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Implantation haute performance de modules de
communication

Résumé : Avec apparition ds réseaux a haut débit, de nouvelles applications
ayant des besoins de communication spécifiques sont en cours de développe-
mient. Les performances des protocoles de communication ainsi que les services
fournis ne correspondent plus exactement aux besoins des applications. L’amé-
lioration des performances des protocoles est donc une étape essentielle pour la
construction de modules de communications performants. Dans cet article, nous
présentons nos travaux sur une implémetation haute performance des fonctions
de présentation et de controle de transmission. Nous montrons que les optimisa-
tions basée sur le principe du Traitement en Couche Integrée (Integrated layer
Processing) permettent de réduire le colit des opérations de manipulation de
données généralement assez coiteuses. Nous présentons aussi un cadre pour la
conception de modules de communication intégrés en se basant sur les principes

'de Mise en Trame au Niveau Application (Application Level Framing) et du

Traitement en Couche Integrée. .

Mots-clé : Protocoles & haut débit, ALF, ILP
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1 Introduction

The emergence of high speed networks has shifted the performance bottleneck
from the transmission media bandwidth to the processing time necessary to
execute higher level protocols. In particular there is a concern that the exis-
ting transport and presentation protocols are the most processing demanding
protocols. The existing standard protocols were defined in the seventies. At
that time, communication lines had low bandwidth and poor quality which was
compensated for by elaborate protocol functions. The emergence of high speed

- networks such as FDDI, DQDB and in the near future B-ISDN motivated many
research work on the des1gn of more efficient communications protocols (at both
transport and presentation level):

¢ The tuning of existing transport protocols (e.g. TCP extensmns for hlgh
speed paths [1], TP4 1992 revision [2], [3], [4]). -

¢ The design of a new transport protocols (e.g. XTP [5]).

e The performance optimization of the preéentation coding and decoding
routines either by defining new “light weight transfer syntaxes” ([6]) or by
implementation enhancements of the standard BER routines ([7]).

At the same time, the application environment is changing. New applications
(e.g. audio and video conferencing, shared white board, supercomputer visua-
lization etc.) with specific communication requirements are being considered.
Depending on the application, these requirements may be one or more of the
following: (1) high bit rates, (2) low jitter data transfer, (3) the simultaneous
exchange of multiple data streams with different “type of service” such as audio,
video and textual data, (4) a reliable multicast data transmission service, (5)
low latency transfer for RPC based applications, etc.

The above requirements implies the necessity to revise the service model in
order to fulfill the application needs. In fact, the applications had to choose
between the connection-less and connection oriented transport services. In both
cases, the application needs are expressed in terms of quality of service (QOS)
‘parameters such as the transit delay or the maximum throughput. However, the
applications need more than a set of QOS parameters.to control the transmis-
sion. The applications require to be involved in the choice of the control mecha-
nisms and not only the parameters of a unique transport service. The transport
service model needs revision. the design of the so-called “communication sub-
systems” tailored to provide the service required by the application has been
proposed. Early work in this domain proposed to design “light weight” “spe-
cial purpose” protocols for specific application needs (e.g. NETBLT [8] for bulk
data transfer and VMTP [9] for transactional applications). This approach has
a major limitation: the diversity of the applications increases the complexity
of the “communication subsystem” by the support of several communication
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protocols. A more recent approach is to synthesize customized protocols from
“building blocks” implementing elementary protocol functions such as: flow con-
trol, error control, connection management (e.g [10]; [11], [12], [13]). The aim of
these ongoing research activities is to automatically generate the communica- .
tion subsystem from high-level specifications (written in a “suitable” language).
The synthesis of “fine grain” protocol functions should replace the coarse grain
protocol choice (e.g. TCP or UDP). These activities are focused on transport
level functions and do not consider the application synchronization and data
presentation requirements, in order to reduce the complexrty of the communi-
_cation subsystem. We think that the integration of the session and presentation
with the transport functions in order to generate a single protocol graph for the
application will result in increased performance gain. This aspect is discussed
in section 5.

Good implementations techniques represent one of the most important fac-
tors in determining the performance of a given protocol [14]. These techniques
~ depend on the environment and not on the protocol itself. The performance of
workstations has increased with the advent of modern RISC architectures but
not at the same pace as the network bandwidth during past years. Furthermore,
access to primary memory is relatively costly compared to cache and registers
and the discrepancy between the processor and memory performance is expec-
ted to get worser. The memory access is expected to represent a bottleneck [15].
On the other hand, the workstations performance may also be increased by the
use -of multlprocessor systems. However, current protocol 1mplementat10ns do
not exploit this parallel processing potential.

The proposed solutions focused on the enhancement of the protocol imple-
mentation performance in a given software or a hardware environment:

e Qutboard protocol processors [16] or hardware protocol implementations
(early work on XTP/Protocol Engine [17]) were proposed to discharge
the main processor from “transport layer” operations. In addition, it was
argued that hardware support allow to perform costly operations like
checksumming efficiently. However, the reduced flexibility of the hard-
ware approach is a critical constraint because of the applications diversity.
Furthermore, software protocol implementations on modern workstations
have shown increased performance, thereby reducing the interest of a hard-

- ware solution. ‘

e Parallel implementations of transport protocols were proposed to 1ncrease
the protocol processing speed [18], [19], [20], [21].

e Integrated layer processing (ILP) [22] was proposed by Clark and Ten-
nenhouse in order to enhance the performance of protocol implementation
on RISC workstations. The main concept behind ILP is to minimize the
memory reads/loads by combining byte manipulation oriented operations
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within one or two processing loops. The merits of this approach will be
discussed in more detail in section 5.

e The development of execution environments where protocols can be de-
veloped in a modular and yet efficient way (e.g. the x-kernel [23]). Even
if the focus within this approach is on flexibility, further performance en-
hancement may be obtained if the ILP principle is supported.

2 Integrated Protocol Implémentation

Protocol processing can be divided into two parts, control functions and data
manipulation functions. In the data manipulation part, the actual data of a
PDU is read from memory, manipulated and possibly loaded back to memory.
Example of data manipulation functions are presentation encoding, checksum-
ming, encryption and compression. In the control part there are functions for
header and connection state processing. Jacobson et al. have demonstrated that
the control part processing can match gigabit network performance for the most
common size of PDUs with appropriate implementations [14]. However, data
manipulation functions present a bottleneck [22], {24]. They consist of two or
three phases. First a read phase of data, then a manipulation phase followed by a
load phase for some functions. For very simple functions, such as checksumming,
byte alignment, etcetera, the time to read and write to memory dominates the
processing time. For others, like encryption and some presentation encodings,
the manipulation time dommates

The data manipulation functions are spread over dlﬁerent layers. In a naive
protocol suite implementation, the layers are mapped into distinct software or
hardware entities which can be seen as atomic entities. The functions of each
layer are carried out completely before the protocol data unit is passed to the
next layer. This means that the optimization of each layer has to be done sepa-
rately. Such ordering constraints is in conflict with efficient implementation of
data manipulation functions [25].

One could accuse the layered model (TCP/IP or OSI) for causing this con-
flict. However, it is important to distinguish between the architecture of a pro-
tocol suite and the 1mplementatlon of a specific end system or a relay node.
There is nothing a priori that requires that the implementation should follow
the architectural decomposition. ILP has been suggested for addressing this pro-
blem. With integration we mean that several layers are implemented within the
same module. This does not mean that the implementation is unstructured. The
basic idea behind ILP is to perform all the manipulation steps in one or two
processing loops, instead of performing them serially as is most often done to-
day. Within a loop we mean one read to memory, followed by all manipulations
and one write back. Hence, time consuming memory references are reduced. To
facilitate ILP a protocol architecture should be organized such that the inte-
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ractions between the control and data manipulation functions, do not interfere
with their integration. '

The layered protocol architecture may unnecessarily reduce the engineering
alternatives available to an implementor. Clark and Tennenhouse have proposed
Application Level Framing (ALF) as a key architectural principle for the design
of a new generation of protocols [22]. According to this principle applications
- should break the data into frames (or Application Data Units (A DUs)) meaning-

ful to the application. It is also desirable that the presentation and transport
layers preserve the frame boundaries as they process the data. In fact, this is
in line with the widespread view that multiplexing of application data streams
should only be done once in the protocol suite [26]. The sending and receiving
application should define what data goes in an ADU such that the ADUs can
be processed out of order. The ADU will be considered as the unit of “data
manipulation” , which will simplify the processing. Thus, ALF is supporting the
ILP principle.

ALF and ILP were proposed in 1990 and there are very few reported imple-
mentations done according to these concepts. Results reported in [22] indicated
that a MIPS processor performing the copy and the checksum on data can run
at 60 Mbps if these functions were done separately and at 90 Mbps if they
were combined in a hand coded unrolled loop: The effect would be much more
pronounced if several of functions necessary to the application (like e.g. presen--
tation encoding, encryption and checksumming) were combined. Other work,
([24], {27], [28]) have demonstrated that there is a performance benefit with
ILP. ‘ '

* We worked -on the design and implementation of ALF/ILP based environ-
ment. Our goal is to integrate several of the data manipulation functions in a
_complete, operational stack in order to understand the architectural implications
‘and the achievable speedup. '
In this paper, we present the approach we follow to reach this goal:

e We worked on the enhancement of costly presentation encoding and de-
coding routines. The processing cost of byte oriented manipulation opera-
tions reduces the gain of ALF/ILP. Therefore any ALF/ILP based system
should have an efficient presentation layer. In section 3 we detail the work
on the enhancement of the presentation coding and decoding routines.

e In order to expenment integration techniques with transport level func-
tions we performed a prototype implementation of the XTP protocol at
the user level. The integration of presentation and transport level func-
tions is more easily achievable if the transport is implemented at the user
level. -

Section 3 presents the work on the optimization of the presentation layer. Sec-
tion 4 presents the XTP implementation and discusses the suitability of XTP
as a substrate for ILP based implementations. In section 5, we discuss a general
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framework for the building of the ALF/ILP based communication subsystems.
Section 6 concludes the paper.

3 High speed presentation

Our work was centered around the optimization of the ASN.1 Basic Encoding
Rules. The cost of the coding and decoding routines is attributed to the heavy
Type-Length-Value oriented coding of ASN.1 BER. This motivated the work on
© “light weight” (LWS) or XDR-like transfer syntaxes [29] based on three design
principles: ’ :

o avoid unnecessary information in the encoding,
¢ use fixed representation when it is possible and, -
o simplify the mapping of the elements by using fixed length structures.

The first principle leads to the abandonment of the systematic “Type-Length-
Value”. encoding, which is replaced by new encoding rules for the ASN.1 cons-
tructs; the second and the third principles lead to a set of easily decoded word
oriented encoding rules. The word size, is a parameter that characterize the
. syntax (16, 32, or 64 bits). The complete definition of these light wight enco- -

ding rules is given in [6]. Both BER and LWS syntaxes are supported by the
MAVROS ASN.1 compiler developped at INRIA [30].
We have done some experiments to compare the performance of ASN.1 BER
" and the LWS encoding rules. The ASN'1 specification of the data type used in
these tests 1s: ’

perf-object ::= OPAQUE CHOICE {
ints[0] SEQUENCE OF INTEGER,
strings{1] SEQUERCE OF PrintableString,
real[2] SEQUENCE OF REAL,
mpdus [3] SET OF MPDU}

The test object is either a basic data type such as SEQUENCE OF INTEGER,
SEQUENCE OF REAL, SEQUENCE OF PrintableString (mean length of 26
characters per string). In order to test the encoding rules with more complex
types, we chose the MPDU format (Message Protocol Data Unit) which defines

the envelope of a message according to the 1984 version of the P1 Protocol
(CCITT Recommendation X.411). "

The number of the data values for each type in the performance tests is given
in table 1. '

The results of performance tests accomplished on a Sun 3/60 are given in
table 2. _ '

The LWS coding routines were 1.6 to 5.8 times faster than those of the
BER depending on the data types. For basic data types, the improvement is
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considerable (specially for the real type) because of the relative efficiency of
* the word oriented coding.
After this first test series we conducted several optimizations by analyzing .
the coding routines for typical types either “manually” or with the help of
“profiling” tools. We tested a number of modifications in our ASN 1 BER coding’
and decoding algorithms, of which we cite: :

e Inline the encodings for some types, and apply the “type reduction” tech-
nique in order to remove all “repeated indirections”, replacing them as
much as possible by direct references to the data type.

e Use “header prediction” techniques to speed up the decodmg of tags and
that of length fields,

o Speed up the encoding of tags and length field by usrng systematrcally the ‘
“indefinite length” encoding form.- -

o use static declaration and better memory management (reduce the calls
to malloc) :

These (and other) optrmrzatlons were reported reported in the code generation
programs of the ASN.1 compiler, as'well ‘as in the “run-time” library. A new
series of tests were conducted only with the MPDU type on different workstation
types and the performance figures are shown in table 3: Before we analyze these
figures, recall that the coding procedure consists in copying the perf-obj ect
from memory to the cache, looping on processing instructions and then storing
the result (BER or LWS streamlined data) in memory. This cycle is reversed
for decoding but the processing part is longer due to additional verifications.
Therefore, if the overall decoding time is higher than the coding time, we can
deduce that the processing speed is the bottleneck. Otherwise, if these times
are comparable, then we may say that the memory access overhead (which is
the same for both routines) dominates the processing time. In addition, BER
encoding requires more processing than the LWS which generates however, a
larger code size.

In the case of initial tests on Sun3, it is clear that the processing speed is
the limiting factor for both BER and LWS. In this case, it is advantageous to

- use the LWS. The optimizations led to a drastic reduction of the BER cost-and
the optimized Sun3 figures shows that the BER coding time is lower than LWS:
what is gained in processing is lost due to the higher size of the data which will
transit on the bus. However, the for more CPU consuming routine (decodmg)
BER is still slower than the LWS.

"Fhe results are more interesting with high performance RISC workstations.
On the SparcStation 10, coding BER is more-efficient than LWS, which implies
that the memory access dominates the processing time. However, BER decoding
is still limited by the CPU performance. Both codmg and decodlng routines for
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LWS are limited by the memory access (due to the large code size loaded and
stored).

Similar results are obtained on both Dec 3000 and HP workstations. Note,
however, that the coding time is the same for both BER and LWS which means
that both memory access and CPU bottlenecks are balanced. For decoding, the
processor speed limitation is more pronounced.

The best results are obtained on Dec-alpha where the 64 bit bus enhances
the memory access performance. The figures are “classical”: BER more costly
than LWS and decoding (BER or LWS) is more costly than coding. This is
typically due to CPU limitation.

The maximum decoding throughput is about 24.54 Mbps for BER and 88.9
Mbps for LWS on the Dec-Alpha.

From the above results we can learn the following;:

¢ A drastic improvement of the speed of coding and decoding routines for
both BER and LWS routines can be obtained by adequate implementation
optimization on high performance workstations

o The LWS is interesting if the processor speed is the bottleneck, however,
a more compact syntax is desirable in order to reduce the size of the data
to be transmitted on the network.

® Memory access is a limiting factor in most cases on RISC workstations.
This confirms that integration techniques should result in increased per-
formance on such workstations:

The design of an integrated communication subsystem is a more general problem
that still needs to be addressed. The optimized version of the encoding and
decoding functions should lead to the implementation of the presentation layer

as a filter with “streamlined” encoding and transmission of application data
units.

4 High speed transport mechanisms

We now present our work on the transport leve] functions. This work has two
- goals:

e To experiment the effect of integration mechanisms on the performance of
transport functions, :

e 'To have a substrate suitable for the building of communication subsy_stéms
with support of the ALF/ILP principles.

We chosed to perform a prototype implementation of the X TP protocol. XTP
was initially designed to be implemented on specialized hardware with execution
efficiency as inherent part of the design process. Therefore, many syntactical and
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algorlthmlc choices of the protocol are oriented to facilitate hlgh speed operation
over low error rate networks.

XTP provides a set of mechanism, the application can select the des1red
type of service according to its own requirements. We implemented XTP in the
Unix user level as a transport functionalities library. This library is linked to
the application code. The rationale for user level implementation of protocols
is given in [31]. We argue that user level implementation does not necessarily
. have poor performance if proper optimization are adopted as will be shown in
section 4.1. : ’

_ The interest of a user level implementation of XTP is to provide a support
for the test of the architectural design described in section 2. In the rest of this
section we will describe the XTP implementation. level XTP

4.1 XTP lmplementatlon

The implementation runs on an extension of the 4 3 BSD socket 1nterface The
-extension of the kernel protocols was done in order to add the support of XTP
on top of IP. The implementation architecture is.depicted in figure 1.

Two functions xtp_input and xtp-output on top of IP serve as a demul-
tiplexing layer. They process the key field in the XTP header. This minimal
-kernel ‘support provides a secure allocation of network- ports. The provision of
“datagramm” XTP sockets enables the application Transmission control thus
can be easily User applications have access to the XTP socket interface through
the standard system calls (vritev, call attempts to gather an array of
buffers of data and readv scatters

The XTP connection set up, the reliable data transfer and the connection
tear down functionalities were implemented. Other XTP functionalities like rate
control, route management, multicast procedures have not been implemented.
- We now present some of the implementation issues, a detailed description of
this work is given[32].

‘Context 1mt1ahzat10n An application using XTP should initialize a context
before sending or recéiving data. After this initialization, a field within the
context structure points to a control some or This reflects the programmability .
of the XTP protocol. .

Context scheduling An application may have several active contexts in the
same time (several point to point associations with different application entities).
The application examines the list of “active” contexts to determine the next
context to be processed and the correspondmg wait timer value as. descnbed in
(33]. :
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Buffer management The allocation of memory buffers is performed by the
application. The sizes of the maximum receive or send buffers are specified in the
corresponding fields in the control bloc structure. These buffers are directly used
by the application to compute/process data. There is no intermediate transport
level buffers. When an XTP packet is received only the packet header is con-
sulted. After the necessary control functions had been performed, the data is
copied into the corresponding place within the user level buffer. The system calls
readv and writev are used to accomplish the scatter/gather I/0O. According to
application requirements (e.g when a complete Application Data Unit has been
received) the application is invited to process the message..

Retransmission strategies The selective ACK upon request mechanism
used in XTP facilitates the implementation of the well known retransmissions
strategies, GoBack-N and Selective repeat. Both strategies have been implemen-
ted. During the performance tests presented hereafter the receiver has adopted
the selective repeat strategy.

Checksum calculation The 32-bit XTP check function called CXOR, is defi-
ned as the catenation of two 16-bit functions: XOR which is a straight “vertical”
exclusive-or of each 16-bit short word in a block of information, and RXOR a
rotated “spiral” exclusive-or of each 16-bit short word. We experimented the ef-
fect of ILP based optimizations on the performance of the checksum algorithm
and we had increased performance by a factor of 12 due to these optimizations
as will be shown in the section 4.2

4.2 Performance tests

In this section we present performance test results of our prototype XTP. Per-
formance of a kernel TCP BSD implementation will also be presented. The
figures should be taken very carefully: the performance of a protocol depends
on the environment, implementation tunings and enhancement technique as de-
monstrated in [7]. Many differences exist between the choices we adopted and
the TCP kernel implementation, and the XTP implementation is not as well
“tuned” as the TCP kernel implementation. Therefore, it is not meaningful to
make precise comparison of both protocols based on the performance figures we
have. However, the figures gives an idea on the possible performance of XTP
when implemented in the user level.

4.2.1 Performance of the checksum algorithm

The speed of checksum calculation is known to be one of the important factors
that determine the performance of a transport protocol [22], [34]. The XTP
designers proposed to perform this task in hardware [35]. The following results
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show that it is possible to optimize the software implementation of this routine

thus removing of the bottlenecks for the protocol performance. .

The performance of TCP and ISO TP4 checksum algorithms are given in
the first two rows of the table 4 for four different machine hardwares. These
are byte or short word oriented calculations. The “standard” implementation

of the XTP checksum as a loop of short word oriented exclusive-OR. and rotate

operations was too slow (maximum throughput of 13.88 Mbps on a SS-10).

We analyzed the cost of the basic operations needed for the the checksum
routine in order to determine the most costly functions. The results are presented
in table 5. The rotate(x,n) macro is defined as n circular shifts on the short
word x. ‘This is a relatively costly operation and should be saved as much as
possible. :

We performed some hand optirmizations on the checksum calculatxon algo-
rithm. The results are given in table 6. A first optimization (opl) consisted in
doing the XORs on words with the same RXOR rotation and saving the rotate
operations until the end. This “enhancement” increased the speed slightly on
Sun3 but resulted in slower operation on Sparc and Dec workstations. In fact,
to implement this modification, we used an array of 16 short words to store the
- XOR values. As the manipulation operation on the Sun3 was the bottleneck,
the saving in the number of rotate operations resulted in increased performance.
On the contrary, the memory access on both Dec and Sparc workstations is the
bottleneck. Therefore, the load operations of the array elements decreased the
performance. A second optimization (op2) consisted in declaring 16 short words
instead of the array in order to save indirections (unroll the loop). This resulted
in increased performance on all machine types. In a third modification (op3}, the
number of XOR operations is divided by 2 by XORing the 16 words at the end
to determine the CXOR value instead of doing it on the fly. This also increased
the overall performance. In (op4) the same optimizations as (op3) are applied
with long words calculations and then folding the results down to 16-bits. The
results are interesting: the increase factor with regard the third enhancement
vary between 2.6 for the DecStation and 5.6 for the SS10. The hlgher the value
of this factor, the more costly is memory access relatively.

4.2.2 Throughput measures

Tests have been performed over both Ethernet and FDDI networks We 1m-
plemented simple a 51mple client /server application where the client sends raw
data to the server using UDP, TCP or XTP protocols. For UDP, the client wiil
_send numbered packets, the test is considered terminated when the last packet
is received at the server. It this packet is lost, the test is'considered as non valid.
For both TCP and XTP, the test is terminated when all the data is received
correctly at the server. The XTP library is linked with both the client and server
code.

[ 23
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The throughput is defined in the three cases as the number of received bits
divided by the time interval between the reception of the first and the last packet
at the server.

The following tables give the results of the tests over both Ethernet and
FDDI. The machines running the client and the server are both DECstations
5000,/200.

One may be tempted to say that the UDP figures give the raw performance
that may be obtained on either Fthernet or F DDI. However, this assertion
should be taken with care: packet losses at the ipqueue level due the high num-
ber of packet transmitted during a test (100 to 500) reduce the throughput as
defined here above. The best performance for UDP are obtained for small num-
ber of transmitted packets (15 or 20). Over Ethernet, there is no bottleneck
at the UDP level: the throughput is limited by the speed of the Ethernet in-
terface. Over FDDI, the maximum raw UDP throughput is also limited by the
performance of the FDDI interface. Note that the MTU is 1460 and 4312 octets
over Ethernet and FDDI respectively. 9000 octets packets are transmitted as
7 Ethernet packets and 3 FDDI frames and reassembled by the kernel at the
UDP/IP layer. .

The TCP figures are more interesting: no bottleneck over Ethernet, TCP can
easily saturate the 10 Mbps CSMA-CD LAN. However, the performance over
FDDI are limited by the control mechanisms of TCP. The highest throughput
(20.74 Mbps) is lower than the best UDP performance. The socket receive buffers
have been set to 65535 octets in order to increase the window of TCP. TCP
Packets shorter than 1024 octets show poor performance even over FDDI. The
limitation comes from the buffering mechanism within the kernel: small buffers
of 128 octets are used, thus limiting the overall performance of the transmission.
For packets longer than 1024 octets, the performance are quite similar with a
tendency to decrease. '

For ‘the XTP tests, one should distinguish between two notions: ADU and
NDU as they are defined in [36]. ADU or Application Data Unit is the basic
unit of data exchange between application entities. NDU or Network Data Unit
i1s the unit of data processing and switching within the network. For the purpose
of these tests NDUs over Ethernet are 1400 bytes long and NDUs over FDDI are
4000 bytes long. The packet sizes in table 9 are ADU sizes. Note that the results
does not vary a lot with the ADU size, as the same NDU size is used. The most
important result shown in this table is that XTP can saturate Ethernet and
operate up to a speed of 21 Mbps over FDDI. This was made possible because
of the following factors: ' . :

* minimize data copying by the use of writev and readv,
¢ optimize the checksum calculation by ILP oriented optimizations,

¢ minimal overhead by return key based context look up in the kernel
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This, in fact, optimize the input processing in the normal case (no errors). This
optimization is a capital condition to enhance protocol performance.
These results show that it is possible to have high speed communication

with user level implementation of transport protocols. The throughput figures
should not be taken as an indication of the performance of XTP with all control

mechanisms implemented. However, the other control mechanisms (rate conttol,
route management) do not manipulate data and they may be considered to have
minimal additional cost. The good performance of our XTP implementation
with the complete error and flow control procedures is an encouraging step in
the direction of user level implementation of protocols. Such high performance
transport implementation will provide building blocks that will facilitate the
configuration of application specific communication subsystems. .

- However, some problems still to be solved before user level implementations

provide optimal results: the execution environment should be more adapted to

the support of network protocols by providing better memory management and
process scheduling than Unix.

5 . Communication subsystems design

XTP is a step towards the definition new high performance communication sub-
systems. XTP proposed a set of well founded protocol enhancement mechanisms
like: (1) fixed-length and position fields, (2) efficient 1-way implicit handshake
connection setup; (3) efficient context lookup with a key-based scheme, (4) data
alignment on 4-byte boundaries, (5) selective retransmission, (6) acknowledg-
ment control (7) a checksum algorithm that can be computed at high speed.
“These mechanisms contribute to the enhancement of the protocol performance.
To give only one example, note the important speed increase factor for check-
sum calculation using 4-byte long words oriented operations. Some of these
mechanisms are algorithmic enhancements like (2), (3) and (4) and some other
(5, 6, 7) are driven by an important design philosophy of XTP: the program-
mability of the protocol mechanisms by the end systems. This programmability

facilitates the profiling of the transmission control protocol by the transmitter.

XTP-provides a set of functional enhancements like rate control, priorities ba-
sed scheduling, reliable multicast, No-error mode. The application selects the
* desired functions or policies via the control block structure:

However, if the XTP “prograrnmability” is in line with ALF /ILP principles,
it is not clear how the application should configurate the elementary transport
and presentation “building blocks” in order to generate the complete communi-
cation subsystem. XTP can serve as a substrate for the implementation of this
communication subsystem. The problem of the service selection is left to the ap-
plication. Other design studies should determine how the elementary building
blocks can be grouped together in order to provide the desired service with the
best performance. -
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The application selects the options that govern the data exchange. In other
words, this approach means that the application will select the policy used for
the transmission control. In fact, only the application has sufficient knowledge
about its own requirements to optimize the parameters of a data exchange in
a convenient way. The application can easily adapt to the network resources
changes by appropriate steps: instead of reducing the window size at the trans-
port level in response to a congestion indication a videoconference application
may chose to degrade either the quality or the frequency of the images in order
to adapt to the available bandwidth.

This approach is not consistent with the layered OSI model, where clear
- separation of data transmission control mechanisms (lower layers) and data
processing functions (higher layer) is made.

The OSI approach discharges the application from the transmission con-
trol functions by defining the transport service . The applications are transport
service users according to the layered reference model. On the contrary, the in-
tegrated design and implementation approach put the application to define how
the application level parameters will be mapped onto network parameters and
control functions. According to the diversity of the applications two solutions
are possible:

o either we define application classes and we select appropriate control func-
tions to be integrated to these applications (i.e. we define typed transport
services as proposed in [37]).

e or we use a suitable specification language to express the applications
needs and we design a generic tool to derive the configuration of the pro-
tocol functions automatically.

The first solution means an extension of the transport service. There has
been considerable work within the OSI95 project [38] and elsewhere [39], [40]
to define high speed transport service(s).

- Another possible way to solve the profiling problem is to have automatic ge-
neration of communication profiles based on a set of enhanced mechanisms (at
the presentation and transport-level) as described in sections 3 and 4. This cor-
responds to an horizontal approach to the layered architecture i.e. applications
select and combine control functions based on the service parameters and on the
cost of these functions. Some tools are required to implement this approach: (1)
a specification language to express the application requirements, (2) an efficient
implementation of elementary building blocks or generic protocol mechanisms,
(3) a profiling tool that configures the appropriate implementation based on the
service specification and on the generic protocol mechanisms.

We are working on the design and implementation of such tool within the
HIPPARCH project: a European-Australian collaboration. The main objectives
of the project are cited in the following:



14

W. Dabbous

. The design of an architecture for integrated design of communication pro-

tocols. Based on the knowledge available from integration techniques for
communication protocols, techniques for grouping protocol functions in
order to meet specific application requirements will be proposed.

. The definition/selection of a specification language to describe the apph-
- cation requirements.

. The design and implementation of a compiler to-automatically generate

the customized communication subsystem  based on integrated protocol

* modules. \

. The design and implementation of an efficient runtime system (execution

environment) for the code generated by the compiler.

. The building of prototype integrated mlplementatlon of communication

protocols for test apphcatlons

]

g
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6 Conclusion’

In this paper, we presented our work on high performance implementation of
presentation and transport functions. The experiments show that it is possible
to have increased performance by proper implementation techniques. We sho-
wed specifically that an important speed up factor can be obtained by applying
ILP integration techniques for costly data manipulation functions. Another im-
portant result is the relatively acceptable performance of user level protocol im-
plementations. Next step is to develop a compiler that combine automatically
and according to the application needs elementary building block to generate
customized communication subsystem verifying the ALF/ILP principles.
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Test identifier | Data Type Number of test. values ¢
ints SEQUENCE OF INTEGER 400
real SEQUENCE OF REAL 200
strings SEQUENCE OF PrintableString | 124
mpdus SET OF MPDU _ 118
Table 1: Number of Data values for each type .
Coding routines ints | reals | strings | mpdus
BER (total) ~5999 | 13666 | - 7833 | 62330
BER (per element) | 15 68.33 ] . 63.2| 3462
LWS (total) 1333 | 2333 5499 | 37998
LWS (per element) | 3.33 | 11.66 44.35 | 2111

Table 2: Coding time in us for different types.

"y

Coding time (zs) | Decoding time (zs) | Size (octets) | Decoding (Mbps)
BER LWS | BER LWS | BER | LWS | BER |  LWS
Initial (Sun3) | 3462 2111 | 16212 13527 480 | 1011 0.24 0.6 *
Sun3 | 1861 2018 6944 6398 540 | 1029 0.62 1.29
SS 10/30 112 199 318 225 ‘540 | 1029 | 13.58 36.59
Dec 5000/300 | 208 208 - 372 212 | 540 | 1029 11.6 38.8
HP 9000/715 100 100 339 ) 155 540 | 1029 | 12.74 53.1
Dec alpha 74 55 176 92.6 | 540 | 1029 | 24.54 88.9

Table 3: Speed of the presentation routines.

Checksum

Table 4: Maximum throughput with different checksum algorithms

Sun 3/60 | Sparc IPX | DEC.5000/200 SS-10/41
TCP | 2.61 Mbps | 13.3 Mbps 30.52 Mbps | 31.75 Mbps
ISO | 1.21 Mbps | 6.50 Mbps 10.69 Mbps | 12.46 Mbps
XTP (std) | 1.36 Mbps [ 7.02 Mbps 13.67 Mbps

13.88 Mbps

o
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User XTP control mechanisms
_______________________ socket
. interface
| XTP support |
Kemnel

IP protocol module

Ethernet driver

FDD! driver

Figure 1: General architecture of the XTP implementation

Operation | Sun 3/60 | Sparc IPX | DEC 5000/200 | SS-10/41
rotate(x,1) 6.24 ps 1.00 ps 0.687 us | 0.651 us
Short XOR 4.00 ps 0.88 us 0.445 us 0.45 ps

Table 5: Cost of the basic checksum operations (in a loop}

Checksum Sun 3/60 Sparc IPX | DEC 5000/200 SS-10/41
XTP (std) | 1.36 Mbps 7.02 Mbps 13.67 Mbps | 13.88 Mbps
XTP (opl) | 1.46 Mbps 6.83 Mbps 10.93 Mbps | 13.14 Mbps
-XTP (op2) | 2.95 Mbps | 16.54 Mbps 36.96 Mbps | 28.47 Mbps
XTP (op3) | 5.78 Mbps | 31.25 Mbps 66.06 Mbps | 52.63 Mbps
XTP (op4) | 22.59 Mbps | 172.05 Mbps 173.53 Mbps | 296.3 Mbps

Table 6: Effect of optimizations of the XTP checksum algorithm
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Packet size

Ethernet

FDDI

1000 o
1400 o
2000 o
3000 o
4000 o
4600 o
9000 o

6.90 Mbps
9.57 Mbps
9.52 Mbps
9.66 Mbps
9.47 Mbps
9.32 Mbps
9.21 Mbps

7.02 Mbps
10.32 Mbps
13.22 Mbps
16.66 Mbps
29.03 Mbps
24.53 Mbps
24.66 Mbps

) .‘ Table 7: Maximum throughput for UDP

Packet size

~ Ethernet

FDDI

1023 o |

1024 o
1400 o
2000 o
3000 o
4000 o
5000 o

7.25 Mbps -

8.35 Mbps
9.91 Mbps
9.82 Mbps
9.16 Mbps
9.00 Mbps

8.43 Mbps
19.05 Mbps
20.74 Mbps
18.86 Mbps
'18.04 Mbps
17.60 Mbps

8.71 Mbps

15.73 Mbps

Table 8: Maximum thfoughput for TCP

ADU size

Ethernet

FDDI

2000 o
4000 o
81920

9.62 Mbps

9.65 Mbps
9.71 Mbps

18.01 Mbps
19.72 Mbps
20.38 Mbps
21.24 Mbps

16384 o

9.77 Mbps

Table 9: Maximum throughput for XTP

2
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Application

Communication Optimal

Subsystems Implementation
Compiler

Protocol mechanisms
library (coding, error
control, flow control,
synchronization,....)

requirements \

Figure 2: General architecture for automatic communication subsystems gene-
ration
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