holding a.
maximn packet size message is needed to hold the traffic that arrives at the incowing

link of a node. For details see [4].

2. The proposed policy requires a. distributed mechanisiu by which every node realizes
that all the other nodes completed their qnota and thus a cycle ends. Such a mecha-

nism is provided in [H].
Throughout this section we adopt the following assumption.

(A1) The vector process {R(2)}52,, where R(t) = {Ri;(1), 1,7 € M}, consists of i.i.d. vec-
tors. We denote R;; := R;;(1). Note that do not make any independence assumptions
for the work arriving in various nodes at the same slot. To avoid techuical difficulties

we will also assnme that Pr(R;;(1) =0, 4,5 € M) > (.

In section 4 we will see that the above assumption can be relaxed in certain ways without
affecting significantly the validity of our results. In order to formulate our main results in
a compact form, we need some additional notation. Let

. vy Ryt
fi; = limn L1022 ANA 'J( ) = ER,',’
TL—=+00 n N



be the traffic rate. We also define g, 1= 325,41 pij and 7, = 3 7:c g @ine. Note that ay,,
is the average number of packets per slot that are generated by node 7 and cross node m,
and 7y, is the average nunber of packets that cross node m. during a slot. Finally, we set

r = max{r,, : m € M}.

It has been shown in [6] that for a fairly large class of policies for the ring, the throughput

vector should lie within the following region

R={p:  ax, 7o <1} (1)

In this work we show that as long as the arrival rates belong to R, policy II stabilizes the
network in a strong sense. Specifically we show that (i) the queue length @Q;(t) possesses a
limiting distribution; (ii) its Ith moment EQ!(t) as t — oo exists provided that ERfj’l < 00;

(iii) the queue length Qi(t) as t — oo has an exponential tail (i.e., large backlogs are very
unlikely), provided that the same is true for R,;. We summarize our main results in the

following proposition. Its proof is presented in the next section.

Proposition 1 (i) Under policy 11, the process of queue lengths {Qi(t), i € M}, con-
verges in distribution to a random finite vector {é;, i € M} having o honest distribution,

if and only if r < 1.

(1) If and only if ERé;'l < oo for somel> 1 and all 1,5 € M, then
lim EQl(t) = EQ| < oo (2)

(iii) If for 9 > 0 the moment gencrating function of Ry; exists, that 1s, Eexp(dR;;) < oo
for all i,5 € M, then there exists ¥ > 0 such that

Eexp(?Q;) < o 3)

for everyi e M. u

As a direct consequence of Proposition 1(iii), we have the following corollary concerning

the tail of the queue length.
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Corollary 1 (i) IfERﬁ;“ < 00 for alli, j € M, thew the tail of the quene length distribution

decays polynomially fast, that is, for some constant C' > 0

_(_,'

Pr{G: > K} < . (4)

o~

(i1) Under the hypothesis of Proposition (i), the queue length (},- hus an ceponential tail,

that is, there exists a constant ' > () and O > O such that for all k >0

Pr{Q: > k} < Ce™?F . (5)

Proof. It suffices to apply Markov inequality. For example, for part (ii) we have P1'{(~2,~ >

k} = Pr{r:"’éi > e} < R EQ provided (3) Lolds. =

3 Stability Analysis: Proofs

The proof of Proposition 1 is based on the analysis of the so called node degrec at time t
denoted as N;(t). It is defined as the total number of packets on the ring at time ¢ that
have to cross node 7 in order to reach their destination. Let N(t) := max{Ny(t): i € M}.
It was shown in [6] that

Ti = Togr — T = N(7x) (6G)
Now we establish an important asymptotic property of N(7;) that is used in the proof of

Proposition 1,

Lemma 1 If for some l > | we have ERf-j < oo foralli,5 € M, then

l
7‘li_{l(:o E (( N](,:-)')) 'Tl = n) = max {rf” Dom € M} .

Proof. According to the policy, the quene size at node 7 at time 7, cousists of all the
external packets that arrive in the interval (1,7y] to node ¢. Frowm the definition of the

degree of a node it follows that if T} = n,

Nm(r'l) = Z Z Z Rij(")- (7)

t=11eM j=mepl



Using the strong law of large munubers we conclude that

IR DI TR o

1EM j=mihl 1EM

Now let F(-) be a nondecreasing contiunous function. In view of the above, we have for

almost all sample paths,

11i“olo F(N(r)/n) = "lingoF(max{N,,‘(rg)/n: m € M})

= 7‘13_{201rlax{F(N7,¢(T2)/7z): m € M}

=  max {,}520 F(N,,(r2)/n): me M}

= max{F(r,): m € M}. (8)

The lemma will follow from (8) with F(z) = 2, [ > 1, if we show that the sequence

{(N(r2)/n)'} is nniformly integrable (w.i.).

Using the mean incyuality

Eorat\! ko]
(2::] |”"|) < Z|=1 |""| [>1

k - k o=
we have
1 n !
Nl(r) = (Z 3 <§:Ri.1(f)))
1EM j=mpl \t=1
] n !
< M- Z Z (Z R;‘j(t))
1EM j=m@l \t=1
Therefore,

IN

(Nm(r'l))l Ml(l 1) Z 2 ( =1 !7 '))
" {EM j=mh]

1?’()

IA

MJ(I 1) E Z

1EM j=mhl

G



Since by assumption El?.fj(l) < oo and the variables {R;;(1)}2; are iid, it follows (see [3,
exercise 4.2.7] that the sequence {(3}, (f )}/ 1}, is uniformly integrable. Therefore,
the sequence

> 3 (5 ))

1EM j=mHl
is uniformly integrable since it is the sum of uniformnly integrable sequences (see [3, page
94]). From (9) it follows that the sequence {(N,,(r2)/n)'}2%, is uniformly integrable and
since N(13) < ¥,.em Nou(72), the sae holds for the sequence {(N(72)/n};%,. Finally,
fromn (8) and the uniform integrability of the sequence {(N(7;)/n}3, it follows that we can

interchange limits and expectations, i.e,

lim F

NH—00

(Rt

n

) =max{r,: me M}.

foralll> 1. &

A corresponding property established in Lemma 1 for the exponential tail is presented

below. It is used to prove part (iii) of Proposition 1.

Lemma 2 If r < | and Eexp(R;;) < oo for some 9 > 0 and all i,j € M, then there
exists ¥ > 0 such that

. exp('l’}’N(rg))) _ ) _
lim E (( exp (9T Ty =n) =0.

Proof. Observe first that if X;, ¢ = 1,..., K are random variables such that E(exp(7X;)) <
00, t=1,..., K for some 7, then
K
E exp(y Z X;) < o0,
i=1
where 1, = /K. This follows by taking expectations in the following inequality that is a

consequence of the convexity of the exponential function

K K g K
i— K X, 1 .
exp( E Xi) = exp (2';1\“—1—) < T E exp(th K X;) (10)
=1 1=1



Applying the previous observation to the random variables
- l '
R,,L(t) = E E R;j(t), me M,
1EM j=mpl
we see that there is a 73 > 0 such that

Eexp(92R,,(t)) < 00, m € M.
Consider now the function @,,(9) = Eexp(ﬁRm(t) —1%), 0 € ¥ < ;. ;From the previous
discussion we see that this function is well defined, continuous and differentiable in [0, 17;].

Since $,,(0) = 1, ®,(0) = ER,,(t) -1 =1, -1 <7-1<0,and M < o0, it follows

"

that there is a ¥ > 0 and a € > 0, such that for m € M, ®,,(¥) < 1 - ¢, or equivalently,

E exp(¥' R, (2))

exp ¥ <(1-¢)

iFrom (7) we see that

Nm(7'2) = ZR.,,,(t)
t=1

and since the random variable R,,(t), t = 1,... arei.i.d, we conclude that

Bexp(?'Nu(r2) _ (Eexp(#Bum()\" .
exp(?'n) - ( exp(1") ) <(1-a" (11)

Since

E exp(?'N(r,)) E exp(max{#'N,,(1;) : m € M})

= FEmax{exp(#'N,.(2)): m € M}

< z Eexp(d'N,.(12)),
meM
taking into account (11) we conclude
f)l
0 < tim 2PN 0y (1= e = 0
n—co  exp(¥'n) n—00

which completes the proof. ®

iFrom Lemmas 1 and 2 we easily conclude our next result.
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Corollary 2 (i) If r < | and E[ffj < oo forall i, € M and some 1 > 1, then there exist
6 >0 and B > O such that

E(NY(r)|N(m)=n)<(1-&)n! nuw>B.

(ii) If r < 1 and Eexp(¥R;j) < 0o for some 9 > 0 and all i, 5 € M, then there exists & > 0
such that

E (exp('N(m))[N(m1) = n) < (1 — 6) exp(¥'n) n>BhB.

Proof. Since r,, <1 < 1, we have that max{r!, : m € M} <+ < 1-6, 6> 0. Using this
observation, part (i) of the Corollary 2 follows directly from from (6) and Lemma 1. Part

(ii) follows directly from (6) and Lemma 2. @

To proceed, we need the following theorem, due to Tweedie, [7, Theorem 3] , which we

present in a form appropriate for the problem under consideration.

Theorem 1 (Tweedie.) Suppose that {X,}32, is an aperiodic and irreducible Markoy

n=
chain with countable state space S. Let f(x) be o nonncgative veal function on the state

space. If A is a finite sct such that f(x) > ¢ > 0, x € A9,
E(f(X)IX1=2)<o0, x€A
and for some § > 0,
E(f(X)IXy = #) < (L= 0)f(x), € A",
then the Markow chain s crgodie and
Ef(X) < oo,

where X has the steady state distribution of the Markov chain { X, }152,. @

Let @;;(t) be the number of packets at node ¢ with destination node j, including hoth
external packets and packets received from the incoming link to node i. Clearly, Q;(t) =
Yjem Qij(t). Let also Q(t) := {Q:;(t) : 7,5 € M}. From the operation of the policy
and assumption (Al) we conclude that the process {Q(m,)}5%, is an imbedded Markov

chain. Using Theorem 1 we shall prove that this imbedded Markov chain is ergodic if r < 1.



Moreover, using a regenerative structure of the queueing process, we extend this assessment

to all ¢, hence proving our main result Proposition 1.

Let us first consider the imbedded Markov chain {Q(r,)}2%,. We prove that under the
condition of Proposition 1 this process converges weakly to a honest random vector Q. Since
by assumption Pr(R;;(t) = 0, ¢,5 € M) > 0, it can be seen that the imbedded Markov
chain has only one irreducibility set and if restricted to this set, the chain is aperiodic. Let
now Q(m) = 0, and we define two stopping times, namely: 6, and 7;. For the former we

set #; = 1, and then
Ox41 = inf {n > 6; : Q(7,) = 0} . (12)

For the latter we set 7y = 1 and
T4y = min{m : 7 > T such that Q(m) =0}. (13)

Note that 7 = 7r5,. We also observe that by Theorem 2 proved below, the times 7; are
well defined for all k£ since the system will empty infinitely often almost surely. Let also

di = 041 — B, and Dy = Tyyq — Ty Clearly, dy and Ty for k= 1,..., areiid.

The next result establish stability property for the imbedded Markov chain.

Theorem 2 (i) If r < 1 then the Markov chain {Q(7,)}52, is ergodic and

6;-1
E Z N(m.) < o0 . (14)

n=1
(i) If, in addition, for | > 2 we have ERﬂj < oo foralli,j, € M, then

8;-1
E Z Ni(r,) < o0, (15)

n=1

(iii) If for some ¥ > 0 we have Eexp(VR;;) < oo for all i,j € M, then there exists 9 > 0

such that
-1
E Z exp(?W' N(r,)) < oo . (16)

n=1

10
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Proof. Define first fi(Q(7,)) = N(1,), !> L. Clealy, the set A := {Q: fi(Q) < B} is
finite. Also, if Q(7;) € A, then since Ty = N(ry) < BY/D | using arguments similar to those

used in the proof of Lemma 1 it can be easily seen that
E (N'(n)IQ(n) = Q € 4) < oo,

provided that ERfj < 0o. From the above discussion, Corollary 2 and Theorem 1 we

conclude that {Q(1,)}5%, is ergodic, and provided that ERfj < 00, t,7 € M for some
1> 1,
EN'< oo,

where N = £(Q), and Q has the steady state distribution of {Q(7)}%,. Now observe
that the sequence {N(7,)}5%, is regenerative with respect to the renewal sequence {6,,}52,.
Since the ergodicity of {Q(,)} implies Ed; < oo, from the regenerative theorem, [1, Corol-
lary 1.4] and the fact that N(t) is nonnegative, we have that

EY %1 N

n=1 (Tﬂ-) _ 7!
£, = EN' < x.

for every | > 1.
For part (iii), the proof is along the same lines with f(Q(7,)) = exp(¥IN(r,)). m

We now turn our attention to the process {Q(#)}$2, for all t = 0,1,..., . We establish
stability of this process proving our main result in Proposition 1. Assume that Q(1) = 0.
Consider the times T¢, k& = 0,1, .. defined in (13). The process {Q(t)}{2; is regenerative

with respect to the renewal process {7,,}5,. From (6) and Theorem 2 we have

n=

8,-1
EDy=E Y N(r,) < co.

n=1

Since the assumption Pr(R;;(t) = 0, 1,5 € M) > 0implies that Dy is aperiodic, applying
the regenerative theorem we conclude that {Q(t)}{2, converges in distribution to a honest
random variable Q. Let now F(-) he a nonnegative nondecreasing function (i.e., in our case
either F(x) = ! or F(x) = exp(¥:)). Using now the nonnegativity of Q;(t), N(t), and

ETAT F(N())
ED,

lim EF(Qi(t)) = EF(Q:) < EF(N) = (17)

11



(see also problem 1.4, chapter 5 in [1]), Proposition 1 will follow from (17) if we show that

T -1
E Z F(N(t)) < oo,

t=1

under conditions of Proposition 1. This is shown in the following lemmma.

Lemma 3 (i) If ER]]' <0, i,j€M, 121, then,
Ti-1
E Z N(t) < o0 .
t=1
(ii) If Eexp(IN(t)) < oo for some ¥ > 0, then there erists 9' > 0 such that
T -1

E Y exp(?'N() < oo .

t=1

Proof. Observe that we can write

T -1 6,-1

SN < Y Tu(N(m) + Almin) = A

t=1 k=1
0,-1

< 27N T (N(m) + (Almenn) - A(m))')
k=1
and, in view of (10),
T -1 82—~1

Z exp(dN(t)) < Z Tk [exp(29N(t)) + exp(29( A(Tr41 — A(7r)))] -

t=1 k=1

So, it suffices to show that

8,1
E Y TuF(N(n)) <
k=1
and
62~1
E T F(A(Tk41) — A(Te)) < o0.
k=1

where either F(r) = x' or F(x) = exp(2¥x).

12

(18)

(19)

(20)

(21)

(22)
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iFrom (6) we have

6,-1 6,-1
E (2 TkN’(rk)) =E S (N(m))'H, (23)
k=1 k=1
and
6,1 62-1
E (Z Tk exp(21‘)N(Tk))) < C(INE Z exp(39N (7)) , (24)
k=1 k=1

where in the latter inequality we use the fact that T) < C'(9) exp(¥T}), for some constant
C(9). Based on (23) and (24) it is easy to see from Theorem 2 that (21) holds for hoth

choices of the function F(z) and appropriate choice of ¥'.

We now concentrate on proving (22) for F(x) = #!. Let Gi denote the sigma-field gen-
erated by Q(7x), k = 1,2, - and observe that # is a Gg-stopping time. Using successively
the facts that {6 > k + 1} € Gi , the process {Q(7x)}52, is Markov and Tk = N(7%) is

Gr-measurable, we get

6 ~1
E Y Ti(A(mi) - Am)) =

. iTk(A(Tk-*-l) - A(Tk))ll{o,—lzk}]
k=1

WK
&

x~
H
—

E |Ti(A(Ti41) — A7) | Gk] 1{022k+1}]

]
Mg
b

e
1l
-

Th(A(Tia1) = AT | QUTE)] Lisy iy

1l
e

|
=

=
i
—

U
s

E [E [(A(ri41) - A(T)Y| Q(e)] Tl s, 141)](25)

L

x>
i
—

Arguments similar to those used in the proof of Lemma 1, show that

{
Tk41
(Al(men) - A <G 30 (Z R;-J-(t)) ,
LIEM \1=7%
where 'y depends only on M and l. Therefore,
. Thk41 I
E[(A(ma) - Am)Y 1Qm)] <1 30 B Y Rs()] Q)|

1,]JEM t=74

13



Since by assumption (A.l) Ri(t), t = 1,2,--- are i.i.d and ERfj < o0, using Corollary

10.3.2 in (3], we conclude that for { > 2,

l
Th$l
E (Z R:’j(t)) | Q(7x)| < C2TY,

t=Tx

where Cs depends only on M, ! and ERf-j. Clearly, the same inequality is true for I = 1.

Using these estimates in (25), we finally have,

6,1 o
E Y Ti{A(ti) - A(n)! < CE (Z T1£+11{023k+1}>
k=1 k=1

-1
= CE| Y T,
k=1

8,1
= CE ( Y (v (n))‘“)
k=1

< oo, (26)

where the last iequality follows from Theorem 2.

Now we focus on proving (22) for F(z) = exp(?)x). We can use the same arguments as

before together with (10) to obtain

02-1 8,1 Thk41
E Z T exp('ﬂ(A(‘rkH) - A(Tk))) < C\E E exp ('l()M Z R;j(t))
’ k=1

k=1 t=7x
8-1 62-1
< O, 2 Eexp(d'Ty) = Cy Z Eexp(?' N (7)) < oo .
k=1 k=1

This completes the proof of the lemmma, and also onr main result Proposition 1. &

4 Correlated arrival models

In the previous sections we assumed that packet arrivals are independent from slot to slot.

In this section we show that the stability properties of the adaptive policy II are maintained

14
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for other arrival models as well. Specifically we consider arrivals with bounded burstiness

and Markov modulated arrivals.

In the arrival model with bounded burstiness we assume that for each arrival stream
{Ri;(t)}:2, there are numbers p;;, b;; such that

t2

Y Rij(t) < pij(ta — t1) + b (27)

t:tl

If the vector {p;;} lie in region R then the system is stable under II in the sense that the
backlogs are uniformly bounded over time. To see this notice that by the definition of

Ny.(t), relation (6) and inequality (27), we have that

Nm(Tk+1)

IN

Tk + ) bij

1]

7'mN(Tk) + z”i_j,

1]

where the r,,’s are defined in terms of the p;;’s in the same manner as in the definition of

R and T}, 7 are the same as in (6). Therefore,
N(Tk+l) < 'I'N(Tk) + B,

where B = 3~ i bi; and 7 = max{r,, : m € M} < 1. We conclude that if the vector of p;;’s

lies in the region R themn,

N(Tk) S Ig—- + 'I'kN(T'l),
— 1'

Since N, (t) < Ny(7k) + Np(Tk41) whenever 7p < t < Tiy41, We can easily extend the

previous bound for an arbitrary time t.

The proof of stability that we gave when the arrivals are i.i.d. goes through in the more
general case where the arrivals are Markov modulated. Consider the following Markov
modulated arrival model. There is a finite irreducible Markov chain {u(t)}:2, with state
space U and a family of distributions {F, : w € U} such that the conditional distribution of
R;;(t) given u(t) is F,(;) Furthermore R;;(t) is independent of {Ri;(7) : 7 < t} given wu(t).
Assume finaly that {u(t)}$2, is stationary therefore {R;;(t)}$2, is stationary as well. With

the above assumptions parts (i) and (ii) of Proposition 1 holds with minor modifications in



the proofs. The only difference is that the queue length process at the heginnings of a cycle
is not a Markov chain any more. However, the combination (Q(,),u(r,)) of the queue
length vector with the modulating chain constitutes a Markov chain and the proofs can he

carried through based on this chain.
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